
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2018-01

Optimal Motion Planning for Differentially Flat
Systems Using Bernstein Approximation

Cichella, V.; Kaminer, I.; Walton, C.; Hovakimyan, N.
IEEE

Cichella, V., Kaminer, I., Walton, C., and Hovakimyan, N., "Optimal Motion Planning
for Differentially Flat Systems Using Bernstein Approximation," IEEE Control
Systems Letters, January 2018, pp. 181-186 Online ISSN: 2475-1456,
doi:https://doi.org/10.1109/LCSYS.2017.2778313 .
http://hdl.handle.net/10945/62678

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



IEEE CONTROL SYSTEMS LETTERS, VOL. 2, NO. 1, JANUARY 2018 181

Optimal Motion Planning for Differentially Flat
Systems Using Bernstein Approximation

Venanzio Cichella , Isaac Kaminer, Claire Walton , and Naira Hovakimyan

Abstract—This letter presents a computational frame-
work to efficiently generate feasible and optimal trajec-
tories for differentially flat autonomous vehicle systems.
We formulate the optimal motion planning problem as
a continuous-time optimal control problem, and approx-
imate it by a discrete-time formulation using Bernstein
polynomials. These polynomials allow for efficient com-
putation of various constraints along the entire trajectory,
and are particularly convenient for generating trajectories
for safe operation of multiple vehicles in complex envi-
ronments. The advantages of the proposed method are
investigated through theoretical analysis and numerical
examples.

Index Terms—Optimal motion planning, autonomous
vehicles, Bézier curves, Bernstein polynomial, discrete
approximation.

I. INTRODUCTION

MOTION planning is a challenging problem in operation
of autonomous vehicles engaged in complex missions.

The past few decades have produced a vast number of meth-
ods, including potential field methods, roadmap path planners,
cell decomposition methods, and optimal control based motion
planning (see [1] and references therein). Motion planning
based on optimal control problem formulation is particularly
suitable for applications that require the trajectory to minimize
(or maximize) some cost function while satisfying a complex
set of vehicle and problem constraints.

In general, finding a closed-form solution to a nonlinear
constrained optimal control problem is hard. Direct meth-
ods can be used to approximate optimal control problems to
simpler problems, which are easier to solve [2]–[5]. Direct
methods based on discretization, for example, approximate
the states of the dynamic system, or its inputs or both, thus
reducing the original problem into a nonlinear programming
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problem (NLP) [5], which can then be solved by nonlin-
ear optimization solvers. An important role in the literature
on direct methods based on discretization is played by the
work of Polak on consistency of approximation theory (see
[6, Sec. 3.3]). Borrowing tools from variational analysis,
Polak provides a theoretical framework to assess the conver-
gence properties of discretization schemes for optimal control
problems. Motivated by the consistency of approximation
theory, a wide range of methods that use different discretiza-
tion schemes have been developed. Few examples include
Euler [6], Runge-Kutta [7], Pseudospectral [8] methods, as
well as the method presented in this letter.

When solving constrained optimal control problems using
discretization methods, the constraints can be enforced only
at the discretization nodes, and not in between the nodes.
As pointed out in [9] and [10], this implies a major draw-
back in applications such as motion planning, where both
satisfaction of constraints along the trajectories and real-time
execution of the algorithms could be essential. Depending on
the complexity of the problem (vehicles’ dynamics, number
of vehicles and obstacles, etc.) low order of approximations
(number of discretization nodes) might be required in order
to enable real-time computation of trajectories. However, this
could potentially result in generation of trajectories that are
neither feasible nor safe [11]. On the other hand, to avoid
violation of the constraints, the order of approximation can be
increased, leading to higher dimensional NLPs, which become
computationally expensive and inefficient for real-time appli-
cations. Additionally, discretization methods also suffer from
spatial and temporal scalability issues.

