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The dichotomy between minimum time and minimum effort is well known. Minimum-time solutions are

synonymous with large effort, whereas minimum effort solutions imply large time horizons. Shortest-time attitude

maneuvers are minimum-time slews for agile reorientation of space vehicles. Intuition and experience would suggest

that such maneuvers are expensive in terms of effort. This paper will show that this is not the case: Agile maneuvers

exist within the energybudget associatedwith conventional attitude control systems.Moreover, even for conventional

slew strategies (such as eigenaxis), energy requirements can be reduced. The energy savings are realized via a

reallocation of the control effort by exploiting null motions within the control space, over the maneuver trajectory.

A cost functional for minimum-energy slews is developed that is in line with true energy cost associated with reaction

wheel-based attitude control systems. This energy metric is incorporated into a family of constrained nonlinear

optimal control formulations whose solutions present a relationship between transfer time and energy. Both agile

(off-eigenaxis) slews and conventional (eigenaxis) slews are studied.A trade space between transfer time and energy is

identified, which can be exploited for mission operations, planning, and design.

I. Introduction

M INIMUM-TIMEattitudemaneuvers have beenwidely studied

in the literature. The survey paper by Scrivener and Thompson

[1] describes the state of the art up to 1994. The early work, which

focused largely on kinematic motion planning (under the assumption

of a spherical inertia tensor), showed that the slew time improvement

was typically small (less than 1% for a 30 deg maneuver) [2]. Later,

Shen andTsiotras [3] and Proulx andRoss [4] studiedminimum-time

maneuvering for the cases of axisymmetric and nonsymmetric rigid

bodies, respectively. In this work, higher performance was obtained

by considering the full dynamics of the spacecraft. Fleming [5] and

Fleming et al. in [6–9] further advanced the analysis to the more

realistic cases of spacecraft equipped with various actuators, from

magnetic torquers to reaction wheels and control moment gyros. In

2010, flight tests on the TRACE spacecraft showed that shortest-time

maneuvers (slews designed to exploit the spacecraft dynamics) can

indeed enhance the performance of practical space systems [10,11].

In the aforementioned body of work, the primary focus was on

enhancing spacecraft agility by reducing maneuver time. Experience

and intuition would suggest that the price to be paid for a reduction in

slew time is a significant increase in the energy thatmust be expended

to execute the slew. Energy is a fundamentally limited resource of a

spacecraft, directly affecting its utility and mission life. With this in

mind, operational implementation of intuitively “inefficient” agile

maneuvers may seem contrary to the stringent requirements on the
size, weight, and power of a satellite attitude control system. The goal
of this paper is to explore the relationship betweenmaneuver time and
energy for reactionwheel attitude control to determine the boundaries
of the energy budget for agile attitude control. To accomplish this
task, it is necessary to identify suitable energy metrics for measuring
the consumption of agilemaneuvering schemes. Existing research on
minimum-energy attitude maneuvers for reaction wheel spacecraft
has been approached from a variety of perspectives concerning the
way in which reaction wheel power is modeled and whether energy
consumption is minimized instantaneously (a local approach) or over
an entire trajectory (a global approach).
The local approach minimizes the instantaneous reaction wheel

power by static optimization. In the literature, various proxies for
instantaneous reaction wheel power have been employed. In [12,13],
solutions were developed that minimize the reaction wheel
mechanical power for a spacecraft with a redundant actuator array.
This was done by allocating the body frame control torques
determined by a given attitude control law to the individual reaction
wheels. In [12], the L2 norm of reaction wheel mechanical power τΩ
was minimized, whereas in [13], mechanical power was minimized
under the assumption that mechanical energy may be extracted when
braking a wheel. The instantaneous L1 norm of mechanical power
was considered in [14] as a part of a dissipative power reduction
allocation scheme.
The global approach minimizes the energy over the entire

maneuver trajectory (i.e., the integral of the instantaneous power) by
constructing and solving an optimal control problem [15–17]. For
example, in [15], the cost functional was constructed to minimize the
integrated reaction wheel copper loss I2R, the current-squared times
winding resistance. Reaction wheel friction losses were not
considered, and so minimizing the copper loss was analogous to
minimizing theL2 norm of the reaction wheel motor torque τ. Global
optimization using a quadratic performance index based on reaction
wheel mechanical power was considered in [16] for a single-wheel
slew and in [17] for a three-wheel array. In reality, a model for
reaction wheel power consumption is more complicated than the
simplified models based on mechanical power or copper loss would
suggest. Three terms should be considered simultaneously: the
copper loss, friction loss, and mechanical power. A complication,
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however, is that such a model additionally requires that only the
positive part of the reaction wheel power be considered because
energy is only consumedwhen thewheelmotors act as a load. Energy
generated when the wheel motors act as sources, the negative part of
the power equation, is typically shunted to ground. The resulting
nonsmooth optimal control problem can be challenging to solve, thus
motivating the use of proxies for power as described earlier.
In this paper, the relationship between maneuver time and energy

for a practical reaction wheel attitude control system is studied. The
total amount of energy consumed to complete a slew is computed by
identifying, at each instant of time, whether a motor is acting as a
consumer or a generator and integrating only the positive part of the
reactionwheel power equations. It is observed that, for a zero-net bias
momentum control system, where the reaction wheels are operated
about a nominally fixed bias rate, the reaction wheel electrical power
input equation can be reduced to a quadratic form comprising
only dissipative terms. Thus, a smooth cost functional can be written
based on the cumulative dissipative losses. This energy metric
is incorporated into a constrained nonlinear optimal control
formulation that is solved using pseudospectral optimal control
theory [18]. The constructed optimal control problem formulation
directly considers the nonlinear dynamics of the rotating spacecraft,
along with state and control constraints pertinent to an operational
environment, for example, reaction wheel speed bias, limits on
achievable torque and momentum, as well as saturation of the rate
gyros. The relationship between transfer time and energy is
determined by solving a series of fixed-time problems for both agile
(off-eigenaxis) slews and conventional (eigenaxis) slews. The results
indicate that agile maneuvers can, in fact, be performed within the
energy budget associatedwith a conventional attitude control system,
a counterintuitive result. Moreover, energy requirements for
conventional slew strategies (such as eigenaxis) can be reduced.
The dichotomy between minimum time and minimum effort is
addressed via the additional degrees of freedom associated with the
redundant reactionwheel array. In particular, the results show that the
energy savings are realized via a reallocation of the control effort by
exploiting null motions within the control space. Thus, a trade space
between transfer time and energy exists that can be exploited for
mission operations, planning, and design.
The remainder of this paper is organized as follows. In Sec. II, a set

of optimal control problems are formulated to minimize the energy
required to perform a rest-to-rest maneuver under various constraints
in linewith an operational setting. Section III analyzes theminimum-
energy maneuvers, and elaborates on the mechanism for energy
reduction by an analysis of the reaction wheel null space. Section IV
presents the results on the nonlinear relationship between transfer
time and energy required to perform a maneuver for both agile
(off-eigenaxis) and conventional (eigenaxis) slews. The trade space
between energy and transfer time between for various maneuver
types is identified and explored. Finally, conclusions are given
in Sec. V.

