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ABSTRACT 

 The present state of the naval logistics system is efficient and effective at 

supplying forward-deployed naval forces; however, it is optimized for operations in 

uncontested environments. As the United States enters another era of great-power 

competition, it must determine the type of logistics system that is able to operate in a 

region where friendly forces do not have sea control. This study creates a network of 

logistics hubs in the Pacific theater. Using network science and prominent centrality 

measures, we examine the structure of a nominal Pacific theater logistics network for an 

array of logistic assets. In this thesis, we develop a maximum flow algorithm and apply it 

to our logistics network. Our proposed maximum flow algorithm optimizes vessel 

configuration and routing to satisfy as much demand as possible. We hope our study 

provides insights into the capabilities of the current logistics system and potential areas 

for improving logistics capabilities in contested environments. 
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Executive Summary

The United States has been the dominant world power since World War II; therefore, it has
been able to operate its logistics systems with relative impunity. In the dawning of the age
of great power competition, maritime logistics forces are no longer able to guarantee that
they will operate in a risk-free environment.

Network science is a prominent field in modern academia. Researchers are able to use ana-
lytical techniques to both visualize and examine the structure of networks. Popular measures
of importance within networks are the degree, eigenvector, closeness, and betweenness cen-
trality metrics. We present an analysis of the importance of various nodes in a nominal
contested Pacific maritime logistics network, based on a multitude of current and potential
logistics assets. We use the results of our centrality analysis to draw conclusions about the
suitability of the current logistics force structure for operations in contested environments.

Logistics networks are not static, they are organized to enable the flow of resources through
the network. In this thesis we develop a maximum flow algorithm, which is a mixed integer
linear program that represents a dynamic network flowmodel. Themaximumflow algorithm
considers a given network, set of assets, and demand signal. Our algorithm outputs vessels
configurations and routing assignments, optimized to satisfy maximum demand across the
logistics network.

We believe that the concepts of network science and network flow provide key insights into
the strengths and vulnerabilities of the U.S. maritime logistics system in contested environ-
ments. Our research can aid in examining the structural characteristics of logistics networks
and identifying proper assignment of assets to logistics duties in contested environments.
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CHAPTER 1:
Introduction

Logistics form the backbone of any military operation; therefore, threats to their supply
chains have been a primary concern for battlefield commanders since the genesis of warfare.
In World War II, the United States organized a logistics force that enabled Allied forces to
project power and succeed in military operations far from friendly territory [1]. The greatest
threats faced by maritime logistics forces in World War II came from hostile submarine and
air forces. These platforms were the disruptive military technology of the period, and
military strategy had to rapidly adapt to counter the threat. In the Battle of the Atlantic, this
was manifested in the adoption of convoy tactics and the introduction of persistent aerial
support [2]. The 20th century saw the rapid development of precision weapons capable of
long-distance targeting and strikes. Maritime logistics in the 21st century face their own
forms of disruptive technology: modern submarines, cyber threats, and cruise and ballistics
missiles.

The United States has been able to operate using a peacetime maritime logistics architecture
essentially since the end of World War II. The current system employed by the Military
Sealift Command (MSC) is honed for operations in uncontested environments. In 2019,
the Center for Strategic and Budgetary Assessments (CSBA) contended that the current
maritime logistics architecture is not capable of supporting U.S. strategy and operational
concepts against adversaries. The CSBA report recommends a shift in the underlying
concepts, capabilities, and force posturing of the maritime logistics force [1]. By viewing
the challenge of maritime logistics through the lens of network science, it is possible to
recommend shifts to the logistics force structure for success in a contested environment.

Over the last few decades, network science has come to prominence as a burgeoning
academic field. Network scientific methods allow researchers to reduce systems to simple
graphical structures, from which information can be easily extracted. The roots of modern
graph theory can be traced to the seminal “Seven Bridges of Königsberg” problem [3]. In
the city of Königsberg there are four major land masses connected by bridges. In this 18th

century problem, Euler pondered how to cross every bridge exactly once and still reach
every region of the city. Euler’s solution is notable, as it mapped the physical network of
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islands and bridges to a mathematical structure known as a graph. We discuss the “Seven
Bridges of Königsberg” problem in greater detail in Chapter 2 of this thesis.

Euler’s problem is small enough to be solved through a simple exhaustive search. One
can attempt every path in a short time and prove that it is in fact impossible to solve the
“Seven Bridges of Königsberg” problem. The true utility of network science is mapping
large, complex networks to abstract mathematical structures. Network science has been used
to analyze a variety of networks, spanning diverse fields including biology, transportation
analytics, and sociology.

