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Abstract11

The high-order numerical solution of the non-linear shallow water equations is sus-12

ceptible to Gibbs oscillations in the proximity of strong gradients. In this paper,13

we tackle this issue by presenting a shock capturing model based on the numerical14

residual of the solution. Via numerical tests, we demonstrate that the model removes15

the spurious oscillations in the proximity of strong wave fronts while preserving their16

strength. Furthermore, for coarse grids, it prevents energy from building up at small17

wave-numbers. The model has no tunable parameter and, if applied to the continuity18

equation to stabilize the water surface, the addition of the shock capturing scheme19

does not a�ect mass conservation. We found that our model improves the continuous20

and discontinuous Galerkin solutions alike in the proximity of sharp fronts propagat-21

ing on wet surfaces. In the presence of wet/dry interfaces, however, the model needs22

to be enhanced with the addition of an inundation scheme. In this paper, we simply23

rely on the presence of a relatively small layer of water in the regions that should be24

dry.25
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1. Introduction26

The shallow water equations (SW) [16] are a common (d≠1) approximation to the27

d–dimensional Navier-Stokes equations to model incompressible, free surface flows.28

Due to the ability of high-order Galerkin methods to keep dissipation and dispersion29

errors low [5] and their flexibility with arbitrary geometries and hp-adaptivity, these30

methods are proving their mettle for solving the shallow water equations in the31

modeling of non-linear waves in di�erent geophysical flows [46, 33, 59, 23, 24, 15, 42,32

51, 26, 65, 34, 18, 37, 38, 47, 62, 22, 31, 32, 44, 14]. One important property that33

high-order Galerkin methods o�er and that makes them attractive over their low-34

order counterparts is given by their natural strong scaling properties on massively35

parallel computers [50, 3, 20]. Nevertheless, the high-order solution of non-linear36

wave problems via high-order methods is susceptible to unphysical Gibbs oscillations37

that form in the proximity of strong gradients such as propagating bores. Filters38

such as Vandeven’s and Boyd’s [63, 9] and di�erent types of artificial viscosities are39

the most common tools to handle this problem for continuous and discontinuous40

Galerkin (CG/DG). However, filtering may not be su�cient as the flow strengthens41

and the wave sharpness intensifies; for this reason, previous studies have stabilized the42

Galerkin solution to the shallow water equations in a variety of ways. For example,43

the Lilly-Smagorinsky eddy viscosity model [45, 56] was utilized in [54] and [55] to44

preserve numerical stability without compromising the overall quality of the solution.45

To account for sub-grid scale e�ects, artificial viscosity was utilized in the DG model46

described in [28] to improve their inviscid simulations. Recently, in [53] the high-47

order spectral element solution of the one-dimensional shallow water equations was48

stabilized via the entropy viscosity method. Artificial viscosity, limiters, and filters49

for the (modal) DG solution of SW were recently compared in [49], concluding that50
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a dynamically adaptive viscosity may be the most e�ective means of regularization51

at higher orders.52

Building on some of the insights from the authors above and on the findings of53

some authors of this paper to solve non-linear hyperbolic equations in the context of54

atmospheric modeling [48, §5], we propose a parameter-free shock capturing scheme55

to detect the presence of spurious modes in the proximity of strong gradients. The56

model that we propose –we will often refer to it as Dyn≠SGS to indicate its dynamic57

sub≠grid scale nature– was first defined in [52] for the linear finite element solution58

of compressible flows with shock waves. It was recently applied to stabilize high-order59

Galerkin methods in the context of stratified, low Mach number atmospheric flows60

by some of the authors in [48]. Similar to large eddy simulation (LES), Dyn≠SGS is61

based on the idea of scale splitting, where the flow scales are split into resolvable and62

unresolvable for a given computational grid. The unresolved scales are parameterized63

via the subgrid scale (SGS) model at hand (Dyn ≠ SGS, in this case). It must be64

borne in mind throughout the manuscript that Dyn≠SGS, unlike the sub-grid scale65

models designed for LES that are built from physical reasoning, is merely a numerical66

tool meant to remove the spurious oscillations from the solution of nonlinear wave67

equations and does not have, a priori, a physical meaning. Among its characteristics,68

being parameter-free and dynamically adaptive as a function of the solution residuals69

are possibly the most attractive ones. Furthermore, this model is independent of the70

underlying numerical approximation, which makes it naturally applicable to CG and71

DG alike, as well as to finite elements, finite volumes, and finite di�erences.72

