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When fitting complex models, such as finite element or discrete event simulations, the experiment design
should exhibit desirable properties of both projectivity and orthogonality. To reduce experimental effort,
sequential design strategies allow experimenters to collect data only until some measure of prediction
precision is reached. In this article, we present a batch sequential experiment design method that uses
sliced full factorial-based Latin hypercube designs (sFFLHDs), which are an extension to the concept of
sliced orthogonal array-based Latin hypercube designs (OALHDs). At all stages of the sequential design,
good univariate stratification is achieved. The structure of the FFLHDs also tends to produce uniformity
in higher dimensions, especially at certain stages of the design. We show that our batch sequential design
approach has good sampling and fitting qualities through both empirical studies and theoretical arguments.
Supplementary materials are available online.
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filling design.

1. INTRODUCTION

Computer simulations are frequently adopted in studying
complex systems. For example, engineers use fluid dynamics
models to visualize air flow around an aircraft (Germano et al.
1991) and stochastic simulations to optimize call center staffing
(Aksin, Armony, and Mehrotra 2007). Although the power and
speed of computers have increased dramatically during the last
few decades, a single evaluation of some computer models can
still take hours or even days. If the computer models are compu-
tationally expensive, metamodels, sometimes referred to as sur-
rogate models, can be constructed to approximate the complex
computer models with sufficient accuracy. These metamodels
can then replace the original computer models in optimization
or “what if” analyses.

Building a metamodel for a computer simulation involves
sampling a set of points from the design space and fitting a
model to the observed data. The focus of this article is on design
of experiments, that is, selecting the set of points to sample from
the design space. We presume that kriging (or Gaussian process
modeling) will be used for the fitted model. Kriging, developed
in geostatistics (Matheron 1963; Journel and Huijbregts 1978),
assumes spatial correlation between points. Responses at un-
observed points are predicted using correlations between the
observed points to create a response surface model. Kriging has
become widely used for building metamodels of complex de-
terministic computer experiments, and Ankenman, Nelson, and
Staum (2010) recently extended kriging to the case of stochastic
simulation. Although our approach is developed with kriging in

mind, it is also appropriate for many other fitting methods, es-
pecially when little is known about the true underlying response
surface.

A variety of experiment designs have been presented in the
literature for supporting kriging models. When the goal of the
metamodel is to fully map the region of interest, designs use
space-filling criteria and seek to place points in the design space
uniformly. McKay, Beckman, and Conover (1979) introduced
Latin hypercubes for computer experiments where each level of
each variable is sampled exactly once. This idea has spawned
many variants.

Tang (1993) and Owen (1992) proposed the concept of or-
thogonal array-based LHD (OALHD). An OALHD starts with
an n-point OA of strength t for m columns (t < m), each at
L levels, denoted by OA(n,m,L, t). For every t columns, the
Lt level combinations appear the same number of times. To
construct an OALHD from an OA(L2,m,L, 2), the set of val-
ues from 1 to L2 is partitioned into L groups: {1, . . . , L}, {L +
1, . . . , 2L}, . . . , {L(L − 1), . . . , L2}. The values are then ran-
domly shuffled within each group, and each entry in the first
column of the OA is replaced by the next available value from
its corresponding group. The values within the groups are ran-
domly reshuffled before replacing the entries of the next column
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in the OA. OALHDs have good projectivity in any univariate and
bivariate subspace if strength 2 OAs are used in construction.
He and Ai (2011) proposed a new class of Latin hypercube de-
signs with higher-dimensional uniformity when projected onto
the columns corresponding to higher strength orthogonal arrays,
as well as two-dimensional projective uniformity.

Other space-filling criteria have also been adopted when con-
structing designs. Johnson, Moore, and Ylvisaker (1990) first
defined the concept of minimax and maximin distance in the de-
sign of an experiment. The maximin criterion tries to maximize
the minimum distance between any two points in the design.
The minimax criterion minimizes the maximum distance be-
tween any nondesign point in the design space S and the closest
design point in the design. Morris and Mitchell (1995) presented
maximin LHDs that try to maximize the minimum distance be-
tween design points while maintaining the desirable projective
properties of an LHD. Qian and Wu (2009) presented the idea of
a sliced space-filling design. Each slice has good space-filling
properties while the whole design achieves good uniformity
in higher dimensional margins. Cioppa and Lucas (2007) con-
structed nearly orthogonal Latin hypercube (NOLH) designs
by combining correlation and distance performance measures.
Related approaches include the multi-objective optimization ap-
proach of Joseph and Hung (2008), and the mixed integer pro-
gramming approach of Hernandez, Lucas, and Carlyle (2012).
Ranjan and Spencer (2014) presented a class of Latin hypercube
designs based on nearly OAs.

Sequential designs have gained popularity in recent research
as experimenters desire the ability to terminate early if some
stopping criterion is reached. The stopping criterion is usually
based on an estimate of prediction variance or parameter estima-
tion variance. In particular, in the search for a global optimizer,
Bernardo et al. (1992) used an initial design to predict the re-
sponse. If the predictor is not accurate, a subregion is chosen
and explored. Otherwise, the objective is optimized using the
current fitted model. Ranjan, Bingham, and Michailidis (2008)
presented sequential designs with the objective of contour es-
timation. Lam (2008) proposed sampling additional points that
maximize the expected improvement in model fit. Distance-
based criteria also apply to the construction of sequential de-
signs. Besides maximin and minimax criteria, Johnson, Moore,
and Ylvisaker (1990) examined a weighted distance criterion
for choosing new design points.

