

Calhoun: The NPS Institutional Archive DSpace Repository

SIMTBED: a graphical test bed for analyzing and reporting the results of a statistical simulation experiment

Lewis, P.A.W.; Orav, E.J.; Drueg, H.W.; Linnebur, D.G.; Uribe, L.

Monterey, California. Naval Postgraduate School
http://hdl.handle.net/10945/63674

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

DUDLEY
Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

SIMTBED: A GRAPHICAL TEST BED FOR ANALYZING AND REPORTING THE RESULTS OF A STATISTICAL SIMULATION EXPERIMENT

by

P. A. W. Lewis
E. J. Orav
H. W. Drueg
D. G. Linnebur
L. Uribe

April 1983
Approved for public release; distribution unlimited
Prepared for:
Chief of Naval Research
Arlington, VA 22217

NaVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral J. J. Ekelund Superintendent

David A. Schrady Provost

This work was supported in part by the Office of Naval Research under Grant NR-42-284.

Reproduction of all or part of this report is authorized.

P. A. W. Lewis, Professor Department of Operations Research

H. W. Drueg

Naval Postgraduate School
Monterey, CA 93940

L. Uribe

Computer Applications
Salinas, CA 93908

Reviewed by:

Alan R. Washburn, Chairman
Department of Operations Research

$$
\frac{\text { E. J. lav, Adjunct Professor }}{\text { Department of Operations Research }}
$$

Released by:

A portion of this work was completed for the Naval Postgraduate School under Contract No. N62271-83-M-1006.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETMNG FORM
T. REPORT NUMBER 2. GOVT ACCESSION NO. NPS55-83-007	3. RECIPIENT"S CATALOG NUMEEA
4. TITLE (and Subtita) SIMTBED: A GRAPHICAL TEST BED FOR ANALYZING AND REPORTING THE RESULTS OF A STATISTICAL SIMULATION EXPERIMENT	8. TYPE OF REPORT \& PERIOD COVERED Technical 6. PERFORMING ORG. REPORT NUMEE
7. Author(a) P. A. W. Lewis D. G. Linnebur E. J. Orav L. Uribe H. W. Drueg	a. Conthact of dhant numserna
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93940	16. FMOGRAMELEMEMT, PROJECT, TABK ANEA WOMK UNIT NUMLERS $61153 \mathrm{~N}: ~ R R 014-05-01$ N0001483WR30026
```11. CONTROLLING O'FFICE NAME AND ADDRESS Chief of Naval Research Arlington, VA }2221```	12. NEPONT DATE April 1983 13. NUMEER OF PAGES 42
T4. MONITORING AGENCY NAME A ADORESS(If dilfermit from Controlling Office)	18. SECUNITY CLASS. (of atic ropon) Unclassified
	15s. OECLASISİICATION/DOWNGRADING
16. DISTAIBUTION STATEMENT (of thit Report)   Approved for public release; distribution unlimi	

17. DISTRIBUTION STATEMENT (of the abatract anfored in Block 20, If alfterant from Repert)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side II neceesary end Identlfy by block number)

SIMTBED
Graphics
Simulation
Regression-Adjusted Graphics
20. ABSTRACT (Continue on reveree sfde if neceseary and Identify by block numbor)

A graphical test bed in which the results of a simulation experiment can be reported and analyzed is described. The test bed is based on the regression adjusted graphics and estimation methodology developed by Heidelberger and Lewis for regenerative simulation. From the graphics and associated numerics, the experimenter can summarize and see simultaneously relative properties, such as bias, normality and standard deviation, of several estimators of a characteristic of a population for up to 8 sample sizes. The evolution of these properties with sample size is also disnlayed. The oranhics is
supported on a line printer to make it and the program portable. The technique is illustrated by two examples, one concerning the effects of changes in data distribution on the behavior of the estimated lag one serial correlation coefficient and the other concerning the relative properties of several estimators of a Gamma distribution.

# SIMTBED: A graphical test bed for analyzing and reporting the results of a statistical simulation experiment 

\author{
P.A.W. Lewis E.J. Orav H.W. Drueg D.G. Linnebur L. Uribe <br> Naval Postyraduate School <br> Monterey, California 93940 <br> U.S. Marine Corps Computer Washington, D.C.

Applications Salinas, CA 93908
}

## ABSTRACT

A graphical test bed in which the results of a simulation experiment can be reported and analyzed is described. The test bed is based on the regression adjusted graphics and estimation methodology developed by Heidelberger and Lewis for regenerative simulation. From the graphics and associated numerics, the experimenter can summarize and see simultaneously relative properties, such as bias, normality and standard deviation, of several estimators of a characteristic of a population for up to 8 sample sizes. The evolution of these properties with sample size is also displayed. 'The graphics is supported on a line printer to make it and the program portable. The technique is illustrated by two examples, one concerning the effects of changes in data distribution on the behavior of the estimated lag one serial correlation coefficient and the other concerning the relative properties of several estimators of a Gamma distribution.


SIMIBED is a graphical display program that can be used via a simulation on a digital computer to (i) explore the distribution of a statistical estimator for a given sample size, (ii) to compare the properties of that distribution when the estimator is calculated for various sample sizes, and (iii) to contrast those properties under different estimation conditions. Those conditions are controlled by the experimenter but, most commonly, they will entail competing estimation procedures (e.g. maximum likelihood versus methods of moments, or jackknifed versus not jackknifed). The program is flexible enough to accommodate the imagination of most users and, in one of the examples, we also consider the effects of changes in the underlying distribution of the data.

One salient feature of the program is that it uses the same batch of simulated random variables (e.g. Normals) to explore the proverties of all the estimators at various sample sizes. This is done for econory of computer time and could be important on slow computers; the price paid is that the analytical analysis provided by SIMTBED of its graphical output is performed on correlated samples.

To use the program it is necessary only to define the optional input parameters, supply the simulated random variables, and provide the Fortran functions which, when passed the data and subsample size, transform (if desired) the data subsample and compute the desired statistics. SIMTBED itself will subdivide and feed the data properly into the functions, produce boxplots and summary statistics, and compute regressions for the mean and variance of each estimator based on inverse subsample size. Up to three estimators can be used with the option to
produce equally scaled graphs for all the statistics.
The features of the program are more easily demonstrated by example rather than explanation and so we will proceed directly to two applications. The first application refers back to a simulation study done by Cox (1966) looking at the behavior of the estimated first order serial correlation coefficient, Fisher's z-transform of the estimated correlation, and the 2-fold jackknifed estimate of the correlation for i.i.d. Normal $(0,1), \chi^{2}(1)$ and Lognormal $(0,1)$ data. The jackknife was originally proposed by Quenouille (1948) for the purpose of removing bias from the correlation estimate. The second application considers the problem of estimating the shape parameters for a highly skewed Garma(.25) and a nearly Normal Gamma(5.0) sample using m.l.e., method of moments, 4-fold jackknifed m.l.e., and 4-fold jackknifed method of moments as the competing estimators.

Technical details concerning the SIMIBED software, not essential to interpreting and appreciating the output, can be found in Linnebur (1982), and an application to the analysis of output in a regenerative simulation can be found in Heidelberger and Lewis (1981).