This letter proposes a discretization method that uses Bézier
curves as a special tool to overcome the above issues. In par-
ticular, we present a direct method based on Bernstein approx-
imation of the trajectories. Bernstein approximants and Bézier
curves have several important features. First, Bernstein basis
possesses optimal numerical stability properties [12], [13],
and can handle large order of approximations without suf-
fering from numerical instability issues. Second, Bernstein
approximants converge uniformly to the functions that they
approximate – and so do their derivatives [14]. This is useful
for proving convergence properties of the proposed method.
Third, due to their geometric properties, Bézier curves afford
computationally efficient algorithms for the computation of
constraints such as minimum and maximum velocity, accel-
eration, minimum distance between paths, etc., for the entire

2475-1456 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1876-9526
https://orcid.org/0000-0001-7442-1885
https://orcid.org/0000-0003-3850-1073


182 IEEE CONTROL SYSTEMS LETTERS, VOL. 2, NO. 1, JANUARY 2018

trajectory, and not only at the discretization points [15]. Hence,
the trajectories can be guaranteed to be dynamically feasible
and collision-free for all times.

As we will point out later, Bernstein approximation con-
verges slower than other interpolation or approximation tech-
niques. This implies that the approach proposed in this letter
is outperformed by, for example, pseudospectral methods in
terms of accuracy of the approximation of the optimal solution.
This is not surprising, since the choice of nodes and interpo-
lating polynomials in pseudospectral methods is dictated by
approximation accuracy and convergence speed, while sacri-
ficing constraints satisfaction in between the nodes. On the
other hand, the approach in this letter prioritizes safety and
constraint satisfaction, at the expense of a slower convergence
rate.

A growing number of papers exploit the properties of
Bézier curves for motion planning (e.g., [11], [16], and [17]).
Using the notion of consistency of approximation intro-
duced by Polak [6], this letter provides a theoretical foun-
dation for the use of Bézier curves in optimal motion
planning. Similar consistency results have been demonstrated
for various discretization schemes, including pseudospectral
methods [18], [19]. However, these results are limited to col-
location methods [20]. The contribution of this letter is
an extension of these results to a class of non-collocation
methods.

Finally, this letter is focused on differentially flat sys-
tems [21]. This class of systems is particularly suited for
motion planning, since the trajectory can be planned in (flat)
output space, and the states and inputs can be computed
through algebraic mappings. Thus, the optimal motion plan-
ning problem reduces to a simpler calculus of variations
problem. Moreover, the majority of vehicle systems of our
interest have been shown to be differentially flat [22], [23],
making this approach applicable to a wide range of
applications.

This letter is structured as follows: in Section II we present
the notation and mathematical results which will be used later
in this letter. Section III introduces the problem of optimal
motion planning for differentially flat systems. Section IV
presents the NLP based on Bernstein polynomials, and demon-
strates consistency results for the proposed method. Numerical
examples are discussed in Section V. This letter ends with
conclusions in Section VI.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

In what follows, vectors are denoted by bold letters, e.g.,
x = [x1, . . . , xn]. The symbol Cr denotes the space of func-
tions with r continuous derivatives, while Cr

n denotes the space
of n-vector valued functions in Cr. Finally, ‖ · ‖ denotes the

Euclidean norm, i.e., ‖x‖ =
√

x2
1 + · · · + x2

n.
Let f N : [0, tf ] → R

n denote a vector of Nth order Bézier
curves defined as

f N(t) =
N∑

j=0

cjbj,N(t) , (1)

where cj, j = 0, . . . , N, are control points, and bj,N(t) =(
N
j

)
tj(tf −t)N−j

tNf
is the generalized Bernstein polynomial basis

of degree N, with

(
N
j

)
= N!

j!(N−j)! . The rth derivative of f N(t)

can be easily computed as follows

f (r)
N (t) =

N∑
j=0

(
N∑

i=0

ciD
r
ij

)
bj,N(t) , (2)

where Dr
ij denotes the ij element of the matrix D ∈

R
(N+1)×(N+1) elevated to the rth power, and D is a constant

square differentiation matrix, which can be easily computed
using the degree elevation and derivative of Bézier curve
properties [24, Ch. 5].

