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Creating and understanding email communication
networks to aid digital forensic investigations

Michael McCarrin, Janina Green1 and Ralucca Gera

Abstract—Digital forensic analysts depend on the ability
to understand the social networks of the individuals they
investigate. We develop a novel method for automatically
constructing these networks from collected hard drives.
We accomplish this by scanning the raw storage media for
email addresses, constructing co-reference networks based
on the proximity of email addresses to each other, then
selecting connected components that correspond to real
communication networks. We validate our analysis against
a tagged data-set of networks for which we determined
ground truth through interviews with the drive owners.
In the resulting social networks, we find that classical
measures of centrality and community detection algorithms
are effective for identifying important nodes and close
associates.

I. INTRODUCTION

Email data stored on hard drives provides a wealth of
information about the users of the devices on which it is
stored. In a digital forensic investigation, email headers
and contact lists can often be of greater importance than
the content of the email in that they identify a user’s
associates and provide a lower bound on the frequency
with which the user communicated with them. Several
straightforward methods of extracting email addresses
are available. An analyst willing to take the time to
inspect a drive manually can likely locate many obvious
sources of email addresses, including address books or
addresses stored in email headers. The primary drawback
of this technique is scalability: it is only effective if
the quantity of drives requiring analysis is relatively
small such that analyst time can be devoted to each.
Commonly, this is not the case; many organizations
require analysis of drives on a scale that far outstrips
the capacity of their examiners. Furthermore, the work
becomes more challenging if the email is stored in an
unusual location or an unknown file format, or resides in
unallocated space (as a result of naive deletion or fast-
formatting).

A more scalable approach, developed by Garfinkel [4],
is to scan the drive linearly from the first addressable
sector to the end and extract all email addresses in
bulk. This process can be automated easily and is ro-
bust against variations in file system, format or storage
location (though compressed or encoded data must be
handled specially). Unfortunately, it tends to produce a

1The current research includes excerpts from [7], which is one of
the author’s thesis.

high number of false positives—email addresses that are
present on the drive due to software installations, doc-
umentation, security certificate stores and other sources,
but which have no direct correlation to the social network
of the device owner. The presence of these false positives
again requires analyst time to cull through and identify
addresses used for actual communication between the
drive owner and his or her associates. Because a given
drive can have tens of thousands of such false positives,
the need for manual inspection can erase any efficiency
gains offered by the extraction method.

We improve this method by constructing co-reference
networks based on the byte offset of the email addresses
in storage. Our approach relies on the tendency of
storage devices and file systems to store related data in
the same area for purposes of optimizing performance,
a consequence of the locality principle [2]. Because co-
located data tends to be related, addresses that appear
near each other can be treated like names appearing
in the same document, and the resulting co-reference
networks tend strongly to group communication-related
email addresses in separate connected components from
addresses that are artifacts of installed software. Further-
more, because frequency of email or chat communication
corresponds to repetition of co-located pairs of addresses
on the drive, components comprised of email addresses
used in communication reveal information about the
social network of the drive user. This technique preserves
the advantages of the linear scan while greatly reducing
the manual effort required to arrive at a human-readable
report.

The remainder of this paper proceeds as follows:
Section II gives a summary of work in digital forensics
and social network analysis that our research seeks
to extend. Section III describes our methodology for
building social networks from hard drives and Section IV
discusses the datasets we used to test our approach. In
Section V we characterize some exemplary networks
produced from our data. Finally, in Section VI we
present our conclusion and propose areas for future
work.

II. RELATED WORK

Our work combines methods developed in two distinct
areas of research: forensic analysis of email addresses
found on secondary storage media, such as hard drives,
and network science analysis of co-reference networks
created from documents. We begin with a discussion of
work in digital forensics.

Early methods of conducting digital forensic analysis
focused primarily on the needs of a single examiner
working on a case-by-case basis [5]. To address the
increasing volume of data requiring analysis, Garfinkel
developed an automated scheme for forensic feature ex-
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traction and cross-drive analysis [4]. His method extracts
forensic artifacts, such as email addresses, using regular
expressions to scan the raw media without reference to
the file system, then attempts to correlate related drives
by clustering based on the presence of common artifacts.

Garfinkel proposes social network identification as
a potential application of this approach, but offers no
methods for constructing such networks. Further, his
experiments reveal that many artifacts produced by this
method, such as email addresses extracted from common
security certificates, introduce considerable noise and
must be filtered out before the correlation step. Garfinkel
later developed context-sensitive “stop lists” to attempt
to solve this problem [6].

