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We analyze the stability of the network’s giant connected component under impact of adverse events, which we
model through the link percolation. Specifically, we quantify the extent to which the largest connected component
of a network consists of the same nodes, regardless of the specific set of deactivated links. Our results are intuitive
in the case of single-layered systems: the presence of large degree nodes in a single-layered network ensures both
its robustness and stability. In contrast, we find that interdependent networks that are robust to adverse events have
unstable connected components. Our results bring novel insights to the design of resilient network topologies and

the reinforcement of existing networked systems.

DOI: 10.1103/PhysRevE.97.012309

I. INTRODUCTION

Robustness and resilience of networked systems under the
impact of adverse events have been extensively studied in
network science for two decades, but the research has been
primarily focused on computing the mean-field properties,
such as the expected size of the system’s giant connected
component (GCC) [1-3]. The inherent assumption is that
only connected subnetworks retain their functionality, with the
largest of these being most relevant to the overall performance
of the system.

While the mean-field analysis of a system’s behavior is
undoubtedly an important first step toward understanding its
robustness, in most practical situations it is insufficient to know
the expected size of the so-called ‘functional component.’
Rather, the location of the functional component within the
network itself is important. It is especially true in the case of
resilience where critical system function and its recovery is of
prime importance [4,5]. For example, in the case of a major
natural disaster, such as flood or an earthquake, one needs to
know infrastructure units and transportation routes that are
likely to remain functional. The efficiency of immunization
strategies depends on our knowledge of low and high-risk
groups in social networks. Likewise, the success of a marketing
campaign depends on the knowledge of the target audience.

Yet, apart from a handful of recent works aiming to under-
stand individual node properties in percolation and epidemic
processes [6—10], organization patterns of individual network’s
functional components are poorly studied. One reason is
that the random nature of adverse events coupled with the
complexity of relevant networked systems often makes the pre-
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diction of functional subgraphs impossible. Indeed, consider
two toy networks of the same size and average degree, which
we repeatedly subject to adverse events of equal magnitude,
modeled by link percolation, i.e., by deactivating a fraction of
links selected uniformly at random, Fig. 1(a). Even though the
expected GCC sizes of both networks are similar, the GCC of
the first network is unstable and strongly depends on the set of
deactivated links. In contrast, the GCC of the second network
seems to be centered at the two largest degree nodes and only
weakly depends on the set of deactivated links. Clearly, nodes
of the first network are topologically identical and, thus, are
equally likely to enter the GCC. The two central nodes of
the second network, on the other hand, have much higher
probability to enter the GCC compared to the remaining nodes,
serving as anchors for its GCC.

Our work is motivated by two recent results in percolation
theory [9,10] analyzing heterogeneous network responses
to different percolation realizations. In particular, Ref. [9]
demonstrates a considerable variation of network’s connected
component sizes and individual node probabilities to appear
within the GCC. Concurrently, Ref. [10] introduces a frame-
work to quantify GCC fluctuations by analyzing network
responses to two random but possibly correlated percolation
realizations. In our work we ask a related question: How stable
is network’s GCC? In other words, we aim to quantify the
extent to which the giant connected component of a network
consists of the same nodes, regardless of the specific set of
deactivated links during an adverse event. We analyze both
single and multi-layer networks, finding that large GCC size
does not necessarily imply GCC stability.

©2018 American Physical Society
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FIG. 1. (a) GCCs shown for two toy networks at various links percolation realizations. Note that the the GCC of the top network varies
significantly depending on the set of removed links, while the GCC of the second network is more stable, and in all realizations includes the two
central nodes. (b) The expected GCC size for an ER and a SF models, as well as the airline network as a function of the fraction of deactivated
links ¢g. Both model networks are of the same size, N = 2 x 10° and the same average degree (k) = 5.1. The SF network is characterized by
y = 2.5 and minimum degree k,;, = 2. Dashed lines show considered values of ¢ that are chosen such that (GCC) = 0.2 and (GCC) = 0.7.
(c) Stability S(£|q) as a function of ¢ for the (red squares) ER model, (blue triangles) SF model, and (green circles) the airline network described
in Appendix A. Solid lines correspond to analytical predictions by Eq. (4). (d) Probability for a node to appear within the GCC of a network as
a function of its degree. The color scheme is that of (c). Data are binned logarithmically, and error bars display the standard deviation values.
The inset shows the probability of the node not to appear within the GCC in the log-linear format with solid lines corresponding to analytical

solutions given by Egs. (2) and (3).