### 2.0 Calculation of the First Serial Correlation Coefficient

It is known that for an independent sample from a population with finite variance, the distribution of the serial correlation coefficient (Anderson and Walker, 1964) is asymptotically Normal with mean zero and variances $1 / n$, where $n$ is the sample size. If the population is i.i.d Nomal then the bias is exactly $-1 / n$. Since those asymptotic properties are frequently used as approximations in tests of significance, it is important to know how valid the approximation would be in small samples
from a variety of distributions. We will look at that question in the next two sections and then go on to consider two alternative measures of correlation, Fisher's z-transform and the 2-fold jackknifed estimate of the correlation. Their ability to reduce bias and/or induce Normality will be examined against other changes in the distribution of the estimators, particularly variance inflation. A simulation study, without graphics, of same of these problems was conducted by Cox (1966). He did not consider the jackknifed estimate.

### 2.1 SIMTBED Output for Serial Correlation

Figure l(a) shows the simulated distribution and sample proverties of the serial correlation coefficient estimate

$$
r_{n}=\frac{n \sum_{j=1}^{n-1}\left(x_{j}-\bar{x}_{1}\right)\left(x_{j+1}-\bar{x}_{n}\right)}{(n-1) \sum_{j=1}^{n}\left(x_{j}-\bar{x}_{0}\right)^{2}},
$$

where $\bar{x}_{0}=\sum_{j=1}^{n} x_{j} / n, \bar{x}_{1}=\sum_{j=1}^{n-1} x_{j} /(n-1)$, and $\bar{x}_{n}=\sum_{j=2}^{n} x_{j} /(n-1)$
for various sub-sample sizes $n=n_{i}$. This definition matches that used by Anderson and Walker (1964). We consider first subsamples of size $n_{1}=10$, and then of size $n_{2}=20, n_{3}=30, n_{4}=40, n_{5}=50$, $n_{6}=75, n_{7}=100$ and $n_{8}=150$, successively. For each subsample size the input sample of $\mathrm{N}=5000$ simulated $\operatorname{Normal}(0,1)$ random variables is divided into as many full subsamples of size $n_{i}$ as possible, and the serial correlation is computed for each of the $\left\lfloor\mathrm{N} / \mathrm{n}_{\mathrm{i}}\right\rfloor$ subsamples of size
$n_{i}$. The entire procedure is then replicated $M=10$ times, each time with a new simulated sample of $N=5000 \operatorname{Normal}(0,1)$ variables.

After all M replications have been run, all the estinates of serial correlation for each subsample size are grouped together and their simulated distribution is presented via a boxplot and summary statistics (see e.g. Fig. $l(a)$ ). The boxplot follows the standards discussed in Mosteller and Tukey (1977) with the median denoted by a + within the box, the mean by a * within the box, the outliers by U's, and the far outliers by *'s beyond the whiskers. The summary statistics include the sample mean, sample standard deviation, estimated standard deviation of the sample mean (i.e. sample standard deviation/sqrt( $M\left|N / n_{i}\right|$ ), sample skewness and sample kurtosis of the correlation estimates.

Looking at the output, the first (leftmost) boxplot in the graph in Figure $1(a)$ shows the distribution of

$$
\text { (\# Replications) } \times\left|\begin{array}{c}
\begin{array}{c}
\text { Simplation } \\
\text { Sample Size } \\
\text { (Subsample Size) }
\end{array}
\end{array}\right|=10 \times\left\lfloor\frac{5000}{10}\right\rfloor=10 \times 500=5000
$$

estimates of serial correlation from independent subsamples of size $n_{1}=10$. Summary statistics for the boxplot can be found below the graph in the colum labeled "Subsample Size 10", so that the average serial correlation is -.1074, and the estimated standard deviation is.. 2996. The estimated standard deviation of the serial correlation estimate is $.2996 / \sqrt{(5000)}=.00424$. Recall that this refers to correlation estimates based on subsamples of size 10 .

Since the $X$-axis of the graph represents subsample size, the last (rightmost) boxplot shows the distribution of

$$
10 \times\left\lfloor\frac{5000}{150}\right\rfloor=10 \times 33=330
$$

estimates of serial correlation from independent subsamples of size $n_{y}=150$. Although the 330 estimates are independent of each other, they are not independent of the 5000 estimates that comprise the first boxplot since the same data (divided and processed in different ways) was used for both. Summary statistics show that the average correlation has dropped to -.007372, indicating the fall off in bias, and the standard deviation has dropped to .07822 , indicating the greater precision with which the correlation can be estimated when 150 points, rather than 10 , are available.

In order to quantify the changes that are occurring in the mean and variance of the distribution of the estimator as subsample size changes, SIMTBED performs two types of regressions. The first regression is on the averages and is done after each replication, using the average serial correlation for that replication, $\bar{r}_{n_{i}}$, as the dependent variable. Inverse powers of the subsample size serve as the independent variables. For Figure $l(a)$ the degree of the regression was chosen to be $D=3$ so, for each replication, the equations we attempt to fit by least squares are:

$$
\bar{r}_{n_{i}}=a_{0}+\frac{a_{1}}{n_{i}}+\frac{a_{2}}{n_{i}^{2}}+\frac{a_{3}}{n_{i}^{3}} \quad \text { for } i=1,2 \ldots 8
$$

This form anticipates the general asymptotic expansion

$$
E(\hat{\theta}(n))=\theta+\frac{\alpha_{1}}{n}+\frac{\alpha_{2}}{n^{2}}+\frac{\alpha_{3}}{n^{3}}+\ldots \ldots
$$

which holds true in the current situation with $\theta=0$ and (in the Normal case) $\alpha=-1$ (see Cramer, 1948, for general results of this type).

Values of $a_{0}, a_{1}, a_{2}$, and $a_{3}$ are calculated after each replication, averaged across the $M$ replications to get $\bar{a}_{0}, \bar{a}_{1}, \bar{a}_{2^{\prime}}$ and $\bar{a}_{3^{\prime}}$ and then the averages are reported below the summary statistics on the line "Mean of Regression on Averages - Coefficients". We find that
$\bar{a}_{0}=-.000272$ and $\bar{a}_{1}=-1.03074$, both close to their respective theoretical counterparts of zero and -1 .

Because we have 10 replications and therefore 10 independent values of each of $a_{0}, a_{1}, a_{2}$, and $a_{3}$, we can also estimate the variances and standard deviations of $\bar{a}_{0}, \bar{a}_{1}, \bar{a}_{2}$, and $\bar{a}_{3}$ across replications. These values are presented on the two lines imediately below the coefficients. For instance, the estimated s.d. of the estimate $\bar{a}_{0}=-.000272$ of $a_{0}$ is .003892.