Bézier curves and Bernstein polynomial basis can be used
to approximate smooth functions.

Definition 1 (Bernstein Approximation): Consider a n-
vector valued function f : [0, tf ] → R

n. The Nth order
Bernstein approximation of f (t) is a Bézier curve f N(t) com-
puted as in (1) with cj = f (tj), tj = j

tf
N , for all j =

0, . . . , N, i.e.,

f N(t) =
N∑

j=0

f
(

j
tf
N

)
bj,N(t) . (3)

The following result is true for Bernstein approximations.
Lemma 1 (Uniform Convergence): Assume f (t) ∈ Cr+2

n ,
r ≥ 0, and let f N(t) be the Bernstein approximation of f (t).
Then, the following inequalities hold:

∥∥f N(t) − f (t)
∥∥ ≤ C0

N
...∥∥∥f (r)

N (t) − f (r)(t)
∥∥∥ ≤ Cr

N
,

for all t ∈ [0, tf ], where C0, . . . , Cr are independent of N.
Proof: The proof of Lemma 1 is a trivial extension of the

proof given in [14, Sec. 3] for f : [0, 1] → R.
To approximate the integral of functions, the following

quadrature approximation can be used:

∫ tf

0
f (t)dt ≈

N∑
j=0

wf
(
tj
)
, w = tf

N + 1
, (4)

with tj = j
tf
N , for all j = 0, . . . , N.

Lemma 2 (Quadrature Approximation): Assume f (t) ∈ C2
n .

Then, the following inequality holds:
∥∥∥∥∥∥

∫ tf

0
f (t)dt −

N∑
j=0

wf
(
tj
)
∥∥∥∥∥∥

≤ C

N
, (5)

where C is independent of N.
Proof: The right-hand side of Equation (4) is equal to the

integral
∫ tf

0 f N(t)dt, with f N(t) computed as in Equation (3)
(see [24, Ch. 5]). Then, Lemma 2 follows easily by applying
Lemma 1 to the left-hand side of Equation (5).
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Finally, the minimum distance between two Bézier curves
can be efficiently computed by exploiting the convex hull prop-
erty of Bézier curves and the de Casteljau algorithm [24], in
combination with the Gilbert-Johnson-Keerthi (GJK) distance
algorithm [25]. The latter is widely used in computer graphics
and video games to compute the minimum distance between
convex shapes. The same properties and algorithms can also be
employed to compute the extrema (maximum and minimum)
of a Bézier curve. We refer the reader to [15], where an effi-
cient implementation of the minimum distance algorithm is
presented.

III. PROBLEM FORMULATION

The problem of optimal control for differentially flat sys-
tems can be formulated as follows.

Problem 1 (Problem POC): Determine x(t) : [0, tf ] → R
nx

and u(t) : [0, tf ] → R
nu (and possibly tf ) that minimizes

Ĩ(x(t), u(t)) = Ẽ
(
x(0), x(tf )

)+
∫ tf

0
F̃(x(t), u(t))dt , (6)

subject to

x′(t) = f (x(t), u(t)) , ∀t ∈ [0, tf ] (7)

ẽ
(
x(0), x(tf )

) = 0 , (8)

h̃(x(t), u(t)) ≤ 0 , ∀t ∈ [0, tf ] , (9)

where Ẽ : R
nx ×R

nx → R, F̃ : R
nx ×R

nu → R, f : R
nx ×R

nu →
R

nx , ẽ : R
nx × R

nx → R
ne , and h̃ : R

nx × R
nu → R

nh .
The system given by Equation (7) is differentially flat by

assumption. Thus, there exists a flat output y : [0, tf ] → R
ny ,

y(t) = ϕ
(

x(t), u(t), u′(t), . . . , u(s)(t)
)

