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Abstract—A foot motion filtering algorithm is presented for es-
timating foot kinematics relative to an earth-fixed reference frame
during normal walking motion. Algorithm input data are obtained
from a foot-mounted inertial/magnetic measurement unit. The
sensor unit contains a three-axis accelerometer, a three-axis an-
gular rate sensor, and a three-axis magnetometer. The algorithm
outputs are the foot kinematic parameters, which include foot
orientation, position, velocity, acceleration, and gait phase. The
foot motion filtering algorithm incorporates novel methods for
orientation estimation, gait detection, and position estimation.
Accurate foot orientation estimates are obtained during both static
and dynamic motion using an adaptive-gain complementary filter.
Reliable gait detection is accomplished using a simple finite state
machine that transitions between states based on angular rate
measurements. Accurate position estimates are obtained by inte-
grating acceleration data, which has been corrected for drift using
zero velocity updates. Algorithm performance is examined using
both simulations and real-world experiments. The simulations
include a simple but effective model of the human gait cycle.
The simulation and experimental results indicate that a position
estimation error of less than 1% of the total distance traveled is
achievable using commonly available commercial sensor modules.

Index Terms—Accelerometers, angular rate sensors, comple-
mentary filter, foot kinematics, foot motion, gyros, inertial sensors,
magnetic sensors, personal navigation, position estimation.

I. INTRODUCTION

NUMEROUS applications require a self-contained per-
sonal navigation system that works in indoor and outdoor

environments, does not require any infrastructure support, and
is not susceptible to interference. Position tracking of human
movement commonly requires an unrestricted line-of-sight to
an installed infrastructure consisting of one or more transmitters
and/or receivers. Such systems require extensive setup and
calibration of the tracking volume, which may be of limited
size and may suffer from occlusion. Examples of this type of
tracking are generally based on radio frequency, such as GPS,
or may use optical-based systems, such as video tracking.
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Alternatively, a self-contained tracking system using small
inertial/magnetic measurement units (IMMUs) will not have
limitations due to occlusions in the covered tracking space.
Applications using commercially available IMMUs containing
triads of orthogonally mounted accelerometers, angular rate
sensors, and magnetometers have been successfully demon-
strated. See for example [1]–[3]. Several commercial orienta-
tion tracking systems are currently in the market. Commercial
examples of such IMMUs include the InterSense InertiaCube
2+ [4], the Xsens MTx [5], the MicroStrain 3DM-GX3-25 [6],
and the MEMSense nIMU [7]. The individual inertial sensors
used in IMMUs are low-cost, low-power, and lightweight based
on microelectromechanical systems (MEMS) technology.

However, the performance of MEMS accelerometers and
angular rate sensors is limited by random noise and calibration
error. Magnetometer accuracy is affected by hard-iron and soft-
iron interference. Consequently, when the IMMU is used in a
position tracking system, it becomes the source of unbounded
growth in position error. Novel and innovative methods have
been proposed by many researchers to address the limitations
inherent in the commercial IMMU.

Much research has focused on using inertial sensors in
combination with magnetic sensors to measure distance walked
and/or to track position. In the available body of research,
two main approaches to position tracking are identified. One
method is based on counting steps and estimating distance
based on an approximate step length, with some researchers
reporting good results [8]–[13]. This technique circumvents the
growth in position error that arises from the double integration
of acceleration but may be limited by the accuracy in which the
step length can be determined and the general heading of the
body. The other main approach is an adaptation of the well-
known strapdown navigation algorithm, which incorporates
double integration of the measured acceleration to estimate
distance and or position. The work described here is based on
this latter approach.

In this and in similar work by other researchers, the growth
in position uncertainty that arises from the integration of the
acceleration error is mitigated by a technique that is commonly
referred to as zero-velocity updates (ZVUs) [14]. Most types of
human movement, such as walking, side stepping, and running,
have repeated recognizable periods during which the velocity
and acceleration of the foot are zero. These brief periods occur
before entering the swing phase of the gait cycle each time the
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Fig. 1. Depiction of an inertial/magnetic sensor module attached to a foot for
tracking foot motion during normal walking.

foot contacts the ground during the stance phase. The use of
a foot-mounted IMMU, as shown in Fig. 1, provides sensor
data for recognition of these periods. This provides a means
to determine the drift error and to facilitate correction to the
velocity in preparation for subsequent integration to derive
position. Since this correction is applied at the end of every
walking step, it provides a type of immediate recalibration of
the sensor.

Some previous works that utilized the ZVU technique in-
clude Sagawa et al. [15], Sabatini et al. [16], and Cavallo et al.
[17]. These researchers used a combination of accelerometers
and rate sensors attached to the foot to measure gait parameters
and distance traveled. The Sagawa approach used a tri-axial
accelerometer and a single axis angular rate sensor attached
to the toe (an atmospheric pressure sensor is used to measure
change in altitude). The Sabatini and Cavallo approaches used
a bi-axial accelerometer and a single axis angular rate sensor
attached to the instep.

Sagawa et al. assumed that foot roll and yaw are zero during
normal walking [15]. Sabatini et al. [16] assumed that all mo-
tion takes place in a sagittal plane. In both cases, a rate sensor
was mounted perpendicular to the sagittal plane. Gait events
such as heel-off, heel-strike, and swing, were detected using an-
gular rate sensor data. Instead of counting steps, walking speed
and stride length were estimated by double integration of ac-
celerometer data. For best performance, the tracked subject was
required to maintain a uniform walking speed and gait. Both
research efforts were able to detect gait events with high levels
of confidence. In limited experimental results, Sagawa et al.
reported a maximum distance estimation error of 5.3% over
a 30-m course. Experimental results obtained while walking
over a 400-m closed course reported a smaller error, with an
average measured distance of 401.2 ± 4.61 m or just over
a 1% error. Although GPS heading information was used in
[17] to reconstruct the path of travel, neither of the systems
described was able to determine the direction of displacement
or position. In [18], Sabatini described a quaternion-based
extended Kalman filter for determining the orientation of a rigid
body, which is applicable to tracking human movement.

The commercial availability of the IMMU has improved in
recent years, and newer IMMUs have expanded to include
triads of orthogonally mounted accelerometers, angular rate
sensors, and magnetometers that are integrated into lightweight
miniature packages. Because of this, more recent work has

shown the promise of using the IMMU in the tracking of foot
motion and for the determination of position.