Recently, Loeppky, Moore, and Williams (2010) introduced
the notion of batch sequential designs for computer experiments,
in particular the bin-based sequential design. The sequential bin
structure is established by a set of defining relations. The bins
(similar to the partitions of OALHD) within that bin structure
are used to construct augmenting sets of runs that yield, as nearly
as possible, aggregate designs that have maximin distance with
near Latin hypercube sampling (LHS) at each batch stage. A
batch sequential experiment design allows the experimenter to
successively add batches of design points to an experiment. The
goal is that after any batch is added, the design has reasonably
good projectivity and orthogonality properties. The stopping
criterion can be invoked when the desired precision is reached.

In this article, we present a batch sequential experiment de-
sign that uses the idea of sliced space-filling designs from Qian
and Wu (2009) and extends the work of Loeppky, Moore, and

Williams (2010). Like Loeppky, Moore, and Williams’s (2010)
bin-based designs, our design possesses good orthogonality and
projectivity at intermediate stages and leads to an OALHD.
However, our design does not require preselection of a total
number of runs. Instead, it allows for batches to be added in-
definitely. At certain stages of the sequential process, which we
call the golden stages, our design becomes what we call a sliced
full factorial-based Latin hypercube design (sFFLHD) that has
very special space filling properties.

The remainder of this article is organized as follows. In Sec-
tion 2, we define the sFFLHD and discuss its characteristics.
In Section 3, we present a method for sequentially building an
sFFLHD, one slice at a time. If each slice is observed as it is
created, this construction method becomes our proposed batch
sequential experiment design. In Section 4, we show how to
continue beyond the first sFFLHD to sequentially create addi-
tional sFFLHDs so that the batch sequential design can continue
indefinitely. We derive some theoretical properties of sFFLHDs
in Section 5. In Section 6, we compare the results obtained us-
ing different design procedures for several numeric examples,
and propose some choices of stopping criteria. In Section 7, we
demonstrate an application of sFFLHD to a logistics simulation
model. We summarize our work and present our conclusions in
Section 8.

2. SLICED FULL FACTORIAL-BASED LATIN
HYPERCUBE DESIGN

We now define a sliced full factorial-based Latin hyper-
cube design (sFFLHD), which our sequential design achieves
at the golden stages. A D-dimensional LD-point design X is
said to be an L-level FFLHD if two properties hold. First,
when every dimension of X is partitioned into L evenly spaced
levels of (0, 1]: (0, 1/L], (1/L, 2/L], . . . , ((L − 1)/L, 1], the
resulting design is an L-level full factorial design. Second,
when X is projected onto any dimension, precisely one
point falls within n = LD equally spaced levels given by
(0, 1/n], (1/n, 2/n], . . . , ((n − 1)/n, 1]. This design can be
sliced in the same sense that Qian and Wu (2009) sliced orthog-
onal arrays. An sFFLHD is an FFLHD that has been divided
into slices of equal size, each of which forms an LHD when
partitioned into L levels.

Figure 1 shows an example with L = 3, D = 2, and
n = 9. The design denoted V is an LHD because it has all
nine levels represented in each dimension. If this design is par-
titioned into three levels by mapping {1, 2, 3} to {0}, {4, 5, 6} to
{1}, and {7, 8, 9} to {2}, then V becomes the sliced full factorial
design W in Figure 1. Alternatively, given a nine-run sliceable
full factorial W, we can construct a V that has this mapping
property using a forward substitution mechanism. In the first
column of W, replace the three entries of 0 with a random per-
mutation of the integers {1, 2, 3}, replace the three entries of
1 with a random permutation of the integers {4, 5, 6}, and re-
place the three entries of 2 with a random permutation of the
integers {7, 8, 9}. Use separate permutations to populate column
2 of V.

We call W the big grid design, and V the small grid de-
sign, because more levels result in smaller grid squares. For
continuous-valued factors, the entries of V can be used as upper
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Figure 1. A nine-run sliced full factorial design matrix W, and a
nine-run LHD V that maps to W when partitioned into three levels by
mapping {1, 2, 3} to {0}, {4, 5, 6} to {1}, and {7, 8, 9} to {2}.

endpoints of unit length intervals. For example, the entry 3 can
represent the upper endpoint of the interval (2, 3]. When scaled
to the unit cube, the entries in each dimension mark out equally
spaced regions between 0 and 1. Using this framework, the de-
sign matrix, X, can be simply a scaled version of the small
grid design, such that X = V/LD: we show this as Xscaled in
Figure 2. Alternatively, the design matrix can be based on LHS,
where the design point is randomly chosen within the interval
specified by the entry in the small grid design: we show an ex-
ample as X in Figure 2. Both Xscaled and X in Figure 2 meet the
conditions for sFFLHD designs. We can also apply maximin
distance sampling, where the design point is chosen within the
interval specified by the entry in V to maximize the minimum
distance between all points. We have found that maximin dis-
tance sampling performs better than LHS in terms of root mean
squared error (RMSE) fitting, especially in lower dimensional
empirical examples. The examples in Section 6 use the max-
imin distance criterion. Supplementary materials are available
online.