,

such that

x(t) = ϕ1

(
y(t), y′(t), . . . , y(r−1)(t)

)
,

u(t) = ϕ2

(
y(t), y′(t), . . . , y(r)(t)

)
, (10)

see [21]. It follows that the optimal control problem, Problem
POC, can be transcribed as a calculus of variations problem,
here referred to as Problem PCV. Letting

z(t) =
[
y(t)�, y′(t)�, . . . , y(r)(t)�

]� ∈ R
(r+1)ny , (11)

Problem PCV can be stated as follows:
Problem 2 (Problem PCV): Determine y(t) (and possibly tf )

that minimizes

I(y(t)) = E
(
z(0), z(tf )

)+
∫ tf

0
F(z(t))dt , (12)

subject to

e
(
z(0), z(tf )

) = 0 , (13)

h(z(t)) ≤ 0 , ∀t ∈ [0, tf ] , (14)

where E(z(0), z(tf )), F(z(t)), e(z(0), z(tf )), and h(z(t))
are obtained by expressing the functions Ẽ(x(0), x(tf )),
F̃(x(t), u(t)), ẽ(x(0), x(tf )), and h̃(x(t), u(t)) in terms of the
flat output using the maps ϕ1(·) and ϕ2(·) introduced in
Equation (10).

Imposed onto the above problem are the following set of
assumptions.

Assumption 1: E, F, e, and h are Lipschitz continuous with
respect to their arguments; F ∈ C2.

Assumption 2: An optimal solution y∗(t) to Problem PCV

exists and satisfies y∗(t) ∈ Cr+2
ny

.

IV. BERNSTEIN APPROXIMATION

Let 0 = t0 < t1 < · · · < tN = tf be a set of equidistant time
nodes, i.e., tj = j

tf
N . Consider the following Nth order Bézier

curve:

yN(t) =
N∑

j=0

cjbj,N(t) , (15)

with derivatives y′
N(t), . . . , y(r)

N (t) computed as in Equation (2).
Define zN(t) = [yN(t)�, . . . , y(r)

N (t)�]� , and c = [c0, . . . , cN].
Then, Problem PCV can be approximated as follows.

Problem 3 (Problem PCV
N ): Let 0 < δP < 1. Determine c

(and possibly tf ) that minimizes

IN(c) = E(zN(0), zN(tN)) + w
N∑

j=0

F
(
zN(tj)

)
, (16)

subject to

‖e(zN(0), zN(tN))‖ ≤ N−δP , (17)

h
(
zN(tj)

) ≤ N−δP 1 , ∀j = 0, . . . , N , (18)

where w is defined in Equation (4).
The outcome of Problem PCV

N is a set of optimal control
points c∗ = [c∗

0, . . . , c∗
N], which determine the trajectories

(Bézier curves)

y∗
N(t) =

N∑
j=0

c∗
j bj,N(t) . (19)

In the remainder of this section we address the following
theoretical concerns:

1) the existence of a feasible solution to Problem PCV
N ,

2) the convergence of y∗
N(t) to the optimal solution of

Problem PCV, y∗(t).
The following analysis assumes that the final time in the orig-
inal optimal control problem is fixed; however, the results can
be easily extended to the case where tf is a decision variable.
The main results of this letter are summarized in Theorems 1
and 2 below.

Theorem 1: There exists N1 such that for any order of
approximation N ≥ N1 Problem PCV

N is feasible.
Proof: To prove Theorem 1 it suffices to show that there

exists c = [c0, . . . , cN] that satisfies the constraints of Problem
PCV

N , namely Equations (17) and (18). Let y(t) ∈ Cr+2
ny

be a
feasible solution to Problem PCV, which exists by assumption,
and define cj = y(tj), tj = j

tf
N , j = 0, . . . , N. Then, let

yN(t) =
N∑

j=0

cjbj,N(t) .
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From Lemma 1 and Assumption 2 it follows that