II. GCC STABILITY OF SINGLE-LAYER NETWORKS

To simplify the exposition we model adverse events by
link percolation [1,11] and limit our consideration to random
network models with prescribed degree sequences. We also
assume that there exists at most one GCC per network. At
the same time we note that our approach is extendable to other
types of percolation and more complex network topologies, in-
cluding the situations with multiple GCCs per network [12,13].
To quantify GCC stability we subject the network of interest to
£ independent link percolation scenarios; each deactivating a
random fraction g of network links. We then compute the sets
of nodes €2,(gq) for each percolation realization ¢ € {1, ...,¢}
and use them to define the GCC stability function as the fraction
of nodes inside all sets €2,(q), namely,

1 £
Stelg) = 1) 2@l, (1)
t=1

where N is the network size and ||€2| is the cardinality of set
Q. In the case of GCCs consisting of random sets of nodes

S(£]q) decreases exponentially as a function of £, while in
the case of stable GCCs S(£|q) is expected to decrease slowly
or remain constant. We first focus on GCC stability of the
Erd6s Rényi (ER) [14] and scale-free (SF) random network
models. The former is fully prescribed by the number of nodes
N and the constant connection probability p for every node
pair. The latter is characterized by the scale-free (SF) degree
distributions, p(k) ~ k~7 and is generated by the Molloy-Reed
algorithm [15]. Our results depicted in Figs. 1(b) and 1(c)
indicate that GCC stability in ER is significantly smaller
than that in SF networks. Indeed, S(£|q) in the case of SF
network models decays at significantly slower rates implying
the existence of a stable sub-component, shared by all €2;(g)
sets. At the same time S(£|q) in ER network models seems to
decrease exponentially, albeit at rates slower than expected for
GCCs consisting of randomly selected nodes.

Our results for S(£|¢g) are consistent with the observation
that individual node probabilities to belong to the GCC are
strongly correlated with node’s degree. As seen from Fig. 1(d),
the probability for a node to belong to the GCC increases
as a function of its degree and approaches 1 for nodes of
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sufficiently large degree. These nodes belong to the GCC
with high probability and serve as its anchors in a network,
effectively stabilizing its GCCs. In contrast, the absence of such
large degree anchor nodes in ER networks leads to unstable
GCCs, Fig. 1(d).

To quantify the observed GCC stability phenomena we em-
ploy the generating function formalism [16]. The starting point
of our analysis is the mean-field solution for the individual node
probability to enter the GCC [17]:

p=1—[u@l, )

where u(q) can be regarded as the mean-field probability that
a given end of randomly chosen link leads to a connected
component of finite size [18]:

u=q+1-q)Gi(u), 3)

and G(x) is the generating function for the outgoing edge
degree distribution, G(x) = Z;io pe(k)x*, where p.(k) =
(k+ )p(k 4+ 1)/{k), and p(k) is the degree distribution [19].

Then, the probability that a node of degree k is present
in the GCC independently in ¢ percolation realizations is
(1 — [u(¢)]¥)* and the expected stability of the GCC in ¢
independent percolation realizations is given by

S(tlg) = ply(1 — [u(@)]")". (4)
k

To validate our theoretical results we solved Eq. (3) numeri-
cally for each combination of p(k) and percolation parameter
q used in Fig. 1(b). We then used the obtained u values
to superimpose the mean-field behaviors of individual node
probabilities to enter the GCC and stability S(£|g) with the
numerical results, arriving at the excellent agreement between
the two, Figs. 1(c) and 1(d).

The differences between S(£|g) in SF and ER networks
become more pronounced as expected GCC size decreases.
Indeed, close to the criticality S(¢|q) in ER decays exponen-

tially:
L
¢
NCOEDS (m)<—1>’” expl—(k)(1 — e~ ~ [1 — u¥]",
m=0
4)

where € = 1 — u <« 1 and (k) is the average degree in the ER
network. In contrast, S(¢|q) in SF networks

Gko vl
~|— (§)
<ln 12 ) ©
for £ > 1. Here, y > 2 is the degree distribution exponent,
p(k) ~ k=7, see Appendix B for derivation.

