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In this paper we develop energy-metrics that are in-line with true energy costs incurred
when performing a slew using reaction wheels. These energy-metrics are incorporated
in constrained nonlinear optimal control formulations, which enable detailed analysis on
the relationship between transfer-time and energy to be performed. Through numerical
simulations, a nonlinear relationship between transfer time and minimal energy is used to
help explain the tradeoff between transfer time and energy consumption. This analysis can
provide important information for design and operations. In examining the relationship
between transfer-time and minimal energy, we also analyze the difference between off-
eigenaxis and conventional eigenaxis maneuvering. It is demonstrated that, by deviating
from rotations about an eigenaxis the transfer-time may be significantly decreased but
without incurring more energy than an eigenaxis maneuver. Analogously, energy may be
reduced for an eigenaxis maneuver.

I. Introduction

Attitude control of spacecraft that utilize reaction wheels (RWs) has been an active research area for many
years. This paper focuses on minimizing the energy consumption of a spacecraft over the course of a slewing-
maneuver. The manner in which this problem is approached, is through an optimal control framework to
allow the utilization of the recent advances made in pseudospectral (PS) methods for optimal control.1–6

Another reason for choosing an optimal control framework in which to pose the optimization problem is
that solutions derived from PS optimal control methods have been shown to be successfully implemented in
flight, as seen from the landmark achievements of the Zero Propellant Maneuver of the International Space
Station,7–9 and the first flight-implementation of a shortest-time slew maneuver.10–12

Existing research on minimum energy attitude maneuvers for RW spacecraft has been addressed from a
multitude of approaches concerning the way energy usage is modeled, and whether the energy is minimized
instantaneously (local) or over an entire trajectory (global). In Refs.[13, 14] the local approach was taken,
and feedback solutions were developed to minimize the total mechanical energy consumed by spacecraft
consisting of a redundant (four or more) set of RWs. In Ref.[13] and Ref.[14], the emphasis is on how to
effectively map a required control torque determined by a given attitude control law to a set of reaction wheel
motor torques. In Ref.[13] total power was modeled as the L1 norm of mechanical power of the reaction
wheels. In Ref.[14] total power was modeled wherein mechanical energy may be extracted when braking a
wheel.
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The global approach, which requires knowledge of the initial and final states as well on an entire trajectory
in between, have been posed in an optimal control framework.15–17 Ref.[15] applied variational methods for
a single reaction wheel for a spacecraft performing a small angle slew. The small angle slew warranted linear
plant-dynamics, where the cost function minimizes only the copper-loss (i.e. current-squared times resistance)
of the reaction wheel. Ref.[16] considered the single reaction wheel model and applied the variational form
of optimal control, but for a large slew so the plant-dynamics are nonlinear. In this case, a quadratic
performance index was taken as the mechanical-power of the reaction wheel squared. A direct extension of
Ref.[16], Ref.[17] presented a three wheel model and revisited the single wheel case, under a time varying
RW torque constraint. Pontryagin’s Minimum Principle was applied to generate a two-point boundary value
problem to which was then solved numerically using a relaxation technique.18

The mechanical-power model has achieved some success in relation to energy minimization for attitude
control. However when the total energy consumed by the RWs is modeled as the L1 norm of the mechanical
power, electrical power consumption is neglected but could be significant. For example, over the course of
a maneuver, the motor alternates between acting as a load and acting as a source. In this paper, the total
amount of electric-energy consumed to complete a slewing-maneuver is derived by identifying, at each instant
of time, whether a motor is acting as a consumer or a generator. Such a metric is more in-line with the
actual cost in energy to perform a slew, and is a key component of the optimal control problem formulation
presented in this paper. Using this metric, new results for minimum energy slews are presented. A fixed-
endpoint time-bounded optimal control problem is formulated for a rest-to-rest maneuver with the goal of
minimizing electrical energy used by the reaction wheels. The formulation directly considers the nonlinear
dynamics of the rotating spacecraft, along with state and control constraints pertinent to an operational
environment; for example, specifying the starting and ending reaction wheel speeds, and enforcing bounds
upon the achievable-torque and maximum speed of each of the reaction wheels, as well as imposing saturation
limits upon the rate-gyros. The minimum energy optimal control problem is solved by the application of
pseudospectral optimal control theory implemented in the software-package DIDO,2 with verification of the
necessary conditions of optimality arising from Pontryagin’s Minimum Principal.

The remainder of this paper is organized as follows: First, the rotational dynamics for a spacecraft
utilizing RWs is reviewed, and the metrics associated to electrical energy are derived. Next, an optimal
control problem is formulated to minimize the electrical energy required to perform a rest-to-rest maneuver
under various constraints in line with an operational setting. The necessary conditions to optimality attained
from an application of Pontryagin’s Minimum Principal are presented. Lastly, two sets of simulations are
presented to demonstrate minimal electrical-energy attitude maneuvers, as well as to identify the relationship
between transfer time and energy required to perform a maneuver under both eigenaxis and off-eigenaxis
cases. The first simulation studies a single large angle slew, and the second simulation considers a five-point
multislew which allows the energy and time relationship to be evaluated over a large operational envelope.
From each set of simulations, a trade space of energy and transfer time between eigenaxis and off-eigenaxis
maneuvering-types is identified and explored.

II. Dynamic Modeling

In this section both the rotational dynamics of the spacecraft and the metrics for electrical energy are
derived. Each section is an integral part in the optimal control problem formulation presented in Section III.

