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Tracking pre-genesis tropical cyclones is important for earlier detection of developing
systems as well as targeting potential locations for dropsondes in field experiments. The
use of a reference frame moving with the disturbance gives a more accurate depiction of
streamlines and closed circulation than the Earth-relative frame. However, identification
of recirculating regions does not require a choice of reference frame when marked by
the Galilean invariant Eulerian Okubo–Weiss (OW) parameter. While the Eulerian OW
parameter is generally effective at identifying vortex cores at a given place and a given
time, it has its limitations in weak disturbances and in time-dependent flows. Integrating
the eigenvalue of the velocity gradient tensor along particle trajectories provides a time-
smoothing of the Eulerian OW parameter, and provides earlier detection with fewer false
alarms. We refer to this integration along trajectories as the Lagrangian OW parameter.
When mapped to a horizontal grid it becomes a Lagrangian OW field.

The Lagrangian OW field has advantages over the Eulerian OW field in the detail of
additional flow structures that it identifies. The Lagrangian OW field shows the Lagrangian
boundaries that are present as a disturbance develops from an easterly wave, and a shear
sheath that forms when a disturbance becomes self-sustaining, typically at tropical storm
strength. Since all of these structures are Lagrangian, they are advected with the flow field,
and display the continuous evolution of coherent flow features as the fluid evolves.

Examples of the use of the Lagrangian OW field are given for ECMWF forecast data from
the 2014 Atlantic hurricane season. All of the Lagrangian coherent structures that can be
identified by this field are shown for developing disturbances and mature cyclones. The
Lagrangian OW field also shows additional details of vortex mergers, and is used to identify
a stable crystal lattice configuration in which vorticity does not aggregate.
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1. Introduction

The question of development versus non-development of
tropical disturbances has been studied extensively in both
numerical studies and in recent field experiments (Pre-Depression
Investigation of Cloud systems in the Tropics (PREDICT) and
NASA-Hurricane Severe Storm Sentinel (HS3)). The results
of these experiments have revealed many things about the
dynamics of tropical cyclone genesis, and have led to new
numerical techniques for evaluating pre-genesis disturbances
for their potential for genesis.∗ The overarching framework for

∗These techniques have been used in the ‘pouch products’ by the Montgomery
research group at Naval Postgraduate School as a way to locate pre-
depression disturbances and to increase forecast lead times, and are
an important tool for use in field experiments.. The pouch products

tropical cyclogenesis is the marsupial paradigm (Dunkerton et al.,
2009), where a wave-relative reference frame may be used to
detect recirculation before it can be seen in the Earth-relative
frame, and to diagnose the robustness of the wave’s ‘pouch’ that
protects the developing vortex. Cyclogenesis typically occurs near
the intersection of the wave’s trough axis and critical layer. In
the wave-relative frame, a ‘cat’s eye’ forms in the co-moving
streamline field at the exterior of the disturbance, providing
some protection until vorticity aggregation and amplification
through convection and vortex stretching forms a dynamically
protected vortex that can be sustained by sea-surface fluxes.
A saddle or pair of saddles have translating streamlines that form

as well as the Lagrangian OW field introduced here can be seen at
http://www.met.nps.edu/∼mtmontgo/storms2014.html; accessed 21 July 2015.
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the cat’s eye boundary and protect the nascent vortex from its
environment. The existence of a cat’s eye boundary is a necessary
but not sufficient precursor to cyclogenesis, as many studies
have concluded that a permeable pouch may inhibit genesis
(Rutherford and Montgomery, 2012; Davis and Ahiyevich, 2012;
Smith and Montgomery, 2012). For genesis to actually occur,
the pouch must also be in a thermodynamically favourable
environment, where there is a continued supply of fuel and
limited ‘antifuel’ that could be supplied, e.g. by excessive vertical
wind shear (much larger than ∼ 12 m s−1 in the deep troposphere;
Dunkerton et al., 2009). In this article, we introduce a technique
using the integration of Lagrangian trajectories which improves
on the translating Eulerian frame by objectively identifying
pre-genesis disturbances and their boundaries, allowing the
permeability of the pouch and the transition from a pouch
to a self-sustaining vortex to be seen more clearly.

Amplification and aggregation of vorticity typically occurs at a
smaller spatial scale within the cat’s eye. The scale of the solid-body
core where vorticity is maximal is also much smaller, typically
less than 100 km radius, while the cat’s eye boundary may be
several hundred km radius. While the outer cat’s eye boundary
forms in the pre-depression stage, organization of vorticity into
a single vortex core with little deformation typically occurs later
(Montgomery et al., 2010), at the tropical depression or tropical
storm stage. Until now, identifying the outer boundary and inner
core features has required separate techniques.

