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Summary 

It has been shown by Birnbaum, Esary and Marshall that 

the class of survival functions with increasing hazard rate 

average (IHRA) is closed under the formation of coherent 

systems. Moreover, this is the smallest class of survival 

functions which is closed both under the formation of 

coherent system and limits in distribution, and which 

contains the exponential survival functions. In this 

paper a number of other classes are found which are closed 

under the formation of coherent systems and limits in 

distribution. Associated subclasses that play a generating 

role like the exponential class in the IHRA case are exhibited. 

In addition, several methods are presented for deriving 

closed classes from closed classes • 
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l. Introduction 

In the analysis of system reliability, one is often concerned with 

properties of a system life distribution which can be guaranteed from 

properties of component life distributions without reference to details 

of the system structure. We consider here some properties that the life 

distribution of every coherent system will inherit from component life 

distributions. A class of survival functions (those which possess a given 

property) is said to be closed under the formation of coherent systems if 

the survival function of every coherent system is in the class whenever 

the component survival functions ere ell in the class. Birnbaum, Esary 

and Marshall (1966) have shown that the class of survival functions 

with increasing hazard rate average (IHRA) is closed under the formation 

of coherent systems. Moreover, this is the smallest class of survival 

functions which is closed both under fonnation of coherent systems end 

limits in distribution, and which contains the exponential survival 

functions. Following the methods of Birnbaum, Esary and Marshell (1966), 

we obtain here e number of other closed classes, together with the 

associated subclasses that play a generating role like the exponential 

class in the IHRA case • 

Not ell of the closed classes obtained have clear interpretations 

in the context of reliability theory, because some classes consist of 

survival functions supported by the whole real line or even by the 

negative axis. 

In addition to these results, several methods are presented for 

deriving closed classes from closed classes. 
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2. Preliminaries 

We present here some required definitions, notations end preliminary 

remarks. Except for some minor extensions, these ideas ere not new; 

see, e.g., Birnbaum, Esary and Saunders (1961), Barlow and Proschen 

(1965, p. 202), Birnbaum., Esary end Marshell (1966), Esary end Marshall 

(lgi'O), and Esary, Marshall and Proschan (1970). 

A function <I> on{~= (x1,···,xn}: xi= 0 or 1 for ell i) which 

takes the values O or l is celled a semi-coherent structure function 

of order n if tj, is non-decreasing in each of its arguments. If in 

addition, q,(o, · • · ,o) = o and cp(l, • • •, 1) = 1, then 'P is said to be 

coherent. 

The reliability function h of a semi-coherent structure <p is 

a function on {~ = (P:J., ·••!p
0

): 0 ~pi~ 1 for ell i) which is 

defined via independent Bernoulli random variables Xi with expectations 

EXi = pi, 1 = 1,2, ••• ,n, by 

h( Jli, ••• , Pn) = Eqi( XJ.' ••• 'xn) • 

We refer to such a function as a coherent reliability function if cJ, is 

coherent. 

A survival function Fis a function such that F = l - F for some 

right-continuous proper distribution function F. This terminology is 

most appropriate when F(O) = O, but we wish not to imply such a restriction. 

For any coherent reliability function h and survival functions 

F1, ••• ,Fn, it is obvious that 

(2.1) 

defines e survival function F. For any family S of coherent reliability 

functions and any family ~ of survival functions, ve denote by r 
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the class of all survival functions F which have the form of {2.1) for 

some h E S and some F
1

, ••• ,F n E g:-• In particular, when S is the family 

cs of all coherent reliability fwictions, we use the notation ';F in place 

of 'f3, and call ~ CS the closure ot r under the formation of coherent 

systems. 

The formation of ~S is a bona fide closure operation in that, 

( i) the closure of '.r contains ~, (ii) the closure of ~ contains 

t he closure of .,,;9 whenever T° contains ,,-6', (iii) the closure is closed, 

and (iv) the closure of the empty set is empty. See Birnbaum, Esary and 

Marshall (19661 p. 820). In general, the formation of ~ fails to be 

a closure operation unless 

h,h 1, ••• ,hn ES where h is of order n =;, -t"e S, where 

(2.2) 
~ ( 1) (n ) (p ( 1) ( ( n) 
h {f· , ... ,'£ ) = b(h 1 _ ), ••• ,hn ~ )), 

and 

(2.3) the reliability function h(p) = p of order l is ins. 

If (2.2) end (2.3) hold, we call Sa closed family 2f. reliability functions, 

and refer to ? 8 as the closure of 'F under the formation of s-systems. 

The survival function F of (2.1) can be interpreted physically as 

representing the life distribution of a coherent system with structure 

function ,;/> , reliability function h, and mutually independent components 

with life distributions F1, ••• ,Fn. To see this, let 

x1(t) = 1 fort< Ti, and x1(t) = 0 fort~ T1, i = 1,2, ••• ,n, 
(2.4) 

X(t) = 1 fort< T, and X(t) = 0 fort~ T, 

th where Ti has distribution Fi and is the failure time of the i component, 
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i = 1,2, ••• ,n, T has distribution F and is the system failure time. Then, 

(2.5) 

An interesting generalization is obtained when (2.l) is replaced by 

(2.6} 

In this case (2.5) is replaced by 

(2.7) 

where ht is the reliability function of' eflt• We shell. call {~, - i.>.-< t <i>:,} 

a time-degrading coherent structure if <J.t, -0o< t <o-:,, are semi-coherent 

structure functions of a common order, say n, satisfying 

(2.8) 

(2.9) for some s, -j,
6
(1, .•• ,1) = 1; for some t, jt(o, ••• ,o) = o, 

(2.10} '1't(t) is right continuous in t. 