3. SEQUENTIAL CONSTRUCTION OF AN sFFLHD

At a high level, our algorithm observes batches of L design
points (i.e., slices from an sFFLHD) sequentially until a stop-
ping criterion is reached or an L-level LD-point sFFLHD is
constructed. If we do reach the sFFLHD design, we call this a
golden stage since the design is now a full factorial on the big
grid scale and is an LHD on the small grid scale.

To sequentially construct an sFFLHD, we consider a spe-
cial type of orthogonal array OA(n,m,L, t), t = 2, n = L2.
Since the OA is of strength 2, then for any two columns, all
level combinations appear exactly once. The OA(9, 4, 3, 2) in
Figure 3 is an example. If this OA is sorted by the first col-
umn, it can be sliced into three slices of three rows each as
in Figure 3. Columns 2–4 of each slice form different Latin

Figure 2. Two sFFLHD designs constructed from V: Xscaled (using
division) and X (using LHS).

Figure 3. Construction of an initial, sliceable orthogonal array
W1 from an OA(9, 4, 3, 2).

hypercubes and columns 2–4 form an OA that we call W1. In
fact, an OA(L2,D + 1, L, 2) can always be sliced into L slices
of D-dimensional Latin hypercubes by using one column to
separate the slices and then removing the column used for slic-
ing. If using an OA with more than D + 1 columns, use the
first column for slicing, and keep only D columns. The batches
(slices) of the sFFLHD design are constructed using a series of
D-factor orthogonal arrays W1, W2, . . . , WLD−2

with strength
t (t ≥ 2), each with L levels labeled {0, 1, 2, . . . , L − 1}. Each
OA is sliced into L slices as shown above. The OAs are nonover-
lapping fractions of a full factorial design with L levels and D
factors. By nonoverlapping, we mean that no two of the OAs
contain the same row. In Appendix B in the online supple-
ment, we show how to create LD−2 − 1 nonoverlapping OAs,
W2, . . . , WLD−2

, from W1. Each new Wi is constructed from
W1 using a carefully chosen 1 × D vector vi .

In the process of batch sequential sampling, four designs are
created: the big grid design, the intermediate grid design, the
small grid design, and the actual design matrix. The big grid
design, W, builds orthogonality in L levels and is constructed
sequentially from the batches of the Wi’s. It achieves orthog-
onality each time the number of observations, n, is a multiple
of L2. The small grid design, V, has integer entries that are
all greater than or equal to one. It builds one-dimensional pro-
jectivity in each dimension, and becomes an LHD each time n
is equal to a power of L. Initially, entries in V take on values
v ∈ {1, 2, . . . , L2}; each time n is equal to Lc for some integer
c > 1, the upper limit is rescaled to Lc+1. In this way, we build
Latin hypercube projectivity on more than L2 levels as sam-
pling progresses. At the first golden stage, the small grid design
becomes an LD-level LHD. The intermediate grid design, M,
begins as the big grid design but comes into play after we have
reached a golden stage; it builds orthogonality in rL levels for
some integer r ≥ 1. The design matrix, X, is a scaled version of
the small grid design that fits inside the D-dimensional unit cube.
Notationally, Wi:j represents batches i through j, so Wb:b rep-
resents the bth batch (similarly for M, V, and X). The example
in Figure 4, where D = L = 3, illustrates the design matrices
for the first three batches when LHS is used for X.

The fourth batch for the big grid design is the first slice of
the second OA((9, 4, 3, 2), W2. Since n = 9 = L2, we must
rescale V to L3 levels before proceeding. The first three
batches take on the rescaled values V1:3 = ⌈L3X1:3⌉: this en-
sures that the previously constructed design points remain
aligned with the rescaled small grid design. Let “\” be a set
exclusion operator, and let vij and wij denote the values in
the ith row and jth column of V1:4 and W1:4, respectively.

TECHNOMETRICS, FEBRUARY 2017, VOL. 59, NO. 1



14 W. DUAN ET AL.

Figure 4. On reaching three slices when D = L = 3: W1:3 = M1:3, the big and intermediate grid designs; V1:3, the small grid design (before
rescaling); and the design matrix X1:3 from V1:3 with LHS.

For the new batch, corresponding to i = 10, 11, 12, vij is ran-
domly selected from the integers {Lwij + 1, . . . , Lwij + L2} \
{vhj |h < i,whj = wij }. In Figure 5, v10,2 (corresponding to
w10,2 = 0) was randomly drawn from the set {1, 2, . . . , 9} \
{v12, v52, v92} = {2, 3, 4, 6, 7, 8}, and the remaining vij for the
new batch are selected in a similar manner. Finally, we use the
new slice of V to obtain the new slice of X via LHS.

Batches continue to be created sequentially in this manner,
rescaling V each time we move past a batch where n is an integer
power of L, until a golden stage is reached. By construction,
whenever the number of batches b = cLD−1 for some integer c,
the current design can be considered to yield c replicates of the
initial big grid design, W1:LD−1 .

Figure 6 illustrates the early stages of the procedure when
D = L = 3. Solid black lines represent the big grid (three lev-
els), dashed black lines in subplots (b) and (c) represent the
small grid through the first three batches, before rescaling (nine
levels), and gray lines in (c) represent the rescaled small grid at
the first golden stage (27 levels). Batch numbers are provided
in subplot (a), which shows that each of the first three batches
is a three-level LHD, and together they form a three-level OA
on the big grid. Subplot (b) shows the same points, with shaded
regions emphasizing how they form an LHD on the nine-level
grid. Subplot (c) shows the design at the first golden stage; there
are three points in each of the nine big-grid squares because
this is a two-dimensional projection of a 33 factorial on the big
grid—and at the same time, the design is a 27-level LHD as
shown by the gray lines.