As a subset of transportation networks, physical logistics networks can be analyzed using
a network theoretic approach. Geographic locations can be viewed as nodes in a network,
with connections represented by arcs between the nodes. Network analytics and a maximum
flow algorithm can be applied to the maritime logistics problem, offering insights and
recommendations for improvement.

1.1 Problem Definition
The current U.S. maritime logistics system is not optimized for performance in a contested
environment. In highly contested environments, such as the South China Sea, logistics ves-
sels are confronted with a multitude of threats. The main threat categories are hostile sub-
marines, anti-ship cruise missiles (ASCMs), and anti-ship ballistic missiles (ASBMs). The
ASCM threat is complicated because ASCMs may be air, surface, or submarine launched.
Each threat category relies on cuing and targeting sensor systems. The U.S. Navy (USN)
must meet the logistical demand in a contested environment while minimizing losses. In
order to determine the most appropriate vessel for a particular supply run, we must be able
to first evaluate the expected threat level. This threat level stems from the enemy order of
battle and it is dependent on the number and capability of hostile assets. Secondly, we must
be able to utilize a logistics asset that is survivable against the threats that it faces. The crux
of the issue is determining the optimal asset for operations in the face of an expected threat
level.
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1.2 Research Questions and Contributions
The purpose of this research is to examine the U.S. maritime logistics network in the
Pacific theater. Other organizations, such as the CSBA, have considered this problem at a
strategic level. We will develop a network of logistics hubs connected by sea lanes. We
will apply prominent network analytic algorithms to inspect the features of the maritime
logistics network. We will use the insights from these algorithms to highlight vulnerabilities
and strengths within the network. Additionally, we will apply a maximum flow algorithm
to our network. The results of the maximum flow algorithm will allow us to discern the
most efficient use of different logistics assets. We will also use this analysis to make
recommendations concerning the logistics force structure that is best suited to succeed in a
contested environment.

We use data that was created in collaboration with the Systems Engineering Analysis (SEA)-
29 Capstone group [4]. In Chapter 3, we provide a summary of the data relevant to the
development of our network model.

1.3 Thesis Organization
This thesis is organized into five chapters: 1) Introduction, 2) Background, 3) Methodology,
4) Results and Analysis, 5) Conclusions and Future Work. In the following chapter, we
provide a review of prior contributions to the field of network science and flow optimization.
In Chapter 3, we describe the methods used to examine the network of projected logistics
hubs in the Pacific. In Chapter 4, we present the results of our network analysis and
maximum-flow algorithm. The final chapter concludes the thesis and recommends future
work that will refine our recommendations for providing logistics support in a contested
environment.

3
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CHAPTER 2:
Background

In this chapter, we review the foundations of network science. Additionally, we discuss the
mathematical formulation of our maximum-flow algorithm that is used to optimize logistics
flow. This chapter is divided into three main sections: 1) Network Science Overview, 2)
Topological Characteristics, 3) Maximum-Flow Problems. In the network science overview,
we cover rudimentary terms and ideas that are commonplace in academia. The topological
characteristics section will review metrics that describe structural aspects of the network,
mostly to highlight nodes and communities of importance. The maximum-flow algorithm
we develop in the final section describes the data, variables, and constraints that optimize
network flow.

2.1 Network Science Overview
Network science is a burgeoning field of modern academia. Network scientists have used the
concepts for analyzing social networks and the structure of communications frameworks,
such as the Internet. Network science is also a useful tool in the analysis of transportation
networks. In the study of transportation systems, nodes, also known as vertices, are used
to represent the presence of physical hubs and delivery points within the network. Arcs,
also known as edges, are used to connect vertices when a route exists between two physical
components of the transportation system. In mathematical terms, a graph �, composed of
vertices and edges, is defined as:

Definition 1 (Graph).

A graph is an ordered pair of finite disjoint sets (+ ,�) such that � is a subset
of the set +G+ of unordered pairs of V. The set + is the set of vertices + and
� is the set of edges. If � is a graph, then + = + (�) is the vertex set of �,
� = � (�) is the edge set. An edgeG,~ is said to join the vertices G and ~ and is
denoted by G~. Thus G~ and ~G mean exactly the same edge; the vertices G and
~ are the end vertices of this edges �. [5]

5



Figure 2.1 depicts the overlay of the physical system and mathematical representation of the
“Seven Bridges of Königsberg” problem.

Figure 2.1. Graphical Representation of “Seven Bridges of Königsberg” Prob-
lem. Source: [6].

The seminal “Seven Bridges of Königsberg” problem, as a transportation network itself,
serves as a relevant proving ground for these foundational concepts. Each of the four vertices
describes a portion of Königsberg and every edge corresponds to a bridge connecting two
portions of the city.