II. Minimum-Energy Problem Formulation

This section presents the development of an optimal control
problem formulation to minimize the energy required to perform
reaction wheel attitude maneuvers under various constraints. First,
the rotational dynamics of the spacecraft is briefly reviewed.
Operation of the reaction wheel motors is described next so that
appropriatemetrics for electrical energy consumption can be derived.
Finally, the optimal control problem is formulated and the necessary
conditions associated with Pontryagin’s minimum principle are
derived.

A. Spacecraft Attitude Control Model

Consider a spacecraft with Nrw reaction wheels. The total angular
momentum H ∈ R3 of the spacecraft system with respect to the
body-fixed frame can be decomposed as

H � Hsc �Hrw (1)

whereHsc ∈ R3 is the total angular momentum of the spacecraft, and

Hrw ∈ R3 is the total angular momentum of the reaction wheels

projected into the body-fixed frame. Vectors Hsc and Hrw are

Hsc � Jscω (2)

Hrw � Ahrw (3)

where Jsc ∈ R3×3 is the spacecraft inertia tensor, ω ∈ R3 is the

angular velocity of the spacecraft, A � �a1j · · · jaNrw
� ∈ R3×Nrw is

the reaction wheel projection matrix, and hrw ∈ RNrw is the reaction

wheel angular momentum vector referenced to the individual wheel

spin axes.
Defining Jrw ∈ RNrw×Nrw as a diagonal matrix, whose ith entry is

the inertia of the ith reaction wheel, and defining the angular rates of
the reaction wheels relative to their spin axes as Ωrw ∈ RNrw gives

hrw � Jrw�Ωrw � ATω� (4)

where the term JrwA
Tω accounts for the angular momentum

increment resulting from the motion of the spacecraft relative to the

wheels. Because reaction wheels are normally operated at a bias rate,

Ωrw;i ≫ aTi ω, and so Eq. (4) may be approximated as

hrw � JrwΩrw (5)

The time rate of changewithmomentum in the body-fixed frame is

determined by the application of the transport theorem [19].

Assuming that Jsc, Jrw, and A are time invariant, we have

_Hsc � Jsc _ω� ω × Jscω (6)

_Hrw � Aτrw � ω × AJrwΩrw (7)

where τrw � Jrw _Ωrw ∈ RNrw is the torque generated by each reaction

wheel about its spin axis. Assuming the absence of external

disturbance torques, angular momentum is conserved and the time

rate of change to the system’s total angularmomentumwith respect to

the inertial frame is null. Thus, _Hsc � _Hrw � 0, giving

Jsc _ω � −Aτrw − ω × �Jscω� AJrwΩrw� (8)

Combining Eq. (8) with the derivative of Eq. (5), the rotational

dynamics of the spacecraft with Nrw wheels can be written in the

following matrix form:

�
_ω
_Ωrw

�
�

�
J−1sc �−Aτrw − ω × �Jscω� AJrwΩrw��

J−1rw τrw

�

To complete the spacecraft model, the attitude of the spacecraft is

represented using quaternions parameterized as

q �
�
e1 sin

�
Φ
2

�
; e2 sin

�
Φ
2

�
; e3 sin

�
Φ
2

�
; cos

�
Φ
2

��
T

∈ R4

where e � �e1; e2; e3�T is the eigenaxis and Φ is the rotation angle

about the eigenaxis. The quaternion kinematic differential equations

are described by the following system [20]:

_q � 1

2
Q�ω�q

where Q�ω� is a skew-symmetric matrix given as

Q�ω� ≜

2
664

0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

3
775
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B. Electrical Energy Model and Energy Metrics

From the point of view of minimizing energy consumption for

slew, it is reasonable tomodel the electricmotor of a reactionwheel as

a dcmotor in steady state. Thus, it is assumed that inductive losses are

small compared with the dc power loss in the windings. In the steady

state, the load torque is taken as the sumof the commanded-torque τrw
and a speed-dependent friction term. The angular velocity of the

motor shaft is taken as the speed of the reaction wheelΩ. Under these
assumptions, the steady-state dc motor equations are

V � IR� KVΩ; KTI � τrw � βΩ

In the preceding equations,V is armature voltage, I is the armature

current, R is the armature resistance, KV is the back electromotive

force (EMF) constant, KT is the motor torque constant, and β is the

viscous friction coefficient. For SI units, we note that KT � KV .

When determining the electrical power at any instant in time, three

terms appear: an armature copper-loss term that represents power lost

as heat in the windings, a mechanical power term, and a term

representing the dissipative loss due to friction:

P�t� � V�t�I�t� � I2�t�R� KVΩ�t�I�t�;

� R

K2
T

�τrw�t� � βΩ�t��2|����������������{z����������������}
Copper Loss

� τrw�t�Ω�t�|�����{z�����}
Mechanical Power

� βΩ2�t�|�{z�}
Friction Loss

(9)

During a slew, each reaction wheel motor may alternate between

being a load [Pi�t� > 0] or acting as a source [Pi�t� < 0]. In a

regenerative system, it is assumed that the spacecraft batteries can be

recharged when any motor acts as a source [12,13]. In practice,

regenerative methods are not implemented, and sowhen a motor acts

as a source, the energy is dissipated through a ballast resistor [21] and

cannot be recovered. From the preceding, the total instantaneous

electric power exerted for Nrw reaction wheels, is given as

P��t� �
XNrw

i�1

fVi�t�Ii�t�g� (10)

where f⋅g� is defined as

ff�t�g� �
�
f�t� if f�t� > 0

0 if f�t� ≤ 0

Integrating Eq. (10) over the transfer time [0,T] thus represents the
total electrical energy required to perform a slew:

E� �
Z

T

0

P��t� dt

Although E� represents the energy consumed to perform a

maneuver, taking E� as the cost functional in an optimal control

problem poses a numerical challenge since P� is a nonsmooth

function. Alternatively, for each reaction wheel, we may writeP� �
�1∕2��P � jPj� ≤ 1∕2�τrwΩ� jτrwΩj � 2Dloss� where Dloss is the

instantaneous dissipative loss in Eq. (9). Integrating this equation

term by term (to evaluate energy consumption over a slew) gives

E��T� ≤ Jrw
4

�Ω2
rw�T� − Ω2

rw�0�� �
Z

T

0

�jτrw�t�Ωrw�t�j
2

�
dt

�
Z

T

0

�
R

K2
T

�τrw�t� � βΩrw�t��2 � βΩ2
rw�t�

�
dt (11)

If it is assumed that each slew begins and ends with the samewheel

bias, the first term in Eq. (11) is null, leaving

E��T� ≤
Z

T

0

�jτrw�t�Ωrw�t�j
2

�
dt

�
Z

T

0

�
R

K2
T

�τrw�t� � βΩrw�t��2 � βΩ2
rw�t�

�
dt (12)

which may be further decomposed as

E��T� ≤
Z

T

0

�jτrw�t�Ωrw�t�j
2

�
dt� Closs � F loss (13)

where

Closs �
Z

T

0

I2�t�R dt (14)

F loss �
Z

T

0

Ω2
rw�t�β dt (15)

are the cumulative dissipative losses due to heating of the motor

windings Closs and wheel friction drag F loss.
FromEq. (13), it is evident that a cost functional thatminimizes the

dissipative losses would also tend to reduce the integral involving the

absolute value because the quadratic terms penalize large values of

τrw andΩrw. Therefore, minimizing the cumulative dissipative losses

serves as a useful proxy for energy consumption over a slew. Thus, an

appropriate smooth cost functional for optimal control is to minimize

Eloss
loss �

XNrw

i�1

Closs;i �
XNrw

i�1

F loss;i (16)

We note three remarks by taking Eloss
total as the cost functional:

1) Trajectories that minimize Eloss
total minimize dissipative losses, and

therefore the amount of heat the spacecraft has to reject is minimized.