In [19], Foxlin used a foot-mounted IMMU from Inter-
Sense incorporating the ZVU and an extended Kalman filter
to achieve error performance on the order of 0.3% of distance
walked using a magnetometer that has been recently calibrated.
In another work by Ojeda and Borenstein [20], error on the
order of 2% of distance walked was reported. A noteworthy
aspect of their work was the incorporation of additional cor-
rections in the calibration of the accelerometers and angular
rate sensors to account for temperature variation and random
variation. Furthermore, their results were achieved exclusive
of the magnetometers available within the IMMU that was
utilized. In a recent work by Bebek et al. [21], a position
error of less than 1% was reported. This work incorporated an
additional calibration based on the total drift that accumulated
during an initial walk. This information was used to correct
subsequent walks to produce desirable results.

Since these works were based on the ZVU, it was necessary
to identify the instances of swing phase and stance phase with
a high degree of accuracy. Some researchers have developed
specific electronic circuits to aid in the detection of the foot
stance phase. For example, in [22], a shoe-mounted radar was
developed to detect the instances of the foot zero velocity.
Others have incorporated force-sensitive resistors into the shoe
or foot-mounted switches, such as in [21], [23], and [24]. While
this approach yields very accurate results, it does introduce an
added level of complexity to the overall system.

This paper describes a self-contained method for estimating
the kinematics of the human foot during normal walking mo-
tion. In this paper, normal walking refers to forward walking
of a healthy person as opposed to backward walking, side-
stepping, Nordic walking, hopping, skipping, jumping, running,
etc. The method is based on the use of IMMUs attached to the
foot. The primary contributions of this paper are the following.

1) An adaptive-gain complementary filter designed to accu-
rately estimate orientation during both static and dynamic
motion. While the filter described is useful in many
applications, it is particularly suited for determination of
foot orientation during static stance phases and dynamic
swing phases.

2) A reliable gait detection method requiring only input
from foot-mounted angular rate sensors. The method
consists of a two-state finite state machine, which tracks
the stance and swing phases of the human gait cycle.

3) A method for accurate position estimation by integrating
acceleration data that have been corrected for drift using
ZVUs.

4) Simulation and real-world experimental results, which
indicate that the aforementioned methods are accurate
and have practical applications.

The remainder of this paper presents in detail the foot
motion filtering algorithm and experimental results. Section II
describes the foot motion filtering algorithm and includes a
separate section for each of the major components. Section III
describes a simulation framework for evaluating the foot mo-
tion filtering algorithm and for isolating and quantifying the
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Fig. 2. Block diagram of the foot motion tracking algorithm that produces the
foot orientation quaternion, foot position, foot velocity, and gait phase.

various sources of error. Discussion and results pertaining to
simulation studies and real-world experiments are presented in
Section IV. The final section summarizes the conclusion that
can be drawn from this paper.

II. FOOT MOTION FILTERING ALGORITHM

This section presents a motion filtering algorithm based on
the use of a foot-mounted IMMU. A block diagram of the
foot motion filtering algorithm is shown in Fig. 2. The upper,
middle, and lower portions of the diagram correspond to the
three main components of the algorithm. The upper portion of
the diagram depicts the adaptive-gain quaternion-based com-
plementary filter for estimating foot orientation represented
by a quaternion q̂ from the acceleration measurement a, the
local magnetic field measurement m, and the angular rate
measurement ω. The middle portion of the diagram depicts
the position and velocity estimation filter. The outputs are the
foot velocity estimate v̂ and the foot position estimate p̂. The
lower portion of the diagram shows the gait phase detection
algorithm. At any given moment, the gait phase, denoted by ϕ,
will have one of two values, which correspond to the swing or
stance phases of the normal walking cycle. Each of the main
components of the filter algorithm is described in detail in the
following sections.

A. Adaptive-Gain Quaternion-Based Complementary Filter
for Orientation Estimation

The upper portion of Fig. 2 shows a complementary filter for
estimating orientation of a foot or any other object to which
an inertial/magnetic sensor module is attached. The input to
this filter is nine components of the inertial/magnetic sensor
measurements, which are three components of the accelerom-
eter measurement a, three components of the local magnetic
field measurement m, and three components of the angular rate
measurement ω. The output of the filter is the estimated foot
orientation represented by a quaternion q̂. All measurements
provided by the IMMU are represented in the sensor or body co-

ordinate system. To differentiate the same quantity in the body
coordinate system or the earth coordinate system, a superscript
is used to indicate the coordinate system. For example

ab =

⎡
⎢⎣

ab
x

ab
y

ab
z

⎤
⎥⎦ (1)

denotes the acceleration and its three components in the body
coordinate system.

The algorithm designed for orientation estimation is a type of
filter that blends two sources of data in a complementary man-
ner [25]. In this case, the filter blends the static low-frequency
information provided by accelerometers and magnetometers,
and the dynamic high-frequency information provided by the
angular rate sensors. If the foot or any other body to which
the inertial/magnetic sensor module is attached is stationary or
moving slowly, measurements provided by accelerometers and
magnetometers are sufficient to estimate the body orientation
accurately [26]. Thus, measurements from these sensors can be
heavily weighted in the filter. However, if the body is subject to
movement with relatively large linear accelerations, this com-
ponent cannot be separated from the gravitational acceleration,
and the orientation estimate becomes less accurate. In this case,
angular rate measurements are more heavily weighted relative
to accelerometer measurements for orientation estimation.

The complementary filter has two branches: the static quater-
nion branch qs and the dynamic quaternion branch qd. The
static quaternion qs is computed using the factored quater-
nion algorithm (FQA). The FQA is a method of estimating
the orientation of a static or slow-moving rigid body based
on accelerometer and magnetometer measurements. In the al-
gorithm, the measured acceleration and local magnetic field
vectors are used to estimate orientation without memory ef-
fect. Magnetometer measurements are used only to determine
orientation within the horizontal plane [26]. In the dynamic
branch, a quaternion rate q̇d is computed from the angular rate
measurement ω and the most recent quaternion estimate q̂ using
the well-known quaternion equation [27]

q̇d =
1
2
q̂ · ω (2)

where the product between q̂ and ω is quaternion multiplication
and the measured angular rate ω is expressed as a pure vector
quaternion with the scalar part equal to zero and the vector part
corresponding to the measured components of the angular rate
vector for the body coordinate x, y, and z axes.