A. Spacecraft Model

The rotational dynamics of a spacecraft with Nrw reaction wheels are derived through an application of
Euler’s equation of motion. The total angular momentum H ∈ R3 of the spacecraft system with respect to
the body frame is decomposed as

H = Hsc +Hrw, (1)

where Hsc ∈ R3 is the total angular momentum of the spacecraft, Hrw ∈ R3 is the total angular momentum
of the reaction wheels. Each Hsc and Hrw are with respect to the body frame. Expanding the components
in Eq. (1), the total angular momentum of the spacecraft is given as

Hsc = Jscω, (2)
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where Jsc ∈ R3×3 is the spacecraft inertia tensor and ω ∈ R3 is the angular velocity of the spacecraft expressed
in the body frame. Next, the total angular momentum of the reaction wheels given by the following equation:

Hrw = Ahrw, (3)

where A = [a1| · · · |aNrw
] ∈ R3×Nrw is a projection matrix from the reaction wheel actuator frame to the

spacecraft body frame, and hrw ∈ RNrw is the angular momentum of each reaction wheel about its spin
axis. Defining Jrw ∈ RNrw×Nrw as a diagonal matrix whose i-th entry along the main diagonal is the inertia
of the i-th reaction wheel, and defining the angular rate of the reaction wheel relative to its spin axis as
Ωrw ∈ RNrw gives

hrw = Jrw
(
Ωrw +ATω

)
, (4)

where the terms ATω account for the angular momentum increment resulting from the motion of the space-
craft. Since Ωrw,i � aTi ω for each i = 1, . . . , Nrw, Eq. (4) is approximated as

hrw = JrwΩrw. (5)

The time rate of change with respect to the inertial frame for Eq. (2), and Eq. (3) under the approximation
given in Eq. (5), is found through an application of the transport theorem,19 assuming that Jsc, Jrw, and A
are time-invariant with respect to the body frame:

Ḣsc = Jscω̇ + ω × Jscω, (6)

Ḣrw = Aτrw + ω ×AJrwΩrw, (7)

where τrw ∈ RNrw is the torque generated by each reaction wheel about its spin axis. Assuming the absence
of external disturbance torques, angular momentum is conserved and the time rate of change to the system’s
total angular momentum with respect to the inertial frame is zero. Applying the transport theorem upon
Eq. (1) and substituting Eqs. (6),(7) gives

Jscω̇ = −Aτrw − ω ×(Jscω +AJrwΩrw). (8)

Therefore, from Eq. (8) along with the derivative of Eq. (5), given as

τrw = JrwΩ̇rw, (9)

the rotational dynamics of the spacecraft with Nrw wheels are presented in matrix-form:[
ω̇

Ω̇rw

]
=

[
J−1
sc (−Aτrw − ω ×(Jscω +AJrwΩrw))

J−1
rw τrw

]
.

To complete the spacecraft model, the attitude of the spacecraft is modeled using quaternions parame-
terized as

q =

[
e1 sin

(
Φ

2

)
, e2 sin

(
Φ

2

)
, e3 sin

(
Φ

2

)
, cos

(
Φ

2

)]T
∈ R4,

where e = [e1, e2, e3]T is the eigenaxis and Φ is the rotation angle about the eigenaxis. The quaternion
kinematic differential equations are described by the following system [20]:

q̇ =
1

2
Q(ω)q, (10)

where Q(ω) is a skew-symmetric matrix given as

Q(ω) ,


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 .
Quaternions are a redundant attitude parameterization, and so increase the dimension of the system’s state by
one when compared to non-redundant three-parameter attitude representations. Quaternions are, however,
free of singularities or discontinuities inherit to three-parameter representations,21 and so are well-suited for
arbitrary large-angle slews. Since no trigonometric relations appear in the kinematic differential equations
described in Eq. (10), rather only products, quaternions are befitting for on-board real-time computation,20

and have been implemented in spacecrafts such as Galileo, HEAO (High Energy Astronomy Observatory),
the space shuttle,22 as well as in TRACE.10
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B. Electrical Energy Model and Energy Metrics

The electric motor of a reaction wheel is modeled as a direct-current (DC) motor in steady state, where the
load-torque is taken as the sum of commanded-torque, τcmd, and a friction term, and the angular velocity
of the motor shaft is taken as the speed of the reaction wheel, Ω:

V = IR+KV Ω,

KT I = τcmd + βΩ.

In the above equations, V is armature voltage, I is the armature current, R is the armature resistance,
KV is the back electromotive force (EMF) constant, KT is the torque constant, β is the viscous friction
coefficient. For SI units we note that KT = KV . When determining the electrical power at any instant in
time, three terms appear: an armature copper-loss term which represents power lost as heat in the windings,
a mechanical power term, and a term representing the amount of power loss due to friction:

Pelec(t) = V (t)I(t) = I2(t)R+KV Ω(t)I(t),

=
R

K2
T

(τcmd(t) + βΩ(t))2︸ ︷︷ ︸
Copper Loss

+

Mechanical Power︷ ︸︸ ︷
τcmd(t)Ω(t) + βΩ2(t)︸ ︷︷ ︸

Friction Loss

.

Throughout the course of a maneuver, each motor may alternate between being a load (Pelec,i(t) > 0) or
being a source (Pelec,i(t) < 0). In a regenerative setting, the battery can be charged when the motor is
acting as a source.23,24 In practice, regenerative methods are not implemented, so when a motor acts as a
source, it is shunted to ground. From the above, a metric which measures the total electric power exerted
at any time instance for Nrw reaction wheels, is given as:

Pelec(t) =

Nrw∑
i=1

{Vi(t)Ii(t)}+, (11)

where {·}+ is defined as

{f(t)}+ =

{
f(t) if f(t) > 0

0 if f(t) ≤ 0
.

Integrating Eq. (11) over the transfer time [0, T ] represents the total electrical-energy required to perform
the slew:

E+
elec =

∫ T

0

Pelec(t) dt. (12)

Although E+
elec represents the electrical energy consumed when performing a maneuver, taking E+

elec as the
cost functional in optimal control problem poses a numerical challenge, in that Pelec is a non-smooth function.
Instead of mollifying E+

elec, a new metric is instead considered which measures the electrical power under the
assumption of a 100 percent regenerative scheme. This regenerative-scheme metric is simply given as the
summation of the individual electrical powers:

Prgn
elec(t) =

Nrw∑
i=1

Vi(t)Ii(t). (13)

Under Eq. (9), the following relation is arrived upon by an application of integration by parts:∫ T

0

Nrw∑
i=1

τrw,i(t)Ωrw,i(t) dt =

Nrw∑
i=1

Jrw,i

2

(
Ω2

rw,i(T )− Ω2
rw,i(0)