Because comprehensive stop lists are large and quickly
go out of date, Rowe et al. attempt to enhance the
effectiveness of Garfinkel’s whitelist approach using a
Bayesian filter to find other email addresses similar
to those on the list. They then use k-means clustering
to partition drives into groups, but they provide no
independent verification that the resulting groups are
meaningful [11].

In the domain of social network analysis, Özgür et al.
introduces a method for building social networks based
on co-occurrence of names in articles in the news media.
Their algorithm for constructing these networks regards
all names as nodes. The edge are between any two names
that appear in the same article, adding weight to edges
of nodes that co-occur multiple times. They show that
applying this technique to the Reuters-21578 corpus [9]
produces social networks of public figures in which
leaders and key relationships are identified by topolog-
ical properties [10]. Their process for constructing the
network relies on a hybrid of manual and automated
analysis in which names were identified manually in
10,000 of the 21,578 news articles in their corpus. They
extract from the rest using a named entity recognition
tool, the output of which is manually reviewed. This
hybrid process is analogous to the approach taken by
many tool-assisted digital forensic analysts. Namely,
they proceed either by manual examination of devices or
by performing extensive review of the output of forensic
artifact extraction tools such as bulk extractor.

Acevedo-Aviles et al. make use of a similar method
of network construction in their VizLinc tool. They
leverage several publicly available tools, including the
Stanford Named-Entity-Recognizer (NER), to create a
single automated pipeline from ingestion to analysis
and to draw in other relevant data, such as geographic
information [1]. At a high level, this pipeline approach
resembles Garfinkel’s proposed process for extracting
digital artifacts, but with the addition of an interactive
graphical tool that presents a final unified display. The
authors test their system against a subset of the New

York Times Annotated Corpus [13], but do not perform
a quantitative evaluation of its effectiveness.

In the current work we seek to advance the state of
the art in automated forensic analysis by treating prox-
imate areas of hard drive storage as “documents” and
forensic artifacts (namely email addresses) as “named
entities” allowing us to incorporate existing techniques
for deriving social network information from document
collections.

III. CONSTRUCTING NETWORKS

We begin by extracting email addresses from storage
media using the bulk extractor utility. This produces a
flat file of email addresses and the byte offsets at which
they were found on the drive. We sort this list by byte
offset, then construct a network following an algorithm
very similar to that used by Özgür et al.:

1) Create a new node for each distinct email address.
2) Define a window size, W.
3) Place an edge between all email addresses ei and

e j, where the difference between their correspond-
ing offsets is less than W. That is, |oi−o j|<W .

4) If an edge exists between the email address pair
already, increment its weight by one.

Note that in the case of supported compression types,
bulk extractor performs a recursive unzip. This allows us
to recover many additional email addresses that would
otherwise be unrecognizable in compressed form, but
requires special handling, since there is not a one-to-one
mapping between the offsets of compressed data and the
offsets on the drive. bulk extractor handles this scenario
by representing the byte-offset field as a “forensic path,”
a hyphen-delimited tuple that begins with the offset
of the compressed file itself, followed by the type of
compression detected (for example GZIP), followed by
the offset into the uncompressed version of the file.

In our implementation we handle these complex foren-
sic paths by splitting into a “base” and an “offset,”
where the offset is the final integer representing the
location in the uncompressed file and the base is all
preceding parts of the forensic path. For the majority of
features that were extracted without decompressing data,
the base value is the empty string. The distance between
features with identical bases is calculated by subtracting
offsets, whereas the distance between features with dif-
ferent bases is treated as infinite (i.e. an edge is never
placed between features with different bases, regardless
of the choice of window size). This choice is reason-
able because the transition from decompressed data to
compressed data on a drive usually denotes a change of
context.

IV. DATA SETS

We use two datasets to test our approach: the M57
corpus [14] and a set of drive images we collected



specifically for this project, referred to here as the Friend
Corpus. Following Garfinkel et al. [3], we evaluate the
quality of a test data set for digital forensics research in
terms of access to ground truth, verisimilitude, release
restrictions and scale. Here “verisimilitude” is the quality
of mirroring the nature and complexity of forensic data
encountered by examiners sufficiently to ensure that ex-
perimental results may be generalized to operational cir-
cumstances, and corresponds to the distinction Garfinkel
et al. make between “real” and “realistic” data. Unfor-
tunately, no existing data sets meet our research needs
with respect to all of these categories at once. We rely
primarily on our in-house dataset because knowledge of
ground truth and verisimilitude were high priorities; in
future work, we hope to extend to a larger corpus.