‖zN(t) − z(t)‖ ≤ C

N
,

where z(t) = [y(t)�, . . . , y(r)(t)�]�, and zN(t) =
[yN(t)�, . . . , y(r)

N (t)�]�, for some C independent of N. Now
consider the inequality constraint given by (18). We have

h
(
zN(tj)

) ≤ h
(
z(tj)

)+ ∥∥h
(
zN(tj)

)− h
(
z(tj)

)∥∥ ≤ Lh
C

N
,

where Lh is the Lipschitz constant of h(·) (see Assumption 1).
Thus, using the properties of exponential growth, there exists
N1 such that for all N ≥ N1 the inequality in (18) holds.
Following a similar argument it can be shown that the equality
constraint given by Equation (17) is also satisfied, thus proving
Theorem 1.

Theorem 2: Assume that y∗
N(t) has a uniform accumulation

point, i.e., there exists an infinite subset of indices V ⊂ N

such that

lim
N∈V

y∗
N(t) = y∞(t),

and assume y∞(t) ∈ Cr+2
ny

. Then, y∞(t) is an optimal solution
to Problem PCV.

Proof: This proof is divided into three steps: (1) we show
that y∞(t) is a feasible solution to Problem PCV ; (2) we prove
that

lim
N∈V

IN(c∗) = I(y∞(t)) ; (20)

(3) finally, we show that I(y∞(t)) = I(y∗(t)).
Step (1): We need to show that y∞(t) satisfies the con-

straints of Problem PCV , namely Equations (13) and (14). We
start by demonstrating that Equation (14) holds, and we do
so in a proof by contradiction. Assume that y∞(t) does not
satisfy (14). Then, there exists t′ ∈ [0, tf ] such that

h
(
z∞(t′)

)
> 0 . (21)

Since the nodes {tk}N
k=0 are dense in [0, tf ], for any infinite set

V there exists a sequence of indices {kN}N∈V such that

lim
N∈V

∥∥z∗
N(t′) − z∗

N

(
tkN

)∥∥ = 0 .

Then, we have

h
(
z∞(t′)

) ≤ lim
N∈V

∥∥h
(
z∗

N(t′)
)− h

(
z∗

N

(
tkN

))∥∥
+ lim

N∈V
h
(
z∗

N

(
tkN

))

≤ lim
N∈V

Lh
∥∥z∗

N(t′) − z∗
N

(
tkN

)∥∥+ lim
N∈V

N−δP = 0 ,

where we used the fact that z∗
N(tkN ) satisfies the constraints

in (18), and h(·) is Lipschitz. This contradicts (21), and in
doing so proves that y∞(t) satisfies the inequality constraint
in (14). By using an identical argument it can be shown that
y∞(t) satisfies also the equality constraint in (13).

Step (2): We need to show that the following equalities hold

E
(
z∞(0), z∞(tf )

) = lim
N∈V

E
(
z∗

N(0), z∗
N(tN)

)
,

∫ tf

0
F
(
z∞(t)

)
dt = lim

N∈V
w

N∑
j=0

F
(
z∗

N(tj)
)
.

The first relationship above follows easily from z∞(0) =
limN∈V z∗

N(0) and z∞(tf ) = limN∈V z∗
N(tN). To prove the

second equality, we notice that from Lemma 2 we have

∫ tf

0
F
(
z∞(t)

)
dt = lim

N∈V
w

N∑
j=0

F
(
z∞(tj)

)
,

which combined with the following result

lim
N∈V

w
N∑

j=0

F
(
z∞(tj)

) = lim
N∈V

w
N∑

j=0

F
(
z∗

N(tj)
)
,

proves Equation (20).
Step (3): Finally, we need to demonstrate that I(y∞(t)) =

I(y∗(t)) . First, define

ỹN(t) =
N∑

j=0

c̃jbj,N(t) ,

with c̃j = y∗(tj), j = 0, . . . , N, tj = j
tf
N . Similarly to the proof

of Theorem 1, one can show that c̃ is a feasible solution of
Problem PCV

N . Furthermore, Lemma 2 and an argument similar
to the one presented in Step (2) of this proof yield

I
(
y∗(t)

) = lim
N∈V

IN(c̃) . (22)

Recall that c∗ is an optimal solution of Problem PCV
N . Then,

we can write

I
(
y∗(t)

) ≤ I
(
y∞(t)

) = lim
N∈V

IN(c∗) ≤ lim
N∈V

IN(c̃) .