2. Governing equations73

Let � œRd be a fixed domain of space dimension d with boundary � and Cartesian74

coordinates x = [x] in 1D and x = [x,y] in 2D; in both cases, we will use z to identify75
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the direction of gravity which is orthogonal to x and points downward. Let t œ R+76

identify time. Given � and t we define the velocity vector u(t,x) whose one- and77

two-dimensional components are, respectively, [u] and [u,v]. We also define the78

total water surface H(t,x) = H
s

(t,x)+H
b

(x), where H
s

(t,x) is the water depth and79

H
b

(x) the bathymetry. Based on these definitions, the shallow water equations with80

artificial viscosity are written as:81

ˆH

ˆt
+Ò · (Hu) = ”Ò · (µ

SGS

ÒH), (1a)

ˆHu

ˆt
+Ò ·

3
Hu ¢u + g

2(H2 ≠H2

b

)I
4

+gH
s

Ò · (H
b

I) = Ò · (H
s

µ
SGS

Òu) , (1b)

where g = 9.81ms≠2 is the magnitude of the acceleration of gravity, I is the d ◊ d82

identity matrix, and µ
SGS

is the dynamic viscosity coe�cient to be defined shortly. In83

(1a), the ” coe�cient defines whether viscosity is turned on (” = 1) or o� (” = 0) in the84

continuity equation. The shallow water equations above contain no physical viscosity85

or a Chézy-Manning formulation. We do this on purpose because we are interested86

in evaluating the net e�ect of Dyn ≠ SGS on the numerical solution without being87

a�ected by the presence of physical dissipation.88

3. Space and time discretization89

The numerical model used in this paper is the two-dimensional version of the90

NUMA model described in [24] and [4], where the equations are approximated91

via high-order continuous and discontinuous spectral elements on quadrilateral el-92

ements. Throughout the paper we will use the acronyms SEM or CG for spectral93

element/continuous Galerkin and DG for discontinuous Galerkin. The solution is94

advanced in time using a fully implicit Runge-Kutta scheme (see §3.2).95
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3.1. Spectral element and discontinuous Galerkin approximations96

We point the reader to [24, 40] for details of the discretization; nonetheless,97

we introduce the notation that we adopt in this paper. To solve the shallow water98

equations by element-based Galerkin methods on a domain �, we proceed by defining99

the weak form of (1) that we first recast in compact notation as100

ˆq

ˆt
+Ò ·F(q) = S(q), (2)

where q = [H,Hu]T is the transposed array of the solution variables and F and S101

are the flux and source terms.102

In the case of spectral elements, the space discretization yields the semi-discrete

matrix problem
ˆq

ˆt
= „

D

T

F(q)+S(q) (3)

where, for the global mass and di�erentiation matrices, M and D, we have that103

„
D = M

≠1

D. We obtain the global matrices from their element-wise counterparts,104

M

e and D

e (e stands for element), by direct sti�ness summation, which maps the105

local degrees of freedom of an element �h

e

to the corresponding global degrees of106

freedom in �h, and adds the element values in the global system. By construction,107

M is diagonal (assuming inexact integration), with an obvious advantage if explicit108

time integration is used.109

In the discontinuous Galerkin approximation, the problem at hand is solved only

locally and the flux integral that stems from the integration by-parts must be dis-

cretized as well. Because the current continuous/discontinuous Galerkin implemen-

tation is unified, we are e�ectively constructing flux integrals to build the boundary

conditions for CG as well as DG. The element-wise counterpart of the matrix problem
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(3) is then written as:

ˆq

e

ˆt
= ≠(„

M

�,e)T

F̆(qe)+(„
D

e)T

F(qe)+S(qe), (4)

where we obtain „
M

�,e = (Me)≠1

M

�,e from the element boundary matrix, M

�,e, and110

the element mass matrix, M

e. Out of various possible choices for the definition of111

the numerical flux F̆(q) in Eq. (4), we adopted the Rusanov flux. We chose Rusanov112

for convenience; in previous work comparing HLL, HLLC, Roe, and Rusanov, we113

found no discernible di�erences in our results (albeit with a high-order triangular114

DG model). Although Rusanov is known to be too dissipative, at high-order (we115

used 4th or greater in this paper) it makes little di�erence. However, as shown in116

[61], the HLLC numerical flux contains an exact solution to the wet/dry problem,117

and so it should perform better especially at low order.118

The Laplace operator of viscosity is approximated using the Symmetric Interior119

Penalty method (the reader is referred to [6] for details on its definition).120

3.2. Time integration121

Equation (3) is integrated in time by an implicit Runge-Kutta scheme that corre-

sponds to the implicit part of the implicit-explicit scheme used in [25] (see also [12]).