A. M57 Patents Scenario Drives

The M57 corpus is a collection of drives created as
part of the M57 Patent Case Scenario [14]. It is an
artificial data set, in that it was created for educational
purposes by researchers following a scripted scenario.
The scenario was performed by a team of researchers
at the Naval Postgraduate School in 2011. As a result,
ground truth is well-documented, and the data is pub-
licly releasable2. However, despite considerable effort
invested in making this data set realistic, we find it
lacks the complexity of disk images collected from non-
academic users, and the small scale of the data may raise
questions as to the generality of conclusions based on it.

B. Friend Corpus

The Friend Corpus is a set of ten real drive images
collected from seven volunteers as part of an IRB pro-
tocol established for the purposes of this study [7]. The
characteristics of the collected images are summarized in
Table I. The devices imaged included personal laptops
and workstations running both Windows and OSX. The
protocol does not permit release of the data, and the
scale of the study is limited, but we can share properties
about the data. This data set has the advantage of
combining real user data with ground truth acquired by
interviewing the owners of the devices post analysis for
validation. To assemble this collection, we advertised to
staff and students at our university, imaged and analyzed
their machines, then created visualizations of resulting
networks to present to the device owners.

With the exception of d5, which was a small SSD
with limited usage, all drives produced disconnected
graphs containing a large number of connected com-
ponents, and some number of singletons. We generally
discarded singletons, since we lacked an analysis strategy
to incorporate them. Also, due to limited interview time
with the device owners, we focused on only the top

2http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario

twenty components with the highest order. However,
these included the vast majority of the nodes in the
graphs, since the order tended to fall off rapidly. Table II
lists the percentage of each network covered in the top
twenty components.

We manually reviewed the resulting 200 components
and divided them into categories depending on whether
they appeared to contain relevant social network data,
appeared to be irrelevant artifacts of installed software,
or were of unclear origin. We labeled these three cat-
egories of graphs “Useful,” “Not Useful” and “Uncer-
tain,” respectively. We then conducted interviews with
the owners in which we asked them to evaluate and
comment on our interpretation of their networks. This
approach allowed us to perform a detailed verification
of methods developed on the M57 corpus. Based on
our interviews, we identified with high confidence many
clusters of email addresses corresponding to associates
of the drive owner, and were able to examine properties
of these components that aid in the understanding of the
relationships between the associates represented by these
addresses.

ID Operating System Drive Capacity
d1 OSX 320G
d2 Windows 10 100G
d3 OSX 500G
d4 OSX 320G
d5 Windows 8 20G
d6 Windows 8 460G
d7 Windows 7 500G
d8 Ubuntu/BackTrack 200G
d9 Windows 7 Enterprise 400G
d10 Windows 7 Enterprise 150G

TABLE I
DRIVE CAPACITY & OS FOR FRIEND CORPUS.

ID Nodes Edges % Nodes Studied % Edges Studied
d1 55030 68594 30% 77.5%
d2 25101 30472 43.86% 89.99%
d3 105457 172013 25.57% 43.19%
d4 105482 107203 27.1% 69.82%
d5 885 95 8.93% 83.16%
d6 98086 458255 31.16% 80.21%
d7 29727 50323 45.05% 95.03%
d8 42452 43535 35.75% 88.39%
d9 2623 969 23.60% 95.15%
d10 52327 74952 41.28% 88.24%

TABLE II
PERCENTAGE OF NODES AND EDGES IN TOP 20 CONNECTED

COMPONENTS OF FRIEND CORPUS

V. RESULTS

It was clear from our interviews that the graph con-
struction process effectively separates email addresses
involved in user communication from email addresses
present on the drive for other reasons. We found no



Fig. 1. A large component from a drive in the M57 corpus. Note the
heavy weighted lines, which highlight communication between key
players in the scenario.

instances of “mixed” connected components containing
both Useful and Not Useful email addresses. Further,
Useful and Not Useful components could often be
quickly visually identified. As an example, compare a
Useful graph extracted from the M57 corpus, shown in
Figure 1, with a Not Useful graph of Microsoft developer
email addresses shown in Figure 2. The former exhibits
clear hierarchical structure, and a obvious division be-
tween an inner core and a periphery. This structure
illuminates the key players in the scenario: the CEO
Pat McGoo, IT administrator Terry Johnson, and two
patent researchers Jo Smith and Charlie Brown [8]. The
Microsoft graph, in contrast, is relatively uniform, with
no discernible trend behind the heavy-weighted lines.

