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Summary

It has been shown by Birnbaum, Esary and Marshall that
the class of survival functions with increasing hazard rate
average (IHRA) is closed under the formation of coherent
systems. DMoreover, this is the smallest class of survival
functions which is closed both under the formation of
coherent system and limits in distribution, and which
contains the exponential survival functions. In this
paper a number of other classes are found which are closed
under the formation of coherent systems and limits in
distribution. Associated subclasses that play a generating
role like the exponential class in the IHRA case are exhibited.
In addition, several methods are presented for deriving

closed classes from closed classes.



1 Introduction

In the analysis of system relisbility, one is often concerned with
properties of a system life distribution which can be guaranteed from
properties of component life distributions without reference to detells
of the system structure. We consider here some propertlies that the life
digtribution of every cocherent system will inherit from component life
dietributions. A class of survival functions (those which possess a given
property) is ssid to be closed under the formstion of coherent systems if
the survival function of every coherent system is in the class whenever
the component survival functions are ell in the cless. Birnbaum, Esary
and Marshell (1966) have shown that the class of survivel functions
with increesing hazerd rate average (IHRA) is closed under the formation
of coherent systems., Moreover, this is the smallest class of survivsl
funetions which is closed both under formation of coherent systems and
limits in distribution, and which contains the exponentisl survival
functions. Following the methods of Birnbeum, Esery and Marshall (1966),
we obtain here s number of other closed clesses, together with the
assocliated subclasses that play a genersiing role like the exponentiel
class in the IHRA case.

Not ell of the closed classes obtained have clear interpretstions
in the context of relisbility theory, because some classes consist of
survival functions supported by the whole real line or even by the
negative axis.

In sddition to these results, several methods are presented for

deriving closed classes from closed classes.



2. Prelimingries

We present here some required definitions, notations and preliminary
remarks. Except for some minor extensions, these idees are not new,
see, e.g., Birnbaum, Esary and Saunders (1961}, Barlow and Proschan
(1965, p. 202), Birnbaum, Esary end Marshall (1966), Esary end Marshall
(1970), end Esery, Msrshall and Proschen (1970).

A function ¢ on (x = (xl,"',xn) : x, =0 or 1l for all i} which

i
takes the velues Q or 1 1s celled a seml-coherent structure function

of order n if ¢ is non-decreasing in each of its erguments. If in
addition, (0, ***,0) = 0 and ¢(1,°*,1) = 1, then ¢ is said to be
coherent.

The reliasbility function h of a semi-coherent structure ¢ 1is

& function on (p = (Ii’ ...,pn) :0<p <1 forall i} which is

defined via independent Bernoulli random varisbles X, with expectations

1
EXi = pi’ 1= l,2,ouo,n, 'by
h(pl,ono,pn) = E¢(Xl,-..,xn) -

We refer to such a function as & coherent relisbility function if ¢ is

coherent.

A survival function F is 2 function such thet F = 1 - F for some

right-continuous proper distribution function F. This terminology is
most appropriate when F(0) = 0, but we wish not to imply such a restriction.
For any coherent reliability function h and survival functions

Fl, ...,F'n, it is obvious that
(2.1) F(t) = h(f‘l(t),...,f'n(t)) , =m<t <o

defines 8 survival function F. For gny family S of coherent relisbility

functions snd any family F of survivel functions, we denote by ?S
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the class of sll survival functions F which have the form of (2.1) for

gsome h € S and some F ""’ﬁn € F. In particular, when S is the family

1
of all coherent reliability functions, we use the notationt?gs in plsce

~3 ~ CS8

of 77, and call ¥ °" the closure of ¥ under the formation of coherent

systems.
08

The formation of % is a bona fide closure operstion in that,
(1) the closure of ¥ contains F, (1i) the closure of F contains
the closure of & whenever 7 contains.&, (i1i) the closure is closed,
and (iv) the closure of the empty set 1s empty. See Birnbaum, Esary end
Marshall (1966, p. 820). In general, the formstion of 5 fails to be

a closure operation unless
.
h’hl""’hn € S where h is of order n=> h € §, where
(2.2)
A 1 n 1. n
@, p®) 2 am e @), .. P,

and

(2.3) the reliebility function h(p) = p of order 1 is in S.

If (2.2) and (2.3) hold, we call S a closed femily of reliebility functioms,

and refer to 935 ss the closure of # under the formetion of S-systems.