Condition (2.8) guarantees that Fin (2.6) is decreasing; (2.9) guarantees 

lim F(t) = l, 
t~-"° 

continuous. 

llm F(t) = o; condition (2.10) guarantees that Fis right 
t • I>' 

Closure of a class of survival. functions under the formation 

of time degrading coherent systems is defined in the obvious way. 
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3. Closure Under Coherent end Time-Degrading Coherent Systems 

The following proposition records the fact that closure under for-

mation of coherent systems is often equivalent to closure under formation 

of time-degrading coherent systems. 

3.1 Proposition. If :Fis a class of survival functions which is closed 

under the formation of coherent systems, and if r contains the degenerate 

survival functions, then r is closed under the formation of time-degrading 

coherent systems. 

Proof. We suppose that F(t) = ht(i\(t), ••• ,F
0

(t)) where <f:-t satisfies 

(2.8), (2.9), (2.10), and F
1

, •• ,F
0 

€ ';'. We must show that F € P". 

Because there ere only finitely many coherent structures of order n, 

there exist finitely many points - c,,;,= t 0 < t 1 < • • • < tm < tm+l = Cb 

such that h (p) = h (p) 
r ,., s """ for all ~ whenever tj ~ r < s < t j+l for 

some j. With an abuse of notation, we write h
0 

in place of ht when 

t
0 

< t < t 1, and hj in place of ht when tj ~ t < tj+l' j = 1,2, ••• ,m. 

Consider now the structure function tp •, of order m+n defined by 

m-1 
= 1 - (l - 4>m(3)) TTi=O (l - Yi+l cp/~)) ' 

where cp i is the semi-coherent structure function corresponding to hi. 

This structure function is diagramed in Fig. 3.1. 

----<Po25 

----"'1 ~ 

4> x .,___...i m-1 ~ 

-----1 'Pm ~ 
Figure 3.1 
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From (2.8), it follows that f 0(!) ~ ••• ~ 4>m(~) for all !• If' 

{Y1(t), -oo< t <oo) is the degenerate process 

and if X(t) = (x..(t), ••• ,x (t)) is defined as in (2.4), then ~ --i n 

Thus, in our original notation (with 'Pt corresponding to ht), 

This means that since F1(t) = E x1(t), F(t) = ht(F
1

(t), ••• ,Fn(t)) 

has the representation 

F(t} = Ectl(x(t), Y(t)) = h*(t
1

(t), ••• ,F (t), o
1

(t), ••• ,G (t)), ~ ~ n m 

where F1, ... ,Fn E7, and G1 (degenerate at t
1

) E'T, 1 = 1,2, ••• ,m. 

Since cp,. is coherent and since 'f' is closed under the formation of 

coherent systems, F e 'I". II 
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4. Operations Which Generate Closed Classes From Closed Classes 

There are a number of operations which generate classes closed wider 

the formation of coherent systems from similarly closed classes. A few 

such operations are listed in the following theorem: 

4.1 Theorem. Let S be a clas ed family of coherent reliability functions. 

If 'F is closed under the formation of s-systems, i.e., if J'" = F , then 

the following classes are also closed in the same sense: 

(a) *LD = (F: F is the limit in distribution of some sequence of 

survival functions in 't}, 

(b) ~ac = (F: Fe 7 and F is absolutely continuous), 

(c) 1'~ = (F: for some G e3='", F(t) = G(X(t)), _...,< t <-.:.), where ! is 

a right continuous non-decreasing function on (-m,~) such that 

limt~oo~(t) ~ b, llmt-+_Q,~(t) <5 a, and a< b satisfy F(a) - F(b) = 1 

for Fe~, 

(d) ~I= CF : for some G ef", F(t) = 1 for t < a, F(t) = G(t) for 

a,st<b, F(t) = o for t ~ b), 

(e) CA -T = {F: for some G e'f', F(t) = G(t) for all t e A), where AC R 

(f) g:-SG = (F: for some o e ~, F( t ) ~ G( t), -oo< t <coo}, 

SL C-'f" = F: for some Geir, F(t) <5 G(t), -""='<t<oo). 

These examples can be easily obtained as applications of the following 

propositions. In these propositions, Sneed not be closed, except where 

noted. 

4.2 Proposition . g: LD, 5c 1 s,LD • 

For S the family of all reliability functions, this result has been 

given by Birnbaum, Esary and Marshall (1966). If S is closed, then 

by putting ;F S in place of 'F in this proposition, we obtain that 

T S,LD,s =1°s,LD • 



- 8 -

4. 3. Proposition rf ac, Sc r S, ac: 

- ac S - -Proof. F e!f ' implies F{t) = h(F
1

(t), ••• ,Fn(t)) where each 

Fi e ;:ac, heS. This means F e T 5• Moreover F is absolutely continuous 

(see Esary and Marshall, 1970, Application 5.3), 60 that F e'r s,ac. rr 

It can be that f' 8' 8~'tac,s, is false. E.g., suppose that ~ = [F
1
,F

2
) 

where F1 is absolutely oontinuous and has suport [O,l], and F
2 

is 

absolutely continuous except for a discontinuity at 2. Suppose that 

S = (h) consists of but one reliability function, h(p
1

,p 2 ) = p
1
p2• 

!t:-s,ac {- 2 - - ) rc-ac,s c-21 Then 7 = F1 , F1F2 , T = F
1 

• 

4.4 Proposition -,=-J, S =f" s,~. 
- 't:. s Proof. If F e 1-"'' , there exists a rellabili ty function h E S { of 

some order, s9:9 n, and F
1

, .•• ,F
0 

e'f"~ such that F(t) = h(F
1

(t), ••• ,F
0

(t)). 