2) Although Eq. (16) ultimately provides an estimate for energy

consumption, it is always possible determine the true energy

consumption E� for an optimized slew a posteriori for comparison

with conventional maneuvers. 3) The metric Eloss
total serves to measure

the electrical power under the assumption of a 100% regenerative

scheme [22].

C. Optimal Control Problem Formulation

In this section, the energy cost functional developed in the previous

section is used toward formulating an optimal control problem for

minimizing the electrical energy required for slew. Rest-to-rest

maneuvers (i.e., ω0 � ωf � 0 ∈ R3) from an initial orientation

q0 ≜
�
e0 sin

�
Φ0

2

�
; cos

�
Φ0

2

��
T

∈ R4

to a final orientation given by

qf ≜
�
ef sin

�
Φf

2

�
; cos

�
Φf

2

��
T

∈ R4

are considered. By a simple change of the boundary conditions, other

operational slew scenarios could also be evaluated.
The optimal control problem formulation incorporates practical

constraints on both the state and the control variables that are in line

with typical operations: 1) The reaction wheels start and end at the

same bias speedsΩbias. 2) Per axis limits,ωmax are imposed upon the

spacecraft angular rate to avoid saturation of the rate gyros.

3) Hardware constraints are considered for the reaction wheels with

respect to momentum storage Ωmax and maximum torque τmax

authority for each reaction wheel.
The optimal control problem formulation, presented as follows, is

hereafter referred to as the minimum-energy (ME) formulation:
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�ME�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

State: x � �q;ω;Ωrw�T ∈ R7�Nrw ;Control:u � τrw ∈ RNrw ;

Minimize: J�x�⋅�; u�⋅�� �
Z

T

0

XNrw

i�1

�
R

K2
T

�τrw;i�t� � βΩrw;i�t��2 � βΩ2
rw;i�t�

�
dt

Subject to:

2
664

_q

_ω

_Ωrw

3
775 �

2
6664

1
2
Q�ω�q

J−1sc

�
−Aτrw − ω × �Jscω� AJrwΩrw�

	
J−1rw τrw

3
7775

x�0� � �q0;ω0;Ωbias�T ∈ R7�Nrw ; x�tf� � �qf;ωf;Ωbias�T ∈ R7�Nrw

jωij ≤ ωmax; ∀ i � 1; 2; 3

jΩrw;ij ≤ Ωmax; ∀ i � 1; : : : ; Nrw

jτrw;ij ≤ τmax; ∀ i � 1; : : : ; Nrw

(17)

The state space of the system consists of the attitude of the
spacecraft, angular velocity of the spacecraft body, and angular

velocities of the reaction wheels (about their individual spin axis). The
control vector is taken as the vector of individual reaction wheel
torques. The upper bound on the transfer time is given by T. For
problem ME to be feasible, the value of T must be, at minimum, the
transfer timeof the shortest-timemaneuver (denoted tSTM) for the same
boundary conditions. For a minimum-energy problem, it is typical for

the maneuver time horizon to be longer than shortest time (i.e.,
T > tSTM). From this point of view, a minimum-energy shortest-time

maneuver can be determined by setting T � tSTM. We note that tSTM
can be determined by a simple modification to the cost functional by
rewriting J�x�⋅�; τrw�⋅�; tf� � tf and allowing 0 ≤ t ≤ ∞.
Because problemME does not impose a motion constraint to force

an eigenaxis slew, off-eigenaxis motions are allowed if they are
advantageous with respect to meeting a given constraint on the slew
time. The analysis to follow is, however, also concerned with

evaluating the energy requirements of eigenaxis slew profiles against
the conventional eigenaxis control logic [20]. To achieve an eigenaxis

maneuver under a slew rate constraint, theME formulation presented
in Eq. (17) requires twomodifications. To constrain themotion of the

spacecraft, the angular velocity vector of the spacecraft must always
be collinear with the eigenaxis [23]. Including the following path
constraint as part of problem ME achieves this goal:

ω�t� × e � 0 ∈ R3; ∀t

It is also necessary to enforce a spherical slew rate constraint. This
can be done by including an additional path constraint of the form
kwk ≤ ωmax. By inserting these two path constraints, both a shortest-
time eigenaxis-constrained maneuver, as well as a minimum-energy
eigenaxis maneuver (ME-EAM) may be determined.
Problem ME and its variants may be readily solved using

computational optimal control algorithms. In this paper, we use the

pseudospectral optimal control theory [18,24–26] implemented in

DIDO [27]. An attractive feature of pseudospectral optimal control

theory is the ability to generate adjoint variables from the numerical

solutions via the CovectorMapping Theorem [28–30]. This enables the

verification of theoptimality of numerical solutions against Pontryagin’s

minimum principle. In the next section, we briefly describe some key

necessary optimality conditions. Propagation tests (see [27]) should also

be performed to verify the convergence of each solution.

D. Necessary Conditions for Optimality

For the sake of brevity, only the necessary conditions pertaining to

problem ME, given in Eq. (17), are considered in this section. The

necessary conditions for the variants of problemME may be derived

analogously.
At the heart of the Pontryagin’s minimum principle is the

Hamiltonian minimization condition (HMC). The HMC requires for

an extremal controlu� � τrw to be optimal, thatu�mustminimize the

control Hamiltonian at each instant of time. Let λq ∈ R4, λω ∈ R3,

λΩ ∈ RNrw be the costate variables for the respective states. TheHMC

for problem ME can be summarized as

�HMC�

8>>>>>>>>>>><
>>>>>>>>>>>:

Min: H�λ; x; u� � Ploss
total�x; u� �

h
λTq ; λ

T
ω; λ

T
Ω

i
2
664

1
2
Q�ω�q

J−1sc �−Au − ω × �Jscω� AJrwΩrw��
J−1rwu

3
775

Subject to: −ωmax ≤ ωi ≤ ωmax; ∀ i � 1; 2; 3

−Ωmax ≤ Ωi ≤ Ωmax; ∀ i � 1; : : : ; Nrw

−τmax ≤ ui ≤ τmax; ∀ i � 1; : : : ; Nrw

where

Ploss
total�x; u� �

XNrw

i�1

R

K2
T

�τrw;i � βΩrw;i�2 � βΩ2
rw;i

An application of the Karush–Kuhn–Tucker (KKT) conditions on

the HMC results in the following complementarity conditions, which

require each component of ω, Ω, u and the associated KKT

multipliers μ ≜ �μω; μΩ; μu�T ∈ R3�2Nrw to satisfy
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μωi