S(tlg) o (ekg) ™" | [1—e "

dx
Eko _xl/

III. GCC STABILITY OF MULTI-LAYER NETWORKS

In the case of interdependent networks the deactivation of
nodes or links in one layer leads to the deactivation of nodes in
other layers that depend on it [20]. In this case, the probability
of a node to belong to the GCC depends not only on its own
connections but also on the connections of supporter nodes in
other layers. In the following, we consider a simple case of
an interdependent network, consisting of equally sized layers
A and B with one-to-one node interdependence; every layer
representing a random network with prescribed degree distri-
bution [21]. Assuming no correlations in interdependencies
between the two layers, the probability of a node to belong to
the GCC is

p =1 — [ua@I")(A — [up(@]*), (7)

where k4 and kp are the degrees of the two interdependent
nodes in layers A and B, respectively, q = {ga,g5}, g4 and
qp are the initial fractions of deactivated links in layers A
and B, respectively; while parameter u 4 (up) is the effective
probability that a given end of a randomly chosen link in layer
A (B) leads to a mutual connected component of finite size.
The mean-field parameters u4 and u g can be found from the
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FIG. 2. (a) Individual node probability to appear within the mutual GCC of the interconnected network as a function of its degrees in the
network layers. The interdependent network consists of two SF layers with random interdependence links. Both SF layers are generated using
parameters reported in Fig. 1. Link percolation thresholds are chosen as g4 = 0.49 and g3 = 0, corresponding to (GCC) = 0.7. (b) Individual
node probabilities not to appear within the GCC compared to the analytical estimate of Eq. (7). (c) Stability of the mutual GCC as a function
of number of independent realizations ¢ calculated for (green circles) SF-SF, (blue triangles) ER-SF and (red squares) ER-ER interdependent
network models as well as (pink rhombi) the protein protein interaction network described in Appendix A. Link percolation thresholds are,
respectively, g4 = 0.56, g4 = 0.63, g4 = 0.64, and g4 = 0.68, gz = 0, all corresponding to (GCC) = 0.7. The dashed line corresponds to
S(€|q) of mutual GCCs consisting of random sets of nodes. Solid lines correspond to analytic solutions of Egs. (8)—(10).
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recursive approach of Ref. [21] and are given by the system of
equations:

L—up =1 —g)(l = Glwa))(1 — G{up), ©®)
1—upg=(1—gp)(1 = G{up))(l — Gywa), ()

where G}Q”ll};}(x) are the generation functions for the regular
and the outgoing degree distributions of layers A and B, see
Figs. 2(a) and 2(b) and Appendix C for derivation. We note
that this result is in good agreement with numerical results,
which we obtain for ER-ER, ER-SF and SF-SF models as well
as the network of protein-protein interactions (PPI), and depict
for SF-SF network in Fig. 2(a).

Since interdependence links between the layers are estab-
lished randomly, the joint degree distribution of the network
is p(ka,kp) = pa(ka)pp(kp), where ps p(k) are degree dis-
tributions of layers A and B, respectively. Then, the stability
of the mutual connected component is simply the product of
the contributions from the two layers

Sap(tlq) = Sa(£lQ)Sp(£flq), (10)

where S4 and Sp are the stability contributions of domains A
and B, respectively: Sy = Zk patk)(1 — [uA(q)]k)‘z, and Sp
is defined similarly. This result together with our results in
Fig. 1 for single layered networks explains stable mutual GCCs
in SF-SF networks and unstable GCCs in ER-ER and ER-SF
networks that we observe in Fig. 2(c).

IV. CONCLUSION

Taken together, our results indicate that networks with
broader degree distributions are characterized by stable GCCs.
Large degree nodes in these networks are part of the GCC with
probabilities close to 1, and can be regarded as anchors keeping
the GCC in place. At the same time, it is important to note
that network robustness and GCC stability do not in general
imply each other. We find that interdependent networks with
broad degree distribution of their layers (e.g., SF-SF networks)
have stable mutual GCCs. At the same time, however, SF-SF
networks are known to be vulnerable to cascading failures
[21]. Indeed, large degree nodes in interdependent networks
are likely to depend on small degree nodes in other layers.
As a result, failures of these small degree nodes immediately
lead to failures of the large degree nodes that depend on
them. In contrast, interdependent networks with narrow degree
distributions, e.g., ER-ER networks, are less vulnerable due to
a more uniform mixing of node degrees in their layers. The
stability of connected components in interdependent networks,
on the other hand, exclusively relies on the existence of anchor
nodes, which according to Eq. (7) are large degree nodes
dependent on other large degree nodes. While these anchor
nodes are not frequent in SF-SF networks, they are non-existent
in ER-ER networks, explaining why mutual GCCs are not
stable in the latter.