The method coe�cients in standard (A = a
ij

, b, c) tableaux form are the following

0 0

2≠
Ô

2 1≠ 1Ô
2

1≠ 1Ô
2

1 1

2

Ô
2

1

2

Ô
2

1≠ 1Ô
2

1

2

Ô
2

1

2

Ô
2

1≠ 1Ô
2

,
c A

b
. (5)
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Scheme (5) is a three stage second order explicit-first-stage singly diagonally implicit122

Runge-Kutta (ESDIRK) scheme. This scheme has desirable accuracy and stability123

properties: (i) all stages are second order accurate, (ii) it is sti�y accurate and124

L-stable, and (iii) it is strong-stability-preserving [27] with coe�cient of 2. These125

properties allow us to take large time-steps with high accuracy as well as alleviate the126

instability issues associated with sharp solution gradients [27]. The two-dimensional127

test presented later in this paper demonstrated to be the most demanding in terms128

of stability constraints. Method (5) allows us to gain up to one order of magnitude129

in terms of maximum admissible advective Courant number when compared to an130

explicit method (explicit part of ARK3, [35]). In particular, the explicit four-stage131

Runge-Kutta solution of the solitary wave against one isolated obstacle described in132

§6.4 preserved stability for up to Courant=0.21 using both CG and DG approxima-133

tions. Although we were not able to use arbitrarily large time-steps with the ESDIRK134

with the current implementation (we will address this issue in a future work), we re-135

solved the same problem at Courant=1.8. Schemes with a subset of these properties136

are employed by [34] and shown to be robust in this context. Method (5) used in137

this study satisfies all properties (i-iii).138

Computationally, at each of the two implicit stages we have to solve a nonlinear139

equation G(Q(i)) = 0, where Q

(i) are the stage values, i = 2,3, and G is a linear140

combination of stage slopes with coe�cients given in (5). We do so by using Newton141

iterations with a stopping criterion based on the relative decrease in the residual; that142

is, stop at iteration k if ||G(Q(i)

k

)||/||G(Q(i)

0

)|| < Tol
N

. At each Newton iteration we143

have to solve a linear system J(Q(i)

k

≠ Q

(i)

k≠1

) = ≠G(Q(i)

k≠1

), where J is the Jacobian144

matrix of G(Q(i)). We approximate the Jacobian using directional finite di�erences145

and iterate with the generalized minimal residual (GMRES) method, which is e�ec-146

tively a Jacobian-free Newton–Krylov method [39]. The GMRES stopping criterion147
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is also based on the relative residual. The first stage is explicit and equal to the148

last stage of the previous step, e�ectively making it a two-stage method, which saves149

some computational time.150

4. The Shock Capturing Scheme151

There are di�erent ways to derive the viscous model described by Eq. (1) from152

the inviscid shallow water equations. Similarly to our previous work on the large153

eddy simulation of stratified atmospheric flows [48], the current model builds on154

the separation of scales between grid resolved (indicated as f(x) for any quantity155

f(x)) and unresolved (sub-grid). The unresolved scales are modeled via the shock156

capturing scheme at the core of this paper (Dyn≠SGS).157

Given an element �
e

of order N and with side lengths �x,�y of comparable size,

we define the following characteristic length

� = min(�x,�y)/(N +1). (6)

The value of � sets the size of the smallest resolvable scales in the same way as158

cut-o� filters do in large eddy simulation models.159

The application of scale separation in the continuity equation (1a) results in the160

presence of an additional term on the right-hand side, which is the artificial viscosity161

term that appears in the equations (1). It is often debated whether artificial viscosity162

should be added to the continuity equation [53, 21, 30]; should the discrete viscous163

operator not be conservative, artificial viscosity must not be added to the continu-164

ity equation. However, by relying on spectral elements with integration by parts of165

the second-order di�usion operator, the discrete viscous operator is conservative, as166

shown in [29]. The numerical demonstration of conservation of the current approxi-167
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mation can be also found in our previous work [48] for the Euler equations. To get a168

sense of how necessary a stabilized continuity equation may be, we will show a few169

results for both conditions in §6.4.170

Scale separation in the momentum equation yields a new equation that includes

the gradient of the quantity

· SGS ¥ Hµ
SGS

Òu. (7)

The coe�cient µ
SGS

is defined element-wise and is given as:

µ
SGS

= max(0.0,min(µ
max

|
�e ,µ

res

|
�e)) , (8)

where

µ
res

|
�e = �2 max

A
ÎR(H)ÎŒ,�e

ÎH ≠ „HÎŒ,�

,
ÎR(Hu)ÎŒ,�e

ÎHu ≠ ‰HuÎŒ,�

B

(9)

and

µ
max

|
�e = 0.5�

....|u|+
Ò

gH
s

....
Œ,�e

. (10)

In (9, 10), ‚· indicates the spatially averaged value of the quantity at hand over the171

global domain �, the norms Î · ÎŒ,�

at the denominator are used to preserve the172

physical dimension of the resulting equation, and R(H) and R(Hu) are the residuals173

of the inviscid governing equations. At each time-step, the residuals are known and174

given by:175

R(H) = ˆH

ˆt
+Ò · (Hu) , (11a)