Translating streamlines in the wave-relative frame mark the
cat’s eye outer boundary and the horizontal gradient of translating
stream function measures rotational flow velocity, but these
conventional metrics do not readily identify where deformational
vorticity gives way to rotational vorticity approaching centre.
Strain-free rotation as measured by the Eulerian Okubo–Weiss
(OW) parameter can be used to measure the strength of a vortex
and its tendency toward solid-body rotation. Large values of
OW parameter indicate a protected vortex whose vorticity has
aggregated into a self-sustaining entity. The OW parameter is
Galilean invariant, i.e. independent of the Eulerian reference
frame. As the vortex becomes self-sustaining, a boundary of high
differential rotation at the exterior of the solid-body core forms,
serving to isolate the core from the outer flow. This shear sheath
is an additional barrier which further protects the core from
horizontal intrusions of dry air or low vorticity, but is not easily
identified in the Eulerian OW field.

In summary, a developing disturbance requires a robust pouch
boundary, an isolated vortex core of solid-body rotation, and a
thermodynamically favourable environment leading to the up-
scale enhancement of the system-scale vorticity. These features
are currently identified separately. The boundary is identified by
computing the manifolds as translating streamlines emanating
from saddle points in the wave-relative frame, while the vortex
core is identified as a maximum of the OW parameter. There are
two improvements on the current methods that we seek to make
in this study. First, we look for a diagnostic that is applicable on
the spatial scales of both the pouch boundary and the inner core
so that the boundary and core can be identified simultaneously.
Second, since the Eulerian OW and Eulerian cat’s eye boundaries
both suffer inaccuracies due to the time-dependence of the flow,
and the latter is frame-dependent, we formulate a new metric
that is applicable to time-evolving flows and is independent of
the choice of Eulerian reference frame.

The translating Eulerian cat’s eye boundary is only an
approximation to the Lagrangian flow, and may be permeable
to Lagrangian transport even when the boundary is apparently
closed in the Eulerian frame. There are two facets to this problem:
(i) the degree of pouch closure at a given time and place requires
consideration of recent nearby isotachs or stream function
gradient, and
(ii) even if the closure is expected to become nearly complete,
small fluctuations of background flow create large deviations of
material contours approaching a hyperbolic point.

The outer boundaries in the time-dependent flow can be seen
by stable and unstable manifolds of hyperbolic trajectories
(Lussier et al., 2015) or by their representation as Lagrangian
coherent structures (LCSs; Rutherford and Montgomery, 2012),
and in some cases differs drastically from the translating Eulerian
boundaries.

While manifolds and other regions of strain are typically
represented poorly by the Eulerian OW parameter, vortex
cores are better represented (Basdevant and Philipovitch, 1994).
Improvements to the OW criterion and Lagrangian versions of
it have been used for Lagrangian vortex identification (Hua and
Klein, 1998; Lapeyre et al., 1999; Klein et al., 2000; Haller, 2005;
Lukovich and Shepherd, 2005; Haller and Beron-Vera, 2013).
Though vortices are more persistent through time-dependent
flows than hyperbolic lines, their identification can still be difficult
with the Eulerian OW parameter in relatively weak vortices, as
in developing disturbances that have not yet attained tropical
storm strength. The Eulerian OW field seen in global forecast
model data is typically very noisy, and it is difficult to identify and
track vortices on the basis of this field alone. Lagrangian methods
to identify vortices can improve their detection and tracking
in time-dependent flows and locate only the more persistent
vortices.

In this article, we show how a Lagrangian OW criterion can
be used to identify Lagrangian vortices and their boundaries
for developing disturbances in a single scalar field. We take
an approach similar to other LCS identification methods by
constructing a scalar field from quantities integrated along
particle trajectories. Specifically, we integrate the square root
of the Eulerian OW value, and we then add integrated along
particle trajectories, and we then add conditional terms to this
definition. This field has additional advantages over the Eulerian
fields. First, it shows the Lagrangian boundaries and vortex cores
which are a more accurate representation of the movement of
air masses and are advected by the flow field. Second, this field
shows a shear sheath at the exterior of a vortex core once it
has become dynamically protected. This field also shows details
of vortex merger that cannot be seen in Eulerian fields as well
as some interesting configurations of small vortices that are
resistant to merger. The Lagrangian OW field is a time-smoothing
operation that reduces the noise of short-lived vortices, and is
thus effective at identifying potential developing disturbances
earlier. Our diagnostic is particularly suited for applications to
weather forecasting, and for differentiating the relative strengths
of vortices.†

An overview of other Eulerian and Lagrangian diagnostics and
a definition of the Lagrangian OW field are given in the next
section. Applications of this method for identifying flow features
in global forecast model data are given in section 3 and are
followed by a discussion of potential applications.