The combination of the above expression with Equation (22)
completes the proof of Theorem 2.

Remark 1: By virtue of the differential flatness property of
the systems under consideration, Problem PCV is equivalent to
Problem POC. Therefore, Theorem 2 proves the convergence of
the approximate solutions to optimal solutions of the original
control problem, Problem POC.

Remark 2: This letter focuses on Bernstein approxima-
tion of the trajectories. However, the results reported in
Theorems 1 and 2 and their proofs apply to any approximation
or interpolation method that satisfies Lemmas 1 and 2.

V. IMPLEMENTATION AND NUMERICAL RESULTS

This section describes the benefits of the proposed approach
through a simulation example. The results are obtained using
MATLAB’s built in fmincon function. The motion of the
vehicle is governed by the following differential equations

⎧
⎨
⎩

ẋ1(t) = V(t) cos(x3(t))
ẋ2(t) = V(t) sin(x3(t))
ẋ3(t) = ω(t) ,

(23)

with input u(t) = [V(t) , ω(t)]�, and flat output y(t) =
[x1(t) , x2(t)]�. The vehicles is subject to input constraints
V2

min ≤ V2(t) ≤ V2
max and −ωmax ≤ ω(t) ≤ ωmax. Additional

constraints must be imposed to avoid collisions with two static
obstacles positioned at poi

, i = 1, 2. The objective at hand is
to generate a trajectory that, starting from a given initial posi-
tion y0, arrives at the desired final destination yf , satisfies the
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Fig. 1. Motion planning for 1 vehicle: trajectories (solid lines), con-
trol points (diamonds), and obstacles (red circles). Each plot depicts
a mission with different initial positions and number of nodes: y(0) =
[100, 60]�, N = 5 (top-left); y(0) = [−800, 60]�, N = 5 (top-right); y(0)
= [−1500, 60]�, N = 5 (bottom-left); y(0) = [−1500, 60]�, N = 50
(bottom-right).

above constraints, while minimizing the time of arrival. The
Bernstein approximation of the flat output y(t) is defined as

yN(t) =
N∑

j=0

cjbj,N(t) = [
x1N (t) , x2N (t)

]�
. (24)

The above problem is transcribed as follows: find c =
[c0, . . . , cN] and tf that minimize J = ∫ tf

0 dt subject to

V2
min ≤ ẋ2

1N
(t) + ẋ2

2N
(t) ≤ V2

max , (25)

−ωmax ≤ ẋ1N (t)ẍ2N (t) − ẍ1N (t)ẋ2N (t)

ẋ2
1N

(t) + ẋ2
2N

(t)
≤ ωmax , (26)

∥∥yN(t) − poi

∥∥ ≥ E , ∀t ∈ [0, tf ] , (27)

yN(0) = y0, yN(tf ) = yf . (28)

It can be verified that the expression for the square of the
speed in Equation (25) is a Bézier curve, and the angular rate
in Equation (26) is a rational Bézier curve [24]. The proper-
ties of Bézier curves given in Section II carry over rational
Bézier curves [26]. Thus, the continuous-time expressions in
Equations (25), (26), and (27) can be computed by means of
the minimum distance algorithm, and the above problem can
be solved as a finite dimensional problem. Finally, the con-
straints in Equation (28) can be enforced directly on the first
and last control points, since c0 = yN(0) and cN = yN(tf )
(end-point values property of Bézier curves [24]).