Since Fie: r5, F1(t) = 51 (~(t)) for some Gi e:f. Morever, .F{t) = G(J(t)} 

where G(t) = h(G1(t), ••• ,Gn(t)), i.e., F e:,=-5,!. Conversely, if 

F e: J-s, 3 , there exists for some n a relia.bili ty function h e S of 

order n and Gl, ••• , an e: ~ s such that F( t) = G(! { t)) = h( Gl (s( t) ) , • - • , 

G
0 

( 5 ( t) ) ) = h( F 
1 

( t), ••• , F n ( t)), where F 
1 

e: =f ~, Thus F e: r j ~ • H 

In a rather different form, and with S the class of all reliability 

functions, this proposition has been given by Esary and Marshall (1970, 

Application 5.1). 

We obtain from Proposition 4.4 the following corollary which has 

an important application in § 5. 

4.5 Corollary. If/.f'. =:F, thenftl' 6 :f 8; if/-fS,LD=:f'", then 

/ tf 'S, S,LD = q: !s • 

Proof. To obtain the first assertion, note from Proposition 4.4 that 

,,1.11,s =/.rs,J; but .,·!f S,! ='f'~. The second assertion follows similarly, 

but requires a.dditonally the fact tmt _,,{f~,LD =fiLD, ~. /l 
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4.6 Proposition 7 I, S =Ts, I • 

Proof. This follows directly from Proposition 4.4 with !(x) = -ao, x < a, 

j(x) = x, a ~ x < b, 5(x} =co, x ~ b. fl 

4. 7 Proposition q: CA, 5 = f' s, CA • 

- CA,S -( - ( - ( ) Proof. If' F E r , then F t) = h( Fl t), ••• , F n t ) for some h ES 

- - CA and some F1, ••• ,Fn Et • This implies that F(t) = h(G
1

(t), ••• , 

Gn ( t)) for some ci
1

, ••• , G
0 

E 1 , so that F E 'Ts, CA • The proof of' the 

converse is similar. II 
One can, with inclusion only, generalize Propositions 4.6 and 4.7 

as follows: Let {1',A;A) be the set of all survival fwictions that 

coincide on A with a member of 7, and that coincide off A with a 

member of/./. 

The proof is similar to proofs previously given. If A= [a,b] and 

the survival. functions ,:J have no mass outside A, then this result 

follows from Proposition 4.6. If~ consists of all survival proba

bilities, this result follows from Proposition 4.7. 

4. 9 Proposition ~ SG, SC 'f S, SG end ,:- SL, Sc 'f' S, SL. 

The proof is again similar to those ireviously given. 
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Some Classes Closed Under the Function of Coherent Systems 

Probably the most important class of survival functions knovn to 

be closed under the formation of coherent systems is the class of survi

val functions with an increasing {i.e., non-d.ecreasing)''hezerd rate 

average". If a distribution function F has a density f, then it has 

a hazard rate r defined by r(t) = f(t)/F(t} for all t such that 

F(t) > O. The condition that F{O) = l and that the hazard rate average 
1 t 

t- J r(x)dx is increasing int> O is equivalent to the condition that 
0 

(5.1) log F(at) ~ - a log F(t) whenever O <a< l and t > O. - -
Whether or not F has a density, we say that F has an increasing 

hazard rate average if (5.1) is satisfied and we denote the class of 

such functions by (IHRA}. The exponential survival functions (i.e., 

those which for some ) > 0 have the form ~t 
e for t ~ O) consti-

tute the subclass, denoted by (exp}, for which equality holds in (5.1). 

Birnbaum, Esary end Marshell (1966) show that 

{exp)CS,LD = {IHRA}, end that {IHRA)CS = (IHRA) • 

Another class of survival functions F which is closed under the 

formation of coherent systems are those which satisfy F(t) ~ F(x+t)/F(x). 

Because the right side of this inequality can be interpreted as a condi

tional survival probability given survival to time x, survival functions 

which satisfy the inequality are said to be new better than used, and 

the class is denoted by (NBU}. The fact that (NBU}CS = (NBU) is 

proved by Esary, Marshall and Proschan (1970). No interesting proper 

subclass 'f of (NBU) is known which satisfies either q:-CS = (NBU) 

or ,cs,LD = {NBU}. We shall not further discuss the class {NEU) or 

related classes which can be obtained from it using Theorem 4.1. 
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There are a number of other classes of survival functions which 

are easily shown to be closed under the formation of coherent systems. 

For example, those survival functions which are absolutely continuous, 

those which are discrete, those which are singular, and those which are 

degenerate, each constitute a closed class. 

Consider again the IHRA case. - -t Let G(t) = e , t ~ o, and let 

1" = {F: 0-1 
F(at) ~ a a-1 F(t) for all ae{O,l] and t > o), 

/./= CF --1 - --1 -: G F(at) = a G F(t) for all ee(O,l] and t > o} 

Then !r= {IHRA} , /.I= {exp], and we know that /.(cs,LD =.!F, q:cs =f° • 

It is of interest to ask if other survival functions can play the role 

of the exponential G(t) = e-t, t ~ O, in this development. 

To answer this guestion, we recall that Birnbaum, Esary and Marshall 

(1966) obtain the exponential-IHRA result described above via an inequality 

for reliability functions. Moreover, only a special case of their 

i all i tili d 1 i th t {exp)cs,LD __ (IHRAJ. negu ty s u ze n prov ng a In the 

remainder of this paper, we show that other special cases of the ineguality 

also have potential for proving closure results. 

The inequality of Birnbaum, Esary and Marshall (1966) is given in 

the following lemma. 

5.1 Lemma. Leth be a coherent reliability function of order n. If+ 

is a function on [O,l] satisfying 

rt(y) + (1-r)-V,(x) + (y-x)1f(r) =:,1r(ry+(l-r)x) 

(5.2) 

for all r,x and y such that O ~ r ~ 1, 0 ~ x ~ y ~ 1, 

and 



' 

- l2 -

~(O) ="f(l) = 0, 

then 

n 
(5.4) z. 