The regression line for the mean value of the estimator is presented visually in the graph as a dotted curve. The estimated asymptote (i.e. $\bar{a}_{0}$ ) is printed with a dashed line wherever it does not coincide with the regression line. Bias, therefore, can be viewed as the difference between those two lines.

The second reyression referred to above is done after all replications have been run and the variances of the estimators at each subsample size have been calculated. (Note that the standard deviations, not the variances, are presented in the surmary statistics.) It should be recalled from previous discussion that these variances, as well as all measures in the summary statistics, are based on the grouping together of the serial correlations from all replications, at each subsample size. This is in contrast to the the procedure for the regression on the means, where average correlations are computed for each subsample size for each replication. In the case of the variances, we have 8 equations:

$$
\hat{\operatorname{Var}}\left(r_{n_{i}}\right)=\frac{b_{0}}{n_{i}}+\frac{b_{1}}{n_{i}^{3 / 2}}+\frac{b_{2}}{n_{i}^{2}}+\frac{b_{3}}{n_{i}^{5 / 2}}, \quad i=1,2 \ldots .8,
$$

which we fit by least squares in order to estimate the coefficients $\beta_{0}, \beta_{1}, \beta_{2}$, and $\beta_{3}$ in the presumed asymptotic expansion

$$
\operatorname{Var}(\hat{\theta}(n))=\frac{\beta_{0}}{n}+\frac{\beta_{1}}{n^{3 / 2}}+\frac{\beta_{2}}{n^{2}}+\frac{\beta_{3}}{n^{5 / 2}}+\ldots .
$$

This expansion holds for the variance of the estimated serial correlation coefficient for independent data. Usually it will be $\beta_{v}$ in which we are most interested sinœ $\beta_{0}$ is used in computing asymptotic relative efficiencies of estimators. For independent data with finite variance, we know that $\beta_{0}=1$. The computed values of $b_{0} b_{1} b^{\prime} b_{2}$ ' and $b_{3}$ ' are presented on the line labeled 'Regression on Variance Coefficients'. Notice that $\mathrm{b}_{0}=.7438$ is close to the theoretical value of 1 .

The final two numbers on Eigure l(a), YMIN and YMAX, simply show the scale of the vertical axis. Because the SIMTBED program option to put Figures $1(a), 1(b)$ and $1(c)$ on the same scale was in effect, it may be that no boxplot in a given Figure (eg. Figure l(b)) requires the full range of Y -values.

In order to produce Figure $l(b)$, the $\operatorname{Normal}(0,1)$ data that went into Figure $l(a)$ was squared to create longer tailed $\chi^{2}(1)$ random variables. The output is entirely analogous to that for figure $1(a)$. Similarly, for Figure $1(c)$, the Nomal $(0,1)$ data was exponentiated in order to create Lognormal $(0,1)$ data and to produce analogous graphical output. The indication is that the distribution of the sample serial correlation is robust with respect to the population distribution.

The features of the SIMTBED output will become clearer when they are associated with the various properties of the correlation estimator. First, however, a few technical comments concerning the regressions are necessary.

### 2.2 Sare Conments on the Regressions

Two types of problems, numerical and statistical, can occur when
attempting to $f$ it the two sets of regression equations presented in section 2.1.

First, there is the question of numerical stability when the independent variables, $\left\{1, n_{i}^{-1}, n_{i}^{-2}, n_{i}^{-3}\right\}$ or $\left\{n_{i}^{-1}, n_{i}^{-3 / 2}, n_{i}^{-2}, n_{i}^{-5 / 2}\right\}$ decrease geometrically. If we attempt to form $X^{T} X$, where $X$ is the respective design matrix and $\mathrm{X}^{T}$ is the transpose of X , we get values that range from 8 (assuming 8 subsarmple sizes) to $\sum_{i=1}^{8} n_{i}^{-6}$ for the regression on the means, and $\sum_{i=1}^{8} n_{i}^{-2}$ to $\sum_{i=1}^{8} n_{i}^{-5}$ for the regression on the variances. Experience has shown that attempts to solve systems with such extremes in the XTX matrix produce erroneous results. Consequently, SIMIBED scales the design matrices by multiplying each entry of $x$ by $\operatorname{Max}_{1}\left(n_{i}\right)$ raised to the proper power so that no entry becomes too small. The standard Choleski decomponsition (see Dahlquist, Bjorack and Anderson, 1974) is then used to fit the equations, and the coefficients are properly rescaled before they are reported. This procedure produces numerically reliable results.

The second problem concerns the breakdown of statistical assumptions in our regression models. It has already been pointed out in secian 2.1 that the two sets of dependent variables:
(1) the $\bar{\theta}\left(n_{i}\right)$ when considering the regression on the means;
(2) the $s^{2}\left(n_{i}\right)={ }^{M\left|N / n_{i}\right|}\left(\hat{\theta}_{j=1}\left(n_{i}\right)-\overline{\bar{\theta}}\left(n_{i}\right)\right)^{2} / M\left\lfloor N / n_{i}\right\rfloor$.
where $\bar{\theta}\left(n_{i}\right)$ is the mean across the $M$ replications, when ©onsidering the regression on the variances,

## Table 1

Entries in the table are the estimated correlations between the estimated variances of the $r_{n_{i}}$ at different subsample sizes: $\operatorname{Corr}\left(s^{2}\left(r_{n_{i}}\right), s^{2}\left(r_{n_{j}}\right)\right)$ for $i=1, \ldots, 8, j=1, \ldots, 8$.

	i	1	2	3	4	5	6	7
$j$					8			
1	1.00	.49	.46	-.26	.18	-.17	.14	.01
2	.49	1.00	.40	.55	.11	.38	.38	-.03
3	.46	.40	1.00	.23	.23	.44	.21	.29
4	-.26	.55	.23	1.00	.42	.86	.57	.35
5	.18	.11	.23	.42	1.00	.71	.43	.59
6	-.17	.38	.44	.86	.71	1.00	.45	.53
7	.14	.38	.21	.57	.43	.45	1.00	.72
8	.01	-.03	.29	.35	.59	.53	.72	1.00

Recall that $r_{n}$ is the estimated serial correlation for a simulated Normal ( 0,1 ) subsample of size $n$. Also, the estimated correlations shown above were computed using 10 values (replications) of $s^{2}\left(r_{n_{i}}\right)$ and $s^{2}\left(r_{n_{j}}\right)$ for each $i$ and $j$.

## Table 2

A comparison of the estimated variance of $s^{2}\left(r_{n_{i}}\right)$ with the approximate theoretical variance of $s^{2}\left(r_{n_{i}}\right)$ and with the approximately equivariant scaled versions, $n_{i}^{-.5} s^{2}\left(r_{n_{i}}\right)$. All entries have been multiplied by $10^{5}$.

| $n_{i}=$ | 10 | 20 | 30 | 40 | 50 | 75 | 100 | 150 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Var}\left(s^{2}\left(r_{n_{i}}\right)\right)$ | .177 | .150 | .204 | .079 | .047 | .031 | .049 | .022 |
