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Abstract 

Many system developments fail at the integration and qualification (I&Q) phases in the development and acquisition cycle. How 
can we, as Systems Engineers (SE), navigate the uncertainty and risk of system development to ensure I&Q success?  One 
solution is applying significant influence of the system integrator (SI) member of the SE team at the very beginning of system 
design.  If this is a solution, then what processes, methods, and practices can the SI apply in the overall SE process?  Can the 
emerging Model-Based Systems Engineering (MBSE) methods and tools be leveraged by the SI?  This paper discusses a Model 
Based System Integration (MBSI) approach that applies essential MBSE methods and tools to the unique goals of the SI.  While 
MBSE is supportive of the entire SE process, it tends to be optimized for the design-side of the SE process and not necessarily 
for I&Q goals and objectives.  MBSI highlights how MBSE tools and methods can be extended to benefit the SI.  Lessons-
learned from several SE graduate school projects applying these MBSI methods are provided to demonstrate the efficacy of the 
MBSI approach. 
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1. Introduction - The SI role and mission 

This paper focuses on the role of the system integrator (SI) within the system engineering (SE) process in the 
acquisition and design of systems. This paper examines the methods and practices of the SI and contrasts them to 
those of the SE, particularly the design system engineer.  Although underlying theories of integration are emerging 
[1], this paper explores integration practices and principles. A Model-Based Systems Integration (MBSI) approach 
is introduced that is a derivative of model-based systems engineering (MBSE) methods and tools which proposes a 
key SI principle and practice: 
 Principle - Integration begins early at system concept and directly influences system design 
 Practice - Do not attempt to build / integrate the system until the system model is integrated first 

It is commonly discussed in the system acquisition community that system failures often occur during the 
integration and qualification (I&Q) phase [2,3]. What are the root causes of these failures? The SE community will 
often relegate I&Q activities to the post-development phases of system acquisition. This approach may be attributed 
to the classic system engineering model diagram (Fig. 1(a)) that shows system I&Q activities on the right side of the 
SE “V”. Although not originally intended to imply sequential and linear process flows, this ubiquitous model has 
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tended to create a very segmented view of system I&Q as separate from system design (i.e. the left side of the “V”). 
The INCOSE Handbook [4] implies the primary input to the system integration is the acquired and built system 
elements and their documentation. In other words, the SI may or may not have had influence on the design of the 
system components. The most recent Systems Engineering Book of Knowledge (SeBoK) [5] also reinforces the 
common understanding that integration is a post-development set of activities (Fig. 1(b)).  This SE model, although 
useful at the top-level SE process understanding, can often be over-extended to the point of misuse [6]. 

Fig. 1. (a) Systems Engineering  "V" Model (derived from [4] and multiple sources); (b) SEBok Depiction of the Systems Integration Process 
([5]) 

What are the essential roles and missions of the system integrator and why might the figures above be somewhat 
misleading to system engineers? The primary mission of the system integrator is to ensure that a system comes 
together by assembling the essential components and elements into a cohesive and fully functional system that 
satisfies the original user needs. For the purposes of this discussion, the SI’s role and mission includes both 
integration and qualification, both of which are essential design activities as discussed below. 

1.1. Integration Design 

Integration design is the key activity of an integrator that can begin early that ensures multiple elements of the 
systems are designed such that their functionality, interfaces, interoperability, behaviors, and essential missions can 
be integrated.  These attributes need to be considered early and tested often to increase likelihood of success of 
bringing the system together into a cohesive unit. The SI design emphasis is on system interfaces and interactions. 

1.2. Qualification Design 

In this paper, the term qualification includes verification, validation, and acceptance. MBSE principles and tools 
can augment the development of qualification methods and strategies [7]. Qualification activities are continuing 
activities that are not necessarily well depicted in the system engineering “V” (Fig. 1). Arrows between the two legs 
of the “V” often confuse many to think that validation and verification are only performed in the SE “endgame”.  
The SI early focus is on whether or not the system can be verified successfully against parametric performance and 
can be proven to accomplish the user’s mission performance demands.  