The survivsl function F of (2.1) can be interpreted physicelly as
representing the life distribution of a coherent system with structure
function ¢ , relisbility function h, and mutually independent components

with life distributions Fl""’Fn' To see this, let

xi(t) =1for t <T,, and Xi(t) =0for t >T,, i =1,2,...,n,
(2.%)
x(t)

]
13

lfort<T, and X(t) 0 for t > T,

where Ti has distribution Fi end is the feilure time of the 1%V component,
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i=122.4s,0, T has distribution F and is the system failure time. Then,
(2.5) x(t) = qb(xl(t),...,xn(t)),
E X, (t) = Fi(t), 1 =1,2,...,n, and EX(t)=Ft) = h(Fl(t),...,ﬁn(t)).

An interesting generalization is obtained when (2.1) is replaced by
(2.6) F(t) = ht(f'l(t),...,l'?n(t)) , =<t <)
In this case (2.5) is replaced by
(2.7) X(t) =9 (X, (t),...,X (£)) .

where h, is the relisbility function of qSt. We shall call {'f:c, - t <o)

a time-degrading coherent structure if d»t, -t t <&r, are semi-coherent

structure functions of a common order, say n, setisfying

(2.8) fpa(.g) 27’1-,(35) for ell x and s<t,
(2.9) fOI‘ some B’ 'Ps(l,io-,l) = l; fOI' some t, 1‘3_t(0,...,0) L 0,
(2.10) qﬁt(x) is right continuous in t.

Condition (2.8) guarantees that ¥ in (2.6) is decreasing; (2.9) guerantees

1im F(t) = 1, 1im F(t) = 0, condition (2.10) guerantees that F is right
tP- 0 t>o

continuous. Closure of a class of survival functions under the formation

of time degrading coherent systems 1s defined in the obvious way.



-5 =

3. Closure Under Coherent snd Time-Degrading Coherent Systems

The following proposition records the fect that closure under for-
mation of coherent systems is often equivelent to closure under formation
of time-degrading coherent systems.

3.1 Proposition. If ¥ is s class of survival functions which is closed
under the formation of coherent systems, and if T contains the degenerate
survival functions, then F is closed under the formation of time-degrading
coherent systems.

Proof. We suppose that ¥F(t) = ht(i‘l(t),...,f'n(t)) vhere ¢, setisfies
(2.8), (2.9), (2.10), end F ,..,f‘n e F. We must show that F e T.

Because there are only finitely many coherent structures of order n,

there exist finitely many points -wm=t, < t, < ... < tm < tm+l = Dw

0 &l

sueh gk hr('B) = hs(g) for all p whenever t;j <r<s< tj+1. for

some j. With an sbuse of notaetion, we write ho in plece of ht when

to <t<t,, and h, in place of ht when t. <1t <tj+l’ J=1,2,...,m.

1 J

Consider now the structure function 4‘:"‘ of order m+n defined by
+ m-1

P(y) =1 -1 -0 (XD _o (1 -y, ;b,(x))

vhere ¢ i is the semi-coherent structure function corresponding to hi'

This structure function is disgremed in Fig. 3.1.

o XN _| ¥,

¢ 21y,

Tk e[
Pni2)

Figure 3.1



-6 -

From (2.8), 1t follows that gbo(gg) 2.0 26 (x) for all x. If

[Yi(t) » =9%9< t <] i the degenerate process

Yi(t) =1 for t<t ri(t) =0 for t>t 1=1,2,,.6,m,

- i’

and 1f X(t) = (xl(t),...,xn(t)) is defined as in (2.4), then
£
¢ (E(t): I(t)) E¢i(§(t)) ) ti <t < ti+l » 1=0,1,...,mtl.
Thus, in our original notation (with ¢ " corresponding to h‘t.) -
FEE), X(6) =, (X(£)) , ~w<t <o .

This means that since f‘i(t) =E Xi(t), Ft) = ht(f'l(t),---:f'n(t”

has the representation
F(t) = BSH(X(t), 2(t)) = B (F,(t),...,F (1), G (t),...,5 (¢)),

where F ,...,f‘n e¥, and c';i (degenerate at ti) ef, 1 =1,2,...,n
Since 95* is coherent and since ¥ is closed under the formetion of

coherent systems, F e 7. i
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L, Operations Which Generate Closed Classes From Closed Classes

There are a number of operations which generate classes closed under
the formation of coherent systems from similarly closed classes. A few
such operations are listed in the following theorem:

4,1 Theorem. Let § be a clsed family of coherent reliability functions.