4. SEQUENTIAL CONSTRUCTION OF ADDITIONAL
sFFLHDS

After the first golden stage, we seek to build orthogonal-
ity on more than L levels and Latin hypercube projectivity
on more than LD levels. To build LHD projectivity on more

than LD levels, the small grid design gets rescaled whenever
n = Lc for some integer c as previously described. Similarly,
X can be used to rescale the intermediate grid design, M, af-
ter each new golden stage. Before moving past a golden stage,
we must choose a rescaling integer r that satisfies the con-
dition rq = L for some q ∈ N+. In this article, we assume
that r is as small as possible to allow the design to reach
each subsequent golden stage as quickly as possible. Some-
times r = L is the only possibility. We then rescale the ex-
isting intermediate grid design M to rL levels as follows:
M1:LD = ⌈(rL)X1:LD⌉. Continuing our example, Figure 7 shows
the four designs when the first golden stage is reached (before
rescaling). Using r = 3, Figure 8 shows the small grid design
rescaled to 81 levels and the intermediate grid design rescaled
to 9 levels, in preparation for further sampling. Figure 8 also
provides the intermediate and small grid designs for batches 10
through 18.

Note that the first golden stage is reached at batch b =
LD−1 (i.e., n = LD). Our goal for each subsequent set of
LD−1 batches of the intermediate grid design is that the set is
simultaneously an L-level LD-point sFFLHD, and an rL-level
LD-point fractional factorial that does not overlap with pre-
viously constructed sFFLHDs when projected on the rescaled
small and intermediate grids. The procedure in Appendix C in
the online supplement shows how to construct these nonover-
lapping fractional factorials. After r sets of LD−1 batches have
been observed, rLD levels will have been used in each column
of the small grid design. This creates an LHD in rLD lev-
els, and the intermediate grid design will be a full facto-
rial in rL levels. Thus, we reach the second golden stage,
where X1:(rL)D is an rL-level (rL)D-point sFFLHD. We then
rescale the intermediate grid design to r2L levels and the
process continues. In this manner, we continue to build to-
ward an r2L-level (r2L)D-point sFFLHD at the next golden
stage.

Figure 5. On reaching four slices when D = L = 3: W1:4 = M1:4, the big and intermediate grid designs; V1:4, the small grid design (rescaled
after three slices); and the design matrix X1:4, where the first three slices remain unchanged, and the fourth slice comes from V1:4 with LHS.

TECHNOMETRICS, FEBRUARY 2017, VOL. 59, NO. 1
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Figure 6. Two-dimensional projections of Factor 2 versus Factor 1, where (a) shows the results from X1:3 on the big grid, with numbers
indicating the batch, (b) shows X1:3 one a nine-level small grid, and (c) shows the results at the first golden stage, X1:9, on a 27-level grid.

Figure 7. On reaching the first golden stage, X1:9, an sFFLHD when D = L = 3 with LHS; W1:9, the associated big grid design; M1:9, the
associated intermediate design (before rescaling); and V1:9, the associated small grid design (before rescaling).

Figure 8. Rescaled design matrices after the first golden stage with D = L = 3: M1:9, the rescaled intermediate grid design with rL = 9 levels;
and V1:9, the rescaled small grid design with rLD = 81 levels. New M and V for the nine batches immediately following this golden stage are
also provided.

TECHNOMETRICS, FEBRUARY 2017, VOL. 59, NO. 1
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Figure 9. Flowchart of sFFLHD construction.

The small grid design for the next set of LD−1 batches
is a reverse mapping of the intermediate grid design.
Each entry of {i} in the intermediate grid design is
mapped to one of the integers from iLD−1 + 1 to (i +
1)LD−1 in the small grid design. In the example in Figure 8,
{0} is mapped to {1, 2, 3, 4, 5, 6, 7, 8, 9}, {1} is mapped to
{10, 11, 12, 13, 14, 15, 16, 17, 18}, and so forth. To ensure LHD
projectivity in the small grid design, the algorithm must, on
a column-by-column basis, avoid reusing levels from earlier
batches of the rescaled V.

Figure 9 shows a flowchart of sFFLHD construction. Essen-
tially, the inner loop (upper right corner) sequentially gener-
ates batches from a sliceable OA. The middle loop generates
nonoverlapping OAs from the initial OA, and builds LH pro-
jectivity on successively finer grids. The outer loop sequentially
generates new OAs (hence building orthogonality) on succes-
sively finer grids, as additional golden stages are reached. The
procedure terminates whenever the stopping criterion is satis-
fied. The stopping criterion can be based either on the design
(e.g., maximum desired number of batches is reached), or on
characteristics of the response.

5. ANALYSIS OF sFFLHD FOR MEAN ESTIMATION

The mean estimator of a design provides information on the
average response of the design space. A good estimator should
achieve both accuracy and precision. Space filling designs can
be used for many different purposes. While our main focus is
kriging, another common application is mean estimation over
a multi-dimensional space. The variance of the mean estimator
can be used as a model-independent criterion for judging the
quality of space filling designs (Qian and Wu 2009). We now
show that the mean estimator has lower variance from an sF-
FLHD than from random sampling, especially at certain stages.

