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Abstract

In this paper we find a complete characterization of plateaued Boolean func-
tions in terms of the associated Cayley graphs. Precisely, we show that a Boolean
function f is s-plateaued (of weight = 2(n+s−2)/2) if and only if the associated
Cayley graph is a complete bipartite graph between the support of f and its com-
plement (hence the graph is strongly regular of parameters e = 0, d = 2(n+s−2)/2).
Moreover, a Boolean function f is s-plateaued (of weight 6= 2(n+s−2)/2) if and only
if the associated Cayley graph is 3-walk-regular (and also `-walk-regular, for all
odd ` ≥ 3) with some explicitly given parameters.

Keywords: Plateaued Boolean functions, Cayley graphs, strongly regular, walk regu-

lar.

1 Introduction

Boolean functions are very important objects in cryptography, coding theory, and com-

munications, and have connections with many areas of discrete mathematics [4, 5]. In

particular bent functions, which offer optimal resistance to linear cryptanalysis, when

used in symmetric cryptosystems, have been extensively studied [13, 15]. They were

shown in [1, 2] to be connected to strongly regular graphs. This connection occurs

through the Cayley graph with generator set the support of the Boolean function (de-

noted by Ωf below). Namely, having two nonzero components in the Walsh-Hadamard

spectrum translates at the Cayley graph level as having three eigenvalues. This link is

often referred to as the Bernasconi-Codenotti correspondence.

In this paper, we extend this connection by relating semibent and, in general,

plateaued functions with a special class of walk-regular graphs. Plateaued Boolean func-

tions are characterized as having three values in their Walsh-Hadamard spectrum [12].
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Their corresponding Cayley graphs belong to a special class of regular graphs with

either three or four eigenvalues in their spectrum. The three eigenvalue case is dealt

with by the strong regularity and the four eigenvalues case corresponds to the strongly

t-walk-regular graphs introduced by Fiol and Garriga [9]. The special case of four

eigenvalues of these graphs was studied in particular in [8].

The material is organized as follows. The next section compiles the necessary no-

tions and definitions on Boolean functions and graph spectra. Section 3 derives the

main characterization result of the paper.

2 Preliminaries

2.1 Boolean functions

Let F2 be the finite field with two elements and Z be the ring of integers. For any

n ∈ Z+, the set of positive integers, let [n] = {1, . . . , n}. The Cartesian product of

n copies of F2 is Fn
2 = {x = (x1, . . . , xn) : xi ∈ F2, i ∈ [n]} which is an n-dimensional

vector space over F2, which we will denote by Vn. We will denote by ⊕, respectively,

+, the operations on Fn
2 , respectively, Z. For any n ∈ Z+, a function F : Vn → F2 is

said to be a Boolean function in n variables. The set of all Boolean functions will be

denoted by Bn. A Boolean function can be regarded as a multivariate polynomial over

F2, called the algebraic normal form (ANF)

f(x1, . . . , xn) = a0 ⊕
∑

1≤i≤n
aixi ⊕

∑
1≤i<j≤n

aijxixj ⊕ · · · ⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij , . . . , a12...n ∈ F2. The maximum number of variables in a

monomial is called the (algebraic) degree.

For a Boolean function f ∈ Bn, we define its sign function f̂ by f̂(x) = (−1)f(x).

For u = (u1, . . . , un), x = (x1, . . . , xn), we let u · x =
∑n

i=1 uixi be the regular scalar

(inner) product on Vn. For a binary string s, we let s̄ denote the binary complement

of s. The (Hamming) weight of a binary string s, denoted by wt(s), is the number of

nonzero bits in s.

We order Fn
2 lexicographically, and denote v0 = (0, . . . , 0, 0), v1 = (0, . . . , 0, 1),

v2n−1 = (1, . . . , 1, 1). The truth table of a Boolean function f ∈ Bn is the binary

string of length 2n, [f(v0), f(v1), . . . , f(v2n−1)] (we will often omit the commas). The

(Hamming) weight of a function f is the cardinality of the support Ωf = {x : f(x) = 1},
that is, is the weight of its truth table. We define the Fourier transform of f by

Wf (u) =
∑
x∈Vn

f(x)(−1)u·x,

and the Walsh-Hadamard transform of f by

Wf̂ (u) =
∑
x∈Vn

(−1)f(x)(−1)u·x.
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A function f for which |Wf̂ (u)| = 2n/2 for all u ∈ Vn is called a bent function [14].