If ¥ is closed under the formation of S-systems, i.e., if ¥ =55 » then

the following classes are also closed in the same sense:

(a) ?LD = {F: ¥ 1s the 1imit in distribution of some sequence of
survival functions in 7},

(b) % = (F: FeF end 7 is absolutely continuous),

(e) F¥ - (F: for some B§ e¥, F(t) = 6(5(t)), ~~< t <=), where § is
a right continuous non-decreasing funetion on (-wo,®) such that
Lm . 5(t) > b, Hm __ 5(t) <&, and & <D satisfy F(a) - F(b) = 1
for F € F,

(a) ?‘I = {F: for some G ¢eF, F(t) =1 for t <a F(t) = 0(t) for

e<t<b, F(t) =0 for t > bl,
cA

(e) ¥ = (F: for some G e¢F, F(t) = G(t) for all t € A}, where AC R
(£) ¥ - (F; for some Ge¥, F(t) > G(t), -w< t <e=),
?SL = (F; for some G €%, F(t) < G(t), ~~<t <=},

These examples can be easlly obtained as applications of the following
propositions. In these propositions, S need not be closed, except where
noted.

L.2 Propesition. & LD, Sc ¥ S, LD "

For S the family of all reliability functions, this result has been
given by Birnbaum, Esary and Mershall (1966). If S is closed, then
by putting F S in place of F in this proposition, we obtain that

? S,LD,S =?’S,I]D
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k.3, Proposition ?ac, Sc F B e
Proof. F e %95 implies F(t) = h(F,(t),...,F_(t)) where each
f‘i e 7%, heS. This means F ¢TS5, Moreover F 1is ebsolutely continuous

(see Esery and Mershall, 1970, Application 5.3), so that F ¢¥ 5, |

%8 435 15 false. E.g., suppose thet 7" = (F,F,)

It can be that ¥ 17Fo

where Fl is absolutely continuous and has suport [0,1], end F2 is
absolutely contlinuous except for s discontinuity at 2. Suppose that
S = (h) consists of but one relisbility function, h(pl,pe) = P;P,.

Then § 8¢ [f‘l p f‘lf‘a}, P8 (f‘lal.

L.4 Proposition ??’S =F S,ij.

Proof, If F ¢ F% S, there exists a relisbility function h € S (of
some order, say n, and fl,...,f‘n e?"s such that F(t) = h(f‘l(t),...,fn(t)).
Since Fi e?'s, f‘i(t) = 51(5(1:)) for some ('Z';i eF. Morever, F(t) = G(¥(t))

where G(t) = h((-:-l(t),...,én(t)), b 9 R e HE, Conversely, if

F e}“s’ 5 ; there exists for some n & reliability function h € 5 of
order n end El,...,ﬁn e?s such that F(t) = G(3(t)) h(ﬁl(g(t)),...,
én(g(t))) = h(fl(t),...,f‘n(t)), where i‘-i e?s, Thus F e'fgﬁ B

In a rather different form, and with S the eclass of all relisbility
functions, this proposition has been given by Esary and Marshall (1570,
Application 5.1).

We obtain from Proposition L.4 +the following corollary which has
an important spplication in § 5.
k.5 Corollary. IfAS =¥, then A‘(g’ 3 =§-§; ir 4 e =%, then

oy % 5,LD _ _:F-‘é

Proof. To obtain the first assertion, note from Proposition 4.4 that
ﬂf’s =/3S,§ y but I 5,8 = ?'5. The second assertion follows similarly,

but requires additonelly the fact that 4% LD _ 4LD, L



4.6 Proposition F12S ST
Proof. This follows directly from Proposition 4.4 with ¥(x) = -», x < g,

5(x) =%, a<x <D 5(x) =, x>0,

CA,S _,.S,Ch

h.7 Proposition # =F ”

Proof. If F eFCMS , then F(t) = h(f‘l(t),...,f‘n(t)) for some h € S

ca

and some i"l,--.,f'n €eF™". This implies that F(t) = h(él(t),...,

G, (t)) for some & ,...,(-}n eF, sothat F eF’®® | The proof of the
converse 1s similar. ll

One can, with inclusion only, generalize Propositions 4.6 and 4.7
as follows: Let {F,4;A] be the set of all survival functions that
coincide on A with a member of ¥, and that coincide off A with a

member ofAd.

4.8 Proposition {?,ﬁ;A]S c{?sﬂs;n].

The proof is similar to proofs previously given. If A = [a,b] and
the survival functions . heve no mass outside A, then this result
follows from Proposition 4.6, If .4 consists of all survival proba-

bilities, this result follows from Proposition 4.7.

SG, SC ?S, SG SL, SC 9_- S’ SL‘

k.9 Proposition ¢ and F

The proof is again similar to those previously given.
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3. Some Classes Closed Under the Function of Coherent Systems

Probably the most important class of survival functions known to
be closed under the formation of coherent systems is the class of survi-
val functions with an increasing (i.e., non-decreasing) "hezerd rate
average"”, If a distribution function F has a density f, then it has
a hazerd rate r defined by r(t) = £{t)/F(t) for ell t such that
F(t) > 0., The condition that F(0) = 1 and that the hazard rate average

t
t = f r(x)dx is increesing in t > 0 is equivalent to the condition that
o

(5.1) log F(at) < - a log F(t) whenever O <a<l and t>O0.