2. Model-Based Systems Engineering (MBSE) Concepts 

2.1. What is a system model? 

The SE is focused on the architecture and physical design early in the system acquisition process.   The design is 
derived from requirements, user needs, and operational analysis. Developing a system model can support all facets 
of the system acquisition process (Fig. 2(a)) and provides a well-defined system baseline.  Many of the model-based 
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system engineering tools in use today will produce and enable those design processes in a disciplined and complete 
manner [8,9]. For the purposes of this discussion, a system model will be defined as the data-driven collection of 
views and attributes that defines these various dimensions of a system as shown in Fig. 2(b).  Unlike some 
discussions of building systems models with a diagrammatic (e.g., DoDAF) approach [10], the system model in this 
presentation is a data-driven, tool-based approach whereby output artifacts (diagrams) are the by-products of the 
system definition data. 

 
Fig. 2. (a) System model supports all aspects of system acquisition [original]; (b) A system model [Derived from [11]] 

2.2. SE and MBSE Contrasts 

System engineering processes (Fig. 3 a) are often document-driven and event-driven.  These events are often 
system engineering technical reviews which establish key milestones in system development. A contrasting MBSE 
process is shown in Fig. 3b where a system definition model is created to support all of the system engineering 
activities. The system definition can produce any documentation desired as a byproduct of the model itself. The 
system model can be used throughout the lifecycle of a system.  The model can be used to quantitatively analyze the 
performance of system-of-systems and provide a repeatable baseline of system design information that can be used 
in trade-off analyses, technical reviews, and future developments. 

 
Fig. 3. An SE process (top) is often a document-driven process while an MBSE process (bottom) is a system model-driven 
process [original] 

3. The MBSI Concept 

The MBSI process extends the MBSE process in that it (1) increases the impact of the SI early in the design and 
(2) demands the subsystem models be integrated successfully prior to building and integrating the subsystems 
themselves.  A simple example of the MBSI concept applied to the SE process is shown in (Fig. 4). 
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Fig. 4. The Model-Based System Integration (MBSI) concept increases emphasis on early SI design involvement and integrates 
the system model before system build and integration [original] 

3.1. SI Design Emphasis 

The SI needs to be involved early in the design process. The SI does not want to inherit a system design but, 
rather, needs to influence the design to reduce I&Q risks.  The influence of the system integrator at these early stages 
can be either underestimated or even unwanted in some teams. The system integrator has a different perspective 
during design that can mitigate many latent design problems that could create significant integration challenges and 
risks. Early modeling of the system is just as imperative to the SI as to the SE.  The SI, however, views the system 
model with an I&Q perspective.  In the table below, some of these SI / MBSI emphasis areas during early design are 
highlighted  and occur in the yellow emphasis block in Fig. 4. While not all-inclusive, they do show MBSI emphasis 
areas that could be incorporated into existing or emerging MBSE tools and/or practices. 

Table 1. Early design emphasis of the SI 

SE Process SI/MBSI Emphasis 
Requirements validation Ensure that requirements are achievable in that they 

can be qualified 
Requirements-to-functionality validation Ensure that the functional architecture leads to 

sufficient modularity, completeness, and can 
ultimately be integrated 

Requirements-to-testing validation and planning Ensure the requirements can be proven during 
validation/acceptance and the acceptance strategy is 
explicitly agreed upon among all stakeholders 

Conop-to-mission performance Ensure that the mission and operational goals and 



317 Paul R. Montgomery  /  Procedia Computer Science   16  ( 2013 )  313 – 322 

objectives have been parameterized (e.g., measures 
of effectiveness – MOEs) with sufficient fidelity to 
form a basis of validation / acceptance. 