Many graphs have binary valued edges; a 1 represents the presence of an edge between to
vertices while a 0 means an edge is not present. Edges do not have to be binary valued;
an edge can possess what is referred to as a weight. An edge weight attaches a level of
importance to an edge. For instance, edge weights in a social network might depict the
number of shared acquaintances between two individuals. In the context of a transportation
network like the Bridges of Königsberg graph, edge weights could represent the length of
each bridge, or the time it takes to cross each bridge.
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Real-life networks are often complex, and the number of vertices and edges makes meaning-
ful analysis difficult. In order to extract more insight from a graph, we often focus on smaller
portions of the total graph. These sub-regions of the graph are characterized by lesser num-
bers of vertices and edges, and are referred to as subgraphs. A subgraph is defined by Ray
as:

Definition 2 (Subgraph).

A subgraph of a graph � is a graph � such that + (�) ⊆ + (�) and � (�) ⊆
� (�) and the assignment of endpoints to edges in � is the same as in �. We
then write � ⊆ �. [7]

A vertex is considered to be adjacent to another vertex if there is an edge connecting
the two vertices. Adjacent vertices are called neighbors, leading to our next definition. A
neighborhood is defined as:

Definition 3 (Neighborhood).

Neighborhood, #� (0), is a set of nodes which are adjacent to node 0. [8]

As West describes, the degree of a vertex, {, is the number of edges containing { as an end
vertex [9]. The degree of a vertex is equivalent to the cardinality of its neighborhood. Just as
graphs can have weighted edges, a vertex can have a weighted degree. The weighted degree
of a vertex, {, is the sum of the weights of the edges that have { as an end vertex.

A network is a construct that encapsulates more data than a graph. Networks are useful
because they act as a simple mathematical rendering of a complex system of connections.
Newman defines a network as:

Definition 4 (Network).

A network is a simplified representation that reduces a system to an abstract
structure capturing only the basics of connection patterns and little else. [10]
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Networks represent complex systems and can have multiple connections between the same
vertices. For instance, a public transportation network may have multiple subway lines
that can be used to get from one station to another. In graph theoretic terms, graphs that
have multiple edges between the same vertices are known as multigraphs. According to
Chartrand, a multigraph is defined as:

Definition 5 (Multigraph).

A Multigraph " consists of a finite nonempty set + of vertices and set � of
edges, where every two vertices of " are joined by a finite number of edges
(possibly zero). If two or more edges join the same pair of (distinct) vertices,
then those edges are known as parallel edges. [8]

Multilayer graphs are a subset of multigraphs. Multilayer graphs are composed of multiple
layers of connectivity that can be interacting or non-interacting [11]. For our purposes,
non-interacting means that the structure of one layer does not affect the structure of other
layers in the multigraph.

2.2 Topological Characteristics

Section 2.1 described many of the basic terms that are necessary to understand networks.
Next, we turn our attention to methods and metrics for understanding the structure, or
topology, of networks.

Definition 6 (Network Topology).

Network Topology is the physical arrangement and structure of the net-
work. [10]

Network topology can be quantified by a host of different metrics. We will examine the
following metrics in more detail: centralities, modularities, and diameters. The concept of
centralities rely on the definitions of paths and walks. A walk is defined by Chartrand as:
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Definition 7 (Walk).

A D − { walk is a sequence of vertices in graph, beginning with vertex D and
ending at vertex { such that consecutive vertices in the sequence are adjacent. [8]

The above definition of a walk refers to a sequence of adjacent vertices, but does not require
that no vertex is repeated on the walk. A path is a walk in which each vertex is distinct. Now
that we have reviewed definitions for a path and a walk, we can address centralities. In this
thesis, we will use four of the most popular measures of centrality: 1) degree centrality; 2)
eigenvector centrality; 3) closeness centrality; 4) betweenness centrality.

Definition 8 (Centrality).

1) Degree Centrality: the degree of a vertex. [10]

2) Eigenvector Centrality: a degree centrality score proportionate to the sum
of the degree centrality scores of its neighbors. [12]

3) Closeness Centrality: measures the mean distance from a vertex to other
vertices connected to it. [13]

4) Betweenness Centrality: measurement of how well a vertex lies on the
shortest paths connecting other vertices. [13]

While all centrality measures indicate the importance of a node, each centrality metric
reveals different insight into the structure of a network.