Whether or not F has a density, we say that F has an increasing

hazard rete average if (5.1) is satisfied and we denote the class of

such functions by (IHRA}. The exponential survival functions (i.e.,

those which for some ] > 0 have the form e—At

for t >0) consti-
tute the subcless, denoted by {exp), for which equality holds in (5.1).

Birnbaum, Esary snd Marshall (1966) show that

}CS, LD jC8

(exp = (IHRA), end that [IHRA}™ = (IHRA} .

Another class of survival functions F which is closed under the
formation of coherent systems are those which satisfy F(t) > f(x+t)/§(x).
Because the right side of this inequality can be interpreted as a condi-
tionel survival probability given survival to time x, survival functions

which satisfy the inequality are sald to be new better then used, and

the class is denoted by [NBU}. 'The fact that neu}©s = (vpu)  is
proved by Esary, Marshall and Proschan (1970). No interesting proper
subclass ¥ of (NBU} 1is known which setisfies either ¥ C° = (NBU)

cs,

or F LD _ (NBU). We shall not further discuss the class (NBU) or

related classes which can be obtained from it using Theorem 4.1,
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There are a number of other classes of survival functions which
are easily shown to be closed under the formation of coherent systems.
For example, those survivel functions which are ebsolutely continuous,
those which are discrete, those which are singular, and those which ere
degenerate, each constitute a closed class.

-t

Consider again the IHRA case. Let G(t) =e ', t >0, and let

F= (F

e

gt Flat) < a G721 F(t) for all ae{0,1] and t >0},

= (F: 6L Fat) = a ¢ F(t) for all ae(0,1] and t >0).

Then = (IBRA} , &= (exp), and we know that 51D =F, FO5 ¢ |
It is of interest to ask if other survivel functions can play the role
of the expomential G(t) = e-t, t >0, in this development.

To answer this question, we recall that Birnbaum, Esary and Marshall
(1966) obtain the exponential-IHRA result described sbove via an inequality
for reliability functions. Moreover, only a speclal case of their

)05, LD _ (1umA}.  In the

inequality is utilized in proving that f{exp
remainder of this paper, we show that other special cases of the inequality
alsoc have potential for proving closure results.

The inequality of Birnbaum, Esary and Marshall {1966) is given in

the folleowing lemma.,

5.1 Lemma. Let h be a coherent reliability function of order n. If ¥

is a function on [0,1] satisfying

r¥y) + (1-r) ¥(x) + (y=x) ¥(r) >y (ry+(1-r)x)
(5.2)

for all r,x and y such that 0<r<1, 0<x<y<1,

and
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v(0) =¥(1) =0,
then

n
(5.%) Zi_l?(pi) dn(p)/ap; >¥h(p) .

The class of functions % which satisfy (5.2) and (5.3), and the
class which satisfies (5.4) are discussed in some detail in § 6. We
remark here that #&(z) = - 2 log z,’%é(z) = =(1-z)log(1l-z) and
y&(z) = 2(1-z), 0 <z <1 all satisfy (5.2) and (5.3), For the special
case ¥ ='q»3, (5.4) was obtained by Esary and Proschan {1963) for the
still more speciel case that ¥ =‘¢3 and p, = ... = P, (5.4) was obteined
by Moore and Shannon {1956).

The case 4 =1#1 was used by Birnbaum, Esary and Marshall (1966). In
this case, Esary, Marshall and Proschan (1970) have shown that (5.4) can

be rewritten in the form

W(a*)fa'rg(ic‘) 0<a<l 0<x <= i=1,2..,0,

i

where
=X =X

7(x) = - log h{e yeeise O)

] OSX <c°, i=l,2,--.,n °

i

They found this form to be perticularly convenient in proving that the
IARA distributions are closed under the formation of coherent systems.

The function % is callied the hazard transform of the coherent

system because it gives the system hazard function R in terms of com-

ponent hazerd functions Ri:
R(t) =7 (Rl(t)sﬂuRn(t))

(The hazard function of a distribution F is given by -log F(t), end

t
is the integrel [ r(x)dx of the more familiar hazard rate r).
Q
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In the definition of the hazard transform, the exponential function
can be replaced by certain other survival functions G. Suppose that
G(0) = 0 and thet G has a positive derivative g on (0,), Then G

-1

has esn inverse G on [0,1] which satisfies

68 “L(p) = p whenever 0<p<1l, and & "L &(x) = x vhenever 0 <x <o,

In this case, the G-hazard transform % of a semi-coherent structure

with " reliebility function h of order n 1s given by

2(x) = & n(B(x)yeees8x)); 0 <x, <, 1=1,2...,0.