2. Methodology for Lagrangian vortex identification

Before introducing our Lagrangian OW diagnostic for boundary
and vortex core identification, we first give a more precise
definition of these flow features. The wave pouch that guides
a tropical disturbance, and provides some protection for it, is
composed of an outer boundary, often in a cat’s eye configuration,
and an inner region of recirculation. To define the outer pouch
boundary, we assume for now that velocities are viewed in
the translating Eulerian frame co-moving with the disturbance.
Stagnation points xsp are points where fluid velocities vanish in
the translating frame, u{xsp(t), t} = 0 where u(x(t), t) are the fluid
velocities at the location of a trajectory x(t) at time t. A stagnation
point is hyperbolic, or a saddle, if ∇u(xsp) has real eigenvalues
of opposite signs, indicating both expansion and contraction of
an air parcel centred at xsp. The eigenvectors of the eigenvalues

†When applied in near-real time, our method spans a time interval including
prior analyses and short-term (84 h) forecast data.

c⃝ 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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Figure 1. (a) The Eulerian manifolds of a cat’s eye and (b) the Lagrangian manifolds resulting from a periodic perturbation of velocities, with stable manifolds in red
(dotted) and unstable manifolds in blue (solid).

of ∇u show the directions of greatest contraction/expansion
along the eigenvector of the negative/positive eigenvalue. The
stable/unstable manifolds for fixed t are defined as the translating
streamlines‡ that pass through the stagnation point in the
direction of the eigenvector associated with the negative/positive
eigenvalue. In steady flows, streamlines are transport barriers, so
the stable and unstable manifolds of the saddles form the cat’s eye
boundary that differentiates the outer flow from the recirculating
inner flow.

2.1. Stable and unstable manifolds of a hyperbolic trajectory
and lobe dynamics

In time-dependent flows, these Eulerian manifolds are no longer
barriers to transport, and the pouch may in fact import air from,
or exchange air with, its environment. Lagrangian manifolds
are related to their Eulerian counterparts, but describe more
accurately the interaction of the pouch with its environment as
they are material curves which are advected with the flow field.
For a velocity field with time-dependence, saddle points may
serve as markers for a hyperbolic trajectory (Ide et al., 2002). A
hyperbolic trajectory is a trajectory xh(t) such that the linearized
system for a perturbation ξ(t) to a trajectory

ξ̇ = ∇u(x(t), t)ξ + O(|ξ 2|) (1)

has linearly independent solutions which exhibit exponential
growth and decay. The stable and unstable manifolds of the
hyperbolic trajectory form flow boundaries in time-dependent
flows. A boundary comprised of both stable and unstable manifold
segments that forms a flow partition is called a separatrix, and may
differentiate physically important regions. If the flow were steady
in some frame of reference, the separatrix would remain fixed
and would mark an actual flow boundary. However, in a time-
dependent flow, the Eulerian separatrix may be semipermeable
owing to the intrinsic time-dependence in the co-moving frame.
As the flow evolves with time, the separatrix must be redefined
so that it is most similar to what is expected from the Eulerian
flow (Rom-Kedar et al., 1990). Enclosed regions called lobes may
form from segments of Lagrangian manifolds which intersect at
locations other than at the hyperbolic trajectory. Rearrangement
of lobes allows the contents of the lobe to be transported across the
Eulerian boundary as the separatrix is redefined. Lobe dynamics

‡The Eulerian manifolds, the stable and unstable manifolds of a hyperbolic
fixed point or saddle, and streamlines emanating from a saddle all refer to the
same Eulerian flow structure. A key point is that the identity of a stagnation
point is frame-dependent. The velocity gradient tensor and its eigenvalues
(eigenvectors) are Galilean invariant, but the choice of a particular pair of
eigenvectors as belonging, e.g., to a hyperbolic point is frame-dependent.

describe transport due to the movement of lobes, e.g. a perturbed
Kelvin–Stuart cat’s eye flow (Rodrigue and Eschenazi, 2010).

The effect of time dependence on the cat’s eye boundary can
be demonstrated by a schematic of the basic structure of the cat’s
eye in Figure 1. In (a), the Eulerian cat’s eye is shown where
the stable and unstable manifolds of a saddle point coincide to
form a barrier. In time-dependent flows, illustrated by time-
periodic forcing applied to the cat’s eye flow (b), the manifold
structure is more complicated, and transport through lobes
allows transport across the Eulerian boundary, but the amount of
material transported is limited to what is contained in the lobes.
The stable manifolds (red) intersect the unstable manifolds (blue)
in multiple locations, and enclosed lobes interior and exterior to
the Eulerian cat’s eye (shown in black) are transported across the
boundary. Including divergence introduces an additional pathway
of entrainment through non-intersecting manifolds which allow
an open pathway of material to enter in (Riemer and Montgomery,
2011). Lussier et al. (2015) gives examples of how these manifold
boundaries can be used to identify the boundaries in pre-genesis
disturbances.

Computing hyperbolic trajectories and their manifolds requires
first the location of persistent stagnation points, which requires
an appropriate frame of reference and may be very sensitive to the
choice of reference frame or data errors. Finite-time Lagrangian
methods avoid this difficulty by locating the manifolds directly.
Repelling and attracting LCSs are maximal ridges of the forward-
and backward-time Lagrangian fields, and play the role of stable
and unstable manifolds over the finite integration time (Haller,
2000; Shadden et al., 2007). There are many methods for locating
LCSs using Lagrangian scalar fields.§ The idea behind these
methods is that particles which are initialized on opposite sides
of a manifold experience the greatest relative separation, thus
the manifold is a maximum of a scalar field measuring relative
separation. Similarly, trajectories which have the highest average
strain rates should lie on manifolds, and this idea will be important
in the construction of the Lagrangian OW field.