)
, (14)

where Jrw,i is the inertia of the i-th reaction wheel. When the starting and ending wheel speeds are fixed for
each maneuver, Eq. (14) is a fixed constant. Integrating Eq. (13) in the situation where a slew begins and
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ends with the same wheel bias (i.e. all reaction wheels start and end at the same speed) yields the following
simplified energy metric:

Ergnelec =

∫ T

0

Prgn
elec(t) dt =

∫ T

0

Nrw∑
i=1

(
R

K2
T

(τrw,i(t) + βΩrw,i(t))
2 + βΩ2

rw,i(t)

)
dt. (15)

Equation (15) is the energy required to perform a slew under a 100 percent electric-regenerative scheme under
the condition of a matching starting and ending bias for each wheel. But, Ergnelec serves as a secondary metric
as well, measuring the cumulative amount of energy lost as heat occurring in the windings and energy lost
as heat due to overcoming friction. This is seen from Eq. (15), as Ergnelec is the summation of the copper-loss
and friction-loss term for each reaction wheel motor.

For the analysis given in this paper, the following two metrics will thus be useful:

Closs =

∫ T

0

Nrw∑
i=1

I2
i (t)Rdt, (16)

Floss =

∫ T

0

Nrw∑
i=1

Ω2
rw,i(t)β dt. (17)

Equations (16) and (17) represent the cumulative electric-energy lost in the motor windings, Closs, and
cumulative electric-energy lost due to friction incurred by the reaction wheel motors, Floss, over the course
of a slew.

III. Minimum Energy Maneuvers

A. Optimal Control Problem Formulations

In this section, a time-bounded optimal control problem formulation is developed for minimizing the electrical
energy required for a spacecraft with Nrw reaction wheels to perform a rest-to-rest reorientation from an

initial orientation q0 ,
[
e0 sin

(
Φ0

2

)
, cos

(
Φ0

2

)]ᵀ
∈ R4 to a final orientation qf ,

[
ef sin

(
Φf

2

)
, cos

(
Φf

2

)]ᵀ
∈

R4. Along with the relevant nonlinear spacecraft dynamics derived in Section II, the formulation incorporates
constraints upon both the state and the control that are in-line with an operational scenario: i) The starting
and ending reaction wheel speeds are set to the same speed-bias Ωbias. ii) Maximum limits are imposed
upon the spacecraft body to avoid saturation of the rate-gyros. If saturation of the rate-gyros occur, the
result is the loss of control of the spacecraft. The real positive parameter ωmax represents the speed-bound
for each spacecraft body axis. iii) Hardware constraints are placed upon the reaction wheels concerning the
maximum amount of speed Ωmax, and maximum torque τmax attainable for each reaction wheel. The optimal
control problem formulation presented as follows, and is hereafter referred to as the Minimum-Energy (ME)
formulation:

(ME)



State: x = [q, ω,Ωrw]
T ∈ R7+Nrw , Control: τrw ∈ RNrw , tf : free

Minimize: J [x(·), τrw(·), tf ] =

∫ tf

0

Nrw∑
i=1

(
R

K2
T

(τrw,i(t) + βΩrw,i(t))
2 + βΩ2

rw,i(t)

)
dt

Subject To:  q̇

ω̇

Ω̇rw

 =

 1
2Q(ω)q

J−1
sc (−Aτrw − ω ×(Jscω +AJrwΩrw))

J−1
rw τrw


0 ≤ tf ≤ T

x(0) =
[
q0 0 Ωbias

]T
∈ R7+Nrw

x(tf ) =
[
qf 0 Ωbias

]T
∈ R7+Nrw

|ωi| ≤ ωmax, ∀ i = 1, 2, 3

|Ωrw,i| ≤ Ωmax, ∀ i = 1, . . . , Nrw

|τrw,i| ≤ τmax, ∀ i = 1, . . . , Nrw

(18)
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The state of the system consists of the attitude of the spacecraft, angular velocity of the spacecraft body, and
angular velocities of the reaction wheels (about their individual spin-axis). The control is taken as the torque
generated by the reaction wheels. The upper bound on the time to complete the slew is given by T . It is a
fixed constant satisfying tSTM ≤ T , where tSTM represents the transfer-time of the shortest-time maneuver
based on the slew with the same parameters and boundary conditions. A shortest-time maneuver is solved
by freeing the final time tf and setting the objective function to transfer time; for an in-depth presentation
on shortest-time maneuvers, see Refs.[2, 10, 11, 25]. Choosing Prgn

elec as the running cost results in a smooth
objective functional, given as Ergnelec in Eq. (15). By minimizing Ergnelec, the problem formulation reduces the
energy consumption of spacecraft systems which can restore energy into the battery, but it will be shown
later that this cost functional also significantly reduces the electrical energy for non-regenerative systems.
Thus, our results are applicable to practical systems. Another physical interpretation of the performance
index Ergnelec given as follows: Because Ergnelec measures the cumulative copper and friction losses incurred in
the reaction wheel motors over the course of performing a slew, and since electrical losses are dissipated as
heat, the performance index given in Eq. (18) searches for maneuvers which generate the least amount of
dissipative loss.

In the numerical simulations to follow, the maneuvers attained by solving the ME formulation are com-
pared against three other maneuvers, which are attained from three different optimal control problem for-
mulations. These three maneuver-types are Shortest-Time off-eigenaxis and Eigenaxis maneuvers (denoted
STMs and ST-EAMs), and Minimal Energy Eigenaxis maneuvers (denoted ME-EAMs). For the sake of
brevity, these three problem formulations are defined by identifying the changes to the ME formulation. The
Shortest-Time Maneuver (STM) problem formulation has two alterations to the ME formulation: i) The
transfer time tf is now free, thus removing the constraint 0 ≤ tf ≤ T . And, ii) The cost functional is now
set to just the transfer time

JSTM [x(·), τrw(·), tf ] = tf .

To achieve an eigenaxis maneuver under a slew-rate constraint, the ME formulation requires two alterations:
i) To constrain the movement of the spacecraft to be an EAM, the angular velocity of the spacecraft body
must be collinear to the eigenaxis,26 e, at each time instance throughout the maneuver. This corresponds to
the following path-constraint added to the ME formulation:

ω(t)× e = 0 ∈ R3, ∀t.