Further recall that f ∈ Bn is called plateaued if |Wf̂ (u)| ∈ {0, 2(n+s)/2} for all u ∈ Vn

for a fixed integer s depending on f (we also call f then s-plateaued). If s = 1 (n must

then be odd), or s = 2 (n must then be even), we call f semibent. For more on Boolean

functions (bent, semibent, plateaued, etc.), the reader can consult [3, 4, 5, 13] and the

references therein.

2.2 A short primer on strong regularity and walk regularity

A graph is regular of degree r (or r-regular) if every vertex has degree r, where the

degree of a vertex is defined as the number of edges incident to it. We say that an

r-regular graph G is a strongly regular graph (srg) with parameters (v, r, e, d) if there

exist nonnegative integers e, d such that for all vertices u,v the number of vertices

adjacent to both u,v is e, (resp. d), if u,v are adjacent, (resp. nonadjacent). See [6]

for further properties of these graphs.

For a Boolean function f on Vn, we define the Cayley graph of f to be the graph

Gf = (Vn, Ef ) whose vertex set is Vn, and whose set of edges is defined by

Ef = {(w,u) ∈ Vn × Vn : f(w ⊕ u) = 1}.

The adjacency matrix Af is the matrix whose entries are Ai,j = f(i⊕ j) (where i is

the binary representation as an n-bit vector of the index i). It is simple to prove that Af

has the dyadic property: Ai,j = Ai+2k−1,j+2k−1 . One can derive from its definition that

Gf is a regular graph of degree wt(f) = |Ωf | (see [6, Chapter 3] for further definitions

and properties of these graphs).

Given a graph f and its adjacency matrix A, the spectrum Spec(Gf ) is the set of

eigenvalues of A (called also the eigenvalues of Gf ). We assume throughout that Gf

is connected (in fact, one can show that all connected components of Gf are isomor-

phic) [1, 6].

It is known (see [6, pp. 194–195]) that a connected r-regular graph is strongly

regular if and only if it has exactly three distinct eigenvalues λ0 = r, λ1, λ2 (so e =

r+ λ1λ2 + λ1 + λ2, d = r+ λ1λ2). Bent functions exactly correspond to those strongly

regular graphs with e = d (Bernasconi-Codenotti corespondence).

The following result is known [6, Th. 3.32, p. 103] (the second part follows from a

counting argument and is also well known).

Proposition 1. If A is the adjacency matrix of a strongly r-regular graph of parameters

e, d and |V | = v, then

A2 = (e− d)A+ (r − d)I + dJ,

where J is the all 1 matrix. Further, r(r − e− 1) = d(v − r − 1).

The distance in the graph Γ = (V,E) between two vertices x, y ∈ V , denoted by

d(x, y), is given by the length of the shortest path between x and y. The diameter

of a graph is D = maxx,y∈V d(x, y). A connected graph is called distance-regular of
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parameters (ci, ai, bi) (called intersection numbers), if, for all 0 ≤ i ≤ D, and for all

vertices x, y with d(x, y) = i, among the neighbors of y, there are ci that are at distance

i−1 from x, ai at distance i, and bi at distance i+1 (thus Γ is regular of degree r = b0).

Fiol and Garriga [9] introduced t-walk-regular graphs as a generalization of both

distance-regular and walk-regular graphs. We call a graph Γ = (V,E) a t-walk-regular

(assuming Γ has its diameter at least t) if the number of walks of every given length `

between two vertices x, y ∈ V depends only on the distance between x, y, provided it is

≤ t. In [8], van Dam and Omidi generalized this concept and called Γ a strongly `-walk-

regular with parameters (σ`, µ`, ν`) if there are σ`, µ`, ν` walks of length ` between every

two adjacent, every two non-adjacent, and every two identical vertices, respectively.

Certainly, every strongly regular graph of parameters (v, r, e, d) is a strongly 2-walk-

regular graph with parameters (e, d, r).

Similarly to Proposition 1, the adjacency matrix A of a strongly `-walk-regular

graph will satisfy the following property.

Proposition 2 ([8]). Let ` > 1, and A be the adjacency matrix of a graph Γ. Then Γ

is a strongly `-walk-regular with parameters (σ`, µ`, ν`) if and only if

A` + (µ` − σ`)A+ (µ` − ν`)I = µ`J.

3 Plateaued Boolean functions

In general, the spectrum of the Cayley graph of an s-plateaued Boolean function f :

Fn
2 → F2 will be 4-valued, and therefore the graph will not be strongly regular (see [5,

Theorem 9.7]). This can be easily deduced from the fact that, if the Walsh-Hadamard

transform of a Boolean function takes values in {0,±k} (for s-plateaued functions,

k = 2(n+s)/2), then the Fourier transform of f takes values in {wt(f), 0,±k
2} (recall

that the Fourier transform of f gives the graph spectrum of the corresponding Cayley

graph), as the following argument shows.