The filter gain k has the effect of adjusting the relative weight
of the two branches. The static quaternion qs produced by the
FQA is compared with the most recent orientation estimate
of the complementary filter q̂ to produce a quaternion error
e(t) = ±qs(t) − q̂(t). The ± in front of qs(t) is used to indicate
that a quaternion having the same sign as q̂(t) must be used
here. The quaternion error e(t) is multiplied by the feedback
gain k, which is then added to q̇d(t) in order to produce a cor-
rected dynamic quaternion rate. The corrected quaternion rate
is finally integrated to yield the estimated quaternion. Although
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not shown in Fig. 2, the estimated quaternion is immediately
normalized to ensure that it remains a unit quaternion.

The complementary nature of the orientation filter can be
analyzed using the Laplace transform. Applying the principle
of superposition and assuming that the input to the dynamic
branch is zero, the transfer function from the static quaternion
Qs(s) = L{qs(t)} to the estimated output quaternion Q̂(s) =
L{q̂(t)} is given by

Hs(s) =
Q̂(s)
Qs(s)

=
k

s + k
. (3)

Now assuming that the input to the static branch is zero, the
transfer function for the dynamic branch is

Hd(s) =
Q̂(s)
Qd(s)

=
s

s + k
. (4)

Equation (3) is a first-order low-pass filter with the corner fre-
quency at ωc = k and a unit gain at very low or dc frequencies.
On the other hand, (4) is a first-order high-pass filter with the
same corner frequency ωc = k. Thus, at lower frequencies,
the filter output relies more on the static quaternion qs(t)
computed by FQA with acceleration and local magnetic field
measurements as input. At higher frequencies, the filter output
relies more on the dynamic information provided by the angular
rate measurements. At or near the corner frequency, the filter
output is a fusion of both static and dynamic information [28].

The corner frequency is determined by the choice of the filter
gain k. The optimal value of the filter gain depends on the
application or motion to which the sensor module is subjected.
In general, if the sensor module is subjected to relatively slow
movements, a larger feedback gain is preferred. Conversely, if
the sensor module undergoes relatively fast motion, a smaller
feedback gain is chosen.

To accurately track foot motion during normal walking, an
adaptive-gain strategy can be adopted. As shown in Fig. 2, the
value of the filter gain k is affected by the gait phase ϕ, which
is computed by the gait phase detection algorithm at the lower
portion of Fig. 2. Here, the state of the gait is characterized as
either the stance phase or the swing phase. During the stance
phase, the foot is in contact with the ground and has zero or
a relatively small angular velocity. A larger filter gain is used
during the stance phase. During the swing phase, the foot is in
motion, and a smaller value for the filter gain is used.

B. Position and Velocity Estimation Filter With ZVU

The middle portion of Fig. 2 shows the position and veloc-
ity estimation filter. The input to this filter is the measured
acceleration vector in the body coordinates, and the output is
the estimated position p̂(t) and velocity v̂(t) relative to a fixed
earth coordinate frame. This filter uses the estimated quaternion
q̂(t) generated by the complementary orientation filter, which is
shown in the upper portion of Fig. 2, to transform acceleration
measurements from the body coordinates to earth coordinates.

The input to the position and velocity estimation filter is the
measured acceleration vector ab in the body coordinate system,
which is simply shown as a in Fig. 2 for brevity. This is the

same measurement vector used by the FQA. The first step of
the position and velocity estimation filter is to transform the
body coordinate acceleration into the earth coordinate system
using the quaternion operator

ae(t) = q̂(t) · ab(t) · q̂∗(t) (5)

where q̂(t) is the estimated quaternion representing the ori-
entation of the body, q̂∗(t) is the quaternion conjugate, and
the product in the equation is quaternion multiplication. The
acceleration vectors ab(t) and ae(t) are treated as pure vector
quaternions, with the scalar part being equal to zero when per-
forming quaternion multiplication. After obtaining the acceler-
ation vector ae(t) in the earth coordinate system, gravitational
acceleration ge is subtracted from ae(t) to derive the motion-
induced acceleration

ae
m(t) = ae(t) − ge. (6)

The result of (6) is integrated to obtain the 3-D velocity vector
in the earth coordinate system

ve
m(t) =

∫
ae

m(t) dt. (7)

Theoretically, the velocity vector resulted from (7) can be
immediately integrated once again to obtain position. However,
due to the presence of measurement noise and drift in the
measured acceleration vector ab(t) and the estimation errors
in the estimated quaternion q̂(t), an immediate integration of
ve

m(t) results in unbounded error growth in position estimation
in a relatively short time.

An approach to reduce error growth in the position estimation
is to apply a velocity correction method called the ZVU. The
concept of the ZVU is based on the observation that human
foot motions are cyclic, and when a foot is in the stance phase
or in contact with the ground, its velocity is zero. Due to bias
error in acceleration measurements, the estimated foot velocity
obtained from (7) may not be zero while the foot is in the stance
phase. The difference between the actual velocity, which is
known to be zero, and the velocity derived through integration
is used to correct for the acceleration bias error. Specifically, the
acceleration measurement ae

m(t) of a foot over a period of the
swing phase is considered to be in the form of

ae
m(t) = ae

a(t) + ε, t ∈ [0, T ] (8)

where ae
a(t) is the actual or true acceleration, ε is the bias error,

and T is the duration of the swing phase. Over the short period
of the swing phase, the bias error ε may be assumed to be
constant. The foot velocity at the beginning of the swing phase
is zero. The foot velocity during the swing phase is computed
using (7)

ve
m(t) =

t∫
0

ae
m(τ)dτ =

t∫
0

[ae
a(τ) + ε] dτ

=

t∫
0

ae
a(τ)dτ +

t∫
0

εdτ = ve
a(t) + εt. (9)
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Fig. 3. Three-axis foot velocity prior to applying the ZVU.

The computed velocity ve
m(t) is composed of two parts. The

first part ve
a(t) is the actual or true velocity, and the second part

εt is due to bias error. At the end of the swing phase when t =
T , the foot is again in contact with the ground, and the actual
velocity is known to be zero. As a result, the bias error in the
acceleration measurement can be estimated by

ε =
ve

m(T )
T

. (10)

This acceleration bias error estimate can now be used to correct
velocity and position estimate during the swing phase. Fig. 3
shows the three-axis foot velocity prior to applying the ZVU.
The presence of drift is evident in all three components of
velocity. Moreover, the drift in the velocity appears to be linear,
which confirms the assumption that the acceleration bias is
constant over the short period of a swing phase. Fig. 4 shows
the same velocity after applying the ZVU. It is seen that the
corrected foot velocity during the stance phase is now zero.
This corrected velocity, denoted by v̂ in Fig. 2, is integrated
again to obtain the estimated position p̂. It is noted that all
sensor measurements and position/velocity vectors are 3-D in
this paper. Thus, the filter described previously estimates 3-D
position and velocity.