| Approx. Theoretical <br> $\operatorname{Var}\left(s^{2}\left(r_{n_{i}}\right)\right)$ | .400 | .200 | .133 | .100 | .080 | .053 | .040 | .027 |
| $\operatorname{Var}\left(n_{i}^{-.5} \mathrm{~s}^{2}\left(r_{n_{i}}\right)\right)$ | 1.77 | 2.99 | 6.12 | 3.18 | 2.33 | 2.33 | 4.88 | 3.35 |

The estimated variances of $s^{2}\left(r_{n_{i}}\right)$ and $\sqrt{n_{i}} s^{2}\left(r_{n_{i}}\right)$ were calculated using 10 independent replications of $s^{2}\left(r_{n_{i}}\right)$.
are not independent over i since all are based on the same simulated data. The extent of the dependence is demonstrated by the correlation matrix in Table 1. Entries in that table show the estimated correlation between $s^{2}\left(n_{i}\right)$ and $s^{2}\left(n_{j}\right)$ for all $i$ and $j$, where the estimation was done by repeating the SIMTBED experiment with 10 different batches of 50,000 simulated random variables. Since only 10 values went into each correlation calculation, the table is only accurate to within approximately $\pm 2 / \sqrt{10}=.632$. We see same indication of positive correlation, especially when $i$ and $j$ are close, but the lack of independence is not severe enough to hurt the regression results for either the estimated means or variances significantly.

A second assumption, implicit in any regression, is that the dependent variables have equal variances. This condition holds true for the means, which can be shown to satisfy

$$
\operatorname{Var}\left(\bar{\theta}\left(n_{i}\right)\right)=\frac{M}{N}
$$

independently of $i$. The estimated variances, however, are not equivariant and, if we assume the $\hat{\theta}_{j}\left(n_{i}\right)$ to be approximately Normally distributed so that

$$
\sum_{j=1}^{M\left|N / n_{i}\right|}\left(\hat{\theta}_{j}\left(n_{i}\right)-\overline{\bar{\theta}}\left(n_{i}\right)\right)^{2}
$$

is approximately proportional to a Chi-squared random variable, with $M\left|N / n_{i}\right|-1$ degrees of freedom, we can compute

$$
\operatorname{Var}\left(s^{2}\left(n_{i}\right)\right) \cong \frac{2}{M N n_{i}-n_{i}^{2}}
$$

To correct this problem of unequal variances SIMTBED scales the $s^{2}\left(n_{i}\right)$ by $\sqrt{n_{i}}$ so that

$$
\operatorname{Var}\left(\sqrt{n_{i}} s^{2}\left(n_{i}\right)\right) \cong \frac{2}{M N-n_{i}} \cong \frac{2}{\mathbb{M} N}
$$

since $M N \gg n_{i}$. The design matrix is scaled accordingly and the values $b_{0}, b_{1}, b_{2}$, and $b_{3}$ discussed in Section 2.1 are reported.

Table 2 shows the effects of the rescaling by presenting first the estimated variances of the $s^{2}\left(n_{i}\right)$, where the estimation is done by repeating SIMTBED for 10 batches of 50,000 simulated data points. These estimated variances decrease as $n_{i}$ increases, closely paralleling the second line of Table 2 which has the approximate theoretical values (i.e. $2 /\left(M N n_{i}-n_{i}^{2}\right)$ ). The final line of Table 2 shows the estimated variances of the rescaled $s^{2}\left(n_{i}\right)$, i.e. the $\sqrt{n_{i}} s^{2}\left(n_{i}\right)$, which, as expected and hoped, show a more constant variance with i.

Although future versions of SIMTHED will include more sophisticated regression routines and the ability to generate independent samples at each subsample size, the current version is quick, usable, and accurate for most situations.

### 2.3 Interpreting the Serial Correlation Results

Returning to Figure $1(a)$ which shows the simulated distribution of the serial correlation coefficient from independent, $\operatorname{Normal}(0,1)$ data, the following comments sumarize the most striking features:
(a) The boxplots appear very symmetric at all subsample sizes with nearly equal numbers of outliers at either tail and with mean and median coincidental. This observation is confirmed by the estimates of skewness in the summary statistics. Kurtosis is mildly negative at small subsample sizes but, overall, asymptotic Normality seems to take hold rather quickly. Note however, that at $n_{i}=10$ there are only 3 outliers in a
sample of size 5000. This is consistent with the estimated kurtosis of -0.424, showing that the distribution is quite nonnormal.
(b) The average serial correlation is negative for small subsamples. This is demonstrated by the dotted regression curve which starts at approximately -. 10 and levels off near 0 for subsamples greater than about 85. The dashed asymptote of -.000272 is very close to the theoretical value of $U$, and the mean values in the summary table closely reflect the bias of $-1 / n$.
(c) The standard deviations of the simulated distributions are very close to the asymptotic values of $n_{i}^{-0.5}$, although the lead coefficient in the regression on the variances, $b_{0}=.743756$, is not as close to the theoretical value of 1 as we would hope. When SIMIBED is repeated 10 times with 10 different batches of simulated data, we find an average value for $b_{0}$ to be l.0604, with a standard deviation for $b_{0}$ of .307. The estimation procedure for $b_{0}$, therefore, remains valid, but the estimate itself is highly variable.

The agreement between the simulated and the theoretical, asymptotic values of the bias and variances was discovered previously by Cox (1966). SIMIBED has now allowed us to automatically look at a broader range of subsample sizes and to see, through boxplots and estimates of skewness and kurtosis, a fuller picture of any changes in the distribution of the estimator. We can be satisfied that estimates of serial correlation do behave approximately as $\operatorname{Normal}(-1 / n, 1 / n)$ random variables when the underlying data is $\operatorname{Nomal}(0,1)$.

If the lead terms in the expansions of the mean and variance of the estimated correlation coefficient (ie. $a_{0}, a_{1}$, and $b_{0}$ ) had been unknown, we would also have a fairly good idea now of what they were.

When the underlying data is $x_{1}^{2}$, Figure $1(b)$ confirms Cox's observation that the bias is relatively uneffected but, for small subsamples, the standard deviation is smaller than the expected $\mathrm{n}^{-0.5}$. Unlike Figure $1(a)$, there is a pronounced skewness in the boxplots in Figure $1(b)$ with many more outliers at the positive end, and with the mean higher than the median at the first four subsample sizes. The problem of suppressed variance seems cured at $n_{7}=100$ and $n_{y}=150$, but the skewness remains and could cause problems in tests of significance.