By [5, Eq. (2.15)],

Wf (w) = 2n−1δ(w)− 1

2
Wf̂ (w).

Note that, for w = 0,Wf (0) = wt(f). By Parseval’s identity (see [5]), 22n =
∑
w∈Fn

2

|Wf (w)|2,

the multiplicity of ±k is 22n

k2
. Hence, the multiplicity of these eigenvalues will be (as-

suming wt(f) 6= k
2 ; the other case follows easily):

(i) If f is balanced, thenWf̂ (0) = 0, whileWf (0) = wt(f). Then, the multiplicity of

λ1 = wt(f) is 1, the multiplicity of λ3 = 0 is 2n− 22n

k2
− 1, while the multiplicities

of λ2, λ4 = ±k
2 will sum to 22n

k2
.

(ii) If f is not balanced, then Wf̂ (0) = ±k, while Wf (0) = wt(f). Then, the multi-

plicity of λ1 = wt(f) is 1, the multiplicity of 0 is 2n− 22n

k2
, while the multiplicities

of ±k
2 will sum to 22n

k2
− 1.
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Example: n = 3, f = x1x2 ⊕ x1x3 ⊕ x2x3, which is semibent, since Wf̂ (w) =

(0 4 4 0 4 0 0 − 4))T . We compute that Wf (w) = (4 − 2 − 2 0 − 2 0 0 2)T , which is

4-valued.

Certainly, if f is semibent, the multiplicities are more precisely known (see [12],

for example). For instance, if n is odd (without loss of generality, we assume that

f(0) = 0), the multiplicities of the spectra coefficients of f̂ are

value multiplicity

0 2n−1

2(n+1)/2 2n−3 + 2(n−3)/2

−2(n+1)/2 2n−3 − 2(n−3)/2.

We show in Figure 1 the Cayley graph of a semibent function.
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Figure 1: Cayley graph associated to the semibent f(x) = x1x2 ⊕ x3x4 ⊕ x1x4x5 ⊕
x2x3x5 ⊕ x3x4x5

3.1 s-Plateaued Boolean functions f with wt(f) = 2(n+s−2)/2

Theorem 3. If f : Fn
2 → F2 is s-plateaued and wt(f) = 2(n+s−2)/2, then Gf (if

connected) is the complete bipartite graph between the vectors in Ωf and vectors in

Fn
2 \Ωf (if disconnected, it is a union of complete bipartite graphs). Moreover, Gf is a

strongly regular graph with (e, d) =
(
0, 2(n+s−2)/2).

Proof. We know that the Walsh-Hadamard spectra of f̂ in this case is {0,±2(n+s)/2}
and therefore, the spectra of f is also 3-valued, that is, {wt(f), 0,±2(n+s−2)/2} =

{0,±2(n+s−2)/2}, and thus, the Cayley graph of f in this case is strongly regular. Now,
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from [6], we know that if Gf has three distinct eigenvalues λ0 = wt(f) > λ1 = 0 >

λ2 = −λ0, then Gf is the complete bipartite graph between the nodes in Ωf and nodes

in Fn
2 \ Ωf .

Since the eigenvalues of the strongly regular graph Gf of f can be expressed in

terms of the parameters e, d, namely

λ0 = wt(f), λ1,2 =
1

2

(
e− d±

√
(e− d)2 − 4(d− wt(f))

)
,

or equivalently, e = r + λ1λ2 + λ1 + λ2, d = r + λ1λ2, and using our knowledge of the

Walsh-Hadamard spectra of f , renders the last claim.

3.2 General s-plateaued Boolean functions

We now assume that f is s-plateaued and wt(f) 6= 2(n+s−2)/2, and, therefore, the

spectrum of Gf is 4-valued. It is known (see [11]) that if G is connected and regular

with four distinct eigenvalues, then G is walk-regular. In fact, in our case a result much

stronger is true (see our theorem below). We will need the following two propositions

(we slightly change notations, to be consistent).

Proposition 4 (van Dam and Omidi [8, Proposition 4.1]). Let Γ be a connected regular

graph with four distinct eigenvalues r > λ2 > λ3 > λ4. Then Γ is strongly 3-walk-regular

if and only if λ2 + λ3 + λ4 = 0.