C. Gait Phase Detection Algorithm

To utilize the ZVU for correcting foot velocity, it is necessary
to accurately detect the stance and swing phases of foot motion.
The use of both accelerometer and angular rate data was exam-
ined for this purpose. Initially, the foot acceleration seemed to
provide a means for the detection of the transitions between
the stance phase and swing phase. After further experiment,
however, the angular rate of the foot was found to be more
reliable in discriminating the periods of the swing and stance
phase motions. Only the use of angular rate data is discussed
here. For a discussion on the use of accelerometers to detect
the gait phases, see [29]. A thorough analysis of gait detection
techniques is found in [30].

Fig. 4. Three-axis foot velocity after applying the ZVU.

Fig. 5. State machine describing the operation of the gait phase detection
algorithm.

The gait phase detection algorithm is essentially a state ma-
chine with two states—STANCE and SWING. Fig. 5 shows the
two states of the gait phase detection algorithm and the allowed
transitions between them. The operation of the state machine
must be synchronized with the user’s foot motion. That is,
when the user’s foot was in the stance phase, the state machine
must be in this state. Conversely, when the user’s foot is in the
swing phase, the state machine should reflect this state as well.

Generally speaking, the angular rate measurements are zero
or relatively small when the foot is in the stance phase. How-
ever, a close examination of the typical angular rate measure-
ments during normal walking reveals that the angular rates may
momentarily dip to small values during the swing phase. As
such, a simple threshold algorithm is not sufficient to accurately
detect the gait phases. To circumvent this problem, a timer,
as well as a threshold, was utilized. The state machine will
transition between states only when the angular rate has been
above or below the threshold for a specified time period. In
this way, momentary dips and sudden spikes in the angular rate
measurements are filtered out.

Based on the aforementioned discussion, two parameters
were monitored during the execution of the algorithm. The first
was the magnitude of the angular rate measurements |ω|. It was
compared against a threshold value Ωth. The second parameter
was a sample count γ that was incremented until a specified
number of samples had satisfied the minimum count condition.
Fig. 6 shows |ω| identified as the angular rate length on the
vertical axis of the plot, as well as the output of the gait phase
detection algorithm, shown in blue and red, respectively. The
value of the threshold Ωth is identified on the plot. Examination
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Fig. 6. Angular rate length (blue) and the stance/swing phases (red).

of the plot shows that the gait phase detection algorithm accu-
rately locates the periods of the swing and stance phases.

D. Implementation Considerations for the ZVU and Gait
Phase Detection Algorithm

The operation of the gait phase detection algorithm is based
on proper selection of two threshold parameters Ωth and Γth,
where the latter of which is compared with the sample count
γ during each iteration of the code. As a result of this, the
moment that the algorithm changes state will be delayed from
the actual foot motion. To compensate for this delay, a number
of velocity samples are saved in a temporary data buffer that
may be described as a form of first-in first-out (FIFO). When the
algorithm indicates the moment to change into the next state,
the contents of the FIFO are concatenated to the most recent
velocity data. In this manner, the delay that was incurred by Γth

can be eliminated. Another consideration is the size (number
of data samples) of the FIFO. This parameter was adjusted by
trial-and-error until a satisfactory result was achieved.

In the current implementation of the overall algorithm, there
are two dedicated FIFOs. One corresponds to velocity data
occurring toward the end of the stance phase. The other FIFO
has velocity data from the end of the swing phase. The individ-
ual size of each buffer can be adjusted as required. Using the
data from these buffers, a complete set of swing phase velocity
data can be collected for use in subsequent integration. It is
noted that only the velocity data corresponding to the swing
phase are integrated to update position. This is based on the
assumption that the foot position is fixed during the stance
phase.

III. SIMULATION RESULTS

In this section, simulation results are presented for the
adaptive-gain quaternion-based complementary filter and for
the position/velocity estimation filter described in the previ-
ous section. Experimental results are presented in the section
that follows. It should be pointed out that the need for a
comprehensive simulation study was prompted by the limi-

Fig. 7. Schematic of the pendulum used in the simulation study.

tations of the experimental study. The filter performance is
simultaneously affected by numerous factors, including sensor
calibration errors, thermal effects, magnetic interference, and
random measurement error during physical experiments. It can
be difficult or impossible to isolate these factors. However, with
a well-designed simulation model, the effect of different factors
on the filter performance can be individually investigated and
analyzed. Additionally, it affords the opportunity to investigate
the potential of the filter performance beyond the specifications
of presently available sensor modules.

A. Simulation Results for an Adjustable Constant-Gain
Quaternion-Based Complementary Filter

For evaluation of the performance of the proposed comple-
mentary filter through simulation, a model of a vertical pendu-
lum is used [31]. The purpose of this model is to generate data
to aid in the study of the performance of the complementary
filter during the swing phase of normal walking. In the model,
an inertial/magnetic sensor module is assumed to be attached
at the swinging end of a pendulum. Theoretical expressions
for the sensor data are derived, which model the output of
each sensor component when the pendulum is set into motion.
In this manner, all of the real-world sensor artifacts, such as
gyro bias, accelerometer bias, and motion-induced acceleration,
which are understood to influence the orientation estimate, can
be controlled and examined.

Fig. 7 shows a pendulum of length L. The angle of the pendu-
lum is denoted by θ, and the positive rotation is in the clockwise
direction. A sensor or body coordinate frame is shown in the
figure and is denoted by xb − yb − zb. An inertial/magnetic
sensor module is considered to be attached to point A. The
IMMU model has three orthogonally mounted accelerometers,
three orthogonally mounted magnetometers, and three orthog-
onally mounted angular rate sensors. When the accelerometers
are subject to pendulum motion, in the absence of noise and
misalignment errors, their outputs are characterized by

ax = Lθ̈ + g sin θ ay = 0 az = −Lθ̇2 − g cos θ. (11)

In the aforementioned equations, the values of θ, θ̇, and θ̈
are obtained from a simulation of damped pendulum motion
[31]. As for the angular rate sensors, since the pendulum is
constrained to swing in the xb − zb plane, only the angular
rate sensor aligned with the yb axis senses rotational motion.
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As such, the noise-free outputs of the three angular rate
sensors are

ωx = 0 ωy = θ̇ ωz = 0. (12)

The magnetometers measure the earth’s magnetic flux den-
sity that is projected onto the sensor body axes. Assuming that
the plane of the pendulum motion is aligned with magnetic
north, the outputs of the magnetometers are given by

mx = | �Be| cos(β + θ) my = 0 mz = | �Be| sin(β + θ)
(13)

where �Be is the earth magnetic flux density vector and β is the
angle of inclination. The values for �Be and β vary with location,
and they were obtained from [32].