These Lagrangian manifolds have been used to show that
dry air entering a pouch lacking a fully developed unstable
manifold on one side may be detrimental to genesis (Rutherford
and Montgomery, 2012), while interactions limited by the lobe
dynamics mechanism may still allow genesis (in progress).
Interaction with the outer environment may even help genesis, as
in the case of hurricane Sandy where moist air with high vorticity
was imported through a large pouch opening to the south (Lussier
et al., 2015).

§Among these methods are finite-time Lyapunov exponents (FTLEs), finite-
size Lyapunov exponents (FSLEs), Lagrangian descriptors, and strain lines. We
refer the reader to Haller (2015) for a summary of these methods.

c⃝ 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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Figure 2. The OWLag fields are shown for the Kelvin–Stuart cat’s eye (a) for a steady flow with the OW = 0 contour (white) overlaid, and (b) with time-dependence.
In both the steady and unsteady cases, the manifolds can be seen at the edge of the cat’s eye as the lines with the most negative values, and the vortex core can be seen
as the circular region with the most positive values.

2.2. Vortex core identification

In steady flows, vortex core identification is typically separate
from identification of the kinematic boundary induced from the
large-scale flow. However, the two identification problems are
not unrelated since elliptic stagnation points (also called centres
or nodes), emerge in a one-to-one ratio with saddles in a saddle-
node bifurcation. Similar to hyperbolic stability, elliptic stability
is determined the eigenvalues of ∇u(x). Since a two-dimensional
vortex core is in near-solid-body rotation, the entire vortex core
has elliptic stability.

The OW (Okubo, 1970) criterion partitions the flow into
rotation- and strain-dominated regions based on the stability of
particles. Assume that the flow is non-divergent, δ = ux + vy = 0,
and again, let x be the location of a particle and ξ (t) a perturbation
to the particles’ position. Stability of ξ(t) is determined by the
behaviour of the exponential solutions to Eq. (1), given by

ξ (t) = exp (λ±t) ξ 0. (2)

The eigenvalues of ∇u are λ± = ±
√

−OW and

OW = 1

4

(
ζ 2 − s2

1 − s2
2

)
, (3)

where s1 = ux − vy and s2 = vx + uy. The eigenvalues of ∇u are
imaginary and ξ(t) is a rotation about ξ 0 when OW > 0. Solid-
body rotation occurs when s = s2

1 + s2
2 = 0 and elliptic rotation

occurs when |ζ | ≥ |s| > 0. If OW < 0, the eigenvalues are real
and ξ(t) grows exponentially in the direction of the eigenvector
corresponding to the positive eigenvalue. Improvements to the
OW criterion include adding divergence (Lukovich and Shepherd,
2005) and additional terms in the Taylor expansion of the
perturbation¶ (Hua and Klein, 1998; Lapeyre et al., 1999).

2.3. Lagrangian vortices

The OW criterion determines elliptic stability where the growth of
the perturbation ξ(t) is small, and thus the linear approximation
of ξ(t) remains valid. This condition is generally valid for long
periods of time only in vortex cores where the velocity gradient
varies slowly relative to the vorticity gradient (Basdevant and
Philipovitch, 1994). Once the time dependence of velocities

¶In the examples shown, our trajectories are driven by the full (rotational plus
divergent) flow, but the contribution of divergence to the eigenvalue is ignored,
being negligible in the lower free troposphere. Horizontal divergence δ adds a
term δ/2 to the eigenvalue, and a term δ2 inside the parentheses of OW.

following an air parcel is sufficiently large that the perturbation
cannot be well approximated by the linear approximation, OW
ceases to be a meaningful quantity. Motivation for a Lagrangian
OW criterion in the case of cat’s eyes with small wave amplitude
can be seen in Figure 2(a), where the region of recirculation
according to the OW criterion, the interior of the white circle,
lies partially outside the cat’s eye boundary.∥ In this example,
the flow is steady so the manifolds are a complete barrier to
transport and are seen as dark red curves. Haller and Poje (1997)
have noted that trajectories that remain in vortex cores satisfy the
OW condition for elliptic stability for longer times than generic
trajectories, and define a Lagrangian OW criterion based on the
time that trajectories spend in elliptic or hyperbolic regions.

Other methods of objectively identifying vortices are shown
in Haller (2005) and Beron-Vera et al. (2010). The scalar field
formed by the time integral of OW values, or of other invariants
of the velocity gradient tensor, locates hyperbolic manifolds at
locations where the field attains a minimum value in our sign
convention (Pérez-Muñuzuri and Huhn, 2013). The variational
Lagrangian coherent structure methods of Haller (2011) and
Farazmand and Haller (2012) are also capable of detecting
hyperbolic, elliptic, and shearing structures, but require an
additional computation to find the streamlines of the vector
field formed from the eigenvector associated with the eigenvalue
of minimum modulus of the Cauchy–Green deformation tensor.
The Lagrangian boundaries may be further distinguished as those
that are locally least-stretching (Haller and Beron-Vera, 2012).
These variational methods are purely kinematic, i.e. they do
not account for the magnitude or distribution of vorticity in
distinguishing important flow regions. Instead, they have the
primary objective of identifying vortex boundaries. The methods
developed here are designed specifically to identify the regions of
strongest and continuous rotation in flows with strong vorticity
gradients.