In the context of a logistics network, each of these centrality measures reveal a different
aspect of a vertex’s importance. Degree centrality of a vertex, {, provides insight on how
many other vertices { can directly interactwith. Eigenvector centrality reveals howcollocated
a vertex, { is with important hubs in the network. Closeness centrality accounts for theweight
of the edges connecting a vertex and its neighborhood. In the context of logistics, this directly
relates to the supply flow rate. A higher closeness centrality implies that a vertex can rapidly
disseminate supplies within its neighborhood. Betweenness centrality signifies whether a
vertex is a part of optimal paths within the network, corresponding to more efficient supply
delivery.
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Average path length is a metric that provides holistic assessment of the general closeness of
a graph, �. Small average path length has implications when considering the redundancy
and resiliency of a network. Newman defines average path length as:

Definition 9 (Average Path Length).

Consider an unweighted graph � with the set of vertices + where |+ |==. Let
d({8,{ 9 ) be the weighted distance between {8 and { 9 for {8, { 9 ∈ + . The average
path length ;� is [14]:

;� =
1

=(= − 1)
∑
8≠ 9

3 ({8, { 9 ).

Networks also have a property, network diameter, which describes the size of the network.
First, we note that a geodesic is the shortest path between two vertices of a graph. Diameter
is defined as:

Definition 10 (Diameter).

Diameter of a network is the length of the longest geodesic path in the net-
work. [10]

The longest geodesic path returns the maximum number of edges needed to connect any
two vertices in the network. The practical application of this metric provides an indication
of how influence disseminates within a network. In the context of the Internet, the diameter
could reveal the number of hops a packet would take while transiting from one IP address
to another. Complex networks have structural features that are not apparent from cursory
examination. Communities are one of those features. Radicchi defines communities as:

Definition 11 (Community).

A community is a subset of vertices within the graph such that connections
between vertices within a community are denser than connections with the
other communities in the rest of the network. [15]
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Communities identification provides a way to subdivide the total network, and an oppor-
tunity to probe the denser portions. Network modularity is a metric that parametrizes the
strength of the communities within a network. A very modular network is characterized by
segregation into very dense communities. Newman’s definition for network modularity is:

Definition 12 (Network Modularity).

Network modularity is the difference between the edges in the network that
connect vertices within the community, and the expected value with the same
community divisions but with random generated connections between the ver-
tices. [16]

2.3 Maximum Flow Problems
Maximum flow problems are a subset of operations research problems. In these problems,
networks are represented as graphs made of nodes and arcs. In classic maximum flow
problems, there is one specified source node, B, and one specified sink node, C. The problem
assumes that arc weight, D8, 9 , represents the maximum rate of resources traversing the arc
(8, 9) [17]. The solution to the maximum flow problem returns the optimal route from the
source node to the sink node. Additionally, many classical maximum flow problems return
an output of maximum resource flow per unit of time.

For example, flow of traffic within a network of roads and checkpoints can be examined as
a maximum flow problem. The arc weights, D8, 9 , could represent automobiles per hour. The
solution of the maximum flow problem would give the maximum number of automobiles
that travel from checkpoint B to checkpoint C per hour. Oneway of solving themaximumflow
problem is application of a linear program. A linear program composed of sets, parameters,
variables, an objective function, and constraints will be able to computationally solve small
order maximum flow problems [19]. Figure 2.2 depicts a example of a maximum flow
problem with multiples sources and sinks. By creating a series of artificial arcs between
physical nodes and a "supersource/supersink", it is possible to expand the concept of the
maximum flow problem. The supersource is represented as B′ and the supersink is denoted
C′ in graph (b) of Figure 2.2. This expansion permits a solution that optimizes flow from one
set of supply nodes to a disjoint set of sink nodes through a network. The basic framework of
maximum flow problems is pivotal to optimally routing supplies within a logistics network.
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Figure 2.2. Illustration of Maximum Flow Problem with Multiple Sinks and
Multiple Sources. Source: [18].
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CHAPTER 3:
Data and Methodology

3.1 Data Creation
The data we use in this thesis was created in collaboration with the SEA-29 Capstone
group [4]. We will not include the raw data in this thesis, but will highlight some important
components of the data set. In order to access the raw data contact Dr. Fotis Papoulias, in
the Systems Engineering Department at the Naval Postgraduate School.

Table 3.1. List of Nodes in Pacific Theater Logistics Network

Nodes List
Singapore Cebu
Guam Palau
Darwin Hawaii

Kwajalein Zuoying
Bandar Seri Begawan Yokosuka

Sasebo Okinawa
Busan Cam Ranh Bay

Haiphong Manila
Puerto Princesa Diego Garcia

Phuket Pattaya
Perth

The structural framework of any network is reliant upon the nodes and arcs that comprise
it. Table 3.1 presents the logistics hubs that were considered in this network. These nodes
were chosen based on their past or current use as a logistics hub by the USN or for their
potential to serve as a logistics hub in the future. These nodes were chosen to encompass
ports in areas of critical strategic importance. These nodes also allow for flow of supplies
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into theater via the Pacific or Indian Oceans.