The first simulation is designed to validate filter performance
while using idealized sensors with no measurement noise. In
particular, the angular rate sensors were assumed to be free of
any noise or bias. In this case, with the filter gain k = 0, the
filter is able to perfectly track the pendulum motion. Next, a
small sensor error was introduced into the angular rate sensor
measurement in the form of a small bias. As expected with
a filter gain k = 0, the estimated pitch angle tracked the true
angle during the first few cycles but began to drift away from
the true track toward the end of the motion period. While the
errors in the estimated roll and yaw angles were zero in the
noiseless case, they grew without bound in the presence of bias
errors. The unbounded error with k = 0 is the result of relying
solely on the integration of angular rate measurements.

Next, the value of k was gradually increased to determine
the effect of the FQA on the overall performance of the com-
plementary filter. With the value of k on the order of 50, the
unbounded error growth in the estimated roll and yaw angles is
capped to a small constant error. However, the estimated pitch
angle is unable to track the pendulum motion. This is due to
the fact that accelerometers sense not only the acceleration due
to gravity but also the centripetal and tangential acceleration
of the pendulum. With k set to a relatively high value, the
complementary filter relies almost exclusively on accelerometer
measurements processed by the FQA. This indicates that a gain
value of 50 is too large.

The optimal value of k depends on motions of the pendulum.
With a slow-moving pendulum, a large value for k is more
appropriate. Conversely, a smaller value for k is more appro-
priate for a fast-moving pendulum. Fig. 8 shows the output of
the complementary filter with k = 1 and with the pendulum
length L chosen to produce a period of 2 s, corresponding
roughly to slow human walking. The estimation error in the
pitch angle is less than 1◦, and the error in the roll and
yaw angles is about 0.1◦. The roll and yaw angle errors are
due to the presence of angular rate bias introduced into the
measurement.

B. Simulation Results of the Adaptive-Gain Position/Velocity
Estimation Filter

This section presents a foot motion model for use in sim-
ulation of the foot motion tracking algorithm. The algorithm

Fig. 8. Complementary filter output (red) and the true pendulum angle (blue)
from pendulum simulation with constant gain k = 1.

Fig. 9. North–east–down navigation reference frame and the body reference
frame attached to the foot.

processes simulated sensor data from a foot-mounted inertial/
magnetic sensor module. During execution of the simulation,
the adaptive-gain complementary filter is used, and its gain
switches between two values in response to the stance and
swing phases of the simulated foot motion. To simulate foot
motion during normal walking, a walking model in the sagittal
plane is studied. Although the model in the sagittal plane
itself is 2-D, foot motion used for evaluating position/velocity
estimation filter is both 2-D and 3-D. Three-dimensional foot
motion orthogonal to the sagittal plane results from noise
introduced into the sensor model.

In the foot simulation, it is assumed that a sensor module is
attached to a foot as shown in Fig. 1. Two reference frames are
defined as shown in Fig. 9. The north–east–down navigation
reference frame xn − yn − zn is stationary, with xn pointing
to the magnetic north, zn pointing down, and yn completing
the right-hand coordinate system. For simplicity, it is assumed
that the sagittal plane is aligned with the xn − zn plane and
that the foot movement is toward the magnetic north. A body
or sensor reference frame xb − yb − zb is attached to the sensor
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TABLE I
FOOT MOTION MODEL PARAMETERS

module, which is attached to the foot. The body reference frame
is oriented so that yb coincides with yn.

The human gait cycle is divided into two phases: stance phase
and swing phase, with the stance phase taking approximately
60% of the gait cycle and the swing phase taking about 40% of
the gait cycle [33]. Each phase can be further subdivided, and
there are different conventions for doing so. For the purpose
of modeling foot motion in this paper, the stance phase is
subdivided into three periods, while the swing phase is divided
into two periods. The stance phase begins at the moment of heel
strike and ends at the moment of toe off. The initial contact
period of the stance phase encompasses the length of time from
heel strike to foot flat, during which the foot rotates about the
heel. The foot flat period spans the length of time from the foot
flat moment to heel off, during which time the foot is stationary.
The preswing period covers the length of time from heel off to
toe off, during which time the foot rotates about the toe. The
swing phase begins at the moment of toe off when the toe leaves
the ground, continues to midswing when the foot passes directly
beneath the body, and ends at the moment of heel strike. The
first time segment from toe off to midswing is characterized by
acceleration, and the time period from midswing to heel strike
is characterized by deceleration.

Based on the aforementioned discussion, a simplified foot
motion model is established, with major attributes summarized
in Table I. The total gait cycle is normalized to 1 s, with the
stance phase taking 0.6 s and the swing phase taking 0.4 s. For
simplicity, the angular velocity ωy in each of the five periods
of the gait cycle is assumed to be a constant. The positive and
negative ωy in the model ensure that the foot attitude returns
to its original orientation in preparation for a subsequent foot
cycle. The specific values of ωy in each period chosen in Table I
are based on the experimental data collected in this paper and in
consultation with the data from [33]. The linear acceleration in
the stance phase is zero, and that in the swing phase is discussed
in the following.

There are many possible ways to model the acceleration and
deceleration that occur during the swing phase, including lin-
ear, sinusoidal, Gaussian, and Bezier polynomial models [31].
A comprehensive discussion of all possible models is beyond
the scope of the present paper. A Gaussian model, which
provides sufficient insight into how to construct other models,
is described in more detail in the following discussion.

Foot velocity in the forward direction or x direction during
the swing phase has an approximate profile of a bell shape, with
rising velocity in the acceleration period of the swing phase and
decreasing velocity in the deceleration period. The well-known

Fig. 10. Forward acceleration, velocity, and position profiles of the Gaussian
model for one step.