8>><
>>:
≤ 0 ωi � −ωmax

� 0 −ωmax < ωi < ωmax

≥ 0 ωi � ωmax

; μΩi

8>><
>>:
≤ 0 Ωrw;i � −Ωmax

� 0 −Ωmax < Ωrw;i < Ωmax

≥ 0 Ωrw;i � Ωmax

;

μui

8>><
>>:
≤ 0 ui � −τmax

� 0 −τmax < ui < τmax

≥ 0 ui � τmax

(18)

Furthermore, theHamiltonian evolution condition requires that the
lower Hamiltonian be constant for all time [i.e., �∂H∕∂t� � 0 ∀t].
To illustrate the application of the complementarity condition and

Hamiltonian evolution condition as tests for optimality, problemME
was solved for a 180 deg z-axis slew. The associated spacecraft
parameters are given in the Appendix. The maneuver time was taken
to be T � 279.9 s (the minimum transfer time for this particular
maneuver), thereby considering a minimum-energy shortest-time
maneuver. The solution gave a value forE� as 143.9 J. The associated
attitude, angular rate, and reaction wheel speed profiles are shown in
Fig. 1. The analysis of theminimum-energy shortest-timemaneuvers
is compared with standard shortest-time maneuvers in Sec. III.A.
Figure 2 shows the satisfaction of the necessary conditions for the

maneuver of Fig. 1. The time history of the lower Hamiltonian is
shown in Fig. 2a. For a minimum-time problem, Pontryagin’s
minimum principle states that the value of the lower Hamiltonian
should be −1 over the entire time horizon [0, T]. Although the lower
Hamiltonian in Fig. 2a is observed to be nominally constant, as
required by the Hamiltonian evolution condition, the value is not −1
as predicted by theminimumprinciple. This discrepancy is a result of
the fact that problemMEwas solved as a fixed-time problem instead
of aminimum-time problem. For the case of a fixed-time problem, the
transversality conditions admit other constant values for the
Hamiltonian. Hence, the valueH�t� � −36.1 J∕s in Fig. 2a satisfied
the necessary condition. Figure 2b shows the complementarity
condition on the spacecraft angular rateω2. As can be seen, the KKT
multiplier varies in accordance with Eq. (18), which specifies that
μωi

� 0 unless the constraint on ωi is active. Profiles for the other
spacecraft body axes are similar, and so the results are omitted for
brevity. The specifics on the other necessary conditions, such as the
details on transversality, Hamiltonianvalue conditions, etc., although
verified, have been omitted for brevity.
In addition to verifying the satisfaction of the necessary conditions

for each candidate optimal control solution, it is also necessary to
demonstrate the feasibility of candidate optimal controlu� to fully vet
the numerical solutions (see the discussion on verification and
validation in Ross [27]). Feasibility analysis is carried out by
propagating u� through the dynamics given in Eq. (17) using a
standard Runge–Kutta (RK) integrator. The candidate optimal
control is deemed feasible if and only if the solution returned by the
RK integrator coincides with the solution returned by the numerical
solver to within a predefined tolerance (e.g., ϵ < 10−6, where ϵ is the
error). All of the numerical solutions to problemMEpresented in this
paper have been verified against the necessary conditions and have
been deemed feasible per the propagation test.

III. Identifying the Mechanism for Energy Reduction

This section analyzes the minimum-energy solutions to the
ME problem given in Eq. (17) for the case of minimum-time
(off-eigenaxis) slews. The results, however, are also applicable to
conventional eigenaxis maneuvering schemes.

A. Comparison with the Shortest-Time Maneuver

The shortest-time maneuver (STM) [10,11,31] is a time-optimal
attitude maneuver determined as the solution to an optimal control
problem. The STM maximizes the agility of a spacecraft by taking
full advantage of the inertia ellipsoid [18], nonlinear rotational
dynamics, and any operational constraints imposed system. To solve
the STM, a problem formulation analogous to problem ME is
employed with J�x�⋅�; u�⋅��⋅�; tf� � tf. For the same 180 deg z-axis

slew example as in the previous section, we obtain the solution given
in Fig. 3. Comparing the STMof Fig. 3with theME slewof Fig. 1,we

note the following: 1) the spacecraft attitude and angular rate profiles
have not changed; 2) the reaction wheel speed profiles have changed.
The results illustrate what is obvious in retrospect. To effect the
necessary momentum exchange with the spacecraft, the solution to

the minimum-time maneuvering problem (Fig. 3) must admit a

Fig. 1 Minimum-energy solution for an agile attitude maneuver
(a minimum-time maneuver).
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feasible reaction wheel speed profile. However, due to the additional
degree(s) of freedom inherent to the redundant reaction wheel array,
feasible reaction wheel speed profiles may not be unique. In
particular, if the null space of reaction wheel projection matrix A is
nontrivial, there exists an infinite number of feasible reaction wheel
speed profiles for a given slew.Hence, for a givenmaneuver time, it is
possible to reduce the energy consumed by searching the reaction
wheel null space to eliminate losses associated with the original
minimum-time solution by reallocating the control. This suggests
that the relationship between the two different cost functionals that
define the trade space of a redundant attitude control system is
atypical. For example, conventional wisdom would suggest that
reducing energy consumption would increase transfer time.
However, in the case of a redundant attitude control system, it is in
fact possible to reduce energy consumption without increasing the
transfer time. Although an agile off-eigenaxis maneuver is
considered here, it will be shown later that the same mechanism
can be exploited for reducing the energy required to perform
eigenaxis maneuvers.
The breakdown of the energy requirements for the maneuvers of

Figs. 1 and 3 are summarized in Table 1. In Table 1, the cumulative
electrical energy E� is given along with the energy dissipated as heat
Eloss
total and its two components of copper loss and friction loss.

Although eachmaneuver has a transfer time of 279.9 s, the slews have
significantly different energy requirements, as seen by the difference
in the values of E�. By solving problem ME, it is possible to reduce
the energy required by approximately 11%. The metrics in Table 1
show that solving the ME problem reduces the overall energy that is
dissipated as heat, as seen by the copper loss and friction lossmetrics,
by approximately 11%. Bymarginally penalizing copper loss by 2%,
the losses in overcoming wheel friction drag are substantially
reduced, by 30%. Therefore, there exist less demanding shortest-time

trajectories with respect to energy requirements as well as amount of

generated dissipative losses.

B. Exploiting the Null Space to Reduce Energy Requirements

In this section, we further explore the utility of the reaction wheel

null space and develop a simplified problem that facilitates real-time

implementation of (sub)optimal null space solutions for reducing
energy requirements. Let {qref�t�, ωref�t�,Ωref�t�, τref�t�}, t ∈ �0; tf�
be an arbitrary feasible reference state-control profile that satisfies the

Fig. 3 Typical shortest-time attitude maneuver.

