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A New Lap lace Second-Order Autoregressive 
T ime-Series Mode l-NLAR( 2) 

LEE S. DEWALD AND PETER A. W . LEWIS 

Abstract-A time-series model for Laplace (double-exponential) vari- 
ables having second-order autoregressive structure (NLAR(2)) is presented. 
The model is Markovian and extends the second-order process in exponen- 
tial variables, NEAR(2), to the case where the marginal distribution is 
Laplace. The properties of the Laplace distribution make it useful for 
modeling in some cases where the normal distribution is not appropriate. 
The time-series model has four parameters and is easily simulated. The 
autocorrelation function for the process is derived as well as third-order 
moments to further explore dependency in the process. The model can 
exhibit a broad range of positive and negative correlations and is partially 
time reversible. Joint distributions and the distrfbution of differences are 
presented for the first-order case NLAR(l). 

I. INTRODUCTION 

I 
N STANDARD time-series analysis, one  assumes the 
marginal distributions of { X, } are normal. However, a  

Gaussian distribution will not aiways be  appropriate. In 
earlier works stationary non-Gaussian time-series mode ls 
were developed for variables with positive and  highly 
skewed marginal distributions [l]-161. 

O ther situations still remain for which Gaussian margi- 
nals are inappropriate, i.e., where the marginal time-series 
variable being mode led, al though not skewed or inherently 
positive valued, has a  large kurtosis or long-tailed distribu- 
tion. The  position errors in a  large navigation system have 
such a  distribution. In particular, Hsu [7] mode led pooled 
position errors using the double exponential distribution. 
McGill [8] showed that the Laplace distribution provides a  
characterization of the error in a  tim ing device under  
periodic excitation. Again, speech-waves are mode led using 
Laplace variables [9]. In the “speech-l ike” process given by 
the linear autoregressive (AR(l)) mode l 

x, = cx,-, +(1 - C2)l’*En, (1.1) 
where 0.8 I c < 0.9, the innovation sequence {E,} is inde- 
pendent  and  identically distributed (i.i.d.) Laplace [lo]. In 
image coding systems using a  two-dimensional discrete 
cosine transform, Reininger and  G ibson [ll] showed that 
the Laplace distribution gives the best approximation to 
the distribution of the non-DC coefficients. Recently Sethia 
and  Anderson [12] required a  stationary autoregressive 
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process with Laplace marginals in their research in com- 
mun ications technology. 

Some of the special properties of the double exponential 
distribution are discussed briefly in the next section. 

The  approach taken in this paper  to develop a  family of 
Laplacian time-series mode ls (NLAR(2)) follows that of 
the earlier work for the new exponential autoregressive 
(NEAR) mode l in [4] and  [6]. In Section III we establish 
the validity of the four-parameter, Markovian, random- 
coefficient linear mode l by analyzing the innovation struc- 
ture. It is shown that a  convex combination of three-scaled 
Laplace variables can be  combined with an  independent 
pair of Laplace variables to obtain another Laplace vari- 
able. Necessary and  sufficient conditions for the existence 
of the NLAR(2) mode l are given using results of Nicholls 
and  Qu inn [13]. 

The  random-coefficient approach is not the only way to 
generate Laplace variables with a  specified correlation 
structure. The  literature contains numerous articles on  
generat ion of random sequences. One  approach put forth 
in several papers [14]-[18] involves passing white Gaussian 
noise through a  linear filter followed by a  zero-memory 
nonlinear transform. This is a  general  procedure that pro- 
duces exactly the required marginal distribution and  a  
good  approximation to the autocorrelation structure. How- 
ever, the scheme lacks the simplicity of the method being 
proposed, which is just a  random-coefficient linear combi- 
nation of Laplacian random variables. Moreover, the filter- 
ing approach produces, for example, in the first-order 
autoregressive case, only one  process. It is important to 
note that in nonnormal  time  series there are infinitely 
many processes with a  given marginal and  autocorrelation 
structure. The  NLAR(2) does this; the difference in the 
various NLAR(2) processes can, for instance, be  explored 
through third and  fourth joint moments. 

The  NLAR(2) time-series mode l provides great flexibil- 
ity to systems mode ling because of the broad range of 
correlations and  dependence structure that can be  obtained 
with the use of the four parameters. We  demonstrate in 
Section V that the correlations {p(I)} satisfy Yule- 
Wa lker-type equations as in the AR(2) process. We  in- 
vestigate the parameter space within which the NLAR(2) 
mode l is valid. 