Gaussian function can be used to model the bell-shaped velocity
profile

vn
x (t) =

Ls

σ
√

2π
e−t2/2σ2

, −τ

2
≤ t ≤ τ

2
(14)

where Ls is the stride length, τ is the duration of the swing
phase, and σ = 0.05 is an experimentally determined value
that produces a velocity profile similar to those derived from
the actual data. The corresponding acceleration is obtained
by differentiating (14). Since an analytical expression for the
displacement or position is not available, it is instead computed
using the MATLAB erfc() function, which is based on a
rational Chebyshev approximation of the resulting integral [34].
Fig. 10 shows the forward acceleration, velocity, and position
profiles of the Gaussian model.

To model the vertical acceleration of foot motion, it is
recognized that the net vertical displacement returns to zero for
normal walking on level surfaces. With this in mind, a Gaussian
model is adopted for the vertical position

pn
z (t) =

Ms

σ
√

2π
e−t2/2σ2

, −τ

2
≤ t ≤ τ

2
(15)

where Ms is chosen such that Ms/σ
√

2π is equal to the
maximum vertical displacement of the foot in the swing
phase. The corresponding vertical velocity and acceleration
are obtained by differentiation. By assuming a sagittal plane
model, the position, velocity, and acceleration in the y direction
are zero.

Using the simplified foot motion model in the sagittal plane,
the sensor measurements for accelerometers, magnetometers,
and angular rate sensors can be generated. First, the foot pitch
angle θ is derived from the angular rate model for each of the
five periods in Table I. The corresponding quaternion represent-
ing the foot orientation is given by

q = [q0 q1 q2 q3] =
[
cos

θ

2
0 sin

θ

2
0
]

. (16)
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Second, the acceleration measurement provided by the sen-
sor module is in the body reference frame, whereas the foot
acceleration model described in the preceding paragraphs is in
the navigation reference frame. As such, the acceleration mea-
surement is obtained by converting the modeled acceleration in
the navigation reference frame into the body reference frame

ab = q∗(an + gn)q. (17)

In the previous discussion, it is noted that the gravitational
acceleration is added.

Third, the magnetometer measurements are constructed us-
ing the foot pitch angle. The expressions for the magnetometers
have the same form as those used for the pendulum motion in
(13). Based on the foot motion model, noise-free measurements
of accelerometers, magnetometers, and angular rate sensors are
generated as described previously.

To simulate a real-world sensor measurement, a noise model
is introduced so that its impact on the filter performance can
be investigated. In the MATLAB simulation, the noise is mo-
deled as

μ + σ randn(·) (18)

where randn() is the random number generator that produces
samples having a Gaussian distribution, μ is the mean value of
the noise, and σ is the standard deviation. The mean value μ
represents bias in the sensor measurement due to calibration
error, null-bias error, scale-factor error, cross-axis coupling
error, etc. The standard deviation σ models the magnitude of
random noise in the sensor measurements.

To identify suitable values of μ and σ for the noise model
(18), the measured statistics of the actual IMMU were con-
sidered, as well as the manufacturer’s specification sheet. A
MicroStrain 3DM-GX1 sensor module was placed on a sta-
tionary surface for 1 h and 35 min. Approximately 297 000
data samples were collected from each of the accelerometers,
magnetometers, and angular rate sensors. Fig. 11 shows the
power spectral density (PSD) for one of the accelerometers.
The PSD was computed using the MATLAB function cpsd().
The upper plot is the PSD of the actual measurement data,
while the lower plot is the PSD of the simulated noise generated
using (18), with μ = 0.0021 and σ = 0.0033, which were de-
termined from the actual measurement data. It should be noted
that accelerometer bias cannot be determined reliably due to the
presence of gravity. The value of μ in this case is determined
from the measurement data of the sensor module under a
specific condition and is not representative. Its purpose is to
show the effectiveness of the noise model in representing the
actual sensor noise. The actual value of μ used in the simulation
is discussed later in this section. It is seen that the two plots
are similar, suggesting that the noise model (18) is suitable
for modeling sensor noise. Reading from the upper plot, the
accelerometer noise power is approximately −65 dBG2/Hz, or
equivalently 562 μG/

√
Hz. This value compares favorably with

the specification value of 400 μG/
√

Hz for the 3DM-GX1.
Similarly, the noise power level for the angular rate sensors

is found to be approximately −57 dB(rad/sec)2/Hz, which is
converted to an equivalent value of 4. 85 deg/

√
hr. Again, this

Fig. 11. PSD of (upper plot) measured accelerometer output and (lower plot)
simulated accelerometer noise model.

value compares reasonably with the manufacturer’s specifica-
tion of 3. 5 deg/

√
hr. The corresponding mean and standard

deviation measured from the actual sensor output are μ =
7.25 × 10−6 and σ = 0.0076.

The noise power for the magnetometers is approximately
−75 dB(gauss)2/Hz. Since the manufacturer specification
sheet does not provide a noise power density for the magne-
tometer, a comparison cannot be made. The mean and standard
deviation for the measured magnetometer noise are μ = 0.15
and σ = 0.00082.

It is noted that the random noise standard deviation σ and the
bias μ for the angular rate sensor can be adequately determined
based on the static experiment as described previously. This
is because angular rate sensors have zero input while they
are stationary. However, accelerometers and magnetometers are
under the inescapable influence of gravity and the magnetic
field of the earth, respectively. As such, the bias for these
sensors cannot be determined from a static experiment. There-
fore, the noise models for accelerometer and magnetometer
use the measured σ and an estimated μ based on the sensor
specification.

From the 3DM-GX1 data sheet, accelerometer bias is
±0.005 g, with a measurement range of ±5.0 g. In simulation,
a bias of 0.1% full scale is selected for the accelerometer and
magnetometer. All of the noise model parameters, as well as
other simulation parameters, are summarized in Table II. It is
to be understood that these noise parameters are used as base
parameters. When investigating the effect of noise on the filter
performance, these base parameters are scaled up or down in
the simulation to observe the resulting overall impact.