Next, ii) To enforce the slew constraint, which limits the rate at which the spacecraft may be rotated about
the eigenaxis, the individual angular velocity constraints |ωi| ≤ ωmax, ∀ i = 1, 2, 3, in ME is replaced by the
following two-norm path-constraint:

‖w‖2 ≤ ωmax.

Therefore, a Minimal Energy Shortest-Time Maneuver (ME-STM) is arrived-upon by solving the ME formu-
lation whose transfer time is set that of the STM. In similar manner, a ST-EAM is a Shortest-Time eigenaxis
maneuver, and is determined by solving the shortest-time formulation where the motion of the spacecraft is
limited to be an EAM. Similarly a Minimal Energy Eigenaxis Maneuver (ME-EAM) is attained by solving
the ME formulation in which the spacecraft’s rotational motion is constrained to an EAM.

B. Necessary Conditions For Optimality

Necessary conditions for optimality of the four problem formulations presented in this section may be de-
rived through an application of Pontryagin’s Minimum Principal (PMP). Once the necessary conditions are
determined, the candidate optimal control solutions, returned by DIDO, may be numerically analyzed for
optimality through the application of the co-vector mapping theorem [27–29]. Only the necessary conditions
for the off-eigenaxis minimum energy problem, given in Eq. (18), are considered in this section. The ME for-
mulation for eigenaxis maneuvering (ME-EAM), as well the STM formulations, are each derived analogously
to the derivations for Eq. (18).

At the heart of the PMP is the Hamiltonian Minimization Condition (HMC), which provides a necessary
condition concerning the optimality of the control u = τrw. The HMC requires, that for an extremal control
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u∗ to be optimal, u∗ must minimize the control Hamiltonian at each instance of time. Because the control
Hamiltonian is time invariant, the HMC for problem ME (off-eigenaxis maneuvering) is given as

(HMC)



Min: H(λ, x, u) = Prgn
elec(x, u) + [λq

ᵀ, λω
ᵀ, λΩ

ᵀ]

 1
2Q(ω)q

J−1
sc (−Au− ω ×(Jscω +AJrwΩrw))

J−1
rw u


Subject to:

−ωmax ≤ ωi ≤ ωmax ∀ i = 1, 2, 3

−Ωmax ≤ Ωi ≤ Ωmax ∀ i = 1, . . . , Nrw

−τmax ≤ ui ≤ τmax ∀ i = 1, . . . , Nrw

where λq ∈ R4, λω ∈ R3, λΩ ∈ RNrw are the costate variables for the respective states.
To develop necessary conditions for the HMC, the Karush-Kuhn-Tucker (KKT) conditions are applied

through building the Lagrangian of the Hamiltonian, H. For problem ME,

HME(µω, µΩ, µu, λ, x, u) = H(λ, x, u) + µωω + µΩΩ + µuu,

where µ ,
[
µω µΩ µu

]ᵀ
∈ R3+2Nrw contains the KKT multipliers associated with the HMC (see [2]).

Concerning the ME formulation, first order necessary conditions for optimality require that each component
of ω,Ω, u and the associated KKT vectors satisfy the complementarity conditions:

µωi


≤ 0 ωi = −ωmax

= 0 −ωmax < ωi < ωmax

≥ 0 ωi = ωmax

µΩi


≤ 0 Ωrw,i = −Ωmax

= 0 −Ωmax < Ωrw,i < Ωmax

≥ 0 Ωrw,i = Ωmax

µui


≤ 0 ui = −τmax

= 0 −τmax < ui < τmax

≥ 0 ui = τmax

Along with the necessary conditions given by the complementarity conditions, another set of necessary
conditions is arrived upon by considering the lower Hamiltonian. The lower Hamiltonian, H, is acquired by
evaluating the control Hamiltonian along an extremal solution, u∗, of the HMC. That is

H(λ, x) , H(λ, x, u∗).

Since the control Hamiltonian for each of the four problem formulations is time invariant, the Hamiltonian
Evolution Condition states that candidate optimal solutions are such that the lower Hamiltonian is constant
for all time; that is

d

dt
H(λ, x) = 0 for all t ∈ [0, T ].

Along with verifying the necessary conditions for a candidate optimal control solution u∗, demonstrating
the feasibility of u∗, and hence the validity of u∗, is a crucial step when analyzing numerical solutions.
Feasibility analysis is carried out by propagating the interpolated control from u∗ through the dynamics
given in Eq. (18) using a standard Runge-Kutta (RK) integrator. An extremal control u∗ is deemed feasible
if and only if the solution returned by the RK integrator coincides with the solution returned by DIDO. To
demonstrate that the necessary conditions for optimality of the ME formulation are satisfied, problem ME
was solved in DIDO for a candidate rest-to-rest slew: A 180 degree rotation about the spacecraft’s z -body
axis, whose attitude parameters are given as q0 = [0, 0, 1, 0]

ᵀ
and qf = [0, 0, 0, 1]

ᵀ
, along with spacecraft

parameters given in the Appendix. The transfer time to complete the maneuver was bounded by T = 307
seconds. Figure 1 displays the necessary conditions being satisfied for this candidate maneuver for both the
lower Hamiltonian and complementarity condition on ω2: The lower Hamiltonian H is constant throughout
the duration of the maneuver, and ω2 saturates when µω2 6= 0. Only the complementarity for ω2 has been
depicted, since profiles for the other spacecraft body axes are similar, and so are omitted for brevity. The
additional necessary conditions given by the PMP, such as the Terminal Transversality and Hamiltonian
Value Conditions, while each verified, have been omitted for reasons of brevity.
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(a) Consistancy of the Lower Hamiltonian H (b) Complementarity condition for ω2

Figure 1. Necessary Conditions for problem ME with transfer time bounded-above by 307 seconds.

C. Comparisons to the Shortest-Time Maneuver

In this section, a maneuver attained from solving the standard shortest-time problem formulation is compared
to a maneuver attained by solving the ME formulation where the transfer time is bounded at tSTM . The
results of the comparison depict that time-optimal maneuvers are not unique with respect to energy consumed
to perform the slew for both off-eigenaxis and eigenaxis maneuver types.