5.1 Derivation of Mean Estimator of sFFLHD

Let dF denote the uniform probability measure on (0, 1]D .
The true average output of a measurable function f in
(0, 1]D with

∫
(0,1]D f (x)2dF < ∞ can be expressed as µ =∫

(0,1]D f (x)dF . Consider an experiment with n runs labeled as
{xi}, i = 1, 2, . . . , n, where xi = (xi1, xi2, . . . , xiD). The sam-
ple mean Y of n runs, Y = 1

n

∑n
i=1 f (xi), is used as a predictor

for µ. We will now study the quality of Y for an n-run sFFLHD.
Let D denote the power set of C = {1, 2, . . . , D}, and dFu =∏
i∈u dxi denote a uniform measure on (0, 1]|u|, u ∈ D. The

analysis of variance (ANOVA) decomposition of f (Owen 1994)
is given by f =

∑
u∈D αu, where the components αu are defined

inductively via

αu =
∫

(f −
∑

v⊂u

fv)dFC\v.

α∅ represents the grand mean. αi =
∫

(f − α∅)dFC\i is the
main effect of dimension i, and so on. With

∫
αuαvdF = 0, u ̸=

v,
∫

f 2dF can be decomposed into
∑

u∈D
∫

α2
udF , while the

variance σ 2 =
∫

(f − µ)2dF is simply
∑

u∈D\∅
∫

α2
udF .

Appendix D in the online supplement establishes the forms of
the marginal and joint probability mass functions. Following the
derivation in Owen (1994) with some slight changes in notation,
let wij denote the jth entry of the ith row of the big grid design
W. For u ⊂ D, let ηij (u) = {k ∈ u : wik = wjk} and define

S(u, r) =
n∑

i=1

n∑

j=1

1{|ηij (u)| = r}

and for batch b,

Sb(u, r) =
bL∑

i=(b−1)L+1

bL∑

j=(b−1)L+1

1{|ηij (u)| = r}.

TECHNOMETRICS, FEBRUARY 2017, VOL. 59, NO. 1
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Owen (1994) showed that variance of the mean estimator
from an n-point lattice sampling design can be written in the
following form:

var(Y ) = n−2
∑

|u|≥2

|u|∑

r=0

S(u, r)(1 − L)r−|u|var(αu(x)) + o(n−1).

Using the probability mass functions in Appendix D in the online
supplement, we can derive the expectation and variance of the
mean estimator of sFFLHD. We use xi. to represent the ith row
of the small grid design, X.

Proposition 1. Let Yb = 1
L

∑bL
i=(b−1)L+1 f (xi.), the mean es-

timator using a single batch of sFFLHD. Then

E(Yb) = µ and E(Y ) = µ. (1)

For a continuous function f , as L → ∞

var(Yb) =
∑

|u|≥2

Sb(u, |u|)L−2var(αu(x)) + o(L−1). (2)

At stages where the big grid design is an OA, as L → ∞ we
also have

var(Y ) =
∑

|u|≥3

S(u, |u|)n−2var(αu(x)) + o(n−1). (3)

Let Lb be the number of levels of M. At stages where n = LD
b ,

the sequential design is an FFLHD, and as n → ∞ we have

var(Y ) = O(L−D−2
b ). (4)

The proof appears in Appendix A in the online supplement.
From Proposition 1, (1) shows that the mean estimator of each

batch and the whole sequential design at any batch stage is un-
biased. We know from Tang (1993) that the variance achieved
by an ordinary Latin hypercube design under continuous f is
o(L−1), which is lower than the O(L−1) variance of random
sampling. (2) shows that the variance achieved by each batch of
our procedure is similar to that of an ordinary LHD. (3) shows
that variance differences are more pronounced when the sequen-
tial design is an OALHD, as pointed out in He and Qian (2011).

(4) shows that when the sequential design becomes an FFLHD,
the variance is O(L−D−2

b ), which is similar to lattice sampling
(Owen 1992). With the structure of the three grid designs, we at-
tain good sampling properties even at these intermediate stages.
We demonstrate this empirically in the next section.

6. EMPIRICAL EXAMPLES

For Examples 1 and 2, we sample eight points at a time,
setting the final budget to 16 batches (128 runs). For each design
method, we scale all designs to fit the range of interest, generate
100 independent designs, evaluate the response functions at
the design points, and fit a GP model at each batch stage. We
use a 10,000 point maximin LHD to assess the RMSE of each
GP model. In Section 6.4, we study the variances of the mean
estimators.

6.1 Comparison of sFFLHD and MmDist

Initially, we focus on comparisons of our sFFLHD with a
maximin distance sequential design (MmDist), as this seems to
be the most widely used sequential space-filling design. Sup-
pose the batch size is L. An MmDist design starts with a max-
imin LHD with L points, and each subsequent point is placed
to maximize the minimum interpoint Euclidean distance. Al-
though MmDist is a fully sequential design, we can group sets
of L points into batches and implement the design in a batch
sequential manner.