Fig. 2. Component of Microsoft Developers: This component demon-
strates a network that was placed in the ”Not Useful” bin, but could be
used in future works to conduct fingerprinting. It was found on drives
2, 6, 9, and 10 as the third and/or fourth component. We were able to
label the developers job descriptions by conducting web searches.

Although this observation holds for many Not Useful
components, there were some exceptions. In particu-

lar, components created from Ubuntu software package
repositories tended to demonstrate a hierarchical struc-
ture very similar to communication networks. Figure 3
shows one such network. Inspection of the media reveals
that the primary source of these email addresses is the
“authors” line in documentation for programs packaged
in the Ubuntu repository. Packages with multiple authors
list their names and email addresses in the headers of
the text file documentation. Therefore we hypothesize
that properties of the corresponding networks resem-
ble true social networks because they are, in fact, co-
authorship networks, though this fact is sometimes ob-
scured by language pack extension names that appear
with extremely high frequency and resemble email-
address structure. Further work is needed to understand
how best to automatically differentiate these graphs from
Useful components; however, they are sufficiently rare
that recognizing the “ubuntu” domain might be sufficient
as a practical solution.

Fig. 3. Component created from a USB memory stick that contains
a bootable copy of Ubuntu 8.10 Linux [12]. Although we labeled
this component “Not Useful,” its obvious correlation with the Ubuntu
operating system suggests it could be used to fingerprint the installed
OS.

One other important edge case in which possession
of social-network properties did not exactly correspond
to the Useful and Not Useful categories occurred in
what we termed “logon” networks. Figure 4 shows an
example of this type of component. The origin of these
networks was difficult to decipher due to absence of
relevant metadata on the drives, but they appeared to
be generated from web cache files. In addition, they
differed from other components in that most or all of the
nodes corresponded to email addresses that represented
the same physical person—usually the drive’s primary
user. These networks tended to be small, fully collected
or nearly fully connected, and to exhibit many heavily
weighted edges. Clearly, though they do not provide



the kind of rich relationship information contained in a
social network graph, they do have considerable value in
a forensic investigation, so we have provisionally labeled
them as Useful. In the future, their existence may justify
the inclusion of an additional category label.

Fig. 4. The network of logon aliases for one user’s drive

We were at first skeptical that the outcome of our
analysis on the M57 drives would remain equally effec-
tive when run against real data, but all work so far has
confirmed the validity of our approach even in the face
of increased complexity. Figure 5 provides a particularly
clear example. In addition, note that community de-
tection naturally and correctly partitions the individuals
social groups in this graph.

Fig. 5. Social network constructed from a drive in the Friend Corpus

A yet more dramatic example of the effectiveness of
community detection methods can be seen in Figure 6.
This storage device belonged to a user who was also the
administrator for a web-server running on the device.
Therefore, the owner had email addresses and connec-
tions that belonged to personnel who did not access his

machine directly. The server was set up to send copies of
emails to the administrator’s in-box, when that specific
email account had turned on its “away messages.” The
business was using Dovecot to run their email server
and SquirrelMail to access their in-boxes. (Dovecot is an
open source POP3 email server for Linux systems.) Here
we see a large and complex component representing
email addresses from many different users. However,
community detection divides this network into a number
of partitions equal to the number of user accounts on the
system.

Fig. 6. The drive network of a user who was the administrator for a
web-server, colored by community.

Classic measures of centrality were also effective in
identifying important nodes and relationship in extracted
Useful graphs. Table III shows a relatively close cor-
respondence between three centrality measures, all of
which also agree with ground truth obtained by inter-
viewing the drive owner.