4
5.2 Lemma, Let G be a distribution function such thet G(0) =0 and
suppose that G has a positive derivative g on (0,=). If ¥, defined

by
(5.5) ¥(z) =& “(z)°g & z), 0<z<1, and 4(0) =¢(1) =0,

satisfies (5.2) and if 7 is the G-hazard traensform of a coherent structure

of order n, then

(5.6) q(a;vc)fa')z(;) s O<agl, 0<x, <es, i=1,2.,,,n,

i

We defer the proofs of these lemmas to § 6. However, we remark
that {5.6) can be reformulated as a monotonicity condition, and that (5.4)
is the corresponding condition thet a derivative be non-negative.

Let G be the class of sll survival functions G for which
(1) 6(0) =0 end G has a positive derivative on (0O,»), eand
(i1) +the G-hazard transform % of every coherent structure satisfies
(5.6). ILemma 5.2 provides a sufficient condition for G ed.

Consider now the utility of (5.6) for obtaining closed classes.



s il =

5.3 Theorem. If Gel and if

?G = F: 8™ Fat) < af "L §(t) for all ac[0,1] =and a1l t > 0},
/ffG =F: 870 F(at) = oG = F(t) for ell ee[0,1] and all t > 0J,
then
cs _ CS,LD _
o =%, =d Y =% -

Proof. Let F be the survival function of a coherent system with relisbility
function h, G-hazard transform 79 , and component survival functions

-

FreesF €. I£0<a<l and t20, then

¢ ~L F(at) - g =t h(F (at),...,F (at)) =7 (& ~ fl(at),...,a . F (at))
< m(af L F(6),000 08 HF (8) <o (@ TN F (%),..0,8 T F (£)) = aF(t)

The firet inequality follows from the fact that 44 1is increasing and each
ﬁi e‘FG. The second inequality follows because G € & so that (5.6) holds.
This means that ?GCSC F, and hence ?GCS =F.

Clearly /4 GCS’

same as the proof given by Birnbaum, Esary and Marshall (1966) for the case
=t

LD,_- F g The proof that ?GCIJGCS’LD is virtuelly the

that G(t) =e -, t >0, |

Note that if F eﬂG, then for some ¢ > 0O,

F(t) = (-}(ct).
5.4 Corollary, If G e(i and if £ is an increasing function satisfying

lim  %(t) <0, lim §(t) =e=,
treve t¥e

and if
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‘%‘GE =(F:87 F(t)/$(t) 1is non-decreasing in t for which %(t) > 0)
A .51
G = {F: G F(t)/5(t) 18 constant in t for which ¥ (t) > 0),

then

('FG;,CS . ?E;y’ &iid A%;,CS;LD - EFGE .

Proof. This result follows from Theorem 5.3 and Corollary 4.5. il
Here it is triviel that /.’J’Gs 1s the set of all survival functions
which, for some c > 0, have the form F(t) = G(e¥(t)), t such thst F(t) > 0.
Observe that if ‘91 and ‘52 satisfy the condtions of Corollary 5.4, if
§2(t) > 0 implies El(t} >0 and if 'El(t)/ga(t) is increasing in t for

which ga(t) >0, then

;
(5.7) ?Gglc?s 2.

5.5 Corollary. Let Y be a function satisfying (5.4) for all coherent

relisbility functions h, end let ©(t) >0 for all t. Then
F={F:F has e density f and f£(t)/##(t) >e(t) for all t)

is eclosed under the formation of coherent systems.

A proof of Corollary 5.5 can be given by utilizing (5.4) end slightly
modifying the proof of Theorem 4.1, Birnbaum, Esary and Marshall (1966).
The corollary can slso be obtained from Theorem 4.1(b) end Corollery 5.k4
with 5(t) >0 end &(t) = F'(t)/5(t).
Remark. We have assumed thet if GeQ, then G(0) =0 and G has a positive
derivative on {0,%)}. Most of the sbove development can be modified to
eliminate these conditions, although one must still be able to define G -l.

We have avoided the extra complexities this entails, because the only known

G for which (5.6) holds do in fact satisfy our essumed conditions.
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Although the class (¢ and corresponding functions 1 definped by

(5.5) are discussed in §6, we consider some important examples here,

5.6 Exemple., From the viewpoint of relisbility theory, the most important

results are obtained with

(5.8) G(t) = e't, t >0, il.e., ¥(z) ==-21logz, 0<z<1l.