1
=
1 

;v(Pi) oh(~)/ap 1 ~,Ph(£) • 

The class of functions 'tJ; which satisfy (5.2) and (5.3), end the 

class which satisfies (5.4) are discussed in some detail in §6. We 

remark here that '!fl (z) = - z log z, '¥'2{z) = -(1-z)log{l-z) and 

-y,,
3

(z) = z(l-z), 0 5 z ~ 1 all satisfy (5.2} and (5.3). For the special 

case 'ff =·rr
3
, (5.4) was obtained by Esary and Proschan (1963) for the 

still more special case that "/' = ¥
3 

and p1 = ••• = pn, (5.4) was obtained 

by Moore end Shannon ( 1956) • 

The case 'If = 1f 1 was used by Birnbaum, Esary and Marshell ( 1966 ) • In 

this case, Esary, Marshall and Proschan (1970) have shown that (5.4) can 

be re-written in the form 

"l(~) <5 a?Z{~) 0 <5 a 5 11 0 ~ xi <oo, i = 1,2, ••• ,n, 

where 
-x -x 

?[(~) = - log h(e 1, ••• ,e n), 0 ~ xi <e,0, i = 1,2, ••• ,n. 

They found this form to be particularly convenient in proving that the 

IH8A distributions are closed under the formation of coherent systems. 

The function ?t is called the hazard transform of the coherent 

system because it gives the system hazard function R in terms of com

ponent hazard functions Ri: 

(The hazard function of a distribution F is given by -log F(t), and 
t 

is the integral f r{x)dx of the more familiar hazard rate r). 
0 



• 

,. 

- 13 -

In the definition of the hazard transform, the exponential function 

can be replaced by certain other survival functions G. Suppose that 

G(O) = 0 end that G has a positive derivative g on (0,00). Then G 

--1 hes en inverse G on [01 1] which satisfies 

GG-- -l(p) -- p whenever O ~ p ~ 1, and G- -l G-(x) = x whenever 

In this case, the G-hazerd transform ,i of a semi-coherent structure 

with · reliability function h of order n is given by 

0 < X <0c> 

5.2 Lemma. Let G be a distribution function such that G(O) = 0 and 

suppose that G has a positive derivative g on (0, 00 ). If 1f , defined 

by 

(5.5) ( - -1( - -1 1{I z) = G z)•g G (z), 0 < z < l, and -v-,(o) = 1f(l) = o, 

satisfies (5.2) and if n is the G-hazerd transform of a coherent structure 

of order n, then 

(5.6) '/(~) ~ a1t(?f) , 0 ~a~ 1 , 0 ~ x1 <oo, i = 1,2, •• • ,n • 

We defer the proofs of these lemmas to §6. However, we remark 

that (5.6) can be reformulated as a monotonicity condition, and that (5.4) 

is the corresponding condition that a derivative be non-negative. 

Let a be the class of all survival functions G for which 

(1) G(O) = 0 and G has a positive derivative on (0,111t:1), and 

(11) the G-hazerd transform 1 of every coherent structure satisfies 

(5.6). Lemm.a 5.2 provides a sufficient condition for G EQ. 

Consider now the utility of (5.6) for obtaining closed classes • 
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5. 3 Theorem. If GE. a and if 

q: G = CF : G -l F(at) 5 aG -l F(t} for all ae[O,l] and all t ~ o), 

~ c- - -l -c ) - -l -c ) ] /JG = F : G F at = aG F t for all ae ( 0, 1 and all t ~ o), 

then 

Proof. Let F be the survival function of a coherent system with reliability 

function h, G-hazard transform 'I'/. , and component survival functions 

F1, ••• ,Fn etf"0• If O ~a~ 1 and t ~ o, then 

~ 

- -1 -c ) - -1 ,- ( - ( c--1 - ( ) - -1 - ( ) G Fat = G h F1 at), ••• ,Fn at)) = ''I G F1 at , ••• ,G Fn at) 

< '>Z,(aG -l Fl(t), ••• ,ao -l F (t)) < e,Z(G -l Fl(t}, ••. ,a -l F (t)) = aF(t) 
- n - n 

The first inequality follovs from the fact that ·1 is increasing and each 

F
1 

e9="
0

• The second inequality follows because Ge a so that (5.6) holds. 

cs '):' r,,- cs 
This means that T G c :r, and hence 'f G = 1°. 

CS LD cJj CS LD Clearly /.f G ' c 't 
0

• The proof that 'F" G G ' is virtually the 

same as the proof given by Birnbawn, Esary end Marshall (1966) for the case 

that G(t) = e -t, t ~ o. lf 

Note that if F e/.{
0
, then for some c > o, 

F( t ) = o( ct) • 

5.4 Corollary. If G ea and if s is an increasing function satisfying 

1im ~(t) 5 o, 
t~-""" 

and if 

lim ~(t) =°"', 
t~ 
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'1:: = {F : G -l F(t)/5(t) is non-decreasing in t for which ~(t) > o} 

./JG
3 

= {F: G -l F(t)/5(t) is constant in t for which }r (t) > o), 

then 

Bild _A-.s, CS, LD _ r 's 
G - TG • 

Proof. This resul.t follows from Theorem 5.3 and Corollary 4.5. ii 

Here it is trivial that./2"
0

~ is the set of all survival functions 

which, for some C > o, have the form F(t) = G(cs(t)), t such that s(t} > o. 

Observe that if 's-1 and ~2 satisfy the condtions of Corollary 5.4, if 

~2 {t) > 0 implies 's 1 (t} > 0 and if "s
1

(t)/s 2 (t) is increasing in t for 

which :Sit) > o, then 

5.5 Corollary. Let '1/1 be a function satisfying (5.4) for all coherent 

reliability functions h, and let e (t) ~ 0 for all t. Then 

:J== (F: F has a density f and f'(t)/?ff(t) ~s{t) for all t) 

is closed under the formation of coherent systems. 