Fig. 2 Validation of example necessary conditions upon the solution to
problem ME depicted in Fig. 1.
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dynamics, boundary conditions, and constraints given in Eq. (17). By
exploring null motion explicitly, we will show in the following that
the energy consumption of any given feasible solution can be

improved without changing the reference quaternion qref�t� or the
body rate ωref�t� profile.
For the tetrahedron wheel configuration with projection matrix A

given in Table A1, it is straightforward to show that

null�A� � spanf�1; 1; 1; 1�Tg ⊂ R4

Consider a modification on the reference control τref in the null
space of matrix A

τ�t� � τref�t� � δτ�t� ⋅ �1; 1; 1; 1�T

where δτ�t�:�0; tf� → R is an augmentation factor to the reference

control through null motions. From the dynamics, it is easy to show

that the modified control τ�t� produces the same quaternion qref�t�
and the body rate ωref�t� as the reference feasible trajectory.

Similarly, the effect of the modified control on the wheel speed is

given by

Ω�t� −Ωref�t� �
Z

t

0

δτ�s� ds ⋅ J−1rw �1; 1; 1; 1�T

For simplicity in exposition, we assume all reaction wheels are

identical, therefore J−1rw � cI ∈ RNrw×Nrw , where c ∈ R>0 is the

multiplicative inverse of the inertia of a reaction wheel. (If wheels are

not identical, so that Jrw is not a multiple of the identity matrix, the

following analysis can be easily adapted.) It follows that

Ω�t� � Ωref�t� � δΩ�t� ⋅ �1; 1; 1; 1�T , where δΩ is a one-dimen-

sional function satisfying

_δΩ � c ⋅ δτ (19)

Because each wheel is assumed to begin and end with the same

angular velocity, a practical operational constraint is given by the

boundary conditions in Eq. (17), and so δΩ must have

δΩ�0� � δΩ�tf� � 0 (20)

Now it is clear that any function pair (δΩ�t�, δτ�t�) that

simultaneously satisfies the one-dimensional linear dynamics in

Eq. (19), boundary condition (20), and constraints

jΩref;i � δΩj ≤ Ωmax;

jτref;i � δτj ≤ τmax; i � 1; 2; : : : ; Nrw

(21)

produces a trajectory {qref�t�,ωref�t�,Ω�t�, τ�t�} that satisfies all the
constraints of the minimum-energy optimal control problem given in

Eq. (17). After some straightforward derivations, the energy

consumption along such feasible solutions, generated through null

motions, is given by

J � R

K2
T

XNrw

i�1

Z
tf

0

�δτ�t� � τref;i�t��2 � k�δΩ�t� �Ωref;i�t��2 dt (22)

where k � β2 � βK2
T∕R.

Based on this observation, it is possible to start from any given

feasible solution of Eq. (17) (e.g., shortest-time maneuvers) and seek

a function pair (δΩ�t�, δτ�t�)tominimize the energy Eq. (22), without

changing the spacecraft attitude and body rate trajectories. The

function pair (δΩ�t�, δτ�t�) can be determined by the following

optimal control formulation, hereafter referred to as the null motion

(NM) problem:

�NM�

8>>>>>>>>>>><
>>>>>>>>>>>:

State: δΩ ∈ R;Control:δτ ∈ R

Minimize: J�δΩ�⋅�; δτ�⋅�� � R

K2
T

XNrw

i�1

Z
tf

0

�δτ�t� � τref;i�t��2 � k�δΩ�t� � Ωref;i�t��2 dt

Subject to: _δΩ � cδτ; δΩ�0� � δΩ�tf� � 0

jΩref;i�t� � δΩ�t�j ≤ Ωmax;

jτref;i�t� � δτ�t�j ≤ τmax; i � 1; 2; : : : ; Nrw

(23)

The solution to problemNMgenerates amotion in the null space of
the projection matrix A so that the feasibility of the system state
trajectories are maintained, while the overall energy consumption is
reduced.
It is important to point out that problem NM can be solved with

extreme efficiency due to the quadratic cost function and one-
dimensional linear dynamics. Indeed, when the wheel speed and
torque constraints (21) are not active, problemNMadmits an analytic
solution given as

δΩ�t� �
�

Ωb

ec



k

p
tf − e−c




k

p
tf

��
ec




k

p
t
�
1 − e−c




k

p
tf

	

� e−c



k

p
t
�
ec




k

p
tf − 1

		
−

1

Nrw

XNrw

i�1

Ωref;i�t� (24)

δτ�t� � −
� 




k
p

Ωb

ec



k

p
tf − e−c




k

p
tf

��
ec




k

p
t
�
e−c




k

p
tf − 1

	

� e−c



k

p
t
�
ec




k

p
tf − 1

		
−

1

Nrw

XNrw

i�1

τref;i�t� (25)

We note that, for a simulation study of the spacecraft parameters
given in theAppendix, in which several hundreds of simulations with
various boundary conditions and transfer times were performed,
wheel speed saturations were not observed and that motor torque
saturation only occurredwhen the slew timewaswithin 0.5%of tSTM.
The former is very reasonable for many practical systems in which a
portion of the reaction wheel momentum envelope is reserved to
accommodate momentum accumulation. Hence, Eqs. (24) and (25)
provide essentially a closed-form solution to problemNM. In the rare
instances where the wheel speed and/or torque constraints are active,

Table 1 Energymetrics for a baseline shortest-time maneuver and a
minimum-energy maneuver equivalent in transfer timea

Maneuver type E�, J Eloss
total, J Closs, J F loss, J

Shortest-time
maneuver

162.0 136.3 79.7 56.6

ME shortest-time
maneuver

143.9
(−11.2%)

121.0
(−11.2%)

81.3
(�1.9%)

39.7
(−29.8%)

aValues in parenthesis represent percentage change from baseline.
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an analytic solution to problem NM can be complicated to derive;
however, a numerical solution to this one-dimensional linear
quadratic problem is easy to generate in real time onboard the
spacecraft.
As a demonstrative example, consider the same 180 deg rotation

about the spacecraft z-body axis as before. In this case, the transfer
time is set to be T � 281.8 s, slightly longer than the minimum-time
solution (tSTM � 279.9). Three feasiblemaneuvers are generated and
compared: 1) a feasible fixed-time maneuver; 2) a minimum-energy
maneuver obtained by solving problemMEper Eq. (17); and 3) a null
motion solution based on Eqs. (24) and (25) where the feasible
reference trajectory (Ωref , τref) is the same as in maneuver 1.
Table 2 compares the energy metrics for these three maneuvers. It

can be seen that both the ME and NM maneuvers perform nearly
equivalently in terms of energy consumption. Although the ME
formulation reduces energy requirements by coordinating the
reaction wheel null motions while shaping the angular velocity body
profile of the spacecraft, the solution to problem NM also develops a
highly efficient solution. This result is in spite of the fact that the
minimization in problem NM is agnostic to the satellite attitude and
rate profile and is performed only over the space of null motions.
The null motion analysis presented in this section enables a few

interesting applications, two of which are summarized as follows:
1) The null motion formulation (23) and its analytic solution (24)

and (25) provide a fast and computationally inexpensiveway to refine
any given feasible trajectory for energy reduction, thus generating
suboptimal minimum-energy maneuvers, considered suboptimal
because the energy reductions are obtained by considering only a
subset of the state space. Such substantial efficiency in solving
problemNM is a very attractive feature for real-time implementation.
2) Problem NM provides a new means of verification and

validation that is both computationally inexpensive and easily
identifiable. Consider a candidate solution {q�, ω�, Ω�, τ�} to the
ME problem. We can take this candidate solution as the reference in
the NM problem. If {q�, ω�, Ω�, τ�} is the true minimum-energy
maneuver, the solution to problem NM should not admit additional
energy reduction (i.e., the cost of problem NM should be the same as
the cost of the ME formulation). Independent to Pontryagin’s
minimum principle, the null motion formulation (23) provides an
alternative way for verifying the optimality of the minimum-energy
solution.