Shortest-time maneuvers, recently spanning out from theory and into application by being implemented
in flight,10–12 are time-optimal attitude maneuvers based on optimal control theory. Characterized by build-
ing up the body-rates of all three spacecraft body axes simultaneously, STMs maximize the agility of a
spacecraft by taking full-advantage of the inertia ellipsoid, nonlinear rotational dynamics, and the opera-
tional constraints imposed upon the nonlinear rotational dynamics. Table (1) presents the transfer time and
energy metrics to both the STM, and the ME-STM. The state and control profiles for each of these agile
maneuvers are presented in Figures 2 and 3.

The main result in the comparison between a standard STM and a ME-STM maneuver depicted in Table
(1) is, that STMs are not unique with respect to energy, as seen by the difference in the E+

elec metric between
the two maneuvers. Both the STM and ME-STM perform the slew in 279.9 seconds, but the ME-STM is
able to reduce energy costs by approximately 11% when compared to the standard STM. The cost functional
to the ME problem formulation is the summation of the copper and friction loss terms given in Eqs. (16)
and (17). Therefore the ME-STM produces a time-optimal slew in which less energy is lost as heat. By
an application of Eq. (9), and recalling that optimization is invariant under scalar multiplication, the cost
functional to the ME formulation may be written as∫ tf

0

Nrw∑
i=1

(
τ2
rw,i(t) +

(
β2 +

βK2
T

R

)
Ω2

rw,i(t)

)
dt.

Consulting Table (1), the savings of the ME formulation are due to the substantial reductions in friction
loss. By expending a marginal amount of torque, as seen by the 2% increase in copper loss, the reaction wheels
are placed in a profile which substantially lower friction costs while producing indistinguishable spacecraft
body velocity profiles and attitude profiles (see Figures 2 and 3).

Maneuver Type E+
elec (J) Ergnelec (J) Closs (J) Floss (J)

STM 162.0 136.3 79.7 56.6

ME-STM 143.9 (-11.2%) 121.0 (-11.2%) 81.3 (+1.9%) 39.7 (-29.8%)

Table 1. Metrics to the Shortest-Time Maneuver and Minimal Energy Shortest-Time Maneuver for the 180
degree slew about the spacecraft z -body axis. Values in parenthesis represent percentage change.
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(a) Shortest-Time Maneuver q (b) Shortest-Time Maneuver ω

(c) Minimum Energy Shortest-Time Maneuver q (d) Minimum Energy Shortest-Time Maneuver ω

Figure 2. Shortest-Time Maneuver and Minimum Energy Shortest-Time Maneuver quaternion, q, and space-
craft angular velocity, ω, profiles for the large angle slew simulation are the same.

The fact that there exists a difference in energy between shortest-time and minimal energy shortest-time,
signifies that shortest-time maneuvers are not unique with respect to energy consumption. The state-
control pairs attained by solving the canonical STM formulation may be improved upon, with respect
to energy, through solving the ME formulation, which may be considered as refining the shortest-time
solutions, via a minimum energy control allocation. Such re-allocation of the control is possible because
there exists a nontrivial null space to the matrix A which projects the reaction wheel motor-torques onto
the spacecraft body. Because of the nontrivial null space, there exists an infinite number of distinct motor-
torques which produce null-motions. The standard shortest-time formulations simply search for feasible
trajectories which seek to minimize the transfer time, without regard to energy consumption. By solving the
ME-STM, maneuvers are determined which complete in the same transfer time yet incur a smaller cost with
respect to energy consumption. Therefore, in a situation in which time-optimal maneuvering is required, the
control-scheme attained from the ME formulation should be applied in lieu of a standard STM. We also note
that control re-allocation can also be used to improve the efficiency of conventional eigenaxis maneuvers.
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(a) Shortest-Time Maneuver Ωrw (b) Shortest-Time Maneuver τrw

(c) Minimum Energy Shortest-Time Maneuver Ωrw (d) Minimum Energy Shortest-Time Maneuver τrw

Figure 3. Shortest-Time Maneuver and Minimum Energy Shortest-Time Maneuver reaction wheel angular
velocity, Ωrw, and control, τrw, profiles for the large angle slew simulation.

IV. The Relationship Between Transfer Time and Minimal Energy

The purpose of this section is to identify the relationship between transfer time and the minimal energy
required to perform a slew for both eigenaxis and off-eigenaxis maneuvering. By identifying the energy/time
relationships, the shortest-time maneuver satisfying a given energy budget may be identified, and a com-
parison may be made between on and off-eigenaxis maneuvering concerning energy and transfer time. In
determining the relationship, a 180 degree slew about the spacecraft’s z -body axis is first considered, whose
initial and final quaternions are q0 = [0, 0, 1, 0]

ᵀ
and qf = [0, 0, 0, 1]

ᵀ
. Following the single-slew analysis,

the minimal-energy and transfer-time relationship is analyzed in a typical setting for an imaging satellite: a
multipoint maneuver consisting of a sequence of five slews.

A. Off-Eigenaxis Slew Analysis

With the determination of the shortest-time maneuver from Section III, the lower time-bound in which
the rest-to-rest slew may be performed is attained. Next, by solving a series of ME formulation of fixed
times T , a Pareto Front is generated which depicts the minimal energy required to perform the slew for
a given transfer time. This Pareto front for off-eigenaxis maneuvering is given in Figure 4. Since the
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ME formulation minimizes Ergnelec, the red curve in Figure 4 represents the minimal energy cost for a given
slew time. Recall the cost function used assumes 100% regeneration of waste energy. The actual energy
consumption E+

elec is calculated a posteriori is shown as the blue curve. We note that the optimal cost always
slightly underestimates the energy used and forms a lower bounding curve.

Figure 4. Pareto Fronts of the 180 degree z -body-axis for energy-minimal off-eigenaxis maneuvering for the
energy-metrics E+elec (blue) and Ergnelec (red).