A proof of Corollary 5.5 can be given by utilizing (5.4) and slightly 

modifying the proof of Theorem 4.1., Birnbaum, Esary and Marshall (1966). 

The corollary can also be obtained from Theorem 4.l{b) and Corollary 5.4 

with §{t) > 0 and e(t) = l 1 (t)/s(t). 

Remark. We have assumed that if G €a, then G(O) z O and G has a positive 

derivative on (0,110). Most of the above development can be modified to 

- -1 eliminate these conditions, although one must still be able to define G • 

We have avoided the extra complexities this entails, because the only known 

G for which (5.6) holds do in fact satisfy our assumed conditions. 
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A1though the class a and corresponding functions -y., defined by 

(5.5) are discussed in§ 6, we consider some important examples here. 

5.6 Example. From the viewpoint of reliability theory, the most important 

results are obtained with 

(5.8) -c ) -t Gt = e , t ~ o, i. e. , 'Ip ( z ) = - z log z, O<z<l. 

Here, 

r-GE = (F: [-log F(t)]/s(t} is increasing in t for which ~(t)> o), 

and 

. ./2'G ~= {F: F(t) = e-c~(t), c > o, t such that 8-(t) > o) . 

~ ~ 
With ~ (t) = t, ~ = (IHRA) and ~G = (exp}. With quite general 

"3, the class '.tG 8 vas introduced by Saunders ( 1968). 

With s (t} = t
0

, a> o, t ~ o, AG !l consists of the Weibull distributions 

with shape parameter a. Use of this fact has been made by Barlow and Gupta 

(1969). From (5.7) or directly, we see that the closed classes 

~s = (F: [- log F(t)]/t
0 

is increasing in t > o) 

are nested: when a> 13. 

Of course, Weibull distributions are extreme value distributions for 

minimums. Other extreme value distributions arise in our context in a simi-

lar fashion. If '5(t) = eat, a > o, -m< t <~, has the form 

and if 5(t) 

- at) F(t) = exp(-ce , -~< t <..o, C > 0 1 

-a = (-t) , t < o, a> o, then F e./2'. ~ has the form . G 

F(t) = exp(-c(-t)
0

), t ~ o, c > o. 
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Another interesting case is ~(t) = eat - 1, a> o, t > O. Here 

- ~ F e.4o has the fonn of a Gompertz distribution 

F(t) = exp(-c(eat-1)), t ~ o, c > O. 

More generally, if 's= (t) = - log ii(t} = ~(t) is the hazard fW1ction of 

the survival. function H, then it is easily checked that 

~ 1 = (F : F(t) == [ii(t)f for all t, some c > o) 

5.7 Example. Let 

(5.9) G(t) = 1 - e-l/t, t > O, i.e., rf(z) = - (1-z) log{l-z) 

Closed classes obtained here have the form 

~~ = (F: - ~(t) log F(t) is decreasing in t for vhich ~(t) > o} 

and the corresponding generating class is 

~--4a = (F: F(t) = exp(-b/~(t)], b > o, t for which --~(t) > oJ. 

Here, there are choices for ~ such that ./.JG!-consists of extreme value 

distributions for maximums: 

( i) If s ( t) = ( -t) -a, a > o, t ~ o, then 

fiG~ = (F: F(t) = exp[-b(-t)a], t ~ o, b > o). 

, t 
(ii) If 5(t) = e , -cit:>< t <co, then 
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(iii) If S(t) = t°', a> o, t ~ o, then 

/'JG!::: {F: F(t) :::exp{-bt-a], t~o, b>O). 

With 's(t) ::: -1/log H(t}, 

b [H(t)] for all t, some b > o}. 

5.8 Example. Let 

(5.10) G( t ) = 1/ ( l +t } , t ~ O, 1. e. , ·!i ( z ) = z ( 1-z ) • 

's Here, closed classes g:-0 have the form 

~! = (F F(t)/F(t)j(t) is increasing in t such that 'g(t) > o}, 

and the corresponding generating class is 

,..,q'G 5 = {F: F(t) = 1/[1+c' 5(t}J, c > o}. 

An interesting special case is 'S(t) = e\ --o< t <c.:., in which case 

~' is a family of logistic distributions. If 'g(t) = t°', then F in/'}J 

is of the form F(t} = l/[l+ct 0
]; this is the survival function of a ratio 

of two variables which have Weibull distributions, each with shape parameter 

a. 
,.,._ ~ 

It is not difficult to verify that the closed class r G ' with 

1--(x} = x(l-x) contains both 'FG 's with ·tj,(x} = - x log x and 'r0 ~ 
with ?f(x) = -(1-x) log(l-x). 

Early in this section, we asked what survival functions G can 

tial -t t O i th ult (exp}CS,LD -- {IHRA}. replace the exponen e , ~ n e res 

We have given a sufficient condition {G ea) and some examples; it may 

also be worth showing by example that some conditions are indeed necessary. 



.. 

- 19 -

5.9 Example. Let G( t) = Vl-t, 0 5 t 5 ½ , G( t) = exp(-2 log lf2 t], 

t ~ ½• Then G -l(u) = l-u 2, 1/ V2 5 u -S l, G -l(u) = - log u/2 log 'r/2, 

0 5 u -s 1/ lf2 • Let 

AG= (F: G ·l F(at) = aG •l F(t), O 5 a 5 l and t ~ o), 

g:-G = (F: G -l F(at) 5 aG -l F(t), o <a< l and t > o). 