F inally, in Section VI we demonstrate the high degree of 
symmetry underlying the NLAR(2) mode l by showing that 
E(XiXjX,) = 0  for all i, j, k. This property is useful in 
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model fitting and in determination of reversibility/direc- 
tionality in the model. We show that further analysis of the 
residuals as given by Lawrence and Lewis [19] is necessary 
to further address directionality in the NLAR(2) model. 

Several cases of the NLAR(2) family are analogous to 
those developed in (61 for the NEAR(2) model, which will 
not be listed here. However, the results for the first-order 
NLAR(l) model presented in Section IV are new. 

II. SPECIAL PROPERTIES OF THE 
LAPLACE DISTRIBUTION 

The Laplace distribution is also known as the double 
exponential. In general, the density of a Laplace distrib- 
uted variable L has two parameters-a location parameter 
- cc < p < + 00 and a scale parameter A > 0. The param- 
eter p is fixed here at zero. For - 00 < x < cc we have 

fL(x; A) = &  exp (-lx@ ). (2.1) 

In what follows we will define { L, } as a sequence of 
i.i.d. random variables of the Laplace distribution with 
X = 1 (standard Laplace). The characteristic function of 
the standard Laplace variable is 

G4 = &-J, -co<o<co, (2.2) 

and we have 

if n is odd 
if n is even, (2.3) 

so that E(L) = 0, var(L) = 2, skewness is zero, and 
kurtosis is 3. The value of the kurtosis indicates that the 
symmetric Laplace distribution has heavier tails than the 
normal distribution, for which the kurtosis is 0. 

The sum Y = CyzlLi of n 2 2 i.i.d. Laplace variables 
can be written as the difference of two i.i.d. random 
variables Y,, Y, with Gamma distribution, shape parameter 
n, and scale parameter 1. This follows immediately from 
the characteristic function 

c#+(w) = (1 + 0*)-n = (1 + io))“(l - iw)), 

= b&J>&++ (2.4) 

When n = 1 a Laplace variable is the difference of two 
i.i.d. exponential variables. This makes it simple to gener- 
ate Laplace variates in computer simulations. Replacing n 
by t > 0 in (2.4), we see that [c#J~(w)]’ is the characteristic 
function for the variable Y, - Y,, where Y - Gamma (t, l), 
i = 1,2 and Y, and Y2 are independent. This demonstrates 
that the Laplace distribution is infinitely divisible. 

Random variables with a standard Laplace distribution 
are self-decomposable. Let 

e4 = GGtk(P4 0 _< p < 1. (2.5) 

According to Feller. [20, p. 5881, if +J w) is the transform of 
a random variable for each 0 I p < 1, then L is said to be 

self-decomposable. But 

&(w) = (1 +(pw)*}(l + 0”))’ 

= {p +(l - p)(l - iw)-‘} 

. { p + (1 - p)(l + h-l} 

= p* +(1 - p2)(1 + w*>-‘. 

(2.6) 

(2.7) 

We recognize (2.6) as the product of the characteristic 
functions of two i.i.d. innovation variables ei and - e2 as 
described in the EAR(l) process in [l]. Also, from (2.7) 

( 
0, W.P. P2, 

E= 
L, w.p. 1 - p*. (2.8) 

Thus E is the solution of a first-order liner autoregressive 
equation X, = pX,-, + E,, where { X,, } is a stationary 
time series with double exponential marginal distribution 
for all n. We call this the LAR(l) model. It has the same 
properties as the EAR(l) model in [l] with two important 
differences. First, if - 1 -C p < 0 negative serial correla- 
tions for odd lags are obtained. Secondly it is partially time 
reversible in the sense that’ for all 1 and n, both of the 
following are true: 

Jq xX+,) = -q WC+,) = 0, (2.9) 

P(X, 2 x,-,) = P(X, I x,-,) = l/2. (2.10) 

These results are derived in Sections IV and VI. Note, 
however, that since LAR(l) is a linear AR(l) model with 
non-Gaussian innovation {E,}, it is not fully time reversi- 
ble [21]. Finally, note that this LAR(l) model has the 
zero-defect property; when z, = 0 then X,/X,-, = p and 
p can be determined exactly in long enough runs of the 
series { X, }. This property is generally undesirable, but the 
broader NLAR(2) model developed in the next section is 
free of this defect, except for the special parameter values 
for which it reduces to the LAR(l) model. 