R(Hu) = ˆHu

ˆt
+Ò ·

3
Hu ¢u + g

2(H2 ≠H2

b

)I
4

+gH
s

Ò · (H
b

I) . (11b)
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The presence of R makes the artificial viscosity mathematically consistent, which176

means that the residual-based viscosity vanishes when the residual is zero. The177

quantity |u|+
Ô

gH
s

in (9, 10) is the maximum wave speed.178

We would like to emphasize the necessity for the physically correct dimensions179

of the viscosity coe�cient. This is an important issue that is often underestimated180

and not accounted for in the design of artificial viscosity methods for stabilization181

purposes.182

183

As previously underlined in [48], the most important aspect of Dyn ≠ SGS for184

high-order solutions is its ability to prevent spurious oscillations without the necessity185

of additional low-pass filters or limiters. This fact is even more important when186

we rely on DG to solve the shallow water equations on wet and dry surfaces; as187

pointed out in [36], an improper and unnecessary use of the limiter, coincidentally188

may even destroy the conservative properties of the DG predictions rather than189

improving them. In this paper we concentrate on using Dyn ≠ SGS to remove190

spurious oscillations in the proximity of the propagating bores and see how much we191

can rely on it without depending on auxiliary filters and limiting mechanisms.192

This model is based on a second-order Laplacian operator; it is not expensive193

and does not add additional burden in parallel. However, the dynamic coe�cient194

depends on an infinity norm, which may become an issue in parallel as one global195

communication is necessary. To minimize this cost, one option that we tested in196

previous work is to build the viscosity only at certain time-steps. The potential user197

of this model may want to explore its algorithmic optimization.198
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5. Wetting and drying199

It is di�cult to include wetting and drying algorithms while preserving high-order200

accuracy. The application of wetting/drying with discontinuous Galerkin using low-201

order Lagrange polynomials was proposed by several authors [11, 64, 34, 28], and202

using Bernstein polynomials up to order three in [7]. The positivity preserving limiter203

of Xing et al. [65] was designed for high-order discontinuous Galerkin to solve this204

problem in particular. In this paper, we do not investigate advanced options in this205

respect and rely on the presence of a relatively small layer of water in the regions that206

should be dry, and apply the limiter by Xing et al. whenever the dynamic viscosity207

is not su�cient to preserve stability at the wet/dry interface.208

6. Numerical tests209

We verify the correctness of our models through a set of one- and two-dimensional210

tests. These are the classical dam break on a wet surface (also known as the Sod’s211

tube problem in the literature of gas dynamics). The second test is the tsunami run-212

up on a sloping beach, which is followed by the standard problem of an oscillating213

lake in a parabolic bowl. In 2D we analyze a test that includes all of the features214

of the previous 1D tests. This test consists of a complex flow of interacting waves215

triggered by a dam breaking on a lake surface; furthermore, the interacting waves216

impinge against an initially dry isolated obstacle.217

6.1. Dam break218

We study the problem of a dam breaking on a wet surface [57] in the 1D domain219

� = x = [≠5,5] m with solid boundaries. This particular problem does not involve220

a wet/dry surface, and hence allows us to only rely on Dyn ≠ SGS for stabilization221
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purposes without the necessity of additional filters or limiters. For this reason, this222

test is useful to isolate the action of Dyn ≠ SGS alone in the proximity of strong223

fronts. This special case of a Riemann problem gives rise to the propagation of224

a rarefaction wave (depression) that moves leftward towards the deep water and a225

shock wave (bore) that moves rightward into a shallow water region. Given the water226

depths h
L

and h
R

on the left and right of the dam initially centered at x
0

= 0 m,227

the initial water level of the problem is given by228

H(x,0) =

Y
__]

__[

h
L

= 3 if x < x
0

h
R

= 1 if x > x
0

whereas velocity is zero everywhere. The exact solution to this problem can be229

computed with the method of characteristics (see, [61, 43]). The exact solution of230

the water level is given by [17]:231

H(x, t) =

Y
___________]

___________[

h
L

if x < x
A

(t)

4

9g

1Ô
gh

L

≠ x

2t

2
2

if x
A

(t) Æ x Æ x
B

(t)
c

2
m
g

if x
B

(t) Æ x Æ x
C

(t)

h
R

if x Æ x
C

(t)

where232

Y
_______]

_______[

x
A

(t) = x
0

≠ t
Ô

gh
L

x
B

(t) = x
0

+ t
1Ô

gh
L

≠3c
m

2

x
C

(t) = x
0

+ t
2c

2
m(Ô

ghL≠cm)
c

2
m≠ghR

.