Then, with the reliability function h{p1,p2 ) = Pi~' we see that 

-( - 2( ,~ CS l -1 - -1 - 2 2 Ft)= G t) E./7G • But fort< 2, t G G (t) = 2 -t 1s decreasing 

- 2 1 r.- ,/ CS LD ,.._ 
in t, so that G ~ r G' and thus ./JG ' q:. r0 • 
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6. Further Details 

In § 5, 11e introduced the class a of survival functions G for 

which the G - hazard transform '7 of all. coherent systems satisfies 

~(ex) ~ eJ](x) • 

In this section, we investigate some properties of the class C of functions is, 

which satisfy the basic inequality (5.4) for ell reliebilit~ functions h. 

An implication of Lemma 5. 2 is that G e: a. if 'I#-( z) = G -l( z) gG -l( z) e: ~ • 

Proof of Lemma 5.1 

We prove (5.4) for all. semi-coherent reliability function; h of order 

n by induction on n. If n=l, then h(p) = O, h(p) = 1 or h(p) = P; 

in each case, (5.4) is trivial in view of (5.3). SUppose then that (5.4) 

holds for n = m-1 and that h is a reliability function of order m. 

If h( p ,O ) = h(p
1

, ••• ,p 
1

,o) and h(p,l ) = h(p
1

, ••• ,p 
1

,1) then ~ m m- ~ m m-

h( p) = p h(.p, 1 } + (l.-p ) h(,p,O ) • Thus ~ m ... m m .-m 

m m-1. 

~~=l. 'lf>(p1 ) •~h(£)/api =~=l. 1/'(P1 ) dh(£)/dpi + ·f(pm) o h(!:)/.1p 1 

m-1 m-1 
= Pm.Z 1/J(pi)°dh(_E,l.m)hpi + (1.-pm)Z 7/'(.pi)i}h(l;>,Om)hP1 + ·lf(pm)~h(i)/~pm 

i=l. 1=1 

>11,(p h(p,l) + (1 - p) h(p,O )) =6f•h(p) • -r m ,.. m m ~ m ..., 

The first inequality is from the induction hypothesis; the second follows 

from ( 5 • 2) • II 
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Proof of Lemma 5.2 

Observe first that (5.6) is eguival.ent to '7 (ax)/a increasing in ~ 
a E(O,l] whenever each xi~ o. Thus, 

(6.1) if each z1 > 0 • 

We compute 

~'1{(z) - -1' - - ah(~) 
= - G h( G( z1 ), ••• G( z ) ) d ( -( ) -( ) ) g( z ) • 

d zi n ui ~ G z1 , ••• , G zn i 

Since -G -l' (p) = 1/[gG -l(p)] > o, (6.1) is equivalent to 

a h( u) - -1' 1 I 
zz 1g(zi) au; (G-( ) G-( )) > G h(u) • gG - h(u) (G-( ) G-( )) ~ zl , ••• , zn - - ~ ~ zl , ••• , zn 

With G(zi) = pi and lf(p) = G -l(p) • gG -l(p), this inequality becomes 

( 5. 4). ii 

6.1 Proposition. If ··v,, is continuous, then equality holds in (5.4) 

identically in f if and only if one of the following conditions holds: 

( i ) 1f' ( u) = - culogu for some c > 0 and 

h(£) = rriE#i ; 
(ii) .-f(u) = - c(l-u)log(l-u) for some c > 0 and 

h(i) = 1 - ifiEil-pi); 

(iii) 1/l(u) = O, O<u<l - -
(iv) h(,R) = 1 for all f, or h(~) = 0 for all fi 

(v) n = 1. 

The set E indexes the essential components of the structure, i.e., 

the components upon which ,(x) and h(p) truly depend. From a practical 
~ ~ 

viewpoint there is no loss in assuming that al.l components are essential., 

and with this assumption, the statement of Proposition 6.1 is somewhat simplified. 
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A result related to Proposition 6.1 has been given by Esary, Marshall 

end Proschan (1970, Theorem 4.1). There, it is esswned thati/,(p) = - plogp, 

and that equality holds in (5.6) for some triplet a1,e 2 and a1 + a2; 

the conclusion is that h hes the form (i) of Proposition 6.1. 

Proof of Proposition 6.1. It is easily checked that (5.4) becomes an 

equality whenever one of these conditions is satisfied (case (iv) requires the 

result '\JI€ C implies 1"(0) =,P(l) = 0 that we prove below in Proposition 6.6). 

Suppose that equality holds in (5.4) for all E, and that none of the 

conditions (iii), (iv) or (v) hold. In order to prove that this implies 

(i) or (ii), ve suppose in addition that h is the reliability function 

of a coherent system with a minimal path set P and a minimal cut set K 

both of size at least 2, and show that this leads to a contradiction. (Minimal 

path and cut sets are discussed by Birnbaum, Esary and Saunders (1961), and 

by Esary and Proschan (1963)). 

If Pis a minimal path set, 

h(£) = lTiEP pi whenever pi= o, ii P. 

Equality in (5,4) then yields 

2 ieP,V(pi)lf je~,j~i Pj ="i'(TTieP pi) if Pi= o, ii P • 

If P contains at least two elements, the transformation e(u) ="l'{eu)/eu 

converts this functional equation to Cauchy's equation 

Since we have assumed that 'I' is continuous, it follows that e is continu

ous so that e (u) = au, i.e., '\/J(u) = - culogu. Since we have assumed (iii} 

does not hold, and since -culo :_u fails to satisfy (5.3) unless c ~ o, 

we conclude that c > O. 

If K is a minimal cut set, 
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and equality in (5.4) yields 

This functional equation can also be transformed to Cauchy's equation and 

we can conclude that f(u) = - c(l-u}log(l-u), c > O. 