Conop-to-system performance Ensure that the system-level requirements are valid 
and have been parameterized (e.g., measures of 
performance – MOPs) with sufficient fidelity to 
form a basis of verification throughout I&Q. 

System interface design Ensure functions are connected and interfaced with 
minimum complexity, modularity, and simplicity to 
minimize integration risks 

Functional interactions and interoperability Ensure system functionality is interoperable with 
external systems with which the system will be 
required to interoperate. 

3.2. Integrate the models before build and integration 

The MBSE process and supporting tools help system designers develop a cohesive and coherent design that is 
quantifiable, easily shared and viewed by wide variety of stakeholders, and provides a stable baseline of design data 
which reduces risks throughout design.  If the MBSE tools are robust enough, they will allow subsystem models to 
be integrated, validated, tested for compliance, and simulated for performance. The MBSE tools, however, should 
not be viewed to only support design. The risks associated with subsystem build and integration process can be 
greatly reduced if the development team challenges itself to integrate the subsystem models into a system model 
before proceeding to subsystem build and integration. The discoveries that will emerge from model integration will 
greatly benefit functional, interface, and potential emergent design challenges that will often need to be revisited 
and/or modified prior to committing to subsystem build. This idea is shown in the center of Fig. 4. 

4. How can MBSI reduce I&Q risks? 

If the SI is involved early in the desing process and system models are to be integrated first, how can MBSE tools 
provide the SI with indications and warnings of I&Q risks? This paper is not intended to describe all the potential 
attributes of an MBSI tool but there are some perspectives provided by existing tools than an experienced SI can 
view and discern as potential risk areas for integration. Examples follow that show MBSE tool outputs and how they 
can provide insight into I&Q risks.  They are derived from graduate SE class projects as the system designs were 
being formulated using CORE® [8] as an MBSE tool (diagrams that follow are simplified cartoons of the CORE 
diagrams for presentation). 

4.1. Functional flow 

The SI is keenly focused on the modularity of the functions within a system and validates how these functions 
and their control structures contribute to the overall performance of the system. In particular, can these functions be 
integrated independently, incrementally, in parallel, in series, from the bottoms up, or from the top down?  An 
attribute that is produced by MBSE tools is the functional flow control structure of the system model. This is often 
in the form of a functional-flow block diagram (FFBD).  The control flow indicates the mutual dependencies, 
control, and functional flow of the system.  The SI uses the FFBD to determine 
 Analyze system complexity 
 Prioritize integration efforts 
 Determine interface complexity 
 Determine system modularity and independence 
 Discover redundancy or gaps in functionality 
 Discover inadequate control description 

All of the above shape the SI integration strategy for a system, particularly the order of integration that often 
follows control flow.  Additionally, single-stage or incremental integration strategy selection [12] can be driven by 
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functional control architecture.  The SI may challenge the design if the control indicates deficiencies.  Some 
common examples: 
 All-linear FFBD (Fig. 5a) - Inadequate feedback and parallelism.  Sequential structure is unlikely in that it does 

not account for functions that can operate independently.  These 'independent' functions can provide greater 
flexibility for integration. 

 All-parallel FFBD (Fig. 5b) - Inadequate recognition of control.  Over-emphasized independence of 
functionality and unrecognized co-dependence and mutual coupling.  Can lead to a "naive" integration strategy. 

 Complex functionality (Fig. 5c) - A function with several flow and control entries/exits can indicate a higher 
risk I&Q element. 