and c
m

= 1.848ms≠1 [17].233
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In Figure 1 we plot the exact and numerical solutions at t = 0.1 s and t = 0.5234

s. The numerical solutions are those computed using CG and DG with and without235

artificial viscosity. Neither computation uses filters or limiters so that we can isolate236

the e�ects of Dyn≠SGS on the solution. Without Dyn≠SGS, the CG solution loses237

stability almost immediately. In the case of DG, the Gibbs oscillations triggered by238

the moving bore propagate upstream as the front moves. These modes are removed239

by including Dyn≠SGS to the mass and momentum equations.240

Because we added artificial viscosity to the continuity equation, we verify that241

the model did not violate mass conservation. As we mentioned in the introduction,242

the use of di�usion in the continuity equation is often an issue of disagreement243

among researchers. We demonstrated in [48] that mass can be conserved for the244

Euler equations when Dyn≠SGS is applied. In figure 2 we plot the evolution of the245

relative mass loss for the dam break problem. The relative mass loss is defined as246

M(t)
loss

=
s
x

[H(x,t)≠H(x,t
0

)]dx
s
x

H(x,t
0

)dx
. (12)

From figure 2 we observe that mass loss is minimal when DG is used. Although it is247

still small and lies in the range of machine precision, conservation worsens for CG.248

This finding agrees with [41], although it was proved in that paper that CG and DG249

should be equally conservative.250

To avoid compounding roundo� errors in the computation of mass error, we use a251

pairwise summation algorithm to add up mass contributions from all grid points [41].252

In a regular sum operation, we add a big number of contributions one-by-one which,253

eventually, results in adding a relatively small number to a big partial sum. In other254

words, the sum S = a
1

+ a
2

+ ... + a
n

consists of S = a
1

+ a
2

, followed by S = S + a
3

255

and so on to S = S + a
n

. For a large number of these summations, the partial sum256

13



X(m)

-3 -2 -1 0 1 2 3

H
(m

)

0.5

1

1.5

2

2.5

3

3.5
Dam break on wet surface. t= 0.10 s.

DG

DG SGS

CG SGS

Exact

X(m)

-3 -2 -1 0 1 2 3

H
(m

)

0.5

1

1.5

2

2.5

3

3.5
Dam break on wet surface. t= 0.50 s.

DG

DG SGS

CG SGS

Exact

X(m)

-1 -0.5 0 0.5 1

H
(m

)

0.5

1

1.5

2

2.5
Dam break on wet surface (detailed view). t= 0.10 s.

DG

DG SGS

CG SGS

Exact

X(m)

1 1.5 2 2.5 3

H
(m

)

0.5

1

1.5

2

2.5
Dam break on wet surface (detailed view). t= 0.50 s.

DG

DG SGS

CG SGS

Exact

Figure 1: Dam break on wet surface. Water surface using CG and DG with and without dynamic

viscosity for the full domain (top) and in the proximity of the bore (bottom). The CG solution

could only be calculated with the help of viscosity.

S eventually becomes much larger than the contributions a
i

, which hence lead to257

important roundo� errors. In the pairwise summation algorithm we add two similar258

numbers at a time and then recursively add the partial results in the same fashion.259

The computation of S is split into S
1

= a
1

+ a
2

, S
2

= a
3

+ a
4

, ..., S
n/2

= a
n≠1

+ a
n

,260

and then recursively the partial sums are added in the same way to form the total261

sum S. With this approach, we always add numbers of similar magnitudes, which262

significantly reduces roundo� errors. This algorithm is key if incorporated within263

algorithms that are expected to conserve mass up to machine precision.264
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Figure 2: Relative mass loss computed in the dam break problem. This test was run without any

limiters to fully assess the stabilization properties of Dyn ≠ SGS. The CG solution could only be

calculated with the help of viscosity.

6.2. 1D tsunami run-up over a sloping beach265

The run-up of a long wave on a uniformly sloping beach was originally proposed266

as a benchmark for shallow water codes at the third international workshop on long-267

wave run-up models [1]. The one-dimensional computational domain is defined as268

� = x = [≠500,50000] m. The dry initial beach is 500 m long. The initial waveform269

was defined by Carrier et al. in [13] for an L = 8 m domain as:270

÷ = a
1

exp{≠k̂
1

(x≠ x̂
1

)2}≠a
2

exp{k̂
2

(x≠ x̂
2

)2}, (13)

with constants (a
1

,a
2

, k̂
1

, k̂
2

, x̂
1

, x̂
2

) = (0.006,0.018,0.4444,4.0,4.1209,1.6384). To scale271

the wave to the L = 50000 m long domain used for the current test, we introduced272

the scaling factor › = L/8 and re-expressed Eq. (13) with respect to x
1,2

= x̂
1,2

› and273

k
1,2

= k̂
1,2

/›2; we utilize larger amplitudes (a
1

,a
2

) = (3.0,≠8.8). The initial wave is274

plotted in Fig. 3.275

We plot the CG solutions at times t = [160, 175, 220] s in Fig. 4 and compare them276
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Figure 3: Far-field plot of the initial Carrier’s N-wave for the 1D tsunami run-up problem.