2.4. Lagrangian OW

The Lagrangian OW formulation that we give is intended to
address some concerns which we have with the other Eulerian
and Lagrangian diagnostics we have referred to, including:

1. The pouch boundary and vortex core must be diagnosed
separately;

∥In this example, we use the Kelvin–Stuart cat’s eye defined by the
streamfunction ψ(x, y) = − log(a cosh y +

√
a2 − 1 cos x). We find that for

values of a < 1.16, the OW criterion fails for a portion of trajectories.

c⃝ 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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2. Time-dependence may make Eulerian manifolds perme-
able to transport, hence the question of whether the pouch
is closed or open cannot be answered using Eulerian veloc-
ity data;

3. OW does not accurately diagnose vortex cores in thin cat’s
eyes;

4. OW is a noisy field due to the convectively instability of the
tropical atmosphere in pouches (Smith and Montgomery,
2012), and thus the persistent injection of related small-
scale features in the ordinary OW field, which makes it
difficult to isolate independent, long-lasting vortices in
pre-genesis flows.

5. Lagrangian vortices are identified as impermeable elliptic
regions, but the Lagrangian scalar field methods do not
distinguish vortex strength.

Many methods of locating Lagrangian vortices measure the
time particles spend rotating but do not include the strength of
the rotation, which can be seen in the Eulerian OW field. By
including the strength of vorticity, a quantity can be computed
that differentiates quickly rotating regions such as hurricane-like
vortex cores from other slowly evolving rotational regions. For
cyclogenesis, this is an important addition since the strength
of vorticity relative to strain is suggested to be an important
factor for cyclogenesis to occur (Tory et al., 2012). We call the
eigenvalue λ+ of ∇u the effective rotation rate of a particle
since an air parcel subject to strain will be deformed and have a
slower rotation rate (Roulstone et al., 2015). This quantity has the
same units as vorticity. By integrating the effective rotation rate
along air parcels, we define the accumulated number of effective
rotations as

F(x(t)) =
∫

I
λ+(x(t))dt, (4)

where I is an interval of time chosen where velocity information
is available. We note that the field F is complex valued, with real
numbers marking deformation dominated regions and imaginary
numbers marking vorticity dominated regions. The field defined
by imag(F) − real(F) shows vortices as maxima and manifolds as
minima and would be considered the more general Lagrangian
OW field. For this study, we are more concerned with cyclonic
vortices, which leads to the definition of the quantity

G(x(t)) =
∫

I
λ+(x(t))S(x(t)) dt, (5)

where the function S is defined as

S =
{

sgn(ζ ); λ imag
1; λ real

}
(6)

and differentiates cyclonic and anticyclonic vortices. We are most
interested in the extreme values of each of these fields, and we
define the Lagrangian OW field as

OWLag = imag(G) − real(G). (7)

The OWLag field can be thought of as the number of effective
rotations of an air parcel, with values of 2π marking one
full rotation. Since the quantities being integrated do not
depend on the choice of inertial coordinate frame, OWLag is
a Galilean invariant quantity. Large negative values of OWLag
mark shearing or hyperbolic regions while positive values mark
cyclonic vortex cores. Though manifolds, shear sheaths, and
anticyclonic vortices all appear as negative values, there is little
ambiguity in differentiating these features due to the differences
in their shape and their relation to cyclonic vortex cores. The
difference between the shear sheaths and cat’s eye boundaries
can be determined by the shape of the boundary and proximity
to the vortex core, since shear sheaths reside just exterior to the

vortex core. Anticyclonic vortex cores are circular regions with no
positive maximal value. The OWLag field allows manifolds, shear
lines, and vortex cores all to be identified in a single field, with
stronger vortices the most prominent.

OWLag is shown for the steady Kelvin–Stuart cat’s eye in
Figure 2(a) and for the same flow with a periodic time perturbation
in (b). In the steady flow, OWLag eliminates the curvature problem
present in the OW field, as the OWLag positive values are contained
within the cat’s eye boundary.

In Figure 2(a), the flow is steady so the stable and unstable
manifolds coincide. In Figure 2(b), a periodic time-dependent
term has been added to the streamfunction which leaves
hyperbolic trajectories, but alters the shape of the manifolds,
seen as curves with the lowest OWLag values. The stable and
unstable manifolds seen in the OWLag field do not coincide, and
thus allow for the transport of fluid between the vortices. The
same lobes that were visible from direct computation, Figure 1(b),
are visible in the OWLag field, Figure 2(b). For longer integration
times where manifold segments accumulate near the hyperbolic
trajectory, lobe dynamics are revealed in the OWLag field by
‘thick’ manifolds, where multiple manifold segments are in close
proximity to each other. Lobe dynamics is a non-divergent process
where the amount of material transported into the pouch is
limited to what is contained in the lobes. On the other hand, open
pathways to transport are seen where manifolds of short length
do not reach another hyperbolic trajectory, and may be caused by
convergent flows or larger time-dependence. In the flows studied
here, the finite-time manifolds cannot capture the lobe transport
mechanism since they are non-intersecting. The open pathway to
transport is a fast process where the amount of environmental air
that can directly impact the core is potentially unlimited.