 
Fig. 5. Functional flow and control can determine integration strategy [original] 

4.2. Complexity of interfaces 

The SI minimum system interfaces and to keep those interfaces non-complex. The SI may recommend greater 
simplicity during functional design or be alerted to complex interfaces that could affect I&Q strategy.  The N2 
diagram (Fig. 6) is a simple MBSE tool output that tallies the functional interfaces of a system. The SI uses the N2 
diagram to determine: 
 Interface completeness 
 Interface gaps 
 Interface complexity 
 System feedback robustness 
 External system coupling and boundaries 

All of the above alert the SI to external systems I&Q, internal system order of integration based upon interface 
complexity, qualification emphasis based on number or complexity of interfaces, or I&Q support systems based 
upon complex feedback interfacing.  The SI may challenge the system interface design to minimize the number of 
interfaces or to simplify interfaces, where possible.  Some common N2 insights include: 
 Minimum off-diagonal (upper):  Indicates incomplete interface definition 
 Minimum off-diagonal (lower):  Indicates incomplete feedback design 
 Minimum edges: Indicates incomplete external system interface definition 
 Many interfaces in single block: Indicates potential complex interface 
 Many blocks clustering a function: Indicates a potential I&Q challenge for that function 
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Fig. 6. Interface analysis can inform SI to integration challenges [original] 

4.3. System process and data flow 

As discussed above, the system integrator views a large number interfaces or complex control flows as presenting 
risk to I&Q.  An IDEF0 diagram (Fig. 7) provides a data flow and functional relationship (often call process flow) 
depiction.  These diagrams can be viewed as an amalgam of FFBD and N2 diagrams.  As such, they can become 
visually complex very quickly.  Its connection-based depiction, however, can provide better visual cues to the SI 
related to functional design and interface complexity.  Because each element follows a prescribed syntax (Input-
Control-Output-Mechanism) model [13], the SI can better discern control interfaces from input/output interfaces 
(often masked in the N2). Additionally, the “M” (mechanism or resource) dimension is an indication of the 
allocation of functionality-to-physical components.  The SI can use IDEF0 to determine: 
 Control interface completeness 
 Input/output interface completeness 
 Interface gaps 
 Interface complexity 
 System feedback robustness 
 External system coupling and boundaries 

All of the above alert the SI to establishing an I&Q strategy that considers the (1) control, (2) functional 
transformation of inputs-to-outputs, (3) physical resource availability, and (4) external system I&Q limits.  Some 
common examples: 
 Functions without control (although this is not uncommon, it alerts the SI to examine system control for 

integration strategies) 
 Non-conservation of interfaces (broken links among functions - this is fundamental design issue but SI is often 

hyper-alert to interface design issues) 
 Broken external interface/data (prevents complete qualification and acceptance testing) 
 Undefined data flows (incomplete data definition prevents complete I&Q) 
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Fig. 7. Excessive interfaces can be identified early to warn of integration risks [original] 

4.4. System behavior 

System behavior models are derived from the analysis of user mission needs coupled with function-physical 
design. The SI uses the behavior modeling to plan for qualification activities, in particular, validation and 
acceptance. A sequence diagram (Fig. 8) is an MBSE output that adds temporal insight into functional flow.  These 
diagrams give the SI insight into how the system behaves for given scenarios or use cases.  For the SI, this is critical 
to developing a strategy for acceptance testing.  The SI uses the sequence diagram to determine: 
 Functional timing dependencies 
 Critical timing 
 Functional looping and iteration design 
 Functional-operational complexity 
 External system operational co-dependencies 

All of the above alert the SI to establish qualification strategies, especially testing that represent actual system 
operations.  Some common examples: 
 Missing internal triggering (inadequate functional behavioral definition preventing I&Q metrics) (Fig. 8c) 
 High functional interactions (a function responds to or outputs many triggers and/or results) (Fig. 8c) 
 Recursive of iterative looping (loop completion criterion and/ or exit criterion set I&Q key events/metrics) 
 Timing structure (identifies synch or synch behavior or centralized/decentralized control structures) (Fig. 8a,b) 
 Missing external triggering or results (leads to incomplete I&Q) 
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Fig. 8. Sequence diagrams provide SI insight into qualification (particularly acceptance testing) strategies [original] 