Our network is multilayered, with each layer pertaining to a specific class of logistics vessel.
Each layer of our multigraph has the same connections between the nodes, but the edge
weights and edge type are dependent on the layer. Consult Appendix A for a table of sample
edges from one layer of the network. It is important to note that our network is undirected,
so each node can act as both a source and a target.

Figure 3.1. Overlay of the Logistics Network on Satellite Imagery

14



Figure 3.1 depicts the overlay of the graphical representation of the logistics network on
satellite imagery. Some nodes are located outside of the bounds of the image displayed in
Figure 3.1: Hawaii to the East, Kwajalein to the East, Perth to the South, and Diego Garcia
to the West. Note that edges in Figure 3.1 do not correspond to specific routes between
hubs, they simply represent sea lanes between nodes in the network. As such, some of the
edges in this visualization cross over land.

For the maximum flow portion of this thesis, we require the demand signal at each node in
the network. We develop an algorithm that optimizes flow to satisfy demand at sink nodes
throughout the network. Table 3.2 presents the daily tonnage requirement of each node that
has a demand signal. The daily tonnage demanded is an aggregate of the three subsets of
supplies: fuel, ordnance, and stores. For the formulation and breakdown of the demand
signal, consult the SEA-29 Capstone Report [4].

Table 3.2. Demand Signal of the Logistics Network

Node
Demand (tons/day)

Stores Fuel Ordnance
Singapore 102 1810 25
Guam 2067 3813 601
Darwin 468 719 268
Yokosuka 11 1884 48
Sasebo 1117 722 467
Okinawa 813 976 497
Busan 569 1070 356
Manila 923 1692 482

Table 3.3 presents each class of logistics vessel considered in this thesis. Each vessel class
is represented as a discrete and non-interacting layer in our multigraph. We will not delve
into the characteristics of these vessels; they are are partially described in Appendix C and
covered in extensive detail in the SEA-29 Capstone Report [4].
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Table 3.3. List of Logistics Vessels

Vessel List
LCS Mothership
JHSV MOLA
T-AOE ORCA
T-AO T-AK
T-AKE T-AKR
LHA RORO
LSD LCU
LPD ESD
OSV ESB

Sea Train

Every edge in each layer has an associated threat level. For our purposes, threat level is used
to calculate the probability that a vessel survives traversing the edge. It should be noted that
some edges lie completely outside of the threat region, so the probability of survival is one.
From the vessel characteristics, threat level, and route distance, we create several different
edge weighting systems.

3.2 Edge Weighting Systems
We used centrality and modularity calculation programs in NetworkX and Gephi, a network
visualization software [20], [21]. Not every centrality or modularity metric treats edge
weights the same. Some metrics treat weight as a penalty to connectivity, while some
metrics view weight as a positive attribute when evaluating closeness.

The degree centrality of a node is ratio of the cardinality of the node’s neighborhood to
the total number of nodes in the network. Eigenvector centrality is proportionate to the
sum of the degree centrality of a vertex’s neighborhood, so it also views high weight as
an indication of closeness. Network modularity and community assignments are created
using the Louvain algorithm, which observes a positive correlation between edge weight
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and connectivity [22].

Before we define our edgeweighting schemes, wewill define the terms used in their creation.
�>BC> 5 !>BB4B is the average monetary value that is lost on a one-way traversal of an edge.
This value was created by taking the multiplying a vessel’s worth (the sum of the vessel
cost and the cost of embarked supplies) and the probability that the vessel is sunk while
traversing the edge. )>==0�4�4;8{4A43

30~
is the average tons daily tonnage delivered by a vessel

traversing an arc. The average tonnage delivered is the product of a vessel’s probability of
surviving a one way traversal and the cargo capacity (in tons) of the vessel. This value is
created by dividing the average tonnage delivered by the vessel by the transit time between
nodes (in days).

In order to properly determine communities and calculate eigenvector centrality, we propose
the following edge weighting system:

,8, 9 =

)>==0�4�4;8{4A43

30~

�>BC> 5 !>BB4B
. (3.1)

Closeness and betweenness centrality values are negatively correlated to edge weight.
Closeness centrality emphasizes nodes with the shortest mean distance to its neighbors, so
nodes with a low mean distance are considered important within the network. Betweenness
centrality values are calculated using the shortest paths determined via Dijkstra’s algorithm.
Dijkstra’s algorithm determines shortest paths based on the assumption that edgeweights act
as penalties; therefore, edges with lower weight are give preference in determining shortest
paths [23].