These two definitions of 1.j, cannot be reconciled, and we conclude 

that either eJ.l minimal path sets are of size l (h(E) = l -1rie.E(l-p 1 )), 

or eJ.l minimal cut sets are of size 1 (h(£) = 7T ie.Epi) • II 
There are several interesting properties of the class C: of functions 

1y satisfying (5.4), which we enwnerate in the following propositions. 

6.2 Proposition. If 1f € C, then 'y'(O) = tf{l) = O. 

Proof. From (5.4) with h(p) = p
1

p2 and h(p} = l - (1-p 1 )(1-p 2 ) we have 

PitJ.(p2) + p2.}-(pl) ~-if(P1P2) and (l-P2) if'{,pl) + (l-pl) ?y (p2) ~-{/'(Pl+ P2 - P1P2), 

With Pl = p2 = O, it follows that O ~ !1,(0) and 21/{0) ~ O. Thus ·t(O) = 01 

and 'f D ( 0) = 711 ( 1) = 0. II 

6. 3 Proposition. c; is a pointed {proper) convex cone. 

Proof. It is easily seen that C is a convex cone, i.e., t 1 and 'f 2 €C 

implies C1'f1 + C{f2 €c whenever cl ~ o, c2 ~ o. That h is pointed 

(i.e., y, e. r;, -·if €C' implies 1/' = 0) follows from Proposition 6.1, since -!f'€C 

and -f€G implies that equality holds in (5.4) for all reliability functions 

h, and this implies ~f ( u) = o. ii 

6.4 Proposition. (; is closed under the :formation of maximums. 

Proof. If 1fe.€C, a£A, then since )h(~)fdp 1 ~ o, 
n n 

2 maxa£A 7fa(p1)) h(E)hpi ~ Z i'a(pi) J h{~)hP1 ~Y'ah(f) 
i=l i=l 
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for all a.EA. Hence 

n 
z~=l maxa£A 1fa{"p1) dh(i)/;rpi ~ maxa£A ifah(~)- II 

6.5 Proposition. If' 1/-eC, then 1fDet, where 7rD(u) =7./-'(l-u). 

Proof. If h is the reliability function of a coherent structure t 
and hD(p) = 1 - h(l-p 1, ••• ,l-p ), then hD is the reliability function 

- n 
of the coherent structure ~D defined by tD(x) = 1 - ~(1 - x1, ••• ,l-x ). 

- n n 

Since ~hD(~)/~pi = )h(l~i\,·•·,1-pn}hpi, we have /4 '1f'D(p1 )ahD(g)/Jpi = 
..,... n . i=l D D = 6 1/'(1-pi})h(l-p 1, ••• ,l-p }/r).pi >11,h(l-p 1, ••• ,l-p) = Ip h (p). // 
i=l n - r n .... 

It is easi~ seen that Propositions 6.3, 6.4 and 6.5 remain true if 

/; is replaced by the class of continuous functions satisfying (5.4), for 

all reliability functions h. Also, these propositions are true if C is 

replaced by the class of functions satisfying (5.2), or (5.2) and (5.3). 

The question of whether there exist discontinuous functions in C hes not 

been resolved. 

6.6 Proposition. If 1f eC is continuous on (O,l}, then '1f {u} ~ o, 0 5 u ~ 1. 

Proof'. A sequence of "k out of n" systems (~k (x} = 1 if S (x) = ,n ~ n ...... n 
/4 x1 ~ k, tk,n(~) = 0 if Sn(~) < k) 

1=1 
k/n • Q1 0 ,:::: Q -:; 1 has the property that 

chosen so that n -+-o.o while 

= P{s (x1, ••• ,x )/n > k/n} ·• 1 if' p > Q 
n n -

~ 0 if p < Q , 

where Xi are independent random variables such that P(x 1 = 1} = p, 

p{x
1 

= o) = 1 - p. Thus, the set of points Qe(o,1) such that 

h. (Q, .•. ,Q} = Q for some k,n 
-1<, n 
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is dense in [O,l]. Moreover for such a point 9, 

n 
~ db_. n(P 1, •· .,p }hPjj _ _ --1'\ = db_ (9, .. . ,9)/dQ > l , 
J=l -""k, n p1- ••• -Pn ~ -1t, n 

so that y, (9) < 0 means 

n d h(p} 
~ 'lf (9} • ·V 

... j=l d pj 
<1/(9} =fh(9, ••• ,9) • 

P1=• •=Pn:9 

This contradicts (5.4}. Consequently the set of points 9 such that 

1f(9} ~ 0 is dense in [0,1], so the proof is complete by continuity of 'f .!I 

We wish to correct an error in an earlier paper (Birnbaum, Esary and 

Marshall ( 1966} ) • There, the statement is made ( p. 820) that 1f e C 

implies 1r is concave. That this is false can be seen by taking 'f = max 

(rf
1
,1f

2
), where ,-cf

1
(u) = - ulogu and ·:f

2
(u) = Zr

1
D(u); 1.fe{; by Proposition 

6.3, but 1/-' is not concave. It is true, however, that "f eC implies 

"-f (p
1

) -7f(P
1

P
2

) ~ 1f (P
1 

+p2-p
1
p2 ) -7f (p 2 ). This is a concavity-like property, 

since pl~ P1+p2 -P
1

P2 and P1 -P1P2 = (p1+P2-P1P2 ) - P2 • 



• 

1 

- 26 -

REFERfflCES 

[1] Barlow, R. E. ands. Gupta (1969). Selection procedures for restricted 
families of probabill ty distributions. Ann. Math. stati st. , !t2, 905-917. 

[2] Barlov, R. E. e.nd F. Prosche.n (1965). Mathematical Theory of Reliability, 
John Wiley, New York. 

[3] Birnba~,z. w., J. D. Esary and A. W. Marshall (1966). A stochastic 
characterization of wear-out for components and systems, Ann. Math. 
statist., IL, 816-825. 