Our findings open new avenues toward the design of
efficient network reinforcement strategies. Indeed, building
upon our results one can formulate the subgraph reinforcement
problem as an optimization. Similar to the GCC stability, one

can define the stability of any subgraph €2 of interest:

£
Saltlg) = I )@@l =D (1 —[u@l")', (11

t=1 ieQ

where u is the mean-field probability that a given end of a
randomly chosen link leads to a cluster of finite size and is given
by Eq. (3). Then the reinforcement strategy is defined in using
extra resources, e.g., additional nodes or links to maximize the
Sa(€]g) objective function. It is also immediately clear that
the optimal reinforcement strategies depend on the number
of expected adverse events £: if the system is designed to
withstand a single adverse event, the reinforcement strategy
should be aimed at maximizing the expected GCC size. On the
other hand, if the system is designed to withstand multiple
adverse events, the investments should be made to further
reinforce or create the anchor nodes.

The mean-field analysis offered here has important limita-
tions. The generating function approach works well for locally
tree-like networks, while real systems contain significant
amount of short loops. Likewise, it is now understood that
heterogeneous distributions in particular can have considerable
diversity in their topologies [22] and that the hubs in these
networks are not always centrally located. As a result, we do
notice significant deviations for individual node probabilities
in real networks, Fig. 1(d), that can’t be explained by the
mean-field approach.

Finally, within the engineering sciences there is a gen-
eral understanding that the organization of many real-world
networks is governed by processes that are not sufficiently
characterized by stylized models of random networks and
that these differences can have important implications for
understanding robustness and vulnerability [23,24]. There
is a growing body of work in large-scale optimization and
game theory that leverages the specialized structure of these
networks to discover specific vulnerabilities and to identify
limited defensive investments that can maximally increase
robustness and resilience (e.g., Refs. [4,25]). Bridging the gap
between the specific recommendations of these highly detailed
models and the insights from more general models described
here is an important goal for ongoing research.
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APPENDIX A: REAL NETWORKS

We test our GCC stability results on two real networks.
The first real network is the complete US airport network in
2010, where nodes are US airports and an undirected link
is established between two airports if there is a commercial
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flight between them. The network consists of N = 1,574
nodes and E = 28,236 links, and is publicly available from
https://openflights.org/ and https://toreopsahl.com/datasets/.

The second is the network of human protein-protein interac-
tions (PPI) that we derived from the BioGRID database [26].
We represent the PPI dataset as a two-layer interdependent
network, where layer A is formed by direct protein interactions,
and links in layer B correspond to physical associations
between proteins. In our analysis we focus on the mutual
connected component of the PPI network that contains N =
11,365 nodes in each layer with the average degrees of (k4) =
11.00 and (kg) = 25.38, respectively.

APPENDIX B: GCC STABILITY OF SINGLE LAYER
NETWORKS CLOSE TO THE CRITICALITY

Here, we consider the asymptotic behavior of S(¢|q) for
three types of network models: regular, ER, and SF network
models.

1. Regular network models

All nodes of a regular network model have the same degree
ko, resulting in p(k) = §(k,ko), where 6(m,n) is the Kronecker
delta. Then, GCC stability of a regular network is trivially

S¢lg) =(1 — u(q)ko)e for all u(g) values.

2. ER network models
ER network models are characterized by the Poisson degree
distribution, p(k) = e~*(k)*/k!, where (k) = p(N — 1) is
the average degree. In order to obtain the asymptotic expression
for S(£|q) we first expand (1 — u(q)k )l into the binomial sum.
Then by reversing the summation order in Eq. (4) we obtain

¢
£
Slg) =Y ( )(—1)"’ exp (—(k)(1 —u(g)").  (BI)
m=0 m
Close tothe criticality e(¢) = 1 — u(q) < 1 and therefore, 1 —
u(g)" ~ e(q)m. Plugging this into Eq. (B1) results in

Slg) ~ [1 — e @R ~ 1 —u(@)™1".  (B2)

3. SF network models

SF network models are characterized by power-law degree
distributions p(k) ~ (y — l)k(};_lk‘y, where k is the smallest
degree and y > 2.