To illustrate the second point, consider an ME slew with
T � 307 s, which will be seen in the next section to be the transfer
time that balances both transfer time and energy. Figure 4a shows that
the solution to the NM problem gives δτ�t� ≡ 0. Furthermore, the
reaction wheel angular velocities are identical for both problem
formulations (see Fig. 4b). The NM solution therefore indicates that
energy cannot be further reduced from the ME solution by
performing null motions, a condition that a minimum-energy
maneuver must satisfy.

IV. Relationship Between Transfer Time
and Minimum Energy

The purpose of this section is to study the relationship between
transfer time and energy required to perform a slew for both eigenaxis
and off-eigenaxis maneuvering. By identifying the energy/time
relationships, the shortest-time maneuver satisfying a given energy
budget may be identified, and a comparison may be made between
on- and off-eigenaxis maneuvering concerning energy and transfer
time. In determining the relationship, a 180 deg slew about the
spacecraft’s z-body axis is first considered, whose initial and final
quaternions are q0 � �0; 0; 1; 0�T and qf � �0; 0; 0; 1�T . Extensive
simulations (over several hundreds) in which initial and final attitude
were varied, confirmed that the relationship identified between
energy and time presented for this 180 deg slew are indicative of the
results for other slew sizes. The run time to generate simulation
results for each set of boundary conditions ranged from 10 s up to
about 2min,with the average run time of approximately 55 s.Wenote
that, because maneuvers are often planned a priori, the solution times
are amenable to practical generation.
Following the single-slew analysis, the energy and transfer time

relationship is analyzed in a typical setting for an imaging satellite: a
multipoint maneuver consisting of a sequence of five slews. The
multislew analysis demonstrates that the energy/time relationship
identified for the 180 deg canonical maneuver holds under varying
slew size, as well as path.

A. Off-Eigenaxis Slew Analysis

The shortest-time maneuver from Sec. II provides the lower time
bound tSTM for which the rest-to-rest slew may be performed. By
solving a series of ME formulation (off-eigenaxis) of fixed times
T ≥ tSTM, a Pareto front may be generated to show the minimum
energy required to perform the slew for a given transfer time. This
Pareto front for off-eigenaxis maneuvering is given in Fig. 5, with the
minimized cost Eloss

total shown as the lower curve with square markers
that indicate the particular slew times solved. Recall the cost
functional Eloss

total in problem ME measures the cumulative dissipative
losses incurred over a slew. Froma solution to problemME, the actual
energy consumption E� may be calculated a posteriori and is given
by the top-most curvewith asteriskmarkers in Fig. 5.We note that the

Fig. 4 Solution to problem NM for an ME reference maneuver with a transfer time of 307 s.

Table 2 Equivalency between minimum-energy formulation and
null motion formulation for a 180 deg z-axis slew with T � 281.8 s

Maneuver type E�, J Eloss
total, J Closs, J F loss, J

Feasible maneuver to problem ME 133.9 105.8 50.2 55.6
Problem ME solution 114.5 90.8 52.2 38.6
Problem NM solution 114.6 90.9 52.3 38.6
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optimal cost Eloss
total is always slightly smaller than the actual consumed

energy E� and forms a lower bounding curve. That the proxy Eloss
total

forms a lower bounding curve is consistent with the fact that the
control applied is optimal with respect to minimizing dissipative
losses Eloss

total, but in general is nonoptimal with respect to E�.
With the aid of the visualization provided by the Pareto front in

Fig. 5, the nonlinear relationship between the transfer time and the

minimum energy required to perform the slew is observed to consist
of three phases when considering time as increasing from the shortest
time. First, as transfer time is increased from the shortest time, there
exists a time window in which the energy required to perform the

maneuver drastically decreases at a fast rate. Denoting this portion of
the Pareto front as the head, this window of asymptotic decay beyond
the shortest time may be identified with the time interval [tSTM, 307].
Second, the relationship in Fig. 5 showcases that there exists a point
in time where further increasing transfer time results in insignificant
reductions in energy. Defining this portion of the Pareto front as the

tail, this time window may be defined as the interval [395, ∞).
Finally, a third portion of the Pareto front may be identified simply as
the region in between the head and tail of the Pareto front [307, 395]
and depicts that energy decays roughly proportionally to increasing

transfer times.
The behavior of energywith respect to timewithin the head portion

of the Pareto front validates the intuition that shortest-timemaneuvers
can indeed be costly maneuvers with respect to energy.More notably
though, the head of the Pareto front signifies that small increases in

transfer time from the shortest time net significant savings in energy.
In other words, there exists near-time-optimal maneuvers that cost
much less than their minimum-energy shortest-time maneuver
counterpart. Thus, it is possible to balance energy and transfer time

requirements when missions demand an agile setting, despite
intuitive notions to the contrary.
The tail portion of the Pareto front in Fig. 5 is inversely analogous

to the head region.Whereas small increases in transfer time near tSTM
net substantial savings in energy in the head region, increases in

transfer time within the tail portion of the Pareto front net only minor
savings in energy. Although the Pareto front of Fig. 5 stops with a
transfer time of 427 s, the energy and time relationship in the tail
section continues in like manner for all time, slowly decaying over

large intervals of time. Therefore, in a settingwhere transfer time is of
no concern, the tail portion of the energy/time relationship depicts
that there is not much benefit from significantly increasing the

transfer time of a maneuver with respect to energy consumption.

B. Minimum-Energy Eigenaxis Slew Analysis

With the ME-EAM formulation along with the shortest-time
EAM, a Pareto front describing the minimum-energy transfer time
relationship with respect to eigenaxis maneuvering may be built
analogously to the Pareto front constructed in Sec. IV.A. The result of
this construction is given in Fig. 6 and has been superimposed upon
the off-eigenaxis Pareto front of Fig. 5 to facilitate comparison. For
each of the curves in Fig. 6, theminimum energy is reported as the E�
metric.
The minimum-energy EAM Pareto front shown in Fig. 6 (denoted

with triangle markers that indicate the particular slew times solved)
depicts an analogous relationship with respect to energy and transfer
time compared with the off-eigenaxis Pareto front. Namely, near the
shortest time (for an eigenaxis maneuver), energy costs significantly
increase, showing that there exist eigenaxis maneuvers with a near
time-optimal transfer time that require significantly less energy to
execute. More interestingly, Fig. 6 clearly shows that the minimum-
energy EAM curve lies completely encompassed within the region
defined by the off-eigenaxis curve for all transfer times. Both
maneuver types are analogous with respect to energy for slew times
T ≥ 395 s. This coincide point depicts that there exists a point in
transfer time in which on- and off-eigenaxis maneuver types are
equivalent with respect to energy consumption. In other words, when
the transfer time is sufficiently large, expanding the solution space
from eigenaxis to noneigenaxis slews provides no benefit in energy
saving. For sufficiently large transfer times, the minimum-energy
slew is an eigenaxis maneuver.
From the time-optimal transfer time tSTM of 279.9 s to the coincide