With the aid of the visualization provided by the Pareto front, the nonlinear relationship between the
transfer time and the minimal energy required to perform the slew is observed to consist of three phases when
viewing time increasing from the shortest-time. Firstly, as transfer time is decreased to the shortest-time,
there exists a time window in which the energy required to perform the maneuver begins to asymptotically
increase. Denoting this portion of the Pareto front as the head, this window of asymptotic growth about the
shortest-time may be identified with the time interval [tSTM , 295]. Secondly: The relationship in Figure 4
showcases that there exists a point in time where savings in energy by increasing transfer time significantly
diminish. Defining this portion of the Pareto front as the tail, this time window may be defined as the interval
[395,∞). Lastly, a third portion of the Pareto front may be identified simply as the region in between the head
and tail of the Pareto Front [295, 395], and depicts that energy decays roughly proportionally to increasing
transfer times.

The behavior of energy with respect to time within the head portion of the Pareto front validates the
intuition that shortest-time maneuvers can be costly maneuvers with respect to energy. More notably
though, the head of the Pareto front signifies that small increases in transfer time from the shortest-time net
significant savings in energy. In other words, there exists near time-optimal maneuvers which cost much less
than the ME-STM counterpart. Thus it is possible to balance energy and transfer time requirements when
missions demand an agile setting.

The tail-portion of the Pareto front in Figure 4 is inversely analogous to the head region. Whereas
small increases in transfer time near tSTM net substantial savings in energy in the head region, increases
in transfer time within the tail portion of the Pareto front net only minor savings in energy. While the
Pareto front of Figure 4 stops with a transfer time of 427 seconds, the energy and time relationship in the
tail section continues in like-manner for all time, slowly decaying over large intervals of time. Therefore, in
a setting where transfer time is of no concern, the tail-portion of the energy-time relationship depicts that
there is not much benefit from significantly increasing the transfer time of a maneuver with respect to energy
consumption.
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B. Eigenaxis Slew Analysis

With the ME-EAM formulation along with the shortest-time EAM, a Pareto front describing the minimal
energy transfer time relationship with respect to eigenaxis maneuvering may be built analogously to the
Pareto front constructed in Section IV.A. The result of this construction is given in Figure 5, and has been
superimposed upon Pareto front of Figure 4. For each of the curves in Figure 5 the minimal-energy is
reported as the E+

elec metric.

Figure 5. Pareto Fronts of the 180 degree z -body-axis for energy-minimal off-eigenaxis and eigenaxis maneu-
vering. Transfer time (in seconds) is along the horizontal axis, and the vertical access is the energy (given by
E+elec) required to perform the slew in the alloted transfer time.

From Figure 5, a direct comparison between the two maneuver types may be made with respect to transfer
time and energy. Figure 5 clearly depicts that the minimal energy EAM curve lies completely encompassed
within the region defined by the off-eigenaxis curve for all time. Both maneuver types coincide with respect
to energy for all slews which have a transfer time T ≥ 395 seconds. This coincide point depicts that there
exists a point in transfer time in which on-and off-eigenaxis maneuver types are equivalent with respect to
energy consumption. In other words, the minimum energy slew is an eigenaxis maneuver.

The EAM Pareto front depicts an analogous relationship with respect to energy and transfer time com-
pared to the off-eigenaxis Pareto front. Namely, near the shortest-time (for an eigenaxis maneuver), energy
costs significantly increase, depicting that there exist maneuvers with a near time optimal transfer time that
incur much significantly less energy costs.

From the time optimal transfer time tSTM , of 279.9 seconds, to the coincide point of 395 seconds, the
two Pareto fronts in Figure 5 depict the existence of a trade space between transfer time as well as energy
between eigenaxis and off-eigenaxis maneuvering. A geometric argument may be made in discerning a trade
off between the two maneuver types: An energy budget may be visualized with a horizontal line in Figure 5,
and in like manner, a vertical line visualizes a time budget. Figure 6 explores the trade-space with respect
to transfer time between EAMs and off-eigenaxis maneuvers in a setting in which the energy consumed by
the spacecraft when executing eigenaxis maneuvering is acceptable to mission requirements. The horizontal
lines in Figure 6 depict that, for every minimal energy eigenaxis slew, there exists an off-eigenaxis maneuver
with a smaller transfer time for a given energy. The extreme case with respect to transfer time is is identified
in Figure 6 by the maneuver which is energy equivalent to the ME-ST-EAM. Table (2) depicts the energy
metrics and time for the energy equivalent maneuver to the ME-ST-EAM along with the metrics to the ME-
ST-EAM for reference. In this case, by maneuvering off-eigenaxis, it is possible to decrease the transfer time
by 21.7% (from 362.0 seconds to 283.1 seconds) while consuming the same amount of energy as an minimal
energy eigenaxis maneuver (103.5 J), a counter intuitive result. Comparing to shortest-time maneuvering,
for same amount of energy required to perform a ME-ST-EAM, the transfer time may be brought within 1%
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Figure 6. Trade space depicting the benefit of off-eigenaxis maneuvers with respect to energy: For each
eigenaxis maneuver, there exists an off-eigenaxis maneuver with a lower transfer time for the same energy
budget as the eigenaxis maneuver.

of tSTM by maneuvering off-eigenaxis. Therefore, the transfer time may be substantially reduced by control
re-allocation.

Maneuver Type TT (s) E+
elec (J) Ergnelec (J) Closs (J) Floss (J)

ME-ST-EAM 362.0 103.5 91.4 68.5 22.9

Energy Equivalent to ME-ST-EAM 283.1 (-21.7%) 103.5 (0.0%) 80.8 (-11.6%) 42.7 (-37.7%) 38.2 (+66.8%)

Table 2. Metrics to the Minimal Energy Shortest-Time Eigenaxis Maneuver, and energy equivalent off-
eigenaxis maneuver, for the 180 degree slew about the spacecraft z -body axis. Values in parenthesis represent
percentage change.

Figure 7 depicts that, in the case where EAM transfer times are acceptable to meet mission requirements,
the energy can be substantially reduced by control re-allocation. The extreme case identified in Figure 7 is
the off-eigenaxis maneuver which completes in the same transfer time as the time-optimal minimum energy
eigenaxis maneuver (ME-ST-EAM). By being able to maneuver off-eigenaxis, the most agile EAM transfer
time (of 362.0 seconds) requires 57.5% less energy (from 103.5 J to 44.0 J) that would be required to achieve
the eigenaxis maneuver. Therefore, by maneuvering the spacecraft off-eigenaxis energy may be substantially
reduced when compared to conventional eigenaxis maneuvering, another counter intuitive result.