To begin the examination of the position estimation filter,
walking motion with noise-free sensor data is considered first,
followed by introducing noise in various combinations. The
simulation results presented in the following are for a 100-step
straight walk in the north direction. The first set of simulations
is conducted to evaluate the effect of random noise in the ab-
sence of sensor bias. The sensor bias is set to zero (μ = 0), and
the standard deviation σ of random noise is scaled from its base



2068 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 61, NO. 7, JULY 2012

TABLE II
SENSOR NOISE AND OTHER SIMULATION PARAMETERS

Fig. 12. Simulation results for fifty 100-step straight-line walks. (a) No sensor
error and sensor error scale factor equal to (b) 0.1, (c) 1.0, and (d) 10.0 (units
of the horizontal and vertical axes do not have a one-to-one correspondence
in size).

value to lower and higher values. Fig. 12 shows the simulation
results of the position estimation filter, in which each plot shows
the estimated walking trajectories of 50 simulations in order to
gain some sense of the statistics. Fig. 12(a) shows the noise-
free result. As expected, the walking trajectory is a straight line
in the direction of true north. Fig. 12(b)–(d) shows the result
with the random noise σ scaled by 0.1, 1.0, and 10.0 from its
base value, respectively. As the sensor noise is increased, there
is a corresponding increase in the resulting position error. The
spread of the end position error in the east/west direction can be
easily seen from the figure. In particular, the maximum position
error in the east/west direction is about 1 m when the random
noise is scaled by 10.0 from the base value. The results from
this simulation indicate that the random noise component of
sensor error has relatively small impact on filter performance.
When the random noise σ is scaled by 1.0, i.e., when the same
amount of random noise present in the MicroStrain 3DM-GX1
is used in the simulation, the position error is less than 0.1% of
the total walked distance.

Fig. 13. Simulation results for fifty 100-step straight-line walks with sensor
error scale factor equal to one and (a) accelerometer bias only, (b) angular
rate sensor bias only, (c) magnetometer bias only, and (d) all sensor biases
included (units of the horizontal and vertical axes do not have a one-to-one
correspondence in size).

It is noted that these results were obtained using the adaptive-
gain approach for the complementary filter. The filter gain
switches between two values listed in Table II. If a constant gain
value was used for the complementary filter, the performance of
the position estimation algorithm was severely degraded. As an
example, when a constant gain of 1.0 was used, the position
error was 13.6% of the total walked distance.

Next, the effect of sensor bias on the filter performance is
studied. The bias in accelerometers, angular rate sensors, and
magnetometers is first introduced individually, and then, biases
for all three sensor types are included. The base bias values
listed in Table II are used. At the same time, an amount of
the random noise scaled by 1.0 is also included in the corre-
sponding sensor. The simulation results are shown in Fig. 13.
Fig. 13(a) shows the result when only the accelerometer bias
is introduced, Fig. 13(b) shows that of the angular rate bias
only, and Fig. 13(c) shows that of the magnetometer bias only.
Finally, Fig. 13(d) shows the simulation result when all sensor
biases are included. It is clearly seen that the spread of the
position error in the east/west direction is similar in magnitude
to that of Fig. 12(c). However, the inclusion of sensor bias
causes the estimated position to drift in one direction.

The simulation of the position/velocity estimation filter was
described previously. Based on a foot motion model and sensor
noise model, simulated sensor measurements are generated and
used to evaluate the position/velocity estimation filter. The
simulation study offers the flexibility of investigating the effect
of various sensor noise sources individually or simultaneously
as reported in this section. It can also be used to easily inves-
tigate the effect of sampling rates and numerical integration
methods [31]. From the results presented previously, it becomes
evident that sensor biases have significantly more impact on
the estimated walking position than random noise. Biases in
accelerometers, magnetometers, and angular rate sensors all
tend to introduce an unbounded drift in the estimated position.
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Fig. 14. Estimated walking position trajectory using a constant-gain comple-
mentary filter.

IV. EXPERIMENTATION

In this section, experimental walking results conducted on
an athletic track field are first presented. Then, the optimal
selection of filter gains with respect to the estimation accuracy
is discussed. Finally, some remarks on the simulation and
experimental results are provided.

A. Experimental Results

The experimental system consists of a MicroStrain 3DM-
GX1 sensor module attached to the foot as shown in Fig. 1
and a Sony UXP-180 minicomputer carried in a backpack for
data acquisition. The experiment was conducted on a standard
athletic track field. The circumference of the innermost lane
is 400 m. Lane 7, where the experimental walks took place,
has a length of 437.50 m. All walks were conducted in a
counterclockwise direction and began and ended at the same
point on the track. Multiple walks were conducted. All sensor
data were logged and processed afterward using MATLAB.

In the first experiment, the complementary filter gain was
set to a constant value throughout the entire walk. Fig. 14
shows the position estimation results for four gain values k =
0.01, 0.15, 1.0, and 5.0. Upon inspection of the plot, it is seen
immediately that the second gain value (k = 0.15) produces
a position trajectory (the blue line in Fig. 14) that somewhat
resembles the oval path of the athletic track. When a smaller
or larger gain value is used, the tracking result becomes worse.
In particular, when k = 0.01, the estimated position drifted in a
direction away from the oval path.

In the next experiment, an adaptive-gain strategy is utilized
in the complementary filter. The filter gain is switched between
two values according to the output of the gait phase detection
algorithm. When the foot is in the stance phase, the gain is set
to a nominally high value. This is where the motion-induced
accelerations are lower, and the FQA produces better results.
During the swing phase, the foot is moving through the air,
experiencing rapidly changing acceleration, and the filter gain
is set to a low value such that more of the dynamic quaternion

Fig. 15. Estimated walking trajectories overlaid onto Google map of the
athletic track field. Adaptive-gain strategy was used for the complementary
filter gains.

TABLE III
EXPERIMENTAL PERFORMANCE OF THE ADAPTIVE-GAIN

COMPLEMENTARY FILTER

is represented in the filter output. Fig. 15 shows the estimated
position for the three walks around the athletic track overlaid
onto a satellite image of the actual track. Qualitatively, these
tracks represent a marked improvement over those computed
using the constant-gain filter (compare with previous figure).
The overall shape and orientation of the computed tracks appear
very similar to the athletic track shown in the same figure. The
quantitative measure of the filter performance is summarized in
Table III.

The percentage of distance error reported in the third column
is calculated from the walking distance estimated by the filter
and the reference distance of the track (437.50 m). The average
of the distance errors from three experimental walks is 0.27%.
Another measure of the filter performance is shown in the
last two columns. All actual walks start and end at the same
position. The fourth column ΔXY reports the radial distance
from the start position to the end position estimated by the filter.
The last column shows this radial distance as a percentage of the
walked distance. These experimental results demonstrate that
the complementary filter with adaptive gain is highly effective
in providing accurate distance as well as position estimation.
The accuracy for the position estimation is on the order of 1%
of the distance walked. This result compares favorably with
those reported in the literature (e.g., the position accuracy of
0.3% reported in [19] and 2.0% reported in [20]), although
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Fig. 16. Optimization curves for different values of the dynamic gain kd. The
vertical axis is the ΔXY error that serves as a cost function for the optimization
problem.

completely different sensor modules were used in respective
experiments. The average distance error of 0.27% indicates that
position error could be improved with better calibration of the
magnetometers.