Proposition 5 (van Dam and Omidi [8, Proposition 3.1]). A connected r-regular graph

Γ on v vertices is strongly `-walk-regular with parameters (σ`, µ`, ν`) if and only if all

eigenvalues except r are roots of the equation

x` + (µ` − σ`)x+ µ` − ν` = 0,

and r satisfies

r` + (µ` − σ`)r + µ` − ν` = µ`v.

In our main theorem of this section we show the counterpart for the Bernasconi-

Codenotti equivalence in the case of plateaued functions.

Theorem 6. Let f : Fn
2 → F2 be a Boolean function, and assume that Gf is connected,

and that r := wt(f) 6= 2(n+s−2)/2. Then, f is s-plateaued (with 4-valued spectra for f)

if and only if Gf is strongly 3-walk-regular of parameters (σ, µ, ν) = (2−nr3 + 2n+s−2−
2s−2r, 2−nr3 − 2s−2r, 2−nr3 − 2s−2r) (hence µ = ν).

Proof. We first assume that f is s-plateaued and so, its spectra is {0,±2(n+s)/2}.
Consequently, the spectra of Gf is 4-valued (since r := wt(f) 6= 2(n+s−2)/2), namely

{r = wt(f), λ2 := 2(n+s−2)/2, λ3 := 0, λ4 := −2(n+s−2)/2}. The fact that Gf is strongly

3-walk-regular follows from Proposition 4, since λ2 + λ3 + λ4 = 0, which certainly hap-

pens for our graphs. Moreover, the parameters (σ, µ, ν) (we removed, for convenience,
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the subscripts ` = 3) can be found using Proposition 5 as solutions to the diophantine

system (recall that in our case v = 2n and r = wt(f))

0 = 23(n+s−2)/2 + (µ− σ)2(n+s−2)/2 + µ− ν,
0 = −23(n+s−2)/2 − (µ− σ)2(n+s−2)/2 + µ− ν,

µ 2n = r3 + (µ− σ)r + µ− ν,

namely, (σ, µ, ν) = (2−nr3 + 2n+s−2 − 2s−2r, 2−nr3 − 2s−2r, 2−nr3 − 2s−2r).

Conversely, assuming Gf is a 3-walk-regular graph with the above parameters, then

the eigenvalues λ2 > λ3 > λ4 will satisfy the equation

x3 + (µ− σ)x+ µ− ν = 0,

which will render the roots, λ2 = 2(n+s−2)/2, λ3 = 0, λ4 = −2(n+s−2)/2. The claim is

shown.

Remark 7. Using a result of Godsil [10] one can easily show (under mild conditions

– thus removing strongly regular ones, for example) that the graphs corresponding to

plateaued functions are not distance-regular.

In fact, from [8] we know that the graph with four distinct eigenvalues is `-walk-

regular for any odd ` ≥ 3, but in our case we can show a lot more, by finding the

involved parameters precisely.

Theorem 8. If A is the adjacency matrix of the Cayley graph corresponding to an

s-plateaued with 4-valued spectra (of f), then Gf is `-walk-regular for any odd ` of

parameters (σ`, µ`, ν`), where ` = 2t + 1, σ` = µ2(n+s−2)t−r2t
2n+s−2−r2 + 2(n+s−2)t, µ` = ν` =

µ2(n+s−2)t−r2t
2n+s−2−r2 . Further, the following identity holds, for all t ≥ 1,

A2t+1 = 2(n+s−2)tA+ µ
2(n+s−2)t − r2t

2n+s−2 − r2
J ,

where (σ, µ, ν) = (2−nr3 + 2n+s−2 − 2s−2r, 2−nr3 − 2s−2r, 2−nr3 − 2s−2r).

Proof. From our Theorem 6, we know that

A3 = (σ − µ)A+ µJ,

since we know that µ = ν. We will show our result by induction, and so, for simplicity

we label x1 := σ − µ = 2n+s−2, y1 = µ = 2−nr3 − 2s−2r. Assume now that

A2t+1 = xtA+ ytJ. (1)

First, observe that, since our graph is regular of degree r, then AJ = rJ , and more

general, AkJ = rkJ . Multiplying (1) by A2, we get

A2t+3 = xtA
3 + ytA

2J

= xt(x1A+ y1J) + ytr
2J

= xtx1A+ (xty1 + ytr
2)J,
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and consequently, we get the recurrences

xt+1 = xtx1

yt+1 = xty1 + ytr
2.

Solving the system, we get xt+1 = xt+1
1 = (σ − µ)t+1 = 2(n+s−2)(t+1) and yt+1 =

y1
xt+1
1 − r2(t+1)

x1 − r2
= µ

2(n+s−2)(t+1) − r2(t+1)

2n+s−2 − r2
and our claim is shown.
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