III. A SECOND-ORDER AUTOREGRESSIVE LAPLACE 
TIME-SERIES MODEL (NLAR(2)) 

Following the terminology in [4], [S], and [6], we propose 
the following time-series model, called the new Laplace 
second-order autoregressive model (NLAR(2)). The 
NLAR(2) model has four parameters, double-exponential 
marginal distribution for { X,, } , second-order autoregres- 
sive Markov dependence, and autocorrelations satisfying 
Yule-Walker-type equations. 

The stationary NLAR(2) model has the same form as the 
stationary NEAR(2) model in [6]. Writing the time series 
{X,} in the form of an additive, linear, random-coefficient 
autoregressive process, we have for all n that 

X,, = &K;X,,-, + ,82K,3n-2 + E,, (3.1) 

where {K;, K,“} is a sequence of i.i.d. discrete bivariate 
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random variables with distribution 

i 

(LO), W .P. a1, 
{K;, K;‘} = (0, I>, WT. a*, 

(w), w.p. 1  - (Yi - ff2, 
(3.2) 

n  = 0, fl, +2, **. * , {en} is an  i.i.d. innovation sequence 
whose distribution is given in (3.7), and  {e,,} and  {K,‘, K,“} 
are mutually independent and  independent of { X, } = X,, 
m  = n  - 1,n - 2,a.e. The  parameter space is defined by 
01]/3~]~1andO~a~11,i=1,2;a,+a,~l.Graphs 
of the admissible regions in the parameter space and  the 
correlation space are presented in Section V. 

Equations (3.1) and  (3.2) have a  direct physical interpre- 
tation. The  observed process at time  n, X,, is only one  of 
three possibilities: 1) X, is some mu ltiple of what it was at 
time  n  - 1, piX,-i, plus some independent random noise 
en; 2) X,, is some mu ltiple (possibly different than pi) of 
its value at time  n  - 2, p2  X,I-2, plus some independent 
random noise; and  3) X,, is just random noise c, indepen- 
dent of everything up  to time  n. 

The  work of Nicholls and  Qu inn [13] on  random-coeffi- 
cient autoregressive mode ls is relevant to the NLAR(2) 
process. They have given the necessary and  sufficient con- 
ditions for the existence of the unique covariance sta- 
tionary solution to the following class of univariate ran- 
dom-coefficient autoregressive (RCA) mode ls of order k, 
RCA(k), 

zn = t {Vi + Bn(i>}Zn-i + cn, (3.3) 
i=l 

n = 0, fl, *2,-a., where the following conditions hold. 
1) The  y, are real constants. 
2) {B,} is a  k-vector, second-order stationary, indepen- 

dent process with E(B,) = 0  and  constant covariance ma- 
trix. 

3) {en } is a  scalar second-order stationary, independent 
process, independent of {B,}, with E(ez) = a* for 
all n. 

They also have shown that if {B,} and  {e,,} are i.i.d. 
processes, then the solution {Z,} is strictly stationary and  
ergodic. 

Let y, = ajPi for i = 1,2 and  B,(l) = &( K,’ - a,) and  
B,(2) = P2(K; - a*). Then  (3.1) and  (3.3) have the same 
form. That is, (3.1) forms an  RCA(2) mode l if the innova- 
tion of NLAR(2) satisfies condition 3). Thus applying the 
results in [13, pp. 31, 371, there exists a  unique strictly 
stationary and  ergodic solution to (3.3) for y, and  B,(i) as 
defined above, if and  only if all of the roots of the 
characteristic equat ion 

(t2 - a& - ci2&y(t2 - a*&9 = 0  (3.4) 

are within the unit circle, i.e., if and  only if a,@,’ + cw,&‘- 
c 1. This is satisfied for the conditions on  the parameters 
defining NLAR(2), thus establishing the existence of the 
mode l (3.1). 

No marginal distribution is ascribed to solutions of the 
general  RCA(k) mode ls in [13]. It is, in fact, determined 
by the independent choices of the innovation and  the 
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random coefficients. However, by specifying the marginal 
distribution and  the random coefficients, we restrict the 
innovation more than the RCA(k) mode l does. If the X, in 
(3.1) or Z, in (3.3) have a  standard Laplace marginal 
distribution, then all their moments are given by (2.3). 
From (3.1) or (3.3) it follows that for all k = 1,2, . . . 