point of 395 s, the two Pareto fronts in Fig. 6 imply the existence of a
trade space between transfer time, as well as energy between
eigenaxis and off-eigenaxis maneuvering. A geometric argument
may be made in discerning a tradeoff between the two maneuver
types: A given energy budgetmay bevisualizedwith a horizontal line
in Fig. 7, and in like manner, a time budget may be visualized as a
vertical line as illustrated in Fig. 8.
Figure 7 explores the trade space with respect to transfer time

between eigenaxis and off-eigenaxismaneuvers. The horizontal lines
in Fig. 7 depict that, for every minimum-energy eigenaxis slew, there
exists an energy equivalent off-eigenaxis maneuver with a smaller
transfer time. Additionally, each of these off-eigenaxis maneuvers
incur less dissipative losses. The extreme casewith respect to transfer
time is identified in Fig. 7 by themaneuver that is energy equivalent to
the minimum-energy shortest-time eigenaxis maneuver, which is

Fig. 5 Pareto fronts to the 180 deg z-body axis for minimum-energy off-eigenaxis maneuvering.

MARSH, KARPENKO, AND GONG 343

D
ow

nl
oa

de
d 

by
 N

A
V

A
L

 P
O

ST
G

R
A

D
U

A
T

E
 S

C
H

O
O

L
 o

n 
Se

pt
em

be
r 

17
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

28
43

 



hereafter referred to as the “baseline EAM.” Compared with the

baseline EAM, by allowing off-eigenaxis maneuvering, it is possible

to decrease the transfer time by 21.7% (from362.0 to 283.1 s)without

consuming any more energy than the baseline eigenaxis maneuver

(103.5 J), while simultaneously incurring 12% less dissipative losses.

Table 3 summarizes the energy metrics and transfer time (TT) for the

baseline eigenaxismaneuver and off-eigenaxis the energy-equivalent

maneuver. Comparing this agile maneuver to time-optimal (shortest-

time) maneuvering, for the same energy budget of the baseline

eigenaxis maneuver, the transfer time may be brought within 1% of

tSTM bymaneuvering off-eigenaxis while reducing the standard STM

energy by 36.1% and reducing dissipative losses by 40.6%.
Therefore, the transfer time may be substantially reduced by

control reallocation while simultaneously decreasing the amount of

dissipative losses incurred to perform an agile maneuver, without

exceeding the energy budget of a canonical EAM. Additionally, with

respect to shortest-time maneuvering, for a negligible increase in

transfer time, the large effort associated with time-optimal

maneuvering may be substantially decreased by opting for a near-

time-optimal maneuver. Synthesizing the analysis of these three

maneuvers, along with the energy/time spectrum in Fig. 6, it is

apparent that there exist desirable agile maneuvering capabilities

within (minimum) energy budgets of industry standard eigenaxis

maneuvering.
Next,we turn our attention to the trade space of energywith respect

to transfer times of minimum-energy eigenaxis maneuvering: Fig. 8

depicts that, in the case where EAM transfer times are acceptable to

meet mission requirements, the energy can be substantially reduced

from even minimum-energy EAMs by control reallocation and

maneuvering off-eigenaxis. The extreme case identified in the trade

Fig. 7 Trade space depicting the benefit of off-eigenaxis maneuvers, compared with eigenaxis, with respect to energy.

Fig. 6 Pareto fronts for minimum-energy off-eigenaxis and minimum-energy eigenaxis maneuvering for a 180 deg z-body-axis slew; energy reported

as E�.
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space of Fig. 8 is the off-eigenaxis maneuver, which completes in the
same transfer time as the baseline eigenaxis maneuver. For the same
transfer time as the baseline eigenaxis maneuver (which completes in
362.0 s), by maneuvering off-eigenaxis, the energy (given by E�)
required to perform the baseline EAM is reduced by 57.5% (from
103.5 to 44.0 J), and the cumulative dissipative losses incurred by
performing theME-EAMare reduced by 63.2% (from91.4 to 33.6 J).
Comparing the individual dissipative losses between the two
maneuvers, although the off-eigenaxis maneuver incurs 10% more
friction loss (22.9 to 25.1), it is able to reduce the copper loss by 87%
(from 68.5 to 8.6 J). The considerable reduction in dissipative losses
(from 68.5 to 33.6 J), and therefore less heat to reject, is due to the
substantial reduction in copper loss.
The large amount of copper loss incurred by the baseline EAM is

due to the torque demand required to maintain the motion along the
eigenaxis. By being able to maneuver off-eigenaxis, the transfer-time
equivalent maneuver is able to exploit the inertia properties of the
spacecraft under both the nonlinear dynamics and constraints,

requiring much less torque authority, and hence considerably less
copper loss. Therefore, by maneuvering the spacecraft off-eigenaxis,
energy and dissipative losses may be substantially reduced when
compared with conventional eigenaxis maneuvering.
Shown in Fig. 9 are the y-axis boresight traces for on- and off-

eigenaxis maneuvers for the 180 deg z-body-axis slew. As expected,
the eigenaxis maneuver traces out the shortest angular path, as
represented by the straight-line path between the two orientations.
Similarly, the boresight traces of the twomaneuvers equivalent to the
baseline eigenaxis maneuver each illustrate off-eigenaxis motion, as
seen by deviating from the circular arc traced by the baseline EAM.

C. Operational Scenario

This section expands upon the analysis of the previous sections, by
considering a multipoint slew consisting of five sequential
maneuvers. Amultislewmaneuver is considered here to demonstrate
that each of the properties resultant from the analysis of the single

slew directly translate to a typical operational scenario for an imaging

spacecraft involving multiple collection points. The five-point

multislew is based off of the STAR pattern developed in [11] and

consists of reorienting the imaging boresight (aligned with the

spacecraft y axis) over bothmedium angle (≈30 deg) and large angle
(≫30 deg) slews. The relevant attitude parameters for both on- and

off-eigenaxis maneuvering for the five-point multislew are given in

Table 4.

Four maneuver types are selected to explore the trade space

between energy and transfer time between on- and off-eigenaxis

maneuvering: 1, 2) theME shortest-time maneuver andME shortest-

time eigenaxis maneuver, which represent the minimum energy

required to complete the multislew for time-optimal off- and on-

eigenaxis maneuvers, respectfully, referred to as the “baseline off-

eigenaxis maneuver” and “baseline eigenaxis maneuver”; 3) the (off-

eigenaxis) maneuvers, which are energy equivalent (with respect to

E�) to each baseline eigenaxis maneuver; and 4) the (off-eigenaxis)

maneuvers, which are equivalent with respect to transfer times of the

baseline eigenaxis maneuver. Figure 10 depicts each of the four

maneuver types as corner points on the energy-time trade space for a

conceptualized Pareto front.