Example 1. Borehole Example

Worley (1987) used a model to demonstrate the flow of water
through a borehole. The model has eight input variables. In our
comparison, we vary four, six, and all of the eight variables. 95%
confidence intervals of RMSE differences are obtained via the
100 independent replications. Since the difference is (RMSE for
sFFLHD)−(RMSE for MmDist), a 95% confidence interval that
is strictly negative indicates that sFFLHD performs better. Be-
cause the ranges of RMSE differences vary substantially across
the batches, batches 1–6 are shown in the first row of Figure 10,

Figure 10. Borehole examples: 95% confidence intervals for RMSE(sFFLHD)-RMSE(MmDist) versus the number of batches completed, for
batches 1–6 (top) and 7–16 (bottom). Dashed lines indicate differences of zero.
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Figure 11. Smooth GP examples (θ = 5): 95% confidence intervals for RMSE(sFFLHD)− RMSE(MmDist) versus the number of batches
completed, for batches 1–6 (top) and 7–16 (bottom). Dashed lines indicate differences of zero.

and batches 7–16 in the second row. From the plots in Figure 10,
we see that the confidence intervals are predominantly negative,
and in most cases strictly negative, indicating that RMSEs from
sFFLHD are significantly lower than those from MmDist. sF-
FLHD is most advantageous for a relatively small number of
batches.

Example 2. Gaussian Process Models

For this test problem, we consider several k-dimensional
Gaussian processes (k = 2, 4, 6, and 8). Our Gaussian model
follows the form in Sacks et al. (1989) with correlation function:

R(x, x′) = exp

(

−
d∑

i=1

θi(xi − x
′

i)
2

)

. (5)

Different covariance parameter values, θi , in the Gaussian
process represent different scenarios with rougher or smoother
surfaces. In our surfaces, we use the same parameter value for
all dimensions so θi = θ ∀i. First, we set θ = 5 in each dimen-
sion. This makes the true Gaussian surface relatively smooth.
RMSE differences between sFFLHD and MmDist for these GP
models are shown in Figure 11. Then, we set θ = 15 in each
dimension, making the Gaussian surface relatively rough. Re-
sults are shown in Figure 12. Figures 11 and 12 show many
instances where the confidence interval is strictly negative, in-

dicating sFFLHD has a significantly lower RMSE than MmDist.
This is particularly true for seven or more batches. All of the
other confidence intervals contain zero, indicating no statisti-
cally significant difference between the designs. The overall
trend shows that in very early stages, it is more difficult to dis-
tinguish any difference between the two designs. Once a few
batches are observed, sFFLHD performs better than MmDist.
However, as the space fills, the advantage of sFFLHD will even-
tually diminish because both designs begin to fit the surface well.
Since the space fills faster in low dimensions, we see sFFLHD’s
advantage leveling off more slowly in high-dimensional, nons-
mooth, examples.

6.2 Comparison With Other Designs

In addition to the MmDist design, we compare sFFLHD with
several other design methods. Maximin LHD (MmLHD) is a
widely used space-filling design. To implement it in a batch
sequential manner, an MmLHD of the same final budget is
generated in each replication and then randomly divided into
batches of the same size as in the examples. We call this design
batch sequential MmLHD (bMmLHD). Even though bMmLHD
cannot go beyond the final budget (which is often unknown a
priori), it serves as a baseline for RMSE comparison. Another
design method, batch sequential LHD (bLHD) simply uses ran-

Figure 12. Nonsmooth GP examples (θ = 15): 95% confidence intervals for RMSE(sFFLHD) − RMSE(MmDist) versus the number of
batches completed, for batches 1–6 (top) and 7–16 (bottom). Dashed lines indicate differences of zero.
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dom LHDs of the same size as batches. This may be appeal-
ing due to its light computational requirements, but this design
does not spread points evenly on a finer scale when projected
onto any single dimension. A random version of sFFLHD (rsF-
FLHD) is also included in the comparison to demonstrate the
value of having each batch be an LHD. To create the rsFFLHD,
we use a slightly modified version of the sFFLHD algorithm.
The rows of W1:LD−1 are shuffled, so that the big grid design
of each batch of rsFFLHD may not be an LHD. However, at
the end of Step 2, the big grid design of rsFFLHD remains an
OALHD.

The online supplement provides tables that compare the
RMSE of the sFFLHD method with the above design meth-
ods for Examples 1 and 2 and two additional examples that
are provided in the online supplement. Any differences that are
statistically significant at the 95% confidence level are shown in
bold. As we found in the previous comparison, all statistically
significant differences show better performance by sFFLHD.
There are many instances where the differences are shown to
be not statistically significant. We note that sFFLHD performs
better in terms of RMSE than bMmLHD during early stages
and mid-stages, and as well at the final stage. The performance
of bLHD is never better than sFFLHD. As expected, rsFFLHD
and sFFLHD perform equally well near stages where the big
grid design of rsFFLHD is an OALHD. However, sFFLHD
performs better than rsFFLHD at other stages, leading us to
conclude that forcing each batch to be an LHD produces bet-
ter space-filling properties at stages when sFFLHD is not an
OALHD.

We also compare sFFLHD with the bin-based batch sequen-
tial design of Loeppky, Moore, and Williams (2010) on a three-
dimensional GP example with θ = (5, 5, 5). The bin-based de-
sign has an initial batch of size 16 and subsequent batches of size
8, so we group batches of size 4 from an sFFLHD to match the
batch sizes of the bin-based design. Because both designs have
similar goals and methods, no significant difference is found be-
tween RMSEs produced from sFFLHD and the bin-based design
during the 64 run experiment. However, the bin-based design
does not have a clear strategy for continued experimentation be-
yond 64 runs, nor does it guarantee the LHD property when the
bin structure (similar to the big grid design in sFFLHD) is a full
factorial. Simulation shows that for each dimension, only about
89% of the 64 levels are covered when the bin-based design
reaches 64 runs.