against the tabulated data available in [1]. Fig. 4 shows that the e�ect of viscosity277

on the water surface solution is clearly negligible. This can be explained by looking278

at the structure and values of µ
SGS

in Fig. 5. With a water surface that is smooth279

almost everywhere, the dynamically adaptive viscosity coe�cient is so small that its280

e�ect becomes minimal. We will see later that this will not be the case in problems281

with a greater degree of irregularity of the surface. We do not show the DG version282

of the solution because the di�erences with respect to the CG solution are negligible.283

The plots on the right hand side column show, on the other hand, that the velocity284

field features oscillations at the point of transition from fully wet to dry.285

In the left plot of Fig. 6 we show the solution of the wave elevation in the x ≠ t286

plane, whereas on the right of the same figure we plot the total depth and the time287

evolution of the shoreline. The dashed red curve in the right plot represents the288

tabulated shoreline available in [1]. By direct comparison with Carrier’s results [13],289

the patterns of the water surface elevation (÷(x,t)) and total water depth are in full290

agreement. As mentioned above, we rely on a thin layer (1e-3 m in this case) of291

water in the regions that should be dry.292
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Figure 4: 1D tsunami run-up as computed with CG with and without artificial viscosity. Near

field plot of the solutions at t = [160,175,220] s. In the left column we plot the water surface and

the distribution of µSGS . We plot velocity on the right column. The problem is smooth almost

everywhere so that the intensity of the adaptive viscosity is minimal.
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Figure 5: Far field plot of dynamic µSGS (red, dashed line) and water surface (blue, solid line)

in the full domain for the 1D tsunami run-up over a sloping beach. The e�ect of viscosity on the

solution of Fig. 4 is minimal as the value of the coe�cient is indeed very small. The solution is

smooth almost everywhere, which is the reason for the very small values of µSGS .
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Figure 6: 1D tsunami run-up over a sloping beach. Left: wave trajectory (characteristic curves) in

the full 50 km long domain. Right: x ≠ t variation of the water depth (Hs + Hb) in the proximity

of the coast. The shoreline is at the interface between the white area (dry shore) and the color

shading (water surface). The dashed red curve is the exact shoreline.

6.3. 1D test with analytic solution293

To measure the convergence rate of the model, we compare the computed solu-

tions against the analytic solution of the flow in a one-dimensional parabolic bowl

[19, 60]. The parabolic topography is defined as:

H
b

(x) = h
0

3 1
a2

x2

4
≠0.5 (14)

where h
0

= 2 m and a = 1 in � = x = [≠1,1] m. The initial velocity is u = 0ms≠1 and294

the water surface begins to oscillate due to gravity only. The solution is computed295

using 16, 32, 64, and 128 elements of order 4. Figs. 7-9 show these solutions obtained296

with and without Dyn≠SGS for both CG and DG. The contribution of the artificial297

viscosity is evident at all resolutions by looking at the detailed views in the figures.298
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As the grid is refined, the unstabilized solutions behave su�ciently well in spite of299

minor oscillations that are immediately removed by the addition of viscosity. It is300

evident that the DG solution outperforms the CG solution in all cases in terms of301

stable water surface and momentum (see momentum in Fig. 10). To quantify the302

di�erence between the stabilized and unstabilized solutions, we plot the normalized303

L
2

error norms in Fig. 11. In the figure, we notice that the slope of the stabilized304

CG solution is greater than its unstabilized counterpart, although the same does305

not occur in the case of DG. By observing that both CG and DG seem to require306

artificial viscosity for a better solution as discussed above, we require further analysis307

on this point to find a possible reason for this behavior. We leave this for a future308

paper where we are planning on analyzing the e�ect of di�erent inundation schemes309

as well.310

6.4. 2D solitary wave run-up and run-down on a circular island311

A solitary wave run-up on a circular island was studied in [10] at the Waterways

Experiment Station of the US Army Corps of Engineers. In this example, the initial

wave is modeled via the following analytic definition by Synolakis [58]:

÷(x,0) = A

h
0

sech2 (“(x≠x
c

)) , (15)

where A = 0.064 m is the wave amplitude, x
c

= 2.5 m, h
0

= 0.32 m is the initial still

water level, and

“ =
Û

3A

4h
0

. (16)

The island is a cone given as

H
b

= 0.93
3

1≠ r

r
c

4
, if r Æ r

c

, (17)
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Figure 7: 1D flow in a parabolic bowl. Fine grid CG (top row) and DG (bottom row) solutions

with and without artificial viscosity. The far field view is plotted on the left column whereas the

detailed view of the wet/dry front in on the right. Computed water level without Dyn ≠ SGS
(green, dashed line), with Dyn ≠ SGS (blue, solid line), exact solution (steel blue, dashed with

open squares), and µSGS (red, solid line). For visualization, µSGS is scaled by a factor of 1000.