Figure 1 illustrates the results of the proposed approach with
Vmin = 15m/s, Vmax = 32m/s, ωmax = 0.3rad/s, E = 50m,
and yf = [1200 , 0]� and for three different initial positions.
The objective is to demonstrate that the collision avoidance
constraints, for example, are satisfied independently of the
length of the trajectory, for fixed (small) order of approxima-
tion, N = 5. If a more accurate approximation to the optimal
solution is required, the number of nodes can be increased (see
bottom-left and right plots in Figure 1). This is one aspect
of the present approach that differs from other discretiza-
tion methods, such as pseudospectral methods. When using

Fig. 2. Motion planning for 5 vehicles. Temporal Separation.

pseudospectral methods, collision avoidance can be guaran-
teed only at the collocation points. As the length of the path
increases, for example, the order of approximation must grow
to guarantee separation with the obstacles.

In the next scenario, the same time-optimal motion plan-
ning problem for one vehicle depicted in the top-left plot
of Figure 1 is augmented with four additional vehicles.
Each vehicle is required to satisfy the constraints given by
Equations (25), (26), and (27), plus temporal separation
between each pair of trajectories for inter-vehicle safety, i.e.,

∥∥yiN (t) − yjN (t)
∥∥ ≥ E , (29)

∀i, j = 1, . . . , 5, i �= j ∀t ∈ [0, tf ], where yiN (t) is the
Bernstein approximant of the flat output of vehicle i com-
puted as in Equation (24). Similarly to the previous example,
the above constraints can be efficiently computed using the
minimum distance algorithm, and inter-vehicle safety can be
guaranteed for the entire trajectories for any order of approx-
imation. Figure 2 depicts the results of the proposed method
with N = 5. Temporal separation between each trajectory can
be inferred in Figure 2a. Figure 2b and 2c depict the speed
and angular rates, respectively, which remain within the lower
and upper limits. The optimal time of arrival is tf ≈ 55.01s.

The advantages of the proposed method become even more
evident when spatial separation constraints, i.e.,

∥∥yiN (ti) − yjN (tj)
∥∥ ≥ E , (30)
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Fig. 3. Motion planning for 5 vehicles. Spatial separation.

∀i, j = 1, . . . , 5, i �= j ∀ti, tj ∈ [0, tf ], must be enforced
instead of temporal separation. Notice that with the above
constraints, the trajectories are required to be separated by
E for all times and cannot intersect. If one had to enforce (30)
using pseudospectral methods, separation should be enforced
between each node of each trajectory, resulting in 10N2 spatial
separation constraints. It is clear that an increase of the number
of nodes for safety could jeopardize the computational appeal
of the method. On the other hand, when using the method
proposed in this letter, not only spatial separation can be guar-
anteed with low orders of approximation, but also, to obtain
more accurate approximations, the order of approximation can
be scaled up without drastically increasing the complexity of
the NLP, i.e., the number of constraints is independent of N.
Figure 3 depicts the results obtained by enforcing the spatial
separation constraints instead of the less conservative temporal
separation constraints. In Figure 3a the order of approximation
is set to N = 5, while N = 40 in Figure 3b. The optimal time
of arrivals are tf ≈ 55.62s and tf ≈ 53.73s, respectively.

VI. CONCLUSION

This letter proposed a numerical method to generate feasible
and safe trajectories for differentially flat autonomous vehicle
systems. The method is based on direct approximation of a
continuous-time optimal control problem by a discrete-time
formulation using Bernstein polynomials. These polynomials
have favorable geometric properties which allow to efficiently
compute the minimum distance between curves along the
entire trajectory. Thus, the proposed approach is particu-
larly convenient for generating trajectories for safe operation
of multiple autonomous vehicles in complex environments.
A rigorous analysis is provided that shows convergence of
the discrete solution to the solution of the continuous-time
problem. The benefits of the proposed method are discussed
through numerical examples.
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