The following section provides more insight into the selec-
tion of gain values in the complementary filter.

B. Filter Gain Selection

In the adaptive-gain complementary filter, two gain values
are used: static gain ks and dynamic gain kd. The former is
used when the accelerations are low, as in the stance phase
of the foot motion, while the latter is used during the swing
phase, when the motion is high. To determine the two filter
gain values that produce the best result, a simple optimization
study was accomplished using the sensor data from one of the
actual walks around the athletic track. The sensor data were
processed with the navigation algorithm (Fig. 2), and a pair of
gain values ks and kd was selected from a range of gains under
consideration. The position error ΔXY resulting from this
particular pair of gain values was noted. Next, another iteration
of the navigation algorithm was accomplished using a new pair
of gains, again noting the resulting ΔXY . This was continued
until the entire range of ks and kd under consideration had
been exhausted. In Fig. 16, the pair of gain values that gave
the smallest ΔXY error was then selected. In this fashion,
the filter gains ks and kd were optimized for the experimen-
tal data.

From this paper, it is determined that, for walking motion,
setting the filter gain to zero (kd = 0) during the swing phase
produces the best results. During the swing phase, the foot
acceleration changes very rapidly. As a result, the FQA gives
large errors during this phase of the foot motion. In spite of
the angular rate sensor biases and its associated error, it is still
better to rely entirely on angular rate measurements rather than
accelerometer measurements during the swing phase.

During the stance phase, when the motion-induced accelera-
tions are lower, it is beneficial to have a larger component of the

Fig. 17. Comparison of the position errors in the east/west direction from the
simulation and experiment. The vertical axis is the ΔXY error.

filter output derived from the FQA. Setting ks = 1.05 during
this period of the walking motion gives good results. However,
as shown in the plot, a value larger than this is not desirable
because the error is seen to increase. This is possibly due to
the fact that, during the stance phase of normal walking, the
foot translational velocity is zero, while its angular velocity
is not. In this phase, the foot is rotating from the heel to
the toe in preparation for the next step. If we compare this
motion to that of the pendulum, then the foot will experience
some normal and tangential acceleration that will affect the
overall accelerometer output. Thus, the optimization shows
that, for this phase of walking motion, it is better to have a
blended filter output consisting of both the dynamic and static
components.

C. Discussion

In the simulation study, it was revealed that sensor biases
seem to be the principal source of the position estimation
error. Experimental results tend to support this conclusion as
well. The correlation between the simulation and experimental
results is shown in Fig. 17. The sloped red line is the mean
of the position error in the east/west direction predicted by
the simulation as a function of the number of walking steps.
The variances at 50, 300, and 1000 steps are annotated by
two horizontal bars. The three diamonds indicate the position
error from three real 300-step walks. The proximity of the
experimental data to the bias simulation suggests that a larger
part of position error may be a result of sensor biases.

Additionally, it is noteworthy to closely examine the end
position of the three walks conducted on the athletic track
field as shown in Fig. 18. The estimated end positions of
all three walks are clustered in one area to the north of the
starting position. Although three data points are not necessarily
of statistical significance, they nevertheless suggest that, for
the sensors that we had, available biases (rather than random
noise) are likely the main source of the position estimation
error.
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Fig. 18. Close-up of the starting position and end positions of the three walks
around the athletic track.

V. CONCLUSION

A. Summary

This paper has described an algorithm for estimating human
foot position during normal walking based on estimates of
foot orientation, velocity, acceleration, and gait phase using
inertial/magnetic sensor measurements. The measurements are
provided by an IMMU attached to a foot. Orientation esti-
mation is accomplished by a quaternion-based complementary
filter that uses a variable scalar gain factor to blend the high-
frequency information provided by angular rate sensors and
the low-frequency information provided by accelerometers and
magnetometers. Although presented in the context of the foot
motion estimation, the complementary orientation filter can be
used to track orientation of any other object to which the IMMU
is attached. The filter gain can be adaptively adjusted based on
the intended application. For the foot motion estimation, it is
shown that a two-value switch strategy is effective. The switch
strategy selects a lower value dynamic gain during the swing
phase and a higher value static gain during the stance phase
of the foot motion. For this purpose, a foot gait phase detection
algorithm based on the use of angular rate sensor measurements
was also presented.

Foot acceleration is directly measured by the accelerometers
of the IMMU. However, the measurements are represented in
the sensor or body coordinate frame. For many applications,
it is desirable to have foot acceleration in the earth coordinate
frame. With foot orientation readily available as a result of the
quaternion-based complementary filter, foot acceleration in the
body coordinate frame is conveniently converted into the earth
coordinate frame using the foot orientation quaternion.

Foot velocity is obtained by numerically integrating cor-
rected foot acceleration measurements obtained during the
swing phase. Due to sensor noise, accelerometer measurements
tend to drift. The drift is corrected using the ZVU technique,
which is based on the fact that foot velocity is known to be zero
during stance phases. The corrected foot velocity is integrated
to obtain foot position.

Simulations and experiments were conducted to evaluate the
algorithm. The experimental results suggest that the achievable
position accuracy of the algorithm is about 1% of the total
walked distance. The simulation study suggests that sensor
biases are the main source of the position error.

B. Future Work

A focus of future work will be to explore calibration tech-
niques beyond those performed in a laboratory setting. Such
techniques might include some preliminary measurements with
the sensor installed in its intended field of use, thereby pro-
viding a sort of in situ calibration. The calibration method for
three-axis accelerometers and magnetometers described in [35]
will be considered because it only involves arbitrary rotations
of sensor modules without the need of special calibration
equipment.

Sensor calibration and the precision with which it can be
determined are an essential component of the overall system
performance. Further study is required here to assess the limits
of calibration precision of MEMS-based sensor technology and
evaluation of other sensor architectures when they are available.

A main component of our ongoing work is to assess the
extensibility of this approach to a larger group of people and
to determine the sensitivities of the various parameters utilized
within the algorithm. The filter gains of the complementary
filter and the tuning parameters within the gait phase detection
algorithm should be examined in terms of their influence on the
overall performance when the larger user group is considered.
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