In order to properly calculate closeness and betweenness centrality, we propose the following
edge weighting system, which is the inverse of the previous edge weighting system:

,8, 9 =
�>BC> 5 !>BB4B

)>==0�4�4;8{4A43

30~

. (3.2)
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Some edges in each layer are outside of the threat region; therefore, they have no losses.
In order to avoid zero-weighted and infinity-weighted edges, we make the cost of losses on
these edges equal to one, so that our edge weight is simply equivalent to the daily tonnage
delivery rate.

Through the proper application of these edge weighting schemes, we are able to prop-
erly determine the most important nodes according to each of the prominent measures of
centrality.

3.3 Maximum Flow Formulation
This section presents a model that optimizes vessel selection, configuration, and routing to
maximize the amount of demand satisfied at logistics hubs in the network. The sets and
parameters used in this model were developed in collaboration with the SEA-29 Capstone
group [4]. The model we are presenting is a form of the canonical maximum network flow
problem [17]. The model we develop differs from normal network flow models in two key
ways: 1) flow between nodes is not continuous; it is conducted via discrete runs conducted by
logistics vessels 2) each arc has a level of risk associated with it, prohibiting certain transits.
We account for these differences in the formulation of our model. Our model expands on the
framework of Christafore and Danielson’s theses, specifically their development of linear
programs that model discrete vessel transits and different vessel configurations by supply
class [19], [24] .

3.3.1 Model Description
First, we introduce the various sets and indices used in the model. The logistics network
consists of disjoint sets of nodes, # , and arcs, �. Denote 8 ∈ # as a specific node and
(8, 9) ∈ � as a specific arc within the network. There are two subsets of the total set of #
nodes: demand nodes, � ⊂ # , and source nodes, ( ⊂ # . Denote � as the set of supply
classes, in our model: fuel, ordnance, cargo. Each demand node 8 ∈ � requires some amount
of supply class 2 ∈ �. We prescribe a finite list of vessels, denoted { ∈ + , available for use.
The set { is broken into two subsets,+1 and+2, which allow some vessels to have set starting
locations and other starting locations to be determined by the algorithm. This list includes
various manned and unmanned vessels. Each vessel is a distinct element of the set + . Each
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vessel can be configured in different ways; configurations determine how the vessel’s storage
capacity is split amongst the supply classes. Define � ∈ �{ as the possible configurations
of some vessel {. For example, one configuration might fill the vessel’s capacity completely
with fuel, another configuration might have an even distribution between supply classes.
Two artificial accounting nodes are also included in the model. We define a BD?4A(8=: node
that calculates all the total demand satisfied. Additionally, a {4BB4;(8=: node accounts for
all vessels completing their voyages.

Next, we introduce the parameters used in the model. The parameter denoting the maximum
time allowed by the model is<0G)8<4. The<0G)8<4 parameter sets how long the logistics
assets will have to move supplies from the supply nodes B ∈ ( to the demand nodes 3 ∈ �.
The demand for commodity 2 at node 8 is 34<0=38,2. The source nodes where the logistics
vessels { ∈ +1 load supplies and start their journey are labeled BC0AC=,{. Configuration � of
vessel { carries at most {4BB4;�0?{,�,2 of supply class 2. The model maximizes logistics
deliveries in a contested environment, and must accordingly account for the risk inherent to
transiting arcs in the network. Risk is incorporated via A8, 9 ,{, the probability of destruction of
a vessel { transiting along arc (8, 9). The parameter A8, 9 ,{ is generated from a threat analysis
model that was generated in cooperation with the SEA 29 Capstone Project. For more
information covering the details behind the determination of the A8, 9 ,{ parameter, consult
Chapter III, the Modeling Effort chapter of the SEA 29 report [4]. The parameter %{ defines
the minimum acceptable probability of survival for each vessel. A vessel will not be routed
on an arc that has a lower probability of survival than %{. Each arc is representative of a sea
lane between nodes, and the length of the route is denoted 38BC0=248, 9 . Each vessel has a set
speed of advance, given by {4;{. The length of transit is calculated from 38BC0=248, 9 and {4;{
for each possible vessel and arc combination, and used to account for timing constraints.
There are also times ;>038,{ and D=;>038,{ for a vessel { to load/unload supplies at node
8. The model incorporates various penalty parameters, which may be tuned to change the
model’s priorities. The weight attached to a specific supply class is |48�ℎC2, which can
emphasize delivery of a certain supply class. The penalty for the loss of a specific vessel is
;>BB4B{. The V1 parameter penalizes the objective function based on the time of the vessels’
arrivals. The V2 parameter penalizes the objective function for prescribing a greater total
number of transfers between vessels. The V3 parameter penalizes the objective function
for sending vessels on high risk routes. The V4 parameter penalizes the objective function
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for sending a single vessel on a large number of routes. The V5 parameter penalizes the
objective function based on the time of vessels’ departures, ensuring all vessels leave supply
nodes as soon as they are able.

