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Finding the factors that are related to varying transmission outage rates has been one 
of the major concerns of the reliability practitioners in the electric power industry. One 
of the potentially influential factors is the length of the transmission line. In this paper, 
a random effects Poisson regression model is used to quantify the relationship between 
the outage rate to the transmission line length. The method suggested is applied to 
analyze two sets of the 345 KV transmission line outage data of the Conunonwealth 
Edison Company: group 1 contains transmission lines that had been installed before 
January 1974; group 2 consists of the lines that have been installed since January 1974. 
Results indicate that in both cases there is a significant log linear relationship between the 
transmission line outage and the line length. However, the annual outage rate elasticity 
of transmission lines of group 2 turns to be 0.33 while that of group 1 is 0.64. This would 
imply apparent quality improvement on the transmission lines in group 2. 

K eyworda: Transmission Line Outage Rates; A Random Effects Poisson Regression; 
Lognormal Distribution. 

Introduction 

Finding the relationship between the outage rates of transmission lines and the 
associated line characteristics is one of the major concerns of reliability practitioners 
in the electric power industry. The mathematical formulation of such a relation can 
be described using the following approach. 

Consider a collection of N transmission lines that independently experiences n; 

outages in accordance with Poisson processes during time t;, each with outage rate 
parameter,\; for line i, i == 1, ... , N. However, values of.-\; would vary randomly. 
Part of the variation could be explained by the associated line characteristics, x;, 

such as transmission line length, quarry exposure and the terminal configuration. 
What follows is a regression model for ..\; against those covariates, x;. To find the 
relationship between ..\; and x;, the observed values of .-\; and x; are necessary. 
Since ,\; is unobservable and random, it is often replaced with ,\; = n;/t; with the 
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to be computationally burdensome and difficult to implement. In an effort to im
prove on these solutions, we consider a two-stage estimation where within-individual 
parameters are separately estimated from the between-individual regression model. 

A Two-Stage Estimation Method 

First, in the within-individual model, the annual rate of outages is estimated as 
,\; = n;/ti. The,\; replaces the unobservable>.; in the between-individual model (3). 
As a result of this replacement, the estimation error 6;, that is independent off;, is 
added in the model: 

log(.\;) = /31 + /32 log x;2 + · · · + /3p log x;p + f; + 6; . (6) 

Using the delta method, log(,\;) can be regarded as having approximate normal 
distribution with mean /31 + /32 log x;2 + • • • + /Jp log X;p and variance ( u 2 + 1/n;) 
based on the following derivation: 

E(log.5.;j>.;) '.::: E(log>.; + (..\; - ,\;)/>.,) == log(>.i); and 

V(log>.;j>.;) = E(log,\; - log>.;j>.;)2 ::::= E((>.; - '5.;)/>.;)2 = 1/n;. 

Since the variance is not constant due to a different frequency of failure n;, 
the weighted least square (WLS) method is then used to estimate {3 using /3( u 2

) = 
(Z'WZ)- 1 (Z'W(log .\)) and cov(/J(u 2 )) = (Z'Wz)- 1 where Z is an N xp covariate 
matrix of Z;; ::= log x;;; W is an N x N diagonal matrix consisting of diago_nal 
elements w; === I/(u 2 + 1/n;}; and log(,\) is an N x 1 column vector of log(>.;). 
Often u 2 in W is not known and has to be estimated using the available data. The 
ML estimates, a-2 can be obtained by finding the u 2 which maximizes the following 
log likelihood function L(u 2 , /3'; A, x, n): 

N N 
-0.5 I: log(u 2 + 1/n;) - 0.5 L(log ,\; - z;/3)2 /(u 2 + 1/n;) (7) 

i::1 i:1 

where z; is a I x p vector of ( 1, log x; 2 , ••• , log x;p ). Since there is no closed form 
solution for o-2 , an iterative approach can be employed. For the initial values of 
parameter~, ordinary least square estimates, jJ0 == (Z' Z)- 1(Z'(log >.)) and u5 == 
E{:,1 (log>.; - z;{,0)2 / ( N - p) are used. Once the ML estimate, &2 is obtained, the 
ML estimate (J(u2 ) == (Z'iVz)- 1(Z'W(log,\)) where W consists of the diagonal 
elements W; === I/(ir 2 + 1/n;). The resulting -\J = exp(z;,/J(a- 2 )) can be used for the 
prediction of >.i, for the new line i'. An interval estimate can also be obtained using 
cov(fJ(o-2 ))::: (Z'WZ)- 1 • 