1 

E( 6;“) = {(2k)!} 1  -(@l”” + a,p;“) 

k-l 

- g { (a,p,2(k-‘) + a2j3f(k-Q) 

.E(E ,2(k-i))/(2i)!} 

and  for this to be  true it is necessary that 
alp:” + a,p,‘” < 1. 

I ’ 0, 

(3.5) 

(3.6) 
Since (pi and  a2  are probabilities it is necessary that 
]&] I 1  for i = 1,2 for (3.6) to hold. If not there exists for 
every (pi and  a2  an  integer m  such that (~$12~ or (YIPS”’ is 
greater than 1. 

We  have now established the necessary conditions on  the 
innovation { E, }, and  on  pi and  p2  for the existence of a  
unique strictly stationary solution to (3.3) with a  marginal 
Laplace distribution and  with the random coefficients given 
by (3.2). In Theorem 1  we show that ]&I I 1  for i = 1,2 is 
also a  sufficient condition and  that such an  innovation 
random variable en  exists. We  also give its explicit form-a 
convex combination of Laplace random variables. For 
simplicity we regard the parameter space as being de- 
scribed by strict inequalities for (Y~ and  pi. 

Theorem I: Let {X,,} be  a  stationary process with 
standard Laplace marginal distribution. For all n  let (3.1) 
and  (3.2) hold with 0  < ]&I < 1, 0  < (Y~ < 1  for i = 1,2 
and  (pi + a2  < 1. Then  

i 

L  
Ib:;L, 

W .P. 1 - P2 - P3, 

fn = K,L, = W .P. P2, 

lb, IL, W .P. P3, 

(3.7) 
where { L, } are i.i.d. standard Laplace variates; the K, 
have values in { 1, ) b,J, lb3j} and  are independent of { X, }, 
{ L, }, { K,‘, K,“} for all n. Furthermore 

p3 = {h + ~2)P,‘p,’ -(cd? + G;)b:} 

(b; - b,2)(1 - b;) ’ (3*9) 

1 > bi = i{s +(s* - 4r)“*} > bi 

= i{s -(s* - 4r)“*} > 0, 

s = (1 - 4b,’ +(1 - a,)&?, 

r = (1 - til - a,)@?,‘. 

(3.10) 

(3.11) 

(3.12) 
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The proof of Theorem 1 closely follows the one in [8] for 
the NEAR(2) model and is not given here. 

Many special cases of the NLAR(2) model could be 
mentioned. The following have one or more of the parame- 
ters at their boundary value and have valid but less com- 
plicated results for the distribution of {e,,} in (3.7). If 
a1 = ff* = 0 then { en } is the i.i.d. sequence { L, } and 
X, = E,. If (Y~ = 1 then {en} is the innovation of the 
LAR(l) model derived from (2.7) and (2.8). If ]&] = ]p2] 
= 1 and (Y~ + a2 < 1, then each en is distributed as a 
scaled Laplace random variable, ,/wL,. This 
model is called the TLAR(2) model, which is easily ex- 
tendable to higher-order autoregressions. If (Y~ < 1 and 
a2 = 0 or p2 = 0, then { z, } is the innovation of the new 
first-order autoregressive model NLAR(l). This model is 
the subject of the next section. 

IV. THE NLAR(l) MODEL 

The NLAR(l) model is the first-order autoregressive 
version of NLAR(2). The two-parameter model (a2 = 0 
and, or p2 = 0 in (3.1)) is 

X,, = K,‘P,Xn-1 + cn, (4.1) 
where 

K; - 
i 

1, w.p. (Yi 
0, w.p. 1 - (Y1 

E, = 
i 

L 

&qblIL,. 
t-1’ ;, ‘* (4.2) 

. . 