Figure l(c), which is based on an underlying batch of simulated Lognormal $(0,1)$ data, shows a slight exaggeration of the effects in Figure $1(\mathrm{~b})$. The standard deviation is more suppressed and does not attain the theoretical level by $n_{8}=150$. The positive skewness is more pronounced and kurtosis does not approach the theoretical value of 0 .

Overall, the effects of long-tailed data on the distribution of the serial correlation coefficient can be surmarized as follows:
(i) Bias is not significantly affected and remains at approximately $-1 / n$.
(ii) The variance of the distribution of the serial correlation ooefficient is reduced by longer-tailed data.
(iii) Positive skewness is created in the distribution.
(iv) Kurtosis may become positive at large subsample sizes.
(v) For long-tailed data (i.e. Lognormal), a subsample size of 150 is not large enough to insure asymptotic Normality.

### 2.4 SIMTBED Output for the $z$-Transform of the Correlation

Fisher's z-transform of the estimated correlation coefficient is defined by:

$$
z_{n}=\frac{1}{2} \log \frac{1+r_{n}}{1-r_{n}}
$$

where ${ }^{r} n$ is the estimated serial correlation presented in section 2.1. The transformation is intended to make the distribution of the $Z_{n}$ more Normal than that of the $r_{n}$. When the same SIMTBED experiment described in Section 2.1 is run using $z_{n}$ as the estimator instead of $r_{n}$, we get the results shown in Figures 2(a), 2(b) and 2(c). It should be noted that the scale of the boxplots here has been forced to be approximately comparable to the scale for the boxplots in Section 2.1. This is done by suppressing outliers that are more than 1.5 interquartile distances beyond the quartiles of the boxplot. If we had allowed the data to scale the boxplots, we would have seen a much wider range on the vertical axis because the $\mathrm{Z}_{\mathrm{n}}$ are not restricted to the limits of -1 to +1 and because there is one far outlier at -3.8 . In this type of "reduced. graphics", we still see the number of outliers that fall beyond the allowable range through the numbers at the ends of the boxplots; but we do not see their actual locations.

Figure 2(a) shows the distribution of the $z$-transformed correlation coefficients when we use simulated Normal $(0,1)$ data. At each subsample size, the mean and standard deviation are close to the theoretical $n^{-1}$ and $n^{-1 / 2}$ respectively. The skewness and kurtosis at subsample size $n_{1}=10$ are far from the theoretical Normal distribution values of 0 and 0 , reflecting partly the one far outlier at -3.8 and partly the negative skew in the remainder of the $\mathrm{z}_{\mathrm{n}_{1}}$ 's. For other subsample sizes, there is no strong evidence to contradict the assumption of approximate Normality.

The relationship between Figure 2(b) and 2(a) is similar to that between $l(b)$ and $l(a)$. Figure $2(b)$, which is based on simulated $x_{l}^{2}$
data, shows (a) bias that is the same as for the transformed correlations based on Normal data, (b) slightly suppressed variances, particularly at small subsample sizes and (c) positive skewness which persists at large subsample sizes. In addition, there are signs of positive kurtosis at small subsanple sizes.

Figure 2(c) is based on Lognormal $(0,1)$ data and shows high values of skewness and kurtosis at almost all subsample sizes. Approximate Normality seems an unwarranted assumption. In fact, the kurtosis is converging very slowly to its asymptotic value of 0 .

In general, using the $z$-transform does not help with Normality assumptions, especially when dealing with long-tailed distributions.

### 2.5 SIMTBED Output for the 2-Fold Jackknife of the Correlation

The final Figures, 3(a), 3(b) and 3(c), deal with the 2-fold jackknife estimate of correlation. Again, the figures are reduced graphics with scaling comparable to that of the boxplots of sections 2.3 and 2.4. To define the estimator, we start with a given subsample of size $n$, compute the serial correlation for the first $\lfloor n / 2\rfloor$ points and call it $r_{1}(n / 2)$, compute the serial correlation for the second $\lfloor n / 2\rfloor$ points and call it $r_{2}(n / 2)$ and compute the serial correlation for the entire subsample of $n$ points and call it $r_{0}(n)$. Each computation follows the formula in Section 2.1. The three estimators are then combined to form two pseudo-values,
and

$$
r_{1}^{*}(n)=2 r_{0}(n)-r_{1}(n / 2)
$$

$$
r_{2}^{*}(n)=2 r_{0}(n)-r_{2}(n / 2)
$$

and the final jackknife estimator for that subsample is defined as

$$
\tilde{r}(n)=\frac{r^{*}(n)+r_{2}^{*}(n)}{2}
$$

Although a jackknife estimator may have many favorable properties, we are concerned here primarily with its ability to remove bias, hquefully without inflating the variances of the estimator and/or inducing nonnormality.

Figure 3(a), based on simulated Normal $(0,1)$ data, shows nearly complete removal of bias, even at small subsample sizes. The cost of the bias reduction is reflected in an increase of nearly $50 \%$ in the standard deviation of the correlation estimate for subsample size 10 , and lesser relative increases at larger subsample sizes. There is also an indication of a positive skew for small subsample sizes, and the problem that the jackknife estimator need not fall into the -1 to +1 range which is desirable for a correlation coefficient estimate.

When using simulated $\chi_{l}^{2}$ data as in Figure $3(b)$, or simulated Lognormal $(0,1)$ data as in Figure $3(c)$, there is again no problem with bias. Variance inflation, though it exists at small subsample sizes, is not as large as when Normal $(0,1)$ data is used. The distributions of the jackknifed correlations show very pronounced positive skews, however, as well as positive kurtosis. These two problems are worse for the longer-tailed Lognormal data.

Overall, the jackknife estimator is very successful at removing bias but the costs include variance inflation, which can be severe at small subsample sizes, plus increased positive skewness and kurtosis when the estimates are based on data from longer-tailed distributions.

### 2.6 Comparison of the Three Estimates of Correlation

For Normal $(0,1)$ data, the distribution of the usual correlation cofficient displayed in Figure $1(a)$ behaves very much as theoretical