6.3 Stopping Criteria

The most important attribute of sFFLHD is the ability to stop
at any batch stage while maintaining good space-filling proper-
ties. While a smaller RMSE of fit is often desirable, computing
actual RMSE requires knowledge of the true model, which is not
available in most cases. However, the fitted response surface en-
ables us to estimate the MSE of prediction at some unobserved
point. For instance, if a GP model is used as the emulator, the
predicted MSE for an unobserved site x can be computed from
the following expression:

MSE(Y (x)) = σ 2(1 − r′(x)R−1r(x)), (6)

Table 1. Borehole function: Comparison of RMSE of µ̂ for each
design scheme

Batch 1 4 8 12 16
design points 8 32 64 96 128

sFFLHD 20.645 1.546 0.059 0.310 0.027
bMmLHD 254.137 49.674 13.120 5.995 0.709
MmDist 15.526 23.102 10.886 6.997 5.361
rsFFLHD 223.847 34.909 0.069 3.502 0.024
bLHD 14.887 2.944 1.660 1.036 0.888

where the matrix R is defined using correlation func-
tion in (5) as R = {Rij }(n×n) = R(xi ., xj .) ∀i, j and
r(x) = [R(x, x1.), . . . , R(x, xn.)]′. Then the root integrated
MSE (RIMSE),

RIMSE =

√∫

S
MSE(Y (x))dx, (7)

can be used as a measurement of uncertainty for prediction.
Typically, the parameters θi ,∀i are estimated and then RIMSE is
approximated by computing the estimated MSE at each point
on a big grid and taking the root of the average across the grid.

Cross-validation also can provide a performance measure of
the GP model. Leave-one-out cross-validation is often preferred
as only one observation is left out for each cross-validation and
cross-validation fits are close to the fit with all data. An example
is studied in Section 7 to demonstrate the usage of the above
stopping criteria.

6.4 Comparison of Mean Estimators

In this section, we compare the properties of the mean esti-
mators of five different design methods (sFFLHD, bMmLHD,
MmDist, rsFFLHD, and bLHD).

Example 3. Borehole Mean Estimation

All eight dimensions are used in this example. For each de-
sign method, a final run size of 128 with batches of size 8 are
used. Function values are evaluated at design points and the
sample mean is calculated at each batch stage. RMSEs of µ̂ are
obtained via 2000 independent replications. Table 1 summarizes
the result. The mean estimators of sFFLHD are superior to other
designs, except when equivalent to rsFFLHD.

7. APPLICATION: OPERATIONAL AVAILABILITY
SIMULATION

Our final example applies sFFLHD to a discrete-event simula-
tion for logistics operations of interest to the U.S. Department of
Defense (DoD). What follows is a brief description of the model
logic. The basic scenario is that an operational unit has a fleet of
vehicles. The measure of interest is the number of vehicles avail-
able at the beginning of each day, since this determines what
operations can be conducted. The available proportion of the
initial fleet is called the operational availability, which is abbre-
viated as “Ao” within DoD. All vehicles are initially in working
order. Over time, vehicles are taken out of service for two rea-
sons. The first is for periodic scheduled maintenance. A portion
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of vehicles undergoing maintenance will need an extended stay
in the depot because problems are identified. The second reason
is that vehicles can break down prior to their scheduled main-
tenance. Breakdowns will immediately be placed in a queue
of vehicles awaiting repair. Regularly scheduled maintenance
is given precedence over breakdown repairs, based on an as-
sumption that turnaround times will generally be quicker for
the former than for the latter. Regardless of why it was in the
depot, a vehicle’s next maintenance cycle gets rescheduled upon
departure from the depot.

Factors and their ranges of interest are:

• X1 – Number of maintenance personnel, [2, 8];
• X2 – Nominal ratio of initial vehicles to maintenance per-

sonnel, [5, 10];
• X3 – Breakdown rate, [1 per 140 days, 1 per 14 days];
• X4 – Maintenance cycle (days), [90, 120];
• X5 – Pr(standard maintenance suffices), [0.92, 0.98];
• X6 – Pr(standard repair required after breakdown), [0.76,

0.84];
• X7 – Weibull scale parameter for standard repair times,

[0.1, 0.5];
• X8 – Weibull shape parameter for standard repair times,

[1.5, 5].

X1 and X4 are integer-valued, the rest are continuous.
The standard service time is uniformly distributed between

5.5 and 6.5 hr. The standard repair time follows a Weibull dis-
tribution parameterized by X7 and X8. If a previously undiag-
nosed breakdown is identified during service (or repair), then
tmaint (trepair) follows a Weibull distribution with four times the
mean of the standard repair time distribution.

The Ao model is stochastic, and a wide variety of performance
measures can be calculated. We choose to examine the average
number of vehicles available over a long period of time (Y) as a
nearly deterministic estimate of the steady-state mean vehicles
available. To study the response surface of Y given the eight
input factors following the batch sequential method, an sFFLHD
with batch size of 8 is used and GP models are fitted after each
batch.

Figure 13. RIMSE, CV Error, and actual RMSE after each batch
stage (in log scale).