[4] Birnbaum, z. w., J. D. Esary ands. C. Saunders (1961). Multi-component 
systems and structures and their rP.llability, Technometrics, l, 55-77-

[5] Esary, J. D. and A. W. Marshall (1970). Coherent life functions, SIAM J. 
Appl. Math., !§., 810-81.4. 

[6] Esary, J. D. and F. Proschan (1963). Coherent structures of non-identi
cal components. Technometrics, i, 191-209. 

[7] Esary, J. D., A. W. Marshell and F. Proschan (1970). Some reliability 
applications of the hazard transform. SIAM J. ApPl• Math.,!§., 849-86o. 

[8] Moore, E. F., and c. E. Shannon (1956). Reliable circuits using less 
reliable relays. J. Franklin Inst., 262, 191-208, 281-297. 

[9] Saunders, S. C. (1968). On the determination of a state life for 
classes of distributions classified by failure rate. Technometrics, 10, 
361-377. 



St•<·urilv C'lass,fic-ation .. 

DOCUMENT CONTROL DATA-R&D 
t S• ••· urHt. ' ,·l•t~silil'ation al title, body of nb!tttDC'l and jndc1d11,? "nnotntlvn ntUHf bC' entered when th~ ov~tDII tcport ls r-lnscllied) 

I OR IG IN4 TING ACTIVITY (Corpora,., author) 2A, REF'ORT SECURITY CL4SSIFICATION 

Department of Mathematics Unclassified 
University of Washington 2b. CROUP 

Seattle. Washington '98105 
3 REPORT TITLE 

3o:ne Classes of Distributions Closed Under the Formation 
of CoherE1nt Systems 

4 , OESCRIPTIVE NOTES (T'ypi, o( ri,port and,lncluslvi, dali,s) 

Technica1 Report No. ::;9. February 3, 1971 
~ - AU THO RISI (First nllm", middle /n/1#11/, /as/ nomi,) 

,T. D. Esary and A. w. l"!a::-shall 

6 , REPORT CATE 7a. TOTAL NO. OF PAGES 17b, NO, o9 REFS 

FP.h.,..,1~rv ~- lQ?l 26 
aa . CONTRACT OR GRANT NO. 9a. ORIGIN4TOR'S REPORT NUMBER(SI 

N00014-67-A-Ol03-0015 ::;Q . ., 
b, PRO.JECT NO. 

:1!: QI.L? 038 
"· 9b. OTl-<ER REPORT NO(SI (Any oth"r numbers that may be 1usiRn"d 

thl• report) 

d. 

10 . OISTRIBUTION STATEMENT 

~tUO. l if iP r1 !.'eque:,te!.·~ mo.y obtain C0!1ies f~'Oill DDC 

II - ~ U PPt.EMENTARY NOTES 12. SPONSORING MILITARY 4CTIVITY 

:_r. ,., '\T:tv:,.· .::;. 

or f:..c ., 0 :, ~h v:,.l 1•:e 8C :l .l' '.!~! 

',!:!~~~~: r:ct o;!, it. C . 
13 - ABSTRACT 

Jt; i:i.'.:IS been sl:ow.r. b" 
" 

Bi rnb::iu~·;, :~S'1.L~2.r :1r:~L M:..t~:J~: a: l th n.t 

• 
:-1:e c .loss of m;.rvival fu~c~ l ons w:i tt inc~ec1~~:..nr; l1aznr d r't\ ~.::•2 
n..v,~ e~ [;!l ( r· t , ) is t~lol'>ec.l W!der the :.'or~-::.J.tion o:· cohe: ~~n ·· tU.i., 
S'-tst~ r.n • ., Mo!.·e over, thi s is the s:rn.llt ~st cL:,.si~ of ::;i;_-,_••.,-::.._ '.TA 1 
r 1..nc., i_ons whic.h. is closed. bot:i. W1de r ...... ,,, 

..J .. .t. .... f 0!."' ·1 •~ j OT' of 
C O:l~.!'ent s :rst e ?:,. am .~ li;:-~:. t s in dist::-ibu.J.;io!l., o.r..d wl1i ch .. . 
L' on,.. ;:iJ_ni_, th e expon::"'ntial survival ..fu.r..c t :..ons. I:1 -::;:--_is 
:"' 3 DE' l, 8. !1UC0( 0

::' of o t ::0.r classes ar e !'ou..>:.d wl:i ch nr •3 clos,:.>d 
t11:.de1." -':;he for;-:ntion of coh cren.; syste 7.G :.l.!'1cl limit~ -:; in 
- is t ri :JL!t.i on. .\ssoci a t ed s ubcJ2.Rs es ~;~•t:; r,2. tl~:" a c;en£) .ea ·t ·i11c 
:-o 1 t ' l j ,-:1: ..... e:g)oni:>r.tia..l class in tlw II I i~,. C c'! ::,c, ar i; ex::!j_bi ;_ .. u.:1.e .. . .., " .. ~;:•.'vo2rnl ~ll'tr..o..ls a.re r,r eser., ;-: 1 !: O:..' d e: ·:. v.i.n:, .l • • ~ i · : ,., !. :·.:.or.' 
f.' .:o .,L0 J c l v.s .Je ~ rro:·: 1_•loi:e,l class•.~::. 

DD t..°oR:ss 14 73 (PAGE I) 

5/ N 0101-807·6811 Security Classirication 
A•:J 1408 



.... , 

"' 

.J 

, 
• 

Security Clai.i;ifii:aUon 

I• · 
KEV WOR0S 

Life distributions 

Coherent systems 

Reliability theory 

' 

SIN 0101 •807•68Z I 

LINK A LINK II LINK C: 

ROLE WT ROLE WT ROLE WT 

' 

Security Ctassific:ation 