asymptotic calculations would predict, even at small subsample sizes. This makes it possible to correct for bias in the estimator and to perform tests of significance. Use of Fisher's z-transform, as illustrated in Figure 2(a) does not seem necessary since it does not significantly improve the approximate Normality of the estimator. The jackknife estimator in Figure 3(a) may be valuable if a direct, unbiased estimator is needed but the inflated variance of the jackknife estimator may limit the usefulness of the estimate as well as make any tests of significance too conservative.

When the underlying data comes from a longer-tailed distribution, the usual correlation coefficient in Figures $l(b)$ and $l(c)$ retains a predictable bias term, although the variance of its distribution is slightly depressed and the skewness and kurtosis becomes positive, even for subsamples as large as 150. This means that it is still possible to estimate the correlation accurately, but tests of significance fall on shakey assumptions of Normality. The z-transform in Figures 2(b) and 2(c) does little to firm up those assumptions and, in some cases, maked the situation worse. As in the case of Normal data, the 2-fold jackknifed correlation in Figures 3(b) and 3(c) is bias-free but follows a fairly nonnormal distribution which would invalidate significance testing.

All of the preceding observations and conclusions flow irmediately from the nine Figures presented so far. Further studies could easily be done through SIMTBED, looking at larger subsample sizes, correlated data, i.e. $\rho \neq 0$ and alternative marginal distributions. For demonstration purposes, though, it is better to proceed to our second application.

### 3.0 Estimating the Shape Parameter for a Gamm Distribution

As a second application of SIMTBED, we will consider a problem
which has received much less statistical attention; asymptotic results are summarized in Cox and Lewis (1966, Ch.3) and Johnson and Kotz (1970, Ch.17). We want to estimate the shape parameter, K, for a Garma distribution, where the Garma density is given by

$$
\begin{aligned}
f(x) & =\left(\frac{K}{\mu}\right)^{K} \frac{x^{K-1}}{\Gamma(x)} e^{-K x / \mu} & & x>0 ; K>0 ; \mu>0 \\
& =0 & & x<0 .
\end{aligned}
$$

Notice that the mean of this đistribution is $\mu$, not $K / \mu$ as in some differently parameterized versions of the Gama density. For the data that will be simulated for use in SIMIBED we will use $K=5$ and $\mu=1$ and $K=0.25$ and $\mu=1$. The closer the mean of our estimate is to 5 or 0.25 , the better (in terms of bias) is our estimation procedure. Other factors such as the variance and Normality of the estimator will of course also have influence in the detemination of a prefered estimator; the bias and variance could be combined into m.s.e.

Section 3.11 will compare the commonly used maximum likelihood estimator whirch is mildly rdifficult to compute to the competing method of moments estimator which is very simple to compute. Both procedures result in asyrptotically Normal estimators (Oramer, 1948) but the m.l.e. is usually prefered because of its favorable asymptotic relative efficiency (Cox and Lewis 1966). Through SIMTBED, though, we will see that for small subsamples the estimated variances of the two estimators of $\mathbb{K}$ are not as far apart as asymptotic results lead us to believe. In iaddition, the bias that appears in both estimators is smaller for the moment estimator.

In Section 3.2 we will use a four-fold jackknife of both the m.1.e. and moments estimators to successfully remove the bias. What is remarkable is that unlike the jackknifing of the serial correlation, there is
little or no cost in terms of variance inflation and nonnormality for the jackknifed moment estimator. When $K=.25$, we will see in Section 3.3 that the jackknifed m.l.e. dominates the other three estimators at all subsample sizes when considering the mean, variance, and Normality of the estimator.

### 3.1 Maximum Likelihood and Moment Estimators of K

Figure 4(a) is very similar in format to the figures that have already been presented for the correlation example except that:
(1) The estimator whose distribution is being displayed is the maximum likelihood estimator of $K$, the shape parameter of a Garma(5) population. We denote the estimator, computed from a simulated subsample of size $n$, by $\hat{K}(n)$ and define it to be the solution of the equation:

$$
n[\log \hat{K}(n)-\Psi(\hat{K}(n))]=n \quad \log \sum_{i=1}^{n} x_{i / n}-\sum_{i=1}^{n} \log x_{i} .
$$

where the $X_{i}$ are the simulated Gamma(5) random variables and $\Psi($.$) is the$ digamma function (Cox and Lewis, 1966).
(2) The eight subsample sizes which we will be looking at are $n_{1}=33$, $n_{2}=50, n_{3}=71, n_{4}=100, n_{5}=125, n_{6}=166, n_{7}=250$ and $n_{8}=500$. Note the difference between the $n_{i}$ 's in the previous example and these $n_{i}$ 's. Since these are larger we will not see much small sample detail, but we will see some of the asymptotic ( $n=500$ ) effects coming in.
(3) At each subsample size we will work with $M^{*}=20$ independent replications of $N^{*}=2500$ simulated Garma(5) random variables, instead of the $M=10$ replications of $N=5000$ variables used previously.

The total number of independent simulated random variables across replications remains constant at the program maximum of 50,000 . Hence, the boxplot at subsample size 50 in Figure $4(a)$ represents the distribution of $M^{*}\left\lfloor N^{*} / 50\right\rfloor=1000$ estimates of $\hat{K}(50)$ just as the boxplot at subsample size 50 in Figure 1(a) represents the distribution of $M|N / 50|=1000$ estimates of $r(50)$. As long as the product, $M \times N$, remains constant, the only effect of changing the number of replications is, up to rounding in $N / n$, to change the results in the regression on the averages. By using $M^{*}=20$ and $N^{*}=2500$, SIMTBED reports regression coefficients averaged over 20 replications, but, within each replication, the dependent variables are averages over just $\left|2500 / n_{i}\right|$ values of the estimator.
(4) The boxplots are presented using the reduced graphics option. In this option any extreme outliers (i.e. those beyond 1.5 interquartile distances) are included as a count at the tail of each boxplot. This option was chosen in order to give more graphical weight to the body of the distributions and the fall-off in the bias. Limited printer resolution makes it impossible to show details in the body and the tails of the distributions if there are many straggling outliers. In the case of very extreme outliers, no detail would be seen in the body of the boxplot without the reduced graphics option.