Notice: µSGS is piece-wise constant by construction; however, its distribution sometimes appears

to be partially piece-wise linear; this is caused by the data interpolation from the high-order grid

to a linear grid necessary for plotting purposes via Matlab.
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Figure 8: 1D flow in a parabolic bowl. Like Fig. 7 but two times coarser.
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Figure 9: 1D flow in a parabolic bowl. Like Fig. 7 but eight times coarser.
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Figure 10: 1D flow in a parabolic bowl. Momentum at three di�erent resolutions using CG (left

column) and DG (right column).
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and ≠4 curves indicate the reference rates.
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where r =
Ò

(x≠x
c

)2 +(y ≠y
c

)2, r
c

= 3.6 m, and is centered at (x
c

,y
c

) = (12.5,15)312

m. The cone is mounted on a flat bathymetry. The fluid is confined within four solid313

walls.314

To understand how the proposed adaptive viscosity and numerical approximation315

depend on the grid, we ran the simulation at the four resolutions �x ¥ [0.05 ,0.10 ,0.20 ,0.40]316

m. Fig. 12 shows that the stabilized DG solution is converging to the same solution317

and the main features of the interacting waves are reproduced almost equally across318

the four grids. Certainly, the 0.40 m grid spacing is the most dissipative, although319

it is encouraging to see how the important features resolved at 5 cm are still well320

represented on the coarsest grid. The same observation applies to the CG solution321

(plot not shown).322

In Figs. 13-16 we plot the projection of the 2D solution on the plane y = 0. The323

spurious modes that characterize the water surface in the proximity of the sharpest324

wave front are fully removed by Dyn≠SGS (Figs. 13, 14) without noticeably weaken-325

ing the front sharpness. This is in full agreement with the application of Dyn≠SGS326

to non-linear wave problems with strong discontinuities, as previously shown in [48,327

Figs. 16, 17] for the solution of the Burgers’ equation. We briefly mentioned above328

how DG already has built-in viscosity. This is clearly visible from the plot of Fig.329

14; the unstabilized DG solution shows no oscillations except for, at most, some330

minimal under- and over-shooting. This implies that the numerical residual of the331

DG approximation is so small that the e�ect of the shock capturing model reduces332

to a minimum value. This explains why the inviscid and viscous DG solutions look333

similar.334

In Fig. 15 we compare the unstabilized (left plot) against the stabilized (right335

plot) CG solutions for velocity. We show the same comparison for DG in Fig. 16.336
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Figure 12: DG solution of water depth for the single-hill configuration. Results obtained with

the four grid resolutions �x = [0.05,0.10,0.20,0.40] m (indicated in the figures) using 4

th
-order

elements. The color bar is cut at 0.25 to preserve the visibility of the smallest features. The dark

blue coloring within the region of the cone corresponds to the water depth equal to the threshold

water layer of 1e-3 m.
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Unlike for the case of the water surface, for both CG and DG we notice a great337

di�erence between the stabilized and unstabilized solutions. However, this is not338

telling us anything about the correctness of the solution since this two-dimensional339

problem is non-linear, has multiple interacting waves, and does not have an analytic340

solution for the velocity field. On the contrary, what we can tell is that the e�ect of341

Dyn≠SGS on the CG solution is consistent with its e�ect on the DG solution; the342

stabilized CG and DG solutions plotted in the right plots of Figures 15 and 16 show343

similar wave fronts. This is indicative of a correct implementation of the unified344

CG/DG framework. By looking at the 3D velocity plots in Fig. 17, we observe345

that the greatest di�erence between the unstabilized (top) and stabilized (bottom)346

velocities occurs in a narrow region by the plane y = 0 up- and down-wind of the347

obstacle. As we move farther and farther towards y > 0, the velocity fields are in348

much greater agreement with each other, as it is visible by observing the position349

and strength of the wave fronts across the domain in both plots.350

Theoretically, two numerical methods should produce identical results under the351

constraint of zero numerical error. This is not practically true and small dispersion352

errors may be still expected as long as they are su�ciently small. This test is meant353

to demonstrate that Dyn ≠ SGS does not damp the solution as time evolves (this354

test ran for 50 seconds), which is an important requirement for dissipation based355

stabilization methods.356

We computed the solutions plotted in Fig. 18 applying the shock capturing to the357

continuity (” = 1 in Eq. (1)) and momentum equations. When compared against the358

unstabilized solution (bottom plot in the same figure), we notice that the features of359

the fronts of the interacting waves are fully preserved. Furthermore, the fronts are360

not excessively smeared out as the high frequency modes are removed.361

We show the instantaneous energy spectra of the stabilized and unstabilized CG362
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Figure 13: x ≠ z vertical slice of the 2D CG solution of water depth (H) for the single-hill con-

figuration. Inviscid (left) against stabilized solution using SGS (right). Solutions obtained using

4

th
-order elements. The dark blue coloring within the region of the cone corresponds to the water

depth equal to the threshold water layer of 1e-3 m.