Finally, we introduce the decision variables used in the model. The main decision variable
determines how to route each vessel through the network. We will use the binary decision
variable .8, 9 ,{ to represent whether vessel { traverses arc (8, 9). From these .8, 9 ,{ variables
we can output the routes of the different vessels. We use another binary decision variable
,{,� to represent whether vessel v has configuration �. We represent the amount of flow of
a supply class 2 along an arc (8, 9) using vessel { using -8, 9 ,2,{. We can determine -8, 9 ,2,{
from .8. 9 .{ and ,{,�. We are most interested in the final flow of goods, namely how much
of each supply class is received by each demand node within the <0G)8<4 parameter. The
total flow of supply class 2 along arc (8, 9) is denoted by /8, 9 ,2. Using the decision variable
/8, 9 ,2, we can determine the amount of demand satisfied. In order to account for the transfer
of supplies between vessels, we need to include the variables �8,{ and �8,{, which account
for the arrival and departure times of a vessel { ∈ + from a node 8 ∈ # . The variable *8,{,|
is binary and represents whether supplies are transferred from a vessel { to a distinct vessel
| at node 8. We represent the amount of a supply class 2 transferred from vessel { to |
at node 8 with the variable (8,2,{,|. For simplicity, this formulation fixes the configuration
of a vessel throughout the duration, even if the vessel takes part in supply transfers. The
variable (!8,{ determines the starting locations of vessels for { ∈ +2. The development of
the transfer constraints introduces nonlinearities into constraints in the model.As shown by
Leandro, we can keep the model linear via the introduction two new variables and a series
of constraints [25]. The variable.�8, 9 ,{ is the linearization of.8,=,{�8,{. The variable*�8,{,|
is the linearization of*8,{,|�8,{. The variable -(!=, 9 ,2,{ is the linearization of -=, 9 ,2,{(!=,{.

Our goal is to deliver the maximum amount of supplies to demand nodes over a set time
period.We can tune the length of the time period to observe howmuch demand can be met if
logistics forces are operating on certain timelines. By solving the algorithm repeatedly, over
a variety of <0G)8<4 values, we can analyze how time constraints affect logistics service.
Additionally, we can vary the penalty parameters, V, and observe how flow is routed for
different optimization priorities.
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3.3.2 Mixed Integer Linear Program
Indices and Sets

{ ∈ +1 logistics vessels with set start nodes

{ ∈ +2 logistics vessels with variable start nodes

{ ∈ + all vessels = +1 ∪+2

B ∈ ( supply nodes

3 ∈ � demand nodes

BB ∈ BD?4A(8=: artificial accounting node where all supply flow terminates

{B ∈ {4BB4;(8=: artificial accounting node where all vessels terminate

= ∈ # all nodes = ( ∪ � ∪ (D?4A(8=: ∪+4BB4;(8=:
2 ∈ � supply classes

� ∈ �{ configuration of vessel v

(8, 9) ∈ � arc directed from node 8 to 9
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Data [units]

;>038,{ load time at node 8 by vessel { [hours]

D=;>038,{ unload time at node 8 by vessel { [hours]

38BC0=248, 9 route length of arc (8, 9) [nautical miles]

{4;{ speed of advance of vessel { [knots]

34<0=38,2 demand for class 2 at node 8 [supply units]

{4BB4;�0?{,�,2 capacity for class 2 on configuration � of vessel { [supply units]

|48�ℎC2 weight put on commodity 2 [fraction]

;>BB4B{ weight put on losses for vessel { [millions of dollars]

A8, 9 ,{ probability of destruction of vessel { along arc (8, 9) [fraction]
%{ acceptable probability of survival for a vessel { [fraction]

BC0AC=,{ whether vessel { ∈ +1 starts at node = [binary]

V1 penalty for late arrivals [fraction]

V2 penalty for transfers [fraction]

V3 penalty for traversing risky routes[fraction]

V4 penalty for number of legs traveled [fraction]

V5 penalty for late departures [fraction]

" arbitrary very large number

<0G)8<4 time limit to complete deliveries [hours]
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Decision Variables [units]

(!8,{ whether vessel { ∈ +2 starts at node =[18=0A~]
.8, 9 ,{ whether vessel { travels on arc (8, 9) [18=0A~]
,{,� whether vessel { has configuration �[18=0A~]
-8, 9 ,2,{ flow of commodity 2 along arc (8, 9) using vessel { [supply units]
/8, 9 ,2 flow of commodity 2 along arc (8, 9) [supply units]
�8,{ arrival time of vessel { to node 8 [hours]