Figure 4 (b) looks at the distribution of the moment estimator of K , the shape parameter of a Gamma(K) population:

$$
\tilde{K}(n)=(n-1) \bar{x}^{2} / \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2},
$$

where $\bar{x}=\sum_{i=1}^{n} x_{i} / n, \quad n$ is the subsample size, and the $x_{i}$ are the simulated Gamma(5) random variables. The SIMIBED options and para-
meters mentioned in (2), (3) and (4) preceding are also in effect here. The two figures, 4(a) and 4(b), show a very pronounced bias in both estimation procedures, although the moment estimator is slightly closer to the unbiased value of 5 . As expected, the standard deviation of the m.l.e. is lower than that of the moment estimator although the relative difference at small subsample sizes, for instance 1.448 versus 1.482 at $n_{1}=33$, may not outweigh the increase in bias with the m.l.e. At larger subsample sizes, the relative difference is close to the theoretical asymptotic relative efficiency of .78 (i.e. . 91 at $n_{7}=250$ )

Both estimators also show distributions with positive skewness and kurtosis that decrease to the asymptotic 0 levels as subsample size increases. The asymptotics appear to take hold more quickly for the moment estimator than for the m.l.e.

In summary, SIMTBED shows that the m.l.e. is indeed better than the moment estimator in terms of variance, but not as good for small sample sizes as asymptotic results would lead us to believe. In the other areas of bias and asymptotic Nomality, the moment estimator would have to be preferred.

### 3.2 4-Fold Jackknifed Estimators of K

Figures 4(c) and 4(d) show the distributions of the 4-fold jackknifed m.l.e. of K and 4 -fold jackknifed moment estimator of K , respectively. A 4-fold jackknife estimator is similar to the 2-fold jackknife estimator described in Section 2.5 except that there are 4 pseudo-values that come out of dividing each subsample into fourths. More details can be found in Mosteller and Tukey (1977).

The purpose of the jackknife is to remove the conspicuous bias
observed in Figures 4(a) and 4(b). This goal is seen to be accomplished in Figure 4(c) and 4(d) and we can also note smaller values of skewness and kurtosis, indicating a quicker approach to asymptotic Normality. The skewness and kurtosis of the jackknifed moment estimator are the lowest, at small subsample sizes, among all estimators. The variance of the jackknifed moment estimator is also only slightly inflated, as is the variance of the jackknifed m.l.e..

All told, the jackknifed moment estimator, because of its lack of bias, small. variance, and low skewness and kurtosis, would be the method of choice if estimation of K or significance testing was the goal.

### 3.3 Results for $K=0.25$

In Figures 5(a), 5(b), 5(c) and 5(d) we show similar results to those discussed above for the case $K=5.0$, but using $K=0.25$. The fact (Cox and Lewis, 1966, Ch.3) that the m.l.e. estimate is much more efficient than the moment estimate is graphically illustrated. What is new is the effect of jackknifing: bias is reduced without the sacrifice of variance inflation or nonnormality.

Further comparisons and interpretations are similar to those done for the case $K=5.0$, and are left to the reader.

### 4.0 Conclusions

Simply by providing SIMIBED with the desired estimators, we have been able (a) to explore in depth the effects of changes in data distribution and of different estimation procedures on the calculation of the serial correlation coefficient, and (b) to compare four different ways to estimate the shape parameter in a highly skewed Garma population.

The yraphics and numerical output combine to let us see and quantify distributional changes that occur as subsample size yrows. We can see bias fall away, variance shrink, and skewness disappear as the estimator approaches asymptotic Normality. Terms in the asymptotic expansion of the mean and variance of the estimator are automatically calculated and can be used to compare different estimators.

Ease of use and portability, however, remain as SIMTBED's most important features, and will hopefully inspire users to try more diverse and extensive simulation experiments.

Other graphical displays besides running boxplots can be used; some alternatives are given in Lewis (1972), Heidelberger and Lewis (1981) and Devlin, Gnanadesikan and Kettenring (1981).

### 5.0 Availability

SIMTBED is at present only available in a version run on the IBM 3033. However, since the program uses standard FURTRAN and is independent of any software packayes, conversion should be simple. Versions for VAX machines will be tested shortly.

## References

Anderson, T.W. and Walker, A.M., (1964). "On the Asymptotic Distribution of the Autocorrelation of a Sample from a Linear Stochastic Process", Ann. Math. Statist., 35, pp. 1296-1303.

Cox, D.R., (1966). "The Null Distribution of the First Serial Correlation Coefficient", Biometrika, 53, pp. 523-626.

Cox, D.R. and Lewis, P.A.W., (1966). The Statistical Analysis of Series of Events, Chapman and Hall, London, Ch. 6.

Cramer, H. (1946). Mathematical Methods of Statistics, Princeton University Press, Princeton, New Jersey.

Heidelberger, P. and Lewis, P.A.W. (1981). "Regression-Adjusted Estimates for Regenerative, Simulations, with Graphics", Corm. of the A.C.M., 24, pp. 260-273.

Johnson, N.L. and Kotz, S., (1970). Continuous Univariate Distributions - 1, Houghton Mifflin Company, Boston, Ch. 17.

Linnebur, D.G., (1982). "A Graphical Test Bed for Analyzing and keporting the Results of a Simulation Experiment", Master's Thesis, Naval Postgraduate School, Monterey, California.

Quenouille, M.H., (1948). "Some Results in the Testing of Serial Correlation Cœfficients", Biometrika, 35, pp. 261-267.














Figure $4(\mathrm{~d})$



Figure 5(b)


Figure $5(\mathrm{c})$


VERTICAL SCALE: YMIA $=\begin{array}{r}-0.10: 5 \\ \text { YMAX }=0.6 E \\ 0.0\end{array}$
ESTIMATCP: 4-FCLC JACKAIFEC MIMENT ESTIMATCR UF THF SHAPE PARAMETER OF THE GAMMA DISTRIAUIION K $=-25$

NO. OF COPIES
Library, Code 0142
Naval Postgraduate School
Monterey, CA 93940
Dean of Research
Code 012A
Naval Postgraduate School
Monterey, CA 93940
Library, Code 55
Naval Postgraduate School
Monterey, CA 93940
Professor P. A. W. Lewis 170
Code 55Lw
Naval Postgraduate School
Monterey, CA 93940