Maneuver Type E+
elec (J) Ergnelec (J) Closs (J) Floss (J)

Transfer Time Equivalent to ME-ST-EAM 44.0 (-57.5%) 33.6 (-63.2%) 8.6 (-87.4%) 25.1 (+9.6%)

Table 3. Metrics to the off-eigenaxis maneuver which is transfer time equivalent to the Minimal Energy
Shortest-Time Eigenaxis Maneuver, for the 180 degree slew about the spacecraft z -body axis. Values in
parenthesis represent percentage change to the Minimal Energy Shortest-Time Eigenaxis Maneuver.

Figure 8 depicts the boresight traces (aligned to the spacecraft y-axis) for on and off eigenaxis maneuvers
for the 180 degree z -body-axis slew. As expected, the eigenaxis maneuver traces out the shortest angular
path, as represented by the straight-line path between the two orientations. Similarly as expected, the
boresight traces of the ME-STM, and the maneuver which is equivalent in energy to the minimal-energy
shortest-time eigenaxis maneuver each depict off-eigenaxis maneuvers by deviating from the circular arc
traced by the EAM.
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Figure 7. Trade Space depicting the benefit of off-eigenaxis maneuvers with respect to transfer time: For each
eigenaxis maneuver, there exists an off-eigenaxis maneuver with a lower energy budget completing in the same
transfer time as the eigenaxis maneuver.

C. Operational Scenario

This section expands upon the analysis of the previous sections, by considering a multipoint slew consisting of
five maneuvers. A multislew maneuver is considered here to demonstrate that the properties resultant from
the analysis of the single slew directly translate to a typical operational scenario for an imaging spacecraft
involving multiple collection points. The five-point multislew is based off of the STAR pattern developed in
[11], and consists of reorienting the imaging boresight (aligned with the spacecraft y-axis) over both medium
angle (≈30) and large angle (� 30) slews. The relevant attitude parameters for both on-and off-eigenaxis
maneuvering for the five-point multislew are given in Table (4).

Orientation q1 q2 q3 q4

1 0.0602 0.1850 0.6165 0.7629

2 0.2860 0.0069 0.5607 0.7770

3 0.1864 0.0045 0.0854 0.9788

4 0.1195 0.1431 0.7921 0.5812

5 0.1314 0.1263 0.2458 0.9520

6 0.1693 0.0781 0.4666 0.8646

Table 4. Sequence of quaternions for the five-point multislew maneuver.

Four maneuver types are selected to explore the trade space between energy and transfer time between
on and off eigenaxis maneuvering: i,ii) The ME-STM and ME-ST-EAM which represent the minimal energy
required to complete the multislew for time optimal off and on eigenaxis maneuver types iii) The (off-
eigenaxis) maneuvers which are energy equivalent (with respect to E+

elec) to each minimal energy time optimal
eigenaxis maneuver (ME-ST-EAM) iv) The off-eigenaxis maneuvers which are equivalent with respect to
transfer times of the ME-ST-EAMs. Figure 9 depicts each of the four maneuver types in a conceptualized
Pareto front to demonstrate how these four corner points will serve to explore the trade space of energy and
time for EAMs and off-eigenaxis maneuvers. Table (5) contains the totals for transfer time and energy metrics
to perform the five-point multislew for four different maneuver types, and Table (6) depicts the percentage
change of the transfer time and energy metrics when opting between the various agile and conventional
maneuver strategies. As expected from intuition, the ME-STMs, compared to their time optimal EAM
counterparts ME-ST-EAMs, are able to decrease transfer time by 19.6% (from 649.4 seconds to 522.0 seconds)

14 of 19

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
V

A
L

 P
O

ST
G

R
A

D
U

A
T

E
 S

C
H

O
O

L
 o

n 
Se

pt
em

be
r 

17
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
55

79
 



Figure 8. Boresight traces for various maneuver-types performing a 180 degree z -body-axis slew.

but at the cost of increasing energy consumption by 124% (from 409.6 J to 918.5 J). Because each individual
slew has an energy and transfer time relationship between eigenaxis and off-eigenaxis maneuvering akin to
the single slew analyzed in Section IV, there exist agile maneuvers (e.g. smaller transfer time than eigenaxis
maneuvering) with significantly less demanding energy requirements. By maneuvering off-eigenaxis, for the
same energy budget as the ME-ST-EAMs, the multislew may be completed within 5.7% of the time optimal
transfer time (from 522.0 seconds to 551.9 seconds) while consuming 55.6% less energy than the ME-STMs
(from 918.5 J to 408.6 J). Similarly, by allowing off-eigenaxis maneuvering, for the same energy budget as
the ME-ST-EAMs, the transfer time of the ME-ST-EAMs may be reduced by 15% (from 649.4 seconds to
551.9 seconds). Considering the situation of minimizing energy, the transfer-time equivalent maneuver-set
is able to decrease the energy requirements of the ME-ST-EAMs by 53% while completing the multislew
with the same transfer time taken by the ME-ST-EAMs, having the lowest energy requirements of the
four representative maneuvers in Table (6) of only 191.4 J. Viewing the four representative maneuver-types
together, the energy-equivalent and transfer-time equivalent off-eigenaxis maneuvers depict that there exists
a significant penalty in time and energy when enforcing eigenaxis rotations. By allowing the spacecraft
to maneuver off-eigenaxis, the optimization may take full advantage of the attitude control-capability as
represented by the spacecraft agilitoid.3

Maneuver Type TT (s) E+
elec (J)

ME-STM 522.0 918.5

Energy Equivalent to ME-ST-EAM 551.9 408.6

ME-ST-EAM 649.4 409.6

Transfer Time Equivalent to EAMs 649.4 191.4

Table 5. Transfer times and metric totals for the four maneuver-types to the five-point multislew.