For the multislew, the ME shortest-time maneuvers, compared

with their time-optimal EAM counterparts (the baseline EAMs), are

Table 3 Metrics to theminimum-energy shortest-time eigenaxismaneuver (baseline EAM) and energy equivalent
off-eigenaxis maneuvera

Maneuver type TT, s E�
elec, J Eloss

total, J Closs, J F loss, J

Baseline EAM 362.0 103.5 91.4 68.5 22.9
Energy equivalent to baseline EAM 283.1 (−21.7%) 103.5 (0.0%) 80.8 (−11.6%) 42.7 (−37.7%) 38.2 (�66.8%)

aValues in parenthesis represent percentage change from baseline EAM.

Table 4 Sequence of quaternions for the
five-point multislew maneuver

Orientation q1 q2 q3 q4

1 0.0602 0.1850 0.6165 0.7629
2 0.2860 0.0069 0.5607 0.7770
3 0.1864 0.0045 0.0854 0.9788
4 0.1195 0.1431 0.7921 0.5812
5 0.1314 0.1263 0.2458 0.9520
6 0.1693 0.0781 0.4666 0.8646

Fig. 8 Trade space depicting the benefit of off-eigenaxis maneuvers, compared with eigenaxis, regarding transfer time.
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able to decrease transfer time by 19.6% (from 649.4 to 522.0 s) but at

the substantial cost of increased energy consumption, up by 124%

(from 409.6 to 918.5 J). It seems that experience and intuition is true,

that minimum-time solutions demand considerable effort, but

because each individual slew has an energy and transfer time

relationship analogous to Fig. 6, there exist agile maneuvers (i.e.,

maneuvers with a smaller transfer time than eigenaxis maneuvering)

with significantly less stringent energy requirements. By

maneuvering off-eigenaxis, for the same energy budget as the

baseline EAMs, the multislew may be completed within 5.7% of the

time-optimal transfer time (from 522.0 to 551.9 s) while consuming

55.6% less energy than the baseline off-EAMs (from 918.5 to

408.6 J). Comparing this agile maneuver, the transfer time of the

baseline EAMs may be reduced by 15% (from 649.4 to 551.9 s) for

the same energy required to perform canonical eigenaxis

maneuvering. Considering the situation of minimizing energy by

allowing off-eigenaxis maneuvering, the maneuver-set transfer-time

equivalent to the baseline EAMs is able to decrease the energy

requirements by 53% (from 409.6 to 191.4 J), the lowest of the four

maneuver types. Table 5 summarizes the tradeoffs between energy

Table 5 Difference in energy and time by opting between various maneuver types for the multipoint slew

Change of maneuver type %Δ TT %ΔE�
elec

Baseline eigenaxis maneuver → ME shortest-time maneuver −19.6% �124.2%
ME shortest-time maneuver → Energy equivalent eigenaxis maneuver �5.7% −55.5%
Baseline eigenaxis maneuver → Energy equivalent eigenaxis maneuver −15.0% −0.2%
Baseline eigenaxis maneuver → Transfer-time equivalent eigenaxis maneuver 0% −53.3%

Fig. 10 Visualization of the four maneuver types to explore the trade space between on- and off-eigenaxis maneuvering for the multislew scenario.

Fig. 9 Boresight traces for various maneuver types performing a 180 deg z-body-axis slew.
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and transfer time for various maneuver types. Viewing the four

representative maneuver types together, the energy equivalent and

transfer-time equivalent off-eigenaxis maneuvers, comparedwith the

baseline EAMs, depict that there exists a significant penalty in slew

time and energy when enforcing eigenaxis rotations. Similarly

demonstrated by this simulation example is that the properties

inherent to the single slew analysis translate to a multislew

environment. By allowing the spacecraft to maneuver off-eigenaxis,

the optimization may take full advantage of the attitude control

capability as represented by the spacecraft agilitoid [18], as seen by

the energy and transfer-time equivalent maneuvers to the baseline

eigenaxis maneuver.
The boresight traces over the course of the five-point multislew are

given in Fig. 11 for the baseline off- and on-EAMs, along with the

energy equivalent and transfer-time equivalent maneuvers in Fig. 12.

The imaging boresight for the baseline EAMs, as expected, traces out

shortest circular arcs between the five capture locations. Similarly

expected, from Fig. 11a, the motion of the boresight to the baseline

off-EAMs deviates from the eigenaxis for each of the five

orientations. For reference, the boresight trace to the standard STMs

are identical to those given in Fig. 11a. Similarly, the energy

equivalent and transfer-time equivalent maneuvers show that the

entire multipoint slew is performed off-eigenaxis. That the traced

path between each of the five orientations for the three off-eigenaxis

maneuver types are each distinct is due to the combination of the

boundary conditions aswell as the inertia properties of the spacecraft.

Because the rotational maneuvers are not restricted about an

eigenaxis, the optimization may minimize energy by taking full

advantage of the spacecraft’s geometry per the boundary conditions
when determining a feasible slew.

V. Conclusions

This paper has identified and studied the nonlinear relationship that
arises between slew time and energy for reactionwheel attitude control
under both conventional eigenaxis and agile off-eigenaxis maneuver
schemes. The nonlinear time/energy relationship showed two main
results that hold both for eigenaxis and noneigenaxis maneuvers:
1) There exist a continuum of near-time-optimal maneuvers that
require substantially less energy than their shortest-time counterpart.
The saving in energy is realized via a reallocation of the control effort
by exploiting energy-reducing null motions within the control space
while shaping thevelocity of the spacecraft body. 2)There exists a slew
time beyond which savings in energy become negligible.
This paper further demonstrates the existence of a trade space

between on- and off-eigenaxis maneuvering. This trade space shows
that a significant penalty is incurred upon slew time and energywhen
enforcing eigenaxis maneuvering: 1) By maneuvering off-eigenaxis,
slew time may be significantly decreased for the same energy budget
as an eigenaxis maneuver. 2) By maneuvering off-eigenaxis, energy
may be greatly decreased for the same slew time budget as a
conventional eigenaxis maneuver.
The nonlinear relationship between slew time and energy, and the

trade space between on- and off-eigenaxis maneuvering
demonstrated in this paper, can be exploited for mission operations,
planning, and design.

Fig. 11 Boresight traces to two of the four maneuver types from Fig. 10.

Fig. 12 Boresight traces to two of the four maneuver types from Fig. 10.
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Appendix: Parameters for Example Spacecraft Used
in This Paper
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Table A1 Spacecraft parameters used in problem formulations
defined in Sec. II

Parameter Symbol Value

Armature resistance R 1.8Ω
Motor torque constant KT 0.0696 N ⋅m∕A
Back EMF constant KV 0.0696 V�rad∕s�−1
Wheel viscous friction
coefficient

β 4.3 × 10−5 N ⋅m�rad∕s�−1

Maximum reaction wheel speed Ωmax 450.0 rad∕s
Maximum motor torque τmax 0.14 N ⋅m∕s
Wheel rotor inertia Jrw 0.012 kg ⋅m2

Wheel speed bias Ωbias 20.0 rad∕s
Rate gyro limit ωmax 0.5 deg ∕s per axis

Wheel projection matrix A
1



3

p
2
4 1 −1 −1 1

1 −1 1 −1
1 1 −1 −1

3
5

Spacecraft inertia tensor Jsc

2
4 59.22 −1.14 −0.80
−1.14 40.56 0.10

−0.80 0.10 57.60

3
5 kg ⋅m2
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