The time interval I is the interval over which particle trajectories
are integrated. For most Lagrangian scalar field methods, a
forward integration reveals stable manifolds (repelling LCSs)
while a backward integration reveals attracting LCSs (unstable
manifolds). Our cat’s eye boundary is composed of a combination
of stable and unstable manifolds so we let I straddle the time
interval of the initial time of trajectory integration. The difference
between the stable and unstable manifolds is not shown in
this field, but can be inferred by looking at the geometry
of the cat’s eye where the unstable manifolds emanate from
hyperbolic trajectories on the northeast and southwest boundaries
of the pouch and the stable manifolds on the northwest and
southeast boundaries. The length of the time interval is chosen
to be characteristic of the flow. For the flows observed during
cyclogenesis, the time required for air parcels to travel from near
one hyperbolic trajectory to near the other is on the order of
1 day, so a choice of integration time must be longer than 24 h in
each direction in time to resolve the manifolds effectively.

While the exact mechanism of entrainment into the pouch is
an interesting problem, it requires the complete computation of
stable and unstable manifolds and cannot be answered by this
method. However, the question which is of primary concern in
forecasting is the influence of environmental air on the pouch;
does the environmental air enter in? The OWLag field addresses
this question by showing the width of the region of ingestion
(Figure 3(a)). In the case of an open pathway, no manifold will
be present at the pouch opening. In the case of lobe dynamics,
the manifold is blurred by the fact that air parcels contained in
lobes mix into the pouch where they spend time in vorticity-
dominated regions. In either case, a manifold which terminates
before reaching the second hyperbolic trajectory indicates that
the pouch has an opening to transport of environmental air.

All of the flow features that are present in the steady and
periodically perturbed flows can also be identified in global
forecast model data. An example of this field for ECMWF forecast
data at 1800 UTC 14 September is shown in Figure 3(b). To
produce the fields shown in these examples, a grid of trajectories
in integrated both forward and backward for 36 h from the initial
location, and OWLag is evaluated along the trajectories by Eq. (5),

c⃝ 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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Figure 3. The OWLag field for the Kelvin–Stuart cat’s eye is shown in (a) with the OW = 0 contour (white) overlaid. Panel (b) shows the OWLag field for the ECMWF
model at 1800 UTC on 14 September 2014 at 700 hPa. Key Lagrangian flow features in both panels are labelled and indicated by arrows.

and the quantity plotted is then constructed using Eq. (7). The
total length of the interval I is 72 h, and allows both the stable and
unstable manifolds to be identified. The prominent flow features
that we identify are:

1. Vortex cores are nearly circular regions of strain-free
deformation, with particles remaining in the vortex core
for long periods of time. They are seen as regions of high
OWLag values.

2. Shear sheaths are circular regions exterior to the vortex core
of high deformation and possess large vorticity gradients
which act as barriers to transport. They can be seen in the
OWLag field as large negative values just outside of vortex
cores, and their presence indicates that no additional air
will be interacting with the core.

3. Lagrangian manifolds are regions of high strain which form
the outer pouch boundary. They can be seen as elongated
regions of negative OWLag values further away from the
pouch centre and typically at a distance of 3–8◦.

4. Hyperbolic trajectories are locations where two Lagrangian
manifolds intersect each other. A manifold spanning
between two hyperbolic trajectories forms a complete
boundary, while a manifold terminating before reaching
another hyperbolic trajectory indicates that transport
across that region and into the pouch is occurring.

The formulation of this field is to some extent determined
by what we desire to see in the given flow. Our formulation
of OWLag integrates a quantity that can be positive or negative,
depending on whether a trajectory is located in a hyperbolic or
elliptic region. The integral of a potentially negative quantity
introduces a cancellation problem. It is possible for a trajectory to

spend some time in both hyperbolic and elliptic regions, and for
its OWLag value to be near 0 as the positive and negative parts in
the time integral given by Eq. (5) cancel. OWLag may miss some
short-lived vortices or could miss hyperbolic lines long enough
to modulate stirring by lobe dynamics. These could be identified
by integrating a strictly positive quantity such as the modulus of
velocity (Mancho et al., 2013). At the pouch boundary, the
aforementioned cancellation blurs manifolds that have little
role as a pouch boundary, and the length of the persistent
structure gives an indication of what portion of the pouch
boundary is robust. In addition, the potential cancellation actually
serves to denoise the dataset and OWLag differentiates persistent
vortices from transient vortical structures such as those frequently
observed in the Intertropical Convergence Zone (ITCZ). When
tracking in real time or developing automated methods for
locating pre-genesis disturbances, this time smoothing greatly
reduces the number of potential vortices that need to be examined.