Ranked by Eigenvector Ranked by Betweenness Ranked by Closeness
Drive Owner Drive Owner Drive Owner
Father Father Father
Classmate A Drive Owner Alt Email 2 Drive Owner Alt Email 2
Classmate B Unknown Email Address 1 Drive Owner Alt Email 3
Drive Owner Alt Email 1 Classmate Q Coworker different depts
Classmate C Classmate K Classmate A
Classmate D Department Store Drive Owner Alt Email 1
Classmate E Classmate A Unknown Email Address 2
Classmate F Unknown Email Address 2 Schoolmate not in same class
Classmate G Classmate D Classmate J
Classmate H Aunt Classmate Q
Classmate I Drive Owner Alt Email 3 Classmate B
Classmate J Classmate L Classmate P
Classmate K Cousin Classmate D
Classmate L Classmate P Unknown Email Address 1
Drive Owner Alt Email 2 Coworker same dept 1 Department Store
Classmate M Classmate B Spouse
Classmate N Classmate M Classmate E
Classmate O Classmate E Coworker same dept
Classmate P Unknown Email Address 3 Unknown Email Address 3

TABLE III
VARIATIONS AND SIMILARITIES BETWEEN RANKINGS OF MOST

IMPORTANT NODES BY THREE CENTRALITY METRICS.

A summary of metrics that we collected on major
networks components is detailed in Table IV. For each,
we record node count, edge count, modularity, average



Component Average Avg. Weighted Avg. Clustering Avg. Path
ID Nodes Edges Degree Degree Diameter Density Modularity Coefficient Length
d1c2 50 650 26.00 166.52 2 0.53% .496% .59% 1.47
d2c2 10 43 8.60 23.00 2 0.96% .08% .95% 1.04
d3c1 37 532 28.76 2189.78 2 .80% .05% .83% 1.20
d3c17 39 3 3.13 3.13 24 8.20% 69.90 % 54.30% 8.94
d4c2 20 159 15.9 254.30 2 0.001% .21% .84% 1.16
d4c4 77 267 6.94 19.80 6 .091% .643% .44% 3.03
d4c7 123 2 2.72 5.43 37 2.20% 84.20% 57.70% 12.87
d5c1 10 4 4.80 8.00 4 53.30% 17.20% 72.20% 1.69
d5c5 6 1 4.67 3.00 2 33.30% 0.00% 0.00% 1.67
d5c6 5 1 1.60 6.80 2 0.40% 0.00% 0.00% 1.60
d5c7 4 1 1.50 1.50 2 0.50% 0.00% 0.00% 1.50
d5c9 3 1 1.33 2.00 2 0.67% 0.00% 0.00% 1.33
d5c14 3 2 2.00 4.00 1 100% 0.00% 100% 1.00
d5c17 2 1 1.00 4.00 1 100% 0.00% N/A 1.00
d5c20 2 1 1.00 4.00 1 100% 0.00% N/A 1.00
d7c1 6 15 5 14.33 1 1% 0% 1% 1
d7c2 9 3 4.67 4.67 3 58.30% 20.40% 76.30% 1.50
d8c2 56 205 7.321 87.429 7 .13% .484% .70% 3.49
d9c1 1240 13353 21.537 412.839 5 .02% .82% 39% 2.96
d9c4 54 149 5.52 11.19 10 .10% .69% .65% 3.57
d9c11 30 3 2.55 12.36 11 12.10% 47.40% 22.40% 4.60
d10c1 33 447 27.09 3215.21 2 .85% .25% .85% 1.15

TABLE IV
METRICS COLLECTED FROM SOCIAL NETWORKS DISCOVERED ON DISK IMAGES AFTER FILTERING TO THE NETWORK CORE, FOR ALL

COMPONENTS CONTAINING MORE THAN 200 NODES.

weight, eccentricity, and closeness scores, as well as
which type of centrality best displayed the drive owner’s
closer associates (the two metrics tested were Eigen-
vector and Betweenness centrality). Our early findings
suggest that future research into using these metrics to
automatically classify components is promising.

VI. CONCLUSIONS AND FURTHER DIRECTIONS

We developed a novel method of creating networks to
analyze forensic artifacts using network science tools,
having the potential to reduce analyst workload. In
addition, we perform a preliminary analysis of the
properties of our two types of components (those that
are not related to social network information and those
that are). We used network science tools to screen the
graphs, and then to differentiate between the nodes. Our
interpretation of the metrics on the resulting graphs were
then validated with the drive owners.

In support of the above work, we also created a test
set of drives for which ground truth was determined by
interviews with the owners. We tagged these networks
based on whether or not the networks demonstrated
social networks or if the results were unclear. Networks
that were tagged as not containing social network infor-
mation can be used by those interested in future work to
identify and remove networks that do not display social
networks. Additionally, networks tagged as interesting
can be used by those who would like to prototype
algorithms for identifying social network networks or
identifying networks that do not display properties of
social network networks.
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