Change of Maneuver Type %∆ TT %∆E+
elec

ME-ST-EAM −→ ME-STM -19.6% +124.2%

ME-STM −→ Energy Equivalent to ME-ST-EAM +5.7% -55.5%

ME-ST-EAM −→ Energy Equivalent to ME-ST-EAM -15.0% -0.2%

ME-ST-EAM −→ Transfer Time Equivalent to EAMs 0% -53.3%

Table 6. Percentage change opting between various maneuver types in Table (5) for the multipoint slew.
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The boresight trace over the course of the five-point multislew are given in Figure 10 for the ME-
STM, ME-ST-EAM, along with the energy-equivalent and transfer-time equivalent off eigenaxis maneuvers
in Figure 11. The imaging boresight for the ME-ST-EAM, as expected, traces out shortest-circular arcs
between the five capture-locations. Similarly expected, from Figure 10a, the motion of the boresight to the
ME-STMs deviates from the eigenaxis for each of the five orientations. For reference, the boresight trace
to the STMs are identical to those given in Figure 10a. Similarly, the energy equivalent and transfer time
equivalent maneuvers depict that the entire multipoint slew is performed off-eigenaxis. That the traced-path
between each of the five orientations for the three off-eigenaxis maneuver-types are each distinct, is due to
the combination of the boundary conditions as well as the inertia properties of the spacecraft. Since the
rotational-maneuvers are not restricted about an eigenaxis, the optimization may minimize energy by taking
full advantage of the spacecraft’s geometry per the boundary conditions when determining a feasible slew.

Figure 9. Conceptual visualization of the four maneuver types selected to explore the energy and transfer time
trade space between on-and off-eigenaxis maneuvering for the operational scenario of a five-point multislew.

(a) Minimum Energy Shortest-Time Maneuver (b) Minimum Energy Shortest-Time Eigenaxis Maneuver

Figure 10. Boresight Traces to two of the four maneuver-types from Table (5).
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(a) Energy Equivalent to Minimum Energy Shortest-Time
Eigenaxis Maneuver

(b) Transfer Time Equivalent to Minimum Energy Shortest-
Time Eigenaxis Maneuver

Figure 11. Boresight Traces to two of the four maneuver-types from Table (5).

V. Conclusion

In this paper, a new approach to minimum energy attitude control was taken by modeling the reaction
wheels as DC motors in steady state. This gave energy metrics that are in-line with the true operational
cost of performing a slew. These metrics were then embedded into a new optimal control problem formu-
lation to minimize the energy required to perform a rest-to-rest slew for both eigenaxis and off-eigenaxis
maneuvering-types. The optimal control problem was subsequently solved using Legendre pseudospectral
methods implemented in the software package DIDO. Simulation results for a single large-angle slew and
then for a five-point multislew implemented as eigenaxis and off-eigenaxis maneuver-types, depicted that for
spacecrafts utilizing a redundant number of RWs, both time-optimal EAMs and off-eigenaxis maneuvers are
not unique with respect to energy. The open-loop state-control pair solutions attained by solving the ME
problem formulations mitigate the demanding energy costs associated with the solutions attained solving
standard STM formulations, by substantially reducing the energy lost due to friction. Therefore providing
a desirable alternative for settings which demand time optimal maneuvering. Simulations also showed a
host of results allowing a greater understanding of the cost-relationships between energy and agility when
executing slews:

1. There exists a nonlinear relationship between transfer time and minimal energy consumed, with STMs
consuming the most energy. This relationship, invariant under both eigenaxis and off-eigenaxis maneu-
vering, depicts two key results: i) There exists near time optimal maneuvers which require significantly
less energy than STMs, therefore providing desirable alternatives to STMs in a setting where agility is
needed under energy constraints and ii) There exists a point in transfer time in which little benefit to
reducing energy by increasing transfer time, therefore depicting that there is little merit to increasing
the transfer time past a certain point in an effort to reduce energy requirements. This is due to the
shallow tail of the Pareto front.

2. Performing an eigenaxis maneuver, although widely used, severely constrains the attitude control
system with respect to transfer time as well as energy. There exists a trade space in which, by
maneuvering off-eigenaxis, transfer time may be significantly decreased for the same energy-cost as an
eigenaxis maneuver. Similarly, another trade space exists in which, by maneuvering off-eigenaxis, the
energy may be greatly decreased for the same transfer time as an eigenaxis maneuver. The savings are
realized by re-allocating the control effort. As transfer time is increases for a slew, eventually there
exists a point in transfer time in which off-EA and EA maneuvering coincide with respect to energy
for the rest of time. This point of coincide depicts that for large-enough transfer time, off-eigenaxis
maneuvering is equivalent to eigenaxis maneuvering. Similarly, the coincide point identifies the point
at which large increases in transfer time net small savings with respect to energy.

The simulations presented here illustrate that the proposed optimal control strategy is able to improve upon
the manner in which STMs are performed, as well as reduce the energy requirements for conventional slews.
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Appendix

The spacecraft parameters used in this paper are presented below in Table (7).

Parameter Symbol Value

Number of reaction wheels Nrw 4

Armature resistance R 1.8 Ohms

Torque constant KT 0.0696 Nm/A

Back EMF constant KV 0.0696 V ·(rads/s)−1

Viscous friction coefficient β 4.3 × 10−5 Nm ·(rads/s)−1

Reaction wheel wheel-speed bias Ωbias

[
20 20 20 20

]ᵀ
rads/s

Maximum angular velocity of spacecraft body axis ωmax 0.5 degs/s

Maximum angular velocity of a reaction wheel Ωmax 449.9808 rads/s

Maximum motor torque τmax 0.14 Nm/s

Inertia of the Nrw reaction wheels Jrw diag
([

0.012 0.012 0.012 0.012
])

kg ·m2

Reaction wheel projection matrix A


1√
3
− 1√

3
− 1√

3
1√
3

1√
3
− 1√

3
1√
3
− 1√

3
1√
3

1√
3
− 1√

3
− 1√

3



Spacecraft inertia tensor Jsc

59.22 −1.14 −0.80

−1.14 40.56 0.10

−0.80 0.10 57.60

 kg ·m2

Table 7. Spacecraft parameters10,30 used in the problem formulations defined in Section III.
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