3. Results

3.1. Comparison with OW

The differences between the OW and OWLag fields can be seen
in Figure 4(a) and (b) respectively. The positions of different
pouches are indicated by circles and are labelled in this figure
and in the following figures.∗∗ The time smoothing of the OWLag

∗∗The pouch labelling is taken from the Montgomery research group’s pouch
products where the number refers to the number of the pouch that is tracked
for that season.
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Figure 4. The (a) OW (s−2) and (b) OWLag (radians) fields for the Atlantic development region at the +54 h forecast time on 9 August.

can be seen by a much smaller number of vortices. In particular,
P17L is in a very noisy region in the OW field, and cannot easily
be identified in this field alone. Instead, a Hövmuller of velocities
is used to identify the African easterly wave and its position
is then determined by the intersection of the wave’s critical
latitude and trough axis, a process more difficult to automate.
However, OWLag clearly identifies this flow feature while ignoring
the surrounding noise. While OW does not represent straining
regions well, OWLag shows manifold boundaries, including the
locations of cat’s eyes such as those enclosing P17L and P13L and
a shear sheath enclosing the core of P19L, P29L, Figure 3 (b).

3.2. Time evolution of the flow field

While strong vortices may be tracked in the Eulerian OW field,
other flow features such as manifolds are in general not advected
by the flow. In contrast, the OWLag field is Lagrangian in nature,
which allows all flow features to be tracked. A time evolution
of the flow shows a fluid-like evolution not only Figure 3(b) of
vortices but also of manifolds. The time-evolution of the flow can
be seen in Figure 5. The features that are identified in Figure 2(b)
can be tracked for the 14 September forecast. In this field, we see a
line of three cat’s eyes forming the boundaries of P31L, P34L, and
P36L. As these pouches move westward, the boundaries can all
be identified through time evolution of the flow field. Hyperbolic
trajectories located between adjacent cat’s eyes can also be tracked
over this time period. P31L has very weak vorticity, and its
Lagrangian boundaries arise mostly P34L from the stronger flows
associated with P29L (Edouard) and P32L.

3.3. Vortex merger and non-merger

The boundaries from the OWLag field show more details of vortex
merger than can be seen in the OW field. For example, the
merger of P17L and P18L on 15 August is shown in Figure 6.
A well-defined separatrix separates the pouches at 1200 UTC and
remains in place until +36 h. While the pouches are separated,
no merger occurs. However, the boundary between the pouches
changes before +66 h, and the pouches are able to merge. As the
boundary changes, the hyperbolic trajectory to the east of P18L
travels westward and comes in close proximity to the hyperbolic
trajectory located between P17L and P18L (Figure 6(c)). At this
time, there are two hyperbolic trajectories but the vorticity is
mostly combined into a single entity, which was called P18L.
The two hyperbolic trajectories very near each other indicate
that the merger is not complete; there must also be two elliptic
points remaining. The merger is complete when the hyperbolic
trajectories merge and one of the centres disappears in a saddle-
node bifurcation.

3.4. The shear sheath, vortex core, and manifolds of Edouard

Eduoard was one of the strongest storms of the 2014 Atlantic
hurricane season and the first major hurricane since hurricane
Sandy (2012). Edouard formed from a tropical wave that left
Africa on 7 September, and was classified as a tropical depression
on 12 September. Edouard was upgraded to a hurricane on 15
September. We look at the ECMWF forecast from 0000 UTC
on 13 September to examine the structure of Edouard as it
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Figure 5. The time evolution of the OWLag field for the Atlantic development region on 14 September at forecast times of (a) +18 h, (b) +30 h, (c) +42 h, and (d)
+54 h.

P17L

P18L

45°W 40°W 35°W 30°W 25°W 20°W

45°W 40°W 35°W 30°W 25°W 20°W

45°W 40°W 35°W 30°W 25°W 20°W

5°N 

10°N

15°N

20°N

5°N 

10°N

15°N

20°N

−8

−6

−4

−2

0

2

4

6

8

10
(a)

P17L

−8

−6

−4

−2

0

2

4

6

8

10
(b)

P18L

6600 UTC

10°N

15°N

20°N

−8

−6

−4

−2

0

2

4

6

8

10(c)

15 Aug. 700 hPa

3600 UTC 15 Aug. 700 hPa1200 UTC 15 Aug. 700 hPa
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Figure 7. The 700 hPa OWLag fields for pouch P29L for analyses at (a) 1200 UTC on 13 September 2014 and (c) 0000 UTC on 14 September, and forecasts (b) +24 h
from 0000 UTC on 13 September, and (d) +36 h from (c).

was transitioning from a tropical depression to a hurricane. The
structure from the 700 mb OWLag field is shown in Figure 7.
The transition to a shear sheath occurs near 1200 UTC on 13
September as a ring of high OWLag starts to organize around the
periphery of the storm, and the shear sheath is completely formed
by the 2400 UTC forecast. At 0000 UTC on 14 September the
analysis data verify the forecast from the previous day, showing a
well-enclosed shear sheath. Later in the forecast, the distinction
between the storm and the outer flow becomes even more distinct
at +36 with a large region of highly deformational flow (dark red
(dark gray in print) to black). surrounding an undisturbed vortex
core (white). The vortex core is comprised of nearly periodic
trajectories and is not penetrated during this time interval. These
closed orbits are finite-time Kolmogorov–Arnold–Moser tori,
with the outermost one lying at the boundary of the vortex
core and shear sheath. The vortex core is a region of minimal
deformation, while the shear sheath contains the region of highest
deformation where vortex Rossby waves may propagate.