Here,

?g = {F: [-1og F(t)1/5(t) 1s increasing in t for which %(t)> 0},

and

A5 Fe) = e58) 050, t such thet $(t) >0) .

with ¥(t) = t, ?GE = {IHRA] and /.’ng= {exp). With quite general
'5, the class ?GS was introduced by Saunders (1968).

with §(t) = t%, a>0, t >0, /EIGS consists of the Weibull distributions
with shape parsmeter Q. Use of this fact has been made by Barlow and Gupta

(1969). From (5.7) or directly, we see that the closed classes

%S = (F: [- log f(t)]/ta is increasing in t > 0}

& _ o tP
are nested: TG C?'G wvhen Q> B .
0f course, Weibull distributions are extreme value distributions for
minimums, Other extreme value distributions erise in our context in a simi-

lar fashion. If §(t) = &

y @>0, =ro< t <=, then F e/f;’GE has the form
F(t) = expl ce™) ol t <o >0
= expi=- y = s € ’

and if %(t) = (-t)'a, t <0, @>0, then F E/’/Gg has the form

F(t) = expl-c(-t)¥), t <0, c>o0.
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Another interesting case is %(t) = % l, >0, t>0. Here

F e,/‘ng has the form of a Gompertz distribution
= (221
F(t) = exp[-c(e -l)], t 2 0, e > 0-

More generally, if %(t) = - log A(t) = RH(t) is the hazard function of

the survival function H, then it is easily checked that
/J&?= (F : F(t) = [B(£))° for all t, some c > 0)
S5«T Example. Let
= -1/t

(5.9) G(t) =1 -e , t>0, i.e., ¥(z) = - (1-z) log(i-z)
Closed clesses obtained here have the form

% -

T = {F: - ¥(t) log F(t) is decreasing in t for which %(t) > 0]}

and the corresponding generating class is

A= (F : B(6) = exp[-B/5(8)], >0, t for which % (t) > o).

Here, there are choices for § such that ./.fGE consists of extreme value

distributions for meximums:
(1) If S(¢) = ()% a>0, t>0, then
/J’Gg = (F : F(t) = exp[-b(-t)*], t <0, b>o0}

(11) I£ 5(t) = et, - t <o, then

/yGS._. (F: F(t) = exp[-be.t], w0 t <o, b > 0],
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(111) 1f 5(t) =% a>0, t >0, then

W

A5 F ;R

n exp[-bt %], t >0, b>0].

With 5(t) = -1/10g H(t),

[H(t)]b for ell t, some b > 0],

5 e
/5G = {F: F(t)

5.8 Example. Let
(5.10) G(t) = 1/(1+t), t >0, i.e., ¥(z) = z(1-z).

Here, closed classes EFG% have the form

?GS= (F : F{t)/F(t)5(t) 1is increasing in t such that %(t) > 0},

and the corresponding genereting class is
A 5= (F : K1) = 1/[14e¥(t)], e >0l

An interesting special case is S(t) = et, ~-»< t <%, in which case

/f{}s is a family of logistic distributions. If %&(t) = ta, then F in/fc?

is of the form F(t) = 1/[1+cta]; this is the survival function of & ratio

of two varisbles which have Weibull distributions, each with shape parameter

a'

~
It is not difficult to verify that the closed class e * with
(x) = x(1-x) contains both ?"S with “tf(x) = - x log x and ?GE

G
with %{(x) = =(1-x) log{l-x).

Early in this section, we asked what survivel functions G can

replace the exponentisl e-t, t >0 in the result [ex:;:-]cs’r'D = {IHRA).
We have given a sufficient condition (5 €{l) and some examples; it may

also be worth showing by example that some conditions are indeed necesssary.
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5.9 Example. ILet §(t) = VI-t, 0<t< %, G(t) = exp[-2 1log V2 t],
t > %. Then G -l(u) = 1-u2, 1/V2<u<l, G '1(\1) = - log u/2 log V2,

0<u<l/ U2 . Let

A

]

/’.fG {7 . (-}_lf(at)=a§-lf‘(t),0_a<l and t > 0],

* [f‘:"lf-'(at)gaé'lf'(t),o_ 1 and t > O].

G

]

(]
A
[+
1A

Then, with the relisbility function h(pl, 'p2) = by We see that
F(t) = G 2(1:) e./chs. But for t < %, £t g 1g 2('l'.) _ 2> 43 decreasing

= 2 o= CS,LD
in t, 8o that G ° ¢ Tq and thus /fG ¢ 75
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6. Further Details

In §5, ve introduced the class ( of survival functions G for

which the G -hazard transform 7 of all coherent systems satisfies

7(ex) < af(x) .

In this section, we investigate some properties of the class & of functions ¥
which satisfy the basic inequality (5.4) for sll reliebility functions h.