P2 = &7{1 -0 - c&e}. (4.3) 
From (4.2) and (4.3) we see that the inversion :of 
the characteristic function for E,, letting X = (1 - 
al) -1/21/311-1, gives 

f,,(x) = *(l - p2)ed”l + +Ap2eCXIXI, (4.4 

which is a convex mixture of Laplace densities. 
To find the conditional density of X,, given X,- 1, we 

use (4.1) through (4.4) to evaluate P( X, < xn]X,-,). We 
have 

J’tX, < x,&L,) = P(W,Xn-, + fn < x,lx,-1) 
= 

%~(% < x, - PI%1) 

+ (1 - a,)P(e, < XJ. (4.5) 
Differentiating (4.5) with respect to x, yields 

fx,‘x.&nlXn-1) = d&n - &%-1) 

+tl - dfc,tx,). (4.6) 

Now we can write the joint density fxnxnel as the product 
f f m*.-, x,-1* In fact, the n-dimensional distribution of 
Xl,. . -9 X, is obtained by using this product recursively to 
obtain the density fx, x, = fx Ix _,fx -Ilx,m, . . . fx,lx,fx,. 

We now consider the distrib&k of”the difference Z, = 
x, - q-1. Using (4.1)-(4.4) and the fact that E, is a 
convex mixture of Laplacian random variables, we used 

partial-fraction decomposition to invert the characteristic 
function of Z,, to obtain, for the density, 

fin(y) = exp { -IvIAl - &)I( a’(’ 2 “I) 

*l 

(1 - P2) 

((1 - /$ - IJ’) - Pl(2 - Pl> 

+exp hJw7KJP2/2) 

*i u* -(T- P,)” - 

(1 - 4 

1 - u* 

+; exP(-IYl) 

(1 - 4P2 

1 - u2 
+ 0 - %)(1 - P2) 

2 

4 - P2) 

+ Pl(2 - Pl) 

+O - ~~)(l - ~1)IAed-lA)/4. (4.7) 

One immediate result using (4.7) is that f,Jy) is sym- 
metric about zero and therefore P(Z, < 0) = P(Z, > 0) 
= l/2. This demonstrates one feature of the partial time 
reversibility of the NLAR models; i.e., probabilities of a 
run down (X, > X,-,) and a run up (X,, < X,-,) are the 
same. To evaluate probabilities of higher-order runs would 
require the joint distribution of the sequence { Z,, }. More 
on reversibility in the sense of directional moments is 
presented in Section VI. 

V. AUTOCORRELATIONSTRUCTUREOFTHE 
NLAR(2) MODEL 

In this section we show that the autocorrelations p(Z) = 
Corr (X,, Xn-,), I = 0, f 1, f2, * . . of the NLAR(2) 
model satisfy the Yule-Walker-type difference equations; 
thus, the second-moment dependency aspects are indis- 
tinguishable in form from those for the AR(2) process. We 
also compare the admissible regions of an AR(2) with an 
NLAR(2) with four parameters and an NLAR(2) with only 
two parameters. 

From the independence of {K,} and {K,‘, K,“} and 
(3.1), (3.2), and (3.7), we see that E(K,‘) = al, E(K,“) = 
(Y*, and E(c,) = E(K,)E(L,) = 0. Multiplying (3.1) on 
both sides by Xn-,, we have for I r 1, E(X,,X,-,) = 
a,P,E(X,_,X,-,) + (Y~P~E(X~-~X~-,). Dividing by 
var( X,) we have p(-Z) = &p(l - 1) + a2p2p(Z - 2), 
since p( - I) = p(l). Substituting ai& = a, for i = 1,2 and 
p(0) = 1, we have 

PO) = a1 + a2Pm 

P(2) = alp(l) + a2, (5.1) 

which are the same equations as those that occur for the 
AR(2) process. 

Since l/3,] I 1 for i = 1,2 and (pi + a2 I 1 in NLAR(2), 
the usual triangular admissible region for AR(2) given in 
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[22, p. 611  shrinks to the interior of a  d iamond-shaped area 
in (al = &, a  2  = a2p2)  coordinates: Ial] + ]a,] 5  1  (See 

gion bounded below by ]p(l)J = (l/2)(1 + p(2)}. (See 

F igs. l(a) and  (b)). In (p(l), p(2)) coordinates the equation 
F igs. 2(a) and  (b)). 

p(l)* = (1 + p(2))/2 defining allowable combinations of 
The  reduction in allowable parameter or correlation 

p(l) and  p(2) in AR(2) also changes. For NLAR(2) the 
combinations for NLAR(2) is not large. This encouraged 

space in (p(l), p(2)) coordinates becomes a  triangular re- 
us to consider a  2-parameter NLAR(2) mode l by specifying 
(Y~ = &?, for i = 1,2, so that a, = #. The  parameter space 