A Case Study 

A two-stage Poisson regression model is used to analyze two sets of the outage data 
obtained from the 345 KV transmission lines of the Commonwealth Edison Com
pany. Group I covers 112 transmission lines that were active any time between 1965 
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and 1976, which is identical to a set of lines presented in Table A.1 of Alsamrnarae's 
study. 5 Additionally, we analyze group 2 that consists of lines which have started 
their service since January 1974 and were in operation any time between 1982 to 
1991. From both group 1 and 2, we eliminate lines whose operation period does 
not exceed 3 years. This is to increase the accuracy of the estimation. The two 
groups can, in turn, be distinguished in terms of not only their operation period 
[{1965-1976) for group 1 and {1982-1991) for group 2] but also their starting time 
of service [(before January 1974) for group 1 (since January 1974) for group 2]. \Ve 
carry out a two-stage analysis using the remaining transmission lines {61 in group 1 
and 74 in group 2). 

First, in the within-individual model, each individual outage rate is estimated 
using .t = ni{t;. Tables 1 and 2 summarize the outage history of the transmission 
lines of groups 1 and 2, respectively, along with the line length (x;2). 

Table I. Sununary of transmission outage data: 61 lines in group 1 observed during 1965-1976. 

Unit Mean Std Dev Max Min 

n; 11.10 12.28 63.00 0.00 

t; year 5.87 2.04 12.00 3.26 

j, per year 1.86 1.83 8.25 0.00 

x;2 mile 32.06 26.39 99.5 4.60 

Table 2. Summary of transmission outage data: 74 lines in group 2 observed during 1982-1991. 

Unit Mean Std Dev Max Min 

n; 11.50 12.07 73.00 0.00 

t; year 8.95 2.08 10.00 3.02 

j; per year 1.28 1.29 8.04 o.oo 
x;2 mile 25.99 23.61 126.30 3.50 

The relative frequency of..\; in group 1 is illustrated in Fig. l. Apparent outliers 
(.~; > 8) support the selected use of the lognormal super-pop~lation. For the 
preliminary analysis of the between-individual model, we plot log{.\;) against logx;2 

for group 1 in Fig. 2. . 
In the process of obtaining estimates, /3( u2 ) and u2

, we replace log.\; with 
log{l/3t;) when A; = O following the method used in Gaver et al.8 The maximum 
likelihood estimates, fJ( f, 2 ) and u2 , are obtained using a standard computer opti
mization package GAMS. 9 The fitted model is as follows: 

log>.[Z = -l.6288+0.6379logx;2. (8) 

Parameter estimates in Eq. (8) are significant at 1 % level and the fitted log >.f is 
overlaid to the log..\; against log x; 2 as a solid line in Fig. 2. For a diagnostic check, 
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Fig. 2. The relationship between the estimated outage r,.te, log.\ and the line kn,;th, logr: 
group 1. 

the weighted residuals ../iiii (log>.; + l.6288 - 0.637!) log x;:z) are analyzed using the 
PROC UNIVARIATE of the statistical package, SAS. 10 A normality trst is passed 
for this example based on Kolomogorov D statistic at the 5¼ significance level. 

A plot of log); against log x;, given in Fig. 2, may not appear to strongly 
back up a significant log-linear relationship between the outagf' rat" and the line 
length. Therefore we add Fig. 3 in which -Im; log.\; is plotfrd against ,fw; logx;. 
Notice that when each observation i might he associated with different variability 
(u2 + 1/n;), fitting model (6) is the same as fitting 

.,f;; log>.;= /31 -JJ;; + /32 JJ;'; log x;2, ... , + /1p k log X;p + {; (9) 
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where (; ": N(0, I). Figure 3 gives a better insight concerning the relationship be
tween log A; and log x; than Fig. 2 which does not reflect different weights associated 
with each observation. 
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Fig. 3. The relatimLship hctween the Vw log~ and Vw log x: group 1. 

The useful measure of the responsiveness of the annual outage rate of a particular 
transmission line to its line length is the elasticity defined as the ratio of the relative 
change in the annual outage rate to the relative change in the length of the line 
((~j;/'5..;)/(tJ.x;/xi)). Fitted model (8) implies the following relationship between 
A; and the line length x;: 

>.f = exp( -1.6288):.r:?°6379 
. (10) 

Evaluation of ( tJ.>.;/ >.; )/(Ax;/ x;) based on model (8) brings estimated annual outage 
rate elasticity of transmission line length in group 1 to about 0.64. 

Next, it is observed that model (8) performs better than the fitted model in 
Alsammarae's study 5 in terms of the mean squared error (MSE). The l\lSE of 
model (8) is 2.0069 while that of >.fl = 1.4813 + 0.0153:.r:; in his study 5 is 3.5224. 