An implicstion of Lemma 5.2 15 that G e@ 1if ¥(z) = & -l(z) G -1(2) EE .
Proof of lemma 5,1

We prove (5.4) for all semi-coherent reliability functions h of order
n by induction on n. If n=l, then h(p) =0, h{p) =1 or h(p) =p;
in each case, (5.4) is trivial in view of (5.3). Suppose then that (5.4)

holds for n = m~-l1 and that h 1is 2 relisbility function of order m.

If h(B,Om) h(pl,...,pm_l,o) and h(g,lm) =h(p1,...,pm_l,l) then

n(p) = p, n{p,L ) + (1-p ) n(p,0 ). Thus
i m-1
Z; l’L,(»(pi) »h(p)/3p, =Zi N ¥(p,) In(p)/op; +¥(p,) ¥ n(p)/2p,

m~-1 - m~l
= mei=l %(p;)3n(p,1 )op, + (1-pm)Zi=l w(p,) o0(p,0,)/op +¥(p Jan(p)/7p,

> p wh(p1 ) + (1-p,) Pn(p,0 ) +¥(p ) [n(p,1) - h(p,0 )]
>¥(p (el ) + (1 - p) h(p,0)) =¥n(p) .

The first inequslity is from the induction hypothesis; the second follows

from (5.2). ”
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Proof of Lemms 5.2

Observe first that (5.6) is equivalent to % (ax)/a increasing in

a €(0,1] whenever each x; > 0. Thus,
w(Z)
(6.1) Zz =;— 27%(z), if each z, >0 .
We compute
() g _ an(w)
ﬁ;—'-' -G h(G(zl )’"'G(zn))_a.l_l;- E:(é(zl)"”’c(zn)) g(zi) *

Since -& - (p) = 1/[gf ~(p)] >0, (6.1) is equivalent to

ah(u) _ -1 - =]
2298025 ) T uslB(z)) e, Bz )) 28 BB 0 88 TR (a0, 602 )

With (-}(zi) =p;, end P(p) = g ) - aG -l(p), this inequality becomes

(5.4). 1l

6.1 Proposition. If 7 is continuous, then equality holds in (5.4)
identically in P 1if and only if one of the following conditions holds:
(i) ’t/a(u) = = culogu for some ¢ >0 and

h(g) =TrieEPi 3

- e(l-u)log(l~u) for some ¢ >0 &nd

(11) Y (u)

h(g) =1 - ieE(l Pi)’
(111) %(u) =0, 0<u<1l
(iv) n(p)

(v) n=1.

H

1 for sll p, or h(g) =0 for all p;

The set E indexes the essential components of the structure, i.e.,
the components upon which ¢(x) and n(p) truly depend. From a practical
viewpoint there is no loss in essuming that all components are essentisl,

end with this sssumption, the statement of Proposition 6.1 is somewhat simplified.
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A result related to Proposition 6.1 has been given by Esery, Mershall
and Proschan (1970, Theorem 4.1). There, it is essumed that ¥(p) = - plogp,

and that equality holds in (5.6) for some triplet = end a. + &

£ 1
the conclusion is that h has the form (i) of Proposition 6.1.

o}

Proof of Proposition 6.1. It is easily checked that (5.4) becomes an

equality whenever one of these conditions is satisfied (case (iv) requires the
result ¥ e £ implies w(0) =w(l) = O that we prove below in Proposition 6.6).
Suppose thet eguslity holds in (5.4) for sll p, and that none of the
conditions (iii), (iv) or (v) hold. 1In order to prove that this implies
(1) or (ii), we suppose in addition that h is the reliability fumetion
of & coherent system with a minimal path set P &and a minimel cut set K
both of size at least 2, and show that this leads to a contradiction. (Minimel
path and cut sets are discussed by Birnbaum, Esary end Saunders {1961), end
by Essry esnd Proschan (1963)).
If P is & minimal path set,

h(g) = TTieP 1 whenever p; = 0, i g P.
Equality in (5.4) then yields

ziEPw(Pi)Tr,jEf,J£1 pj =“P(TriEP pi) if Pi = 0} i é P.
If P conteins at least two elements, the transformation ©(u) ='\y(eu)/eu

converts this functionsl equation to Cauchy's eguation
:EieP e(ui) = G(Ziep ui), u, <0, ieP,

Since we have assumed that 1 is continuous, it follows that & is continu-
ous so that © (u) = su, i.e., Y{u) = - culogu. Since we have assumed (iii)
does not hold, and since -culo:u feils to setisfy (5.3) unless c >0,

we conclude that c¢ -~ 0.

If K is a minimal cut set,

h(p) = 1 -7, «(1-p;) whenever p, =1, 14K,



o B
and equality in (5.4) yields

This functional equation can also be transformed to Cauchy's equetion and
we can conclude that ’?«(u) = = ¢(l-u)log(l-u), ¢ > 0.