9 

a  

:: ... ... NO .... .... m  

I 

..... ..... ...... ...... ...... ....... ........ ........ ......... 
3  

....... ......... . .......... ........... ............ ............ ............. ............. .............. .............. ............... ............... 0  ................ ................ 
7  ............. ............. 
-2 -1 
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0 I 2 

al 
(4 
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Fig. 1. (a) Admissible region in parameter coordinates for linear AR(l) Fig. 2. 
model. (b) Admissible region in parameter coordinates for NLAR(2) 

(a) Admissible region for p(l) and p(2) for linear AR(2) model. 

model with four parameters. (c) Admissible region in parameter coordi- 
(b) Admissible region for p(l) and p(2) for NLAR(2) model with four 

nates for NLAR(2) model with only two parameters. 
parameters. (c) Admissible region for p(1) and p(2) for NLAR(2) 
model with two parameters. 

P(l) 

(4 
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in (a,, a2) coordinates becomes the symmetric region 
bounded by the curves ,p; = f (1 - pf)3/2 (see Fig. l(c)). 
In (&, &) coordinates the admissible region of the two- 
parameter model is bounded by the unit circle P, + P,’ = 1. 
Using only two parameters leads to the admissible region 
in Fig. 2(c) for (p(l),p(2)) space. The (p(l),p(2)) space 
was obtained by transforming the lines /3; = a2 = c, - 1 
I c 5 1, in Fig. l(c), to p(2) = (1 - u~)~(I)~ + a2, where 
IP( I a,/(1 - a2) = P:/(l - P,‘> and Pz = (1 - 
pt)3/2 if a2 2 0 and p,’ = -(l - /?f)3/2 if a2 < 0. 

All the plots in Fig. 1 were generated from a grid of 
equally spaced values of a, and a2. In Fig. l(a) the points 
satisfy the Yule-Walker equations (5.1). In Figs. l(b) and 
(c) the points also satisfy the conditions of Theorem 1. In 
Fig. 2 the feasible combinations of p(1) and 
plotted for those values of a, and a2 from Fig. 1 
Yule-Walker equations (5.1). 

~(2) are 
using the 

VI. TIME REVERSIBILITY ASSESSED BY 
THIRD-ORDER MOMENTS IN NLAR(2) 

In Section V we demonstrated that the second-moment 
dependency aspects of the NLAR(2) model were indis- 
tinguishable in form from those of the ordinary AR(2) 
model. Also, it is well known that if the linear autoregres- 
sive model is not Gaussian, then the process is not com- 
pletely determined by the first and second moments. Thus 
in model identification it becomes necessary to examine 
third-order moments to further identify the process. Spe- 
cial third-order moments ,5(X:X,+,), for all I, are known 
as directional moments. If the directional moments for all 1 
are equal, which is necessary for a process to be fully time 
reversible, we say the process is partially time reversible in 
the sense of directional moments. 

A process is fully time reversible [23] if the joint distri- 
bution of X,, Xn+r;.*, Xnfr, is the same as that for 
x #Z+r, xn+r-l,-. -9 X, for all Y and for all n. Since LAR(l), 
a special case of NLAR(2), is not fully time reversible, 
NLAR(2) is in general not time reversible. 

In this section we show by induction arguments that all 
the third-order moments of NLAR(2) are the same as those 
for Gaussian AR(2), i.e., E(XjXjX,) = 0 for i, j, k. This 
implies particularly that the directional moments of 
NLAR(2) are equal and therefore that NLAR(2) is always 
partially time reversible. 

In Section II we found that E( Xi’) = 0 for all i since Xl: 
is marginally standard Laplace. It is easy to establish the 
following two equations, 

E( TJn2-1) = P,a,Jq Xx,-1) (6-l) 

E( X,%-l) = {(P&2)/(1 - 2PlP,~l~,)}E(X,Xl)~ 

(6.2) 

Solving (6.1) and (6.2) simultaneously yields E( X,X,‘-,) = 
E(X,fX,_,) = 0. 

Now, using separate induction arguments and the 
stationarity assumption, we establish that E( X,X,“-,) = 0 
for all 1 2 1, and E(X,fX,-,) = 0 for all k 2 1. 