Figure 14: Like Fig. 13 but for DG. The dark blue coloring within the region of the cone corresponds

to the water depth equal to the threshold water layer of 1e-3 m. This plot shows the power of DG.

Without SGS it still almost captures the bore sharply.
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Figure 15: x≠z view of the 2D CG velocity solution (red curve) superimposed to the water surface

(blue curve). The inviscid solution is shown on the left.

Figure 16: Like Fig. 15, but using DG.
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Figure 17: Instantaneous perspective view of the unstabilized (top) and stabilized (bottom) CG

solutions of the velocity for �x = 5 cm using 4

th
-order elements. We observe that the greatest

di�erence between the unstabilized (top) and stabilized (bottom) velocities occurs in a narrow

region by the plane y = 0 up- and down-wind of the obstacle. As we move farther and farther

towards y > 0, the velocity fields are in much greater agreement with each other, as it is visible by

observing the position and strength of the wave fronts across the domain in both plots. For best

view of the velocity surface, the view angle is di�erent from the one of Fig. 18.
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Figure 18: Like Fig. 17, but for water surface. The high frequency instabilities are removed by

Dyn ≠ SGS without compromising the overall sharpness of the interacting waves. Both solutions

are characterized by the same wave features at all scales.
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and DG solutions at t = 50 s in Fig. 19. The di�erence between the CG and DG363

curves is striking. The viscous and inviscid DG spectra overlap almost fully and364

show approximately the same decay across the entire spectrum, from a -5/3 slope in365

the inertial sub-range to a -3 slope in the dissipation wave numbers (refer to [8] for366

a review on two-dimensional flows and their energetics). This is only true as long367

as the resolution is not too coarse, especially so in the case of CG. At very coarse368

resolutions (�x Ø 0.4 m), neither CG or DG can avoid energy from building up in369

the highest modes unless artificial viscosity is used. The inherent viscosity of DG is370

no longer su�cient to prevent this.371

We stated above that µ
SGS

is only active where the equation residuals (i.e. gra-372

dients) are important. In the case of water waves, this occurs in the proximity of the373

wave fronts. In Fig. 20, we plot µ
SGS

to show its spatial structure and its evolution374

between t = 0 and t = 50 seconds. This plot clearly shows how viscosity is equally375

zero away from the fronts and only activates where really necessary. It may not be376

so obvious to achieve this by using an artificial viscosity that is not residual-based.377

To provide a visual correlation between µ
SGS

and the wave features, in Fig. 21 we378

plot the stabilized spectral element solution of the water surface at a grid resolution379

�x ¥ 0.05 m.380

7. Conclusions381

We presented a shock capturing scheme, or dynamic sub-grid scale artificial vis-382

cosity that we called Dyn ≠ SGS, to stabilize the high-order numerical solution383

of the shallow water equations via continuous and discontinuous spectral elements384

(CG/DG). By numerical examples, we demonstrated that this model removes the385

Gibbs oscillations that form in the proximity of sharp wave fronts while preserving386

their strength. This is possible because of the residual-based definition of the dy-387
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Figure 19: Instantaneous 1D energy spectra of the single hill problem of Fig. 12 at t = 50 s. Left:

CG with and without viscosity. Right: DG with and without viscosity. From top to bottom the

resolution decreases.
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namic viscosity coe�cient. For coarse grids, it prevents energy from building up388

at small wave-numbers; this aspect is important to preserve numerical stability of389

tsunami simulations over large domains discretized with coarse grids. The model has390

no user tunable parameter, which is of great advantage when the model is to be used391

by an external user. When applied to the continuity equation, mass conservation is392

not a�ected. This shock capturing model works especially well for bores propagating393

on wet surfaces but is often not su�cient to stabilize velocity at the wet/dry inter-394

faces, where a thin layer of water still had to be added and, in some cases, supported395

by additional limiting. Further work on the interaction between shock capturing,396

limiters, and Riemann solvers needs to be done; we did not address it in this study397

as it requires a thorough analysis of its own.398

It is important to underline that the natural, built-in viscosity of DG may be399

large enough that the contribution of Dyn ≠ SGS is at times irrelevant. When this400

happens, the dynamic viscosity detects it from the residual, and hence limits its own401

strength. Nevertheless, we have shown that it is often the case that the inherent402

DG viscosity alone cannot prevent instabilities from forming and propagating; even403

if the solution does not break –as it would do in the case of CG– it still requires the404

support of Dyn ≠ SGS. Although the results show that DG is superior to CG, we405

show results for both methods because many researchers use CG and it is not yet406

clear which method is superior in terms of robustness and e�ciency (See [2] for more407

on these aspects.)408
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