These two definitions of ‘l,la cannot be reconciled, and we conclude
that either all minimel path sets are of size 1 (h(p) =1 -'TTieE(l-pi)),
or 811 minimal cut sets are of size 1 (h(g) =TrieEpi)' (‘

There are seversl interesting properties of the class & of functions

i} satisfying (5.4), which we enumerate in the following propositions.

6.2 Proposition. If ¥ €&, then P{0) =3(1) = O.

Proof. From (5.4) with h(p) = p,p, and hip) =1 - (l-pl)(l-pa) we have

P Mp,) + psHD) 29 (pypy) and (1-p) (py) + (1-py) ¥(2,) 2% (2 + P, - P B
With Py = P, = 0, it follows that 0 >7%(0) and 29(0) > 0. Thus §(0) = O,

and 'nffD(O) =%¥(1) = 0. (

6.3 Proposition. (5 is a pointed {proper) convex cone.
Proof. It is easily seen that [ is a convex cone, i.e., ¥, and ?2 el

implies ¢,y + %) e/’ whemever c; >0, ¢, > 0. That £, 1s pointed

(i.e., ¥ e, -{ € implies ¥ = 0) follows from Proposition 6.1, since el
end -Ye(; implies that equelity holds in (5.4) for all reliability functions

h, and this implies ¥ (u) = 0.

6.4 Progosition. g is closed under the formation of maximums.

Proof. If 1{’9.55’ reA, then since }h(p)/:;pi > 0,

B n
2 max . % (p) 2 h(g)/lipi 22,; l‘l,ba(pi) Bh(g)/api > h(p)

=
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for 8ll seA. Hence

n

Z.i=1 mex, 'l/’a('pi) Bh(g)/a'pi > max, . ’i/aah(g). “

6.5 Proposition. If % €, then ¢D€4 where 1};D(u) =% (1-u).

Proof., If h is the relisbility function of a coherent structure ¢

D

and hD(g) =1 - h(l-pl,...,l-pn), then h~ is the reliability function

of the coherent structure t])D defined by tI)D(x) =1-0(1 - xl,... y1-x )
n

Since 3h (P)/bpi =3h(1-p;,...,1-p }/api, we have 5, (pi)ah (P)/.)pi
n

i=1
= Z’i Y(1-p,) 28(1-D 500,10 Mop, 2ph(1-Dy,eenslop ) = 4 0(p). |

It is easily seen that Propositions 6.3, 6.4 and 6.5 remain true if
£ is replaced by the class of continuous functions satisfying (5.4}, for
8ll relisbility functions h., Also, these propositions are true if (£ is
replaced by the class of functions satisfying (5.2), or (5.2) and (5.3).
The question of whether there exist discontinuous functions in (£ has not

been resolved.

6.6 Proposition. If ¥ e is continuous on (0,1), then %#(u) >0, O0<u<l.

Proof. A sequence of "k out of n" systems (11)k rl(x) =1 if Sn(x) =

2:1:1 x 2k ¢k,n(§) =0 if Sn(f) < k) chosen so that n »oo while

k/n—>©8, 0 <6 <1 has the property that

hk,n(p,...,p) = Pls_(X;peee,X )/n>Kk/n} > 1 ir p> e

— 0 if p<e,

where Xi

Plx, = 0} = 1 - p. Thus, the set of points @e(0,1) such that

are independent random variebles such that P[xi =1) = p,

hk,n(e,...,o) = © for some k,n
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is dense in [0,1]). Moreover for such a point &,
n
;'5_,_1ahk',n(Pl’."’Pn)/apjlpl=...=pn=9 = dhk,n(g’.""e)/dg > 1 2

so that ¥(@) <0 means

Z  y(e)—= <8) =%h{6,...,8) .
LA D, =..=p =0 Y

This contradicts (5.4). Conseguently the set of points © such that

%(8) > 0 is dense in [0,1], so the proof is complete by continuity of ¥ l

We wish to correct an error in en earlier paper (Birnbaum, Esary and
Mershell (1966)). There, the statement is made (p. 820) that ¥e &
implies % 1is concave. That this is false can be seen by taking }f'= mex
(71‘1,1{'2), where ‘Q‘l(u) = =~ ulogu and '%f'e(u) = z#lD(u); Y e{; by Proposition
6.3, but ¥ is not concave. It is true, however, that % e/  implies
“f‘(Pl) "U‘(Plpa) 21{'(P1+P2-P1P2) -?tﬁ(pa). This is a concavity-like property,

since p; < P +P,~P)P, &nd P -PiPy = (Py+0,=PyPp) - Py
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