We start with a stopping criterion based on estimated
RIMSE from the GP model as shown in (7). With more batches
of points evaluated, the fitted GP models tend to approximate
the real response surface with smaller errors. However, im-
provement of fitting is not guaranteed after every batch stage.
Figure 13 shows the RIMSE after each batch stage. We choose
to stop after batch b ≥ 6 if the minimum RIMSE from the five
most recent batches, which we call RIMSEnew, is no more than a
p% improvement over the minimum RIMSE achieved in the first
b − 5 batches, designated RIMSEold. The criterion stops the se-
quential experiments if (RIMSEold − RIMSEnew)/RIMSEold <

p%. We selected two possible scenarios (p = 7.5 and p = 5)
and summarize the findings in Table 2. To assess the GP model
fitting, actual model RMSEs were computed from a 10,000 test
point maximin LHD (see Figure 13).

Leave-one-out cross-validation leaves each design point out
in turn and refits a set of n − 1 new surfaces. The leave-one-
out cross-validation error (CV error) is a double average, first
across all design points that are left in for each new surface, and
then across the n − 1 new surfaces. The CV error across batch
stages are also plotted in Figure 13. Similar to the RIMSE cri-
teria, we choose to stop after batch b ≥ 6 if the minimum of the
CV errors from the five most recent batches (CVnew) does not de-

Table 2. Results from RIMSE and CV error stopping criteria

Relative change Relative change
Batch(b) RIMSEold RIMSEnew in RIMSE CVold CVnew in CV RMSE

6 18.355 2.319 (87%) 22.365 3.787 (83%) 3.219
7 5.118 2.319 (55%) 9.678 3.787 (61%) 3.541
8 5.118 2.319 (55%) 8.111 3.756 (54%) 3.601
9 2.567 2.319 (10%) 7.552 3.756 (50%) 3.052
10 2.567 2.319 (10%) 5.530 3.214 (42%) 2.940
11 2.319 2.122 (9%) 3.787 2.911 (23%) 2.878
12 2.319 2.122 (9%) 3.787 2.911 (23%) 2.420
13 2.319 2.122 (9%) 3.756 2.911 (23%) 2.470
14 2.319 1.973 (15%) 3.756 2.911 (23%) 2.657
15 2.319 1.973 (15%) 3.214 2.911 (9%) 2.759
16 2.122 1.973 (7%) 2.911 3.287 (0%) 2.457
17 2.122 1.912 (10%) 2.618
18 2.122 1.912 (10%) 2.381
19 1.973 1.912 (3%) 2.309
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crease by more than p% of the minimum CV error from the first
b − 5 batches (CVold). The criterion stops the sequential exper-
iments if (CVold − CVnew)/CVold < p%. Although CVold and
CVnew both tend to decrease as more batches are used, it is likely
that CVnew increases are due to GP model fitting errors.

Table 2 shows that the batch sequential sampling stops at
batch stage 16 and 19 (in bold) if RIMSE stopping criterion
with p = 7.5 and p = 5 are used, respectively. Both CV error
stopping criteria stop the batch sequential sampling at batch
stage 16. The actual MSE across the 10,000 test points from the
GP model at batch stage 16 is only 1.7% of the total response
surface variation. Both the RIMSE and CV error stopping crite-
ria are able to fit GP models with small errors using a reasonable
number of design points. Comparing the RIMSE with the ac-
tual RMSE, the expected RMSEs from GP models are slightly
smaller than the true RMSEs as the GP models are approxima-
tions of the true response surface. The cross-validation method
tends to slightly overestimate the true RMSE.

Operational availability is a component of a trade-off analysis
and management tool under development for the U.S. Marine
Corps. A surrogate model, such as the GP model described
above, will allow program managers to use this tool interactively
to assess the impact of acquisition and logistics decisions on both
readiness and life cycle cost.

8. CONCLUSION

We propose a new batch sequential design sFFLHD. At cer-
tain batch stages, sFFLHD achieves high levels of both pro-
jectivity and orthogonality by becoming fully orthogonal at
the big and intermediate grid levels and becoming an LHD
at the small grid level. It also achieves good sampling proper-
ties at other stages. To demonstrate its advantages, we compare
it against various design methods in the context of estimating
the mean and fitting a GP model to various test surfaces. When
compared with many sequential design methods, sFFLHD of-
ten performs significantly better in terms of RMSEs of the GP
model fit and never performs significantly worse. For estimat-
ing the mean in a region, sFFLHD produces lower variances at
stages where the design is an OALHD. Empirically, we show
that sFFLHD dominates the other tested designs studied in var-
ious examples provided in the article and in the supplemen-
tary materials. In addition, we examine a slight variation of
sFFLHD to determine whether it is important that each batch
be an LHD at the big grid level. We find this property does
contribute substantially to sFFLHD’s good performance even
if the design does not reach the orthogonal stages. Finally, we
demonstrate the use of the method and some potential stopping
criteria using a simulation for vehicle availability for a fleet of
vehicles.

SUPPLEMENTARY MATERIALS

Appendices A–G: Appendix A contains the proof of Proposition 1. Ap-
pendix B contains the methodology for generating nonoverlapping orthogonal
arrays. Appendix C contains the methodology for generating nonoverlapping
fractional factorials for use after the first golden stage. Appendix D gives the
probability mass functions of the small grid design elements. Appendices E and
F provide some additional empirical examples of the sFFLHD compared to other

methods. Appendix G provides a table of RSME results for several examples
(pdf file).

Online zip file: This file, once unzipped, contains Matlab code for imple-
menting the sFFLHD methodology proposed in this article (two text files with
.m extensions), instructions for using the Matlab code (pdf file), and a sample
input file (text file).
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