The proof of E( X,X,‘-,) = 0 is straightforward. 
To prove E( X,‘X+ k) = 0 we first show that the expec- 

tation of special third-order moments of the form 
xnxn-1X-k for k 2 2 is zero. Define pk = 
E(X,X,-,X,-k) and assume E(X,fXnMj) = 0, j I k - 1. 
From (3.1) 

pk = E(X,X,-I xn-k> = %hE( xi%-(k-s) 

+“2P2(xnxn-1xn-(k-1)) 

= (Y2,8#,L-, = * * ’ = (~2P2)k-1k. (6.3) 

Now from (6.1) and (6.2) we have ,LJ~ = E(X,Xi-,) = 
a2P2E( X:X,-,) = 0. Therefore ,.&k = 0. 

We now proceed to show that E( X,X,X,) = 0 for all 
i, j, k. Without loss of generality let i < j < k so that 
k = i + n, j = i + m and n > m. Therefore by stationar- 
ity E(XiXjXk) = E(XiXi+,Xi+,) = JIZ(X~X~-~,-,,X~-,). 
Fixing m so that 0 < m -C n, we use induction on n. Let 
n = 2, implying m = 1. The first step in the induction 
follows from E(XiXi-,Xi-,) = p2 = 0. Next assume that 
for m < n I K, E(XiXivc,-,,Xi-,) = 0. Now we show 
that E(XiXi-cK+r--m) XieCK+r)) = 0. Using (3.1) we write 

E(4Xi-(K+1--m)4-(K+1) ) 

= 
a,P,E(XI-lXi-(K+l-m~Xi-(K+l) > 

+ cx2P2E( X.2 X.- I 2 I (K+l-m) X i-(K+l) ) 

+E(Ei;Yi-(K+l-m~Xi~(K+l)). 

Now 

E(ci~-(K+1--m)4-(K+1)) 

= E(~i)E(xi-(K+l-m~Xi-(K+l)) = O 

and 

E(Xi-lXi-(K+l-m)Xi-(K+l)) 

= E( XiXi--(K--mjXi--K) = 0 

by stationarity and the assumption. Likewise, 

E(;YI-2~-:--(K+1-m)Xi-(K+1)) 

= 
E(XiXi-((,-,)-,)~-(,-,) ) = 0. 

This completes the induction. 
An immediate result from the argument about third 

moments is that 2, = X,, - X,-r for { X,} of the NLAR(2) 
is not skewed. 

The residual analysis in [6] and [19] using cross correla- 
tions between linear autoregressive residuals R, = X, - 
alXn-, - a2L2, and their squares Rf,, does not shed 
any new light on the directionality/reversibility in the 
NLAR(2) model or help identify the appropriateness of the 
Laplacian model. This is because all. third moments have 
zero expectation. Thus, we see that E(RiR,+,) = 
E(R,Rt+,) = 0 for all 1. 

Note that the basis for the residual analysis using the 
{ R, } process is that this process is uncorrelated, but not 
necessarily independent. The moment results show that the 
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R, have zero skewness. In fact, it is easy to show that the 
distribution of R, is the same as the distribution of -R,. 
Thus, the R, are symmetric, al though they will, of course, 
not have Laplacian distributions. 

VII. CONCLUSIONSANDFURTHERANALYSIS 

We have demonstrated that like the other canonical 
distributions, the Laplace distribution has several special 
properties. We  presented and  justified the use of a  very 
broad Markovian mode l that has four parameters and  the 
correlation structure and  third-order behavior of an  AR(2) 
mode l. It is easy to simulate on  a  computer. 

There are many other uses of the NLAR(2) construction 
within the context of time  series analysis. A moving 
average mode l (NLMA(l)) and  a  m ixed mode l 
(NLARMA(l, 1)) have been  derived. A detailed discussion 
of these mode ls along with other possibilities will be  re- 
ported elsewhere. 

If the residual analysis for nonlinear autoregressive 
processes suggested in [6] and  [19] is to be  useful in 
mode ling with NLAR(2), it must be  extended to consider 
at least some special fourth-order moments, such as 
E(X,f-,Rz), E(Rj!-,Ri), or E(X2-rR,), in order to dis- 
tinguish the process from other candidates. 

F inally, the joint probability density function for the 
NLAR(l) mode l will be  used elsewhere to investigate the 
important problem of parameter estimation in the mode l. 
A likelihood analysis for the NLAR(2) mode l appears to 
be  much more difficult, but is also possible. 
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