In addition to the line length, we analyze some other covariates ( quarry exposure, 
configuration of terminal and three terminal stations) which were used by Schneider 
et al. 4 However, they do not show a significant contribution to fit the log outage 
rates. 

\Ve apply a two-stage estimation procedure to group 2. Corresponding plots to 
Figs. 1, 2 and 3 for group I are given in Figs. 4, 5 and 6, respectively. The fitted 
model is as follows: 

log 5.f = -0.9286 + 0.3347 log x; . ( 1 I) 

The estimated parameters are significant at 2%. The estimated annual outage rate 
elasticity of transmission line length in group 2 is about 0.33, that is less than 0.64 



92 S. Y. Sohn 

for group 1. It would imply a technological improvement made on the transmission 
lines that were in service after 1974 compared to that of group 1. The estimated 
annual outage rate elasticity of transmission line length can be compared to those 
of other companies and it can be used as an input for performance optimization of 

the transmission lines. 
Although model (9) provides information concerning the relationship between 

the outage rate and the transmission line, it is noted that the transmission 
line alone (R 2 = 33%) cannot explain overall variation of the outage rates. 
Additional characteristics of the transmission lines analyzed in this study 
(quarry exposure, terminal configuration and three terminal stations), however, 

Fig. 4. Relative frequency of the annual outage rate per mile, j: group 2 . 
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Fig. 5. The relationship between the estimated outage rate log 1 and the line length, log x: group 2-



Relationship Between the Line Length <md the Outage Rate 93 

WliLOGL 
' ; 1' 

! ' I l 
I J 1 
I l 
I " l 

I L j 
iJ 
j 

01 
l 

-I j 

. . 

. .. . 
• C t O 0 

. 
0 00 

o8 o eo o 

0 
0 ooo 00 

00 00 
oo 0 

0 • • 

. . . 

1 0 • 0 0 

0 0 0 

•• 0 0 

0 0 

-2 i O : 

0 • 

~ 

I'NLOGX 

7 

. 
0 

Fig. 6. The relationship between the ,/fu log>. and ,/& log x: group 2. 

turns out to be statistically insignificant in terms of explaining the variation in 
log ~i. By including extra variables such as the weather index, R 2 could have been 
increased. In order to reflect the effect of weather conditions on the transmission 
outage rate, an analysis of quarterly outage rate would be a better option than that 
of the annual outage rate. 

Conclusions 

A random effects Poisson regression model is employed to relate the annual outage 
rate of transmission line to the line characteristics. Unlike the previous methods 
used for the same purpose, the random effects model suggested in this article ac
commodates both the random error as well as the estimation error of the outage 
rate. A two-stage estimation method is developed to estimate the outage rate of 
the transmission line in terms of the corresponding line length. A log-linear model 
employed to describe the relationship between the outage rate and the line length 
has several advantages over the conventional linear model. First, it guarantees a 
non-negative estimate of the outrage rate. Secondly, the estimated coefficient can 
be interpreted as the outage rate elasticity with respect to each covariate. 

The estimation method suggested in this paper is applied to the two groups of 
outage data on the 345 KV transmission lines of the Commonwealth Edison Com
pany. The results obtained from this analysis provide the electric power industry 
with the following insights: (1) there is a significant log-linear relationship between 
the annual outage rate and the line length; (2) for the transmission lines manu
factured after 1974, provided that they were in use for more than 3 years, as the 
line length increases by 1 % from the current value, the outage rate increased by an 
average of 0.33% from the observed value; (3) there has been a quality improvement 
on the transmission lines manufactured after 1974 by reducing the elasticity from 
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0.64 to 0.33. The reduced elasticity might be due to several changes made in these 
periods in terms of vendor selection, design and construction mode. These conclu
sions are based on the analysis of data provided from one company. In order to 
draw more general conclusions, the analysis of various transmission lines provided 
by different vendors/years is recommended. When such information is available, a 
similar model to (6) can be used with a set of more extensive candidate covariates 
such as transmission line type (e.g., fossil unit or nuclear unit), various vendors, 
manufacturing year, and average operating conditions, etc. 

Results of such a random effects Poisson regression analysis can be used as 

valuable inputs to the transmission line quality control. Based on the estimated 
relationship between the outage rate and covariates, one can select the appropriate 
vendor who has supplied better quality lines than the others. At the same time 
one can reassess the purchasing cost and take actions for the controllable operating 
conditions to decrease the potential outage rate. 

Concerning the aspect of the data analysis, in order to increase the accuracy of 
the prediction, it is recommended to analyze the quarterly outage rates of transmis
sion lines as a response variable. The advantage of using quarterly data to annual 
data would be the facilitation of the possible seasonal effects on the outage rate in 
the model. 
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