To deduce the asymptotic behavior of S(€|g) we first
approximate u(g)* in Eq. (4) as e %@, where €(q) =1 —
u(q) < 1. Then, by approximating the summation in Eq. (4)
with an integral we obtain

Slg) ~ (y — Dle(@kol” ™ Ie(y), (B3)

o0
I(y) = / XV -
€(q)ko

Further, to deduce the asymptotic behavior of Eq. (B4) we note
that the function [1 — e~~]" is monotonically increasing from
0 to 1 on the interval 0 < x < oo. It is useful to think about
[1-— e_"][ as a smoothed version of the step function 6(x —

e *1%x. (B4)

In £). To appreciate the shift we center the function [1 — e
at the position xy where it equals e~!. From [1 — e"“)]e =e!
we obtain e = 1 — ¢~!/* leading, when £ > 1, to

xo=In¢ (B5)

and thereby explaining the In £ shift. To appreciate the width of
the quasi-step function [1 — e1" we define the left boundary
through [1 — e ] = ¢™™ and the right boundary through
[1 — e *+]* =1 — e~™. These definitions are reasonable if we
choose M > 1. From these definitions

=Inf—InM, x, =Inf+ M. (B6)

Thus the quasi-step function [1 — e *]¢ has the following
properties:

(1) Ttis essentially vanishes when 0 < x < x_.

(2) It monotonically increases from O to 1 in the interval
X_ <X < Xy.

(3) Itis essentially equal to 1 in the interval x > x.

We next establish the upper and lower bounds for the
integral in Eq. (B4). The upper bound is obtained by replacing
[1-— e’x]é by unity when x > x_ and e~™ when kqe(q) <
Xx < x_; the lower bound is obtained by replacing [1 — e‘x]e

by 1 — e ™ when x > x, and zero when 0 < x < x,. Since
fxto ;’_f — yl—l xyl,l , the bounds are
L= oy < [ e !
7T SV -DLY)s\ 53¢ - )
X X! [e(g)kol” ™!

(B7)

Since both x. — In £ in the {¢£, M} — oo limit, such that 1 <
M <« £, Ii(y) ~In¢'~7 and

k =y
oe(q)] ’ (B8)

P(tlg) ~ [ e

see Fig. 3.

APPENDIX C: GCC STABILITY OF INTERDEPENDENT
NETWORKS

Link percolation results for interdependent networks can
be recovered from Ref. [21] by setting the fraction of active
nodes to 1 and replacing degree generating functions with
those for link percolated networks. Indeed, let us introduce
the generating functions for degree distributions of layers A
and B as

Gy P = Zp Az (R)x", (C1)
G By = (k+ D k41 2
AP () ;(km >p{AB( +xk, (2)

where p4(k) and pg(k) are the degree distributions of domains
A and B, respectively, while (k4) and (kp) are the correspond-
ing average degree values.

Then the expected size of the mutual connected component
oo 18 given by

Hoo = XY, (C3)
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FIG. 3. Stability S(¢|q) as a function of (a) £ and (b) Log,(¢) shown at (GCC) = 0.2 for the (red squares) ER model, (blue triangles) SF
model, and (green circles) the airline network. All parameters are those of Figs. 1(b) and 1(c) in the main text. The dashed line in (b) corresponds

to the asymptotic regime of S(£|g) ~ [Ln£]~'* prescribed by Eq. (6).

where the mean-field parameters x and y can be regarded as
the effective fractions of nodes belonging to the GCC of layers
A and B, respectively, and are given by the system of four
equations:

x=1=G{ -y = fa)), (C4)
y=1=G§1 —x(1- fg), (C5)
fa =G —y(1 = fa)), (C6)
fo =GPl —x(1— fp)). (C7)

Here, parameters f4 and fp in analogy with the single layer
case can be regarded as the effective probabilities that a given
end of a randomly chosen link in layer A or B, leads to a
connected component of a finite size.

By making use of Eqs. (C4) and (C5) one can rewrite the
expression for the mutual connected component as

too = (1= G = y(1 = faN)(1 = G5 (1 = x(1 = f3))),
(C8)

from which one can immediately extract the individual node
probability to appear within the mutual GCC:

p=(1=u) (1 —uy),
where k4 and kp are the degrees of the two interdependent
nodes in layers A and B, and the mean-field parameters u 4

ka
A

kg
—u'y

(€9

and u p are given by

ug =1—=y(1 = fa),

up = 1 —X(l—fB).

(C10)
(C11)

The same equations hold in the link percolation case, except

the original generating functions G}é ’1‘?} (x) need to be replaced
with those for percolated layers:

Giby(@®) =G (1= (1 — g1 —x),  (CI2)

Gioy() =Gl (1 — (1 —gp)(1—x), (Cl3)
where g4 and g are the fractions of initially deactivated links
in layers A and B, respectively.

After a series of straightforward substitutions and simplifi-
cations the final result reads

p = (1 = [ua(@I*)(1 — [up(@]*®), (C14)

where

L—us=(10=q0)(1 —Glwa))(1 — G up)),
1—ug=(0-gp)(l — Glup)(1 — G{un),

reproducing Egs. (8) and (9) in the main text.
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