3.5. Horizontal straining of P27L

While Lagrangian boundaries are required to eliminate intrusion
of environmental air, and are therefore seen in most developing
disturbances, the existence of Lagrangian boundaries alone does
not guarantee development. This is particularly true when the
boundaries do not form the typical cat’s eye shape associated
with cyclonic flow in the Atlantic. Environmental influences
such as stronger horizontal winds at mid-levels or vertical wind
shear (Riemer and Montgomery, 2011) may alter the Lagrangian
boundary configuration, and thus alter the advection of vorticity.
P27L was an example of a disturbance that was subjected to
strong horizontal winds during the 6 September forecast. P27L
has two hyperbolic trajectories with manifolds, but the hyperbolic
trajectories were located to the west and north rather than the
west and east. The hyperbolic trajectories and manifolds can be
seen at 1800 UTC on 6 September in Figure 8(a). The angle

between the manifolds of the western hyperbolic trajectory is
very large, while the length of the manifolds from the northern
hyperbolic trajectory is very short. By +36 h, the northern
hyperbolic trajectory vanishes (Figure 8(b)), leaving the unstable
manifold from the western hyperbolic trajectory as the boundary
controlling the advection of vorticity. By +60 h (Figure 8(c)), the
vorticity is strained along this boundary and a coherent vortex
core ceases to exist.

3.6. The multiple vortex structure of P13L

P13L had enclosed Lagrangian boundaries on the northern edge
of the pouch (Figure 9), but an opening to the southern side, a
typically favourable location for an opening since it would be less
related to influences such as the Saharan air layer (SAL). Within
the pouch, there are several pools of enhanced cyclonic vorticity
which are coherent but separate. In the OWLag field, we can follow
the individual vortices and see that they do not merge, though
each vorticity pool retains its circulation for most of the forecast
period. There are multiple reasons that the vortices do not merge.
There is very little convergence, which can be seen since the area
enclosed by the Lagrangian boundaries shows little change over
this time period. Also, there is very little convection to assist the
up-scale organization from smaller scales (Montgomery et al.,
2006). Since the arrangement of the vortices is in a polygonal
pattern due to the triangular shape of the pouch, we note the
similarity to vortex crystals seen in two-dimensional inviscid
Euler flows where the configuration of vorticity acquires a state
of minimum kinetic energy (Jin and Dubin, 2000). This pattern
cannot be seen in the OW field.

This example shows a case where a favourable environment
does not lead to genesis though the pouch boundary is closed to
adverse intrusions, and confirms the necessary but not sufficient
criteria of a pouch boundary. While the aggregate of these smaller
structures appears to contain enough vorticity for development,
there is a lack of up-scale organization toward an eyewall from
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these vortices through diabatic vortex stretching or through
horizontal mergers. The Lagrangian structures and their role
in the merger of these smaller vorticity anomalies and diabatic
activation represents an important mechanism for genesis which
deserves further study. The methods used in this study are
capable of resolving the features at smaller scales, but finer model
resolution will be required to resolve the flow boundaries that
exist between these vortices (Rutherford et al., 2012).

4. Summary

We have shown that a Lagrangian OW parameter integrated along
particle trajectories is a useful diagnostic for the identification
of coherent vortices and flow boundaries in a time-dependent
flow. The Lagrangian quantity is advected with the flow field
and shows more precise boundaries than can be seen in the
OW field. These additional details reveal many interesting
properties of the dynamics such as vortex crystals which were
not to be seen in Eulerian OW fields at the same time. Many
aspects of tropical cyclogenesis can be seen in the OWLag field,
including the formation and evolution of cat’s eyes, vortex
cores, and shear sheaths. The field also reveals the details of
vortex merger, and was used to identify a crystalline vortex
pattern.

The OWLag field is a time-smoothing of the velocity field, and
reduces the noise seen in Eulerian fields due to transient vortices.
The time-smoothing may be useful for automating the process
of pouch identification and reduces the need for identification
of the easterly wave since OWLag contains the time evolution of
velocities that is seen in a Hövmuller plot.

While the OWLag field has the benefit of reducing false alarms
by eliminating spurious vortices, we do not see a reduction of
developing disturbances which are correctly identified. Since a
maximum of the OWLag field appears in every tropical depression,
and a shear sheath appears in every tropical storm that we have
studied, these characteristics appear to be necessary conditions
for storm development. The existence of a similar structure on
multiple vertical levels may lead to a sufficient dynamic criterion
for development.
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