5. Anecdotal class project experiences / lessons-learned 

The author has been able to exercise the above MBSI concepts in a system engineering graduate school 
environment over 5 different class sections, each with 25 students.  The students are DoD acquisition professionals 
who are pursuing a Master’s Degree in Systems Engineering.  The students’ assignment was to develop a system 
from needs-to-design-to-acceptance in a very short time period. Teams are formed in diverse geographic areas 
around the country.  Each subsystem team had to design, develop, and integrate their appropriate subsystems. A 
system integrator (SI) team was responsible for coordinating the system-level requirements, interfaces, architectures, 
taxonomy, structures, integration strategy, and acceptance test plans. The project was designed such that there was 
little chance of success if the students went from design-to-development-to-testing in a classic waterfall fashion (a 
common approach for many real-world system acquisitions). The use of a MBSE tool was prescribed in order to 
discipline the entire design process.  Additionally, the system model was to be completed and integrated before 
starting the actual development of each of the subsystems.  

The system was not complex, in and of itself. The challenge was to have multiple, geographically dispersed 
teams design, develop, and integrate / qualify the system successfully. This represents normal acquisition business 
models in DoD acquisition.  The modeling formed the underpinning of design and integration planning and provided 
sufficient definition and boundaries for the development of the system. The class MBSE/I efforts included 
functional, physical, interface, behavioral, and qualification modeling that insured this simple design (but complex 
integration) could be successfully developed on schedule.  Throughout, the students took an SI perspective (MBSI) 
as discussed in the sections above to inform their technical approach.  

In several cases, the teams tried to “shortcut” the modeling process and started development (coding) early.  In 
other cases, interface design or functional interaction considerations were not given high priority.  This led to 
regrouping, returning to model completion, and rework.  The rework reinforced the need for prerequisite, successful 
system modeling.  In the end, the teams developed a successful system that passed acceptance on schedule.  The 
lessons learned from the students (derived from several iterations of this course) include: 
 SI involvement in design reduces I&Q risks 
 Project would have failed without MBSE/MBSI methods 
 Early requirements clarification is important (especially interface requirements) 
 Early architecture design imperative (especially functional and interface) 
 Rushing to development prior to model definition wastes time and effort 
 Early model integration drives out: 

 Functional gaps and overlaps 
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  Interface inconsistencies and discontinuities 
  System behavior misunderstandings 
  Inter and intra-system interface problems 

6. Summary 

The SI’s perspective is extremely valuable during the earliest phases of system design. The SI brings increased 
emphasis on critical functional interactions, system interfaces, along with a keen eye toward whether or not the 
system can be assembled, integrated, verified, and validated in a low risk manner. The SI does not want to inherit a 
system design but, rather, needs to influence the design.  Although system integration is often portrayed in the SE 
community as a post-development set of activities, successful I&Q hinges upon the SI being involved early and 
throughout the entire development process. Additionally, MBSE methods and tools can contribute to alerting an 
experienced system integrator to early design decisions that may increase risks to successful I&Q. If all subsystems 
use MBSE tools for system design, then I&Q risks are greatly reduced if these models are first integrated into a 
complete system model before subsystem build / integration.  There is, however, still much room for improvement 
of these tools to develop products, views, metrics, and perspectives that would directly aid any SI, experienced or 
not, to determine risks of integration qualification and help plan I&Q strategies.  Several iterations of graduate SE 
class projects have tested the essential concepts of early system integrator involvement and MBSI and have 
anecdotally shown that:  Successful I&Q requires: 
  Strong LSI / SI 
  Detailed system definition (particularly interfaces and functional interactions) 
  Early taxonomy and structure definition 
  Early SI influence with I&Q success perspective 
  Modeling in order to discipline design efforts 
  Model integration prior to system integration to reduce I&Q risks 
  Diverse and integrated SE/SI support system (i.e. tool sets, etc.) 
  MBSE tools can provide support to SI but are not yet MBSI tools 
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