�8,{ departure time of vessel { to node 8 [hours]

*8,{,| whether supplies are moved from vessel { to | at node 8 [binary]

(8,2,{,| amount of class 2 moved from vessel { to | at node 8 [supply units]

.�8, 9 ,{ lineariziation of .8,=,{�8,{ [hours]

*�8,{,| lineariziation of*8,{,|�8,{ [hours]

-(!8, 9 ,2,{ lineariziation of -8, 9 ,2,{(!8,{ [supply units]

Objective Function

max
∑
8∈#

∑
2∈�

|48�ℎC2/8,BB,2

− V1
∑
{∈+

�{B,{

− V2
∑
8∈#

∑
{∈+

∑
|≠{∈+

*8,{,|

− V4
∑
(8, 9)∈�

∑
{∈+

.8, 9 ,{

− V5
∑
8∈#

∑
{∈+

�8,{

+ V3
∑
{∈+

∑
(8, 9)∈�

log(1 − A8, 9 ,{).8, 9 ,{

Subject to
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∑
�∈�{

,{,� = 1 ∀{ ∈ + (3.3)∑
9∈#,(=, 9)∈�

.=, 9 ,{ = BC0AC=,{ +
∑

8∈#,(8,=)∈�
.8,=,{ ∀{ ∈ +1, = ∈ #/(BD?4A(8=: ∪ {4BB4;(8=:)

(3.4)∑
9∈#,(=, 9)∈�

.=, 9 ,{ = (!=,{ +
∑

8∈#,(8,=)∈�
.8,=,{ ∀{ ∈ +2, = ∈ #/(BD?4A(8=: ∪ {4BB4;(8=:)

(3.5)∑
9∈#,(=, 9)∈�

.=, 9 ,{ ≤ 1 ∀{ ∈ +, = ∈ #/(BD?4A(8=: ∪ {4BB4;(8=:) (3.6)∑
8∈#

.8,{B,{ = 1 ∀{ ∈ +, (3.7)

/8,BB,2 ≤ 34<0=38,2 ∀8 ∈ �, 2 ∈ � (3.8)

-8, 9 ,2,{ ≤
∑
�∈�{

,{,�{4BB4;�0?{,�,2 (8, 9) ∈ �, 2 ∈ �, { ∈ + (3.9)

-8, 9 ,2,{ ≤ ".8, 9 ,{ (8, 9) ∈ �, 2 ∈ �, { ∈ +, (3.10)

/8, 9 ,2 =
∑
{∈+

-8, 9 ,2,{ (8, 9) ∈ �, 9 ∈ #/(BD?4A(8=: ∪ {4BB4;(8=:), 2 ∈ � (3.11)∑
9∈#,(=, 9)∈�

/= 92 =
∑

8∈#,(8,=)∈�
/8=2 ∀= ∈ �, 2 ∈ � (3.12)∑

(8,BB)∈�
/8,BB,2 =

∑
=∈(,(=, 9)∈�

∑
{∈+1

-=, 9 ,2,{BC0AC=,{ +
∑

=∈(,(=, 9)∈�

∑
|∈+2

-(!=, 9 ,2,| ∀2 ∈ �

(3.13)∑
=∈#

(!=,{ = 1 = ∈ #/(BD?4A(8=: ∪ {4BB4;(8=:){ ∈ +2 (3.14)

-(!=, 9 ,2,{ ≤ (!=,{
∑
�∈�{

{4BB4;�0?{,�,2 ∀(=, 9) ∈ �, 2 ∈ �, { ∈ +2 (3.15)

-(!=, 9 ,2,{ ≤ -=, 9 ,2,{ ∀(=, 9) ∈ �, 2 ∈ �, { ∈ +2 (3.16)

-(!=, 9 ,2,{ ≥ -=, 9 ,2,{ − (1 − (!=,{)
∑
�∈�{

{4BB4;�0?{,�,2 ∀(=, 9) ∈ �, 2 ∈ �, { ∈ +2

(3.17)
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∑
(8,BB)∈�

∑
{∈+

.8,BB,{ = 0 (3.18)∑
(=,{B)∈�

∑
2∈�

/=,{B,2 = 0 (3.19)∑
(=,{B)∈�

∑
2∈�

∑
{∈+

-=,{B,2,{ = 0 (3.20)∑
(8, 9)∈�

∑
{∈+

;>BB4B{;>�(1 − A8, 9 ,{).8, 9 ,{ ≥
∑
{∈+

;>BB4B{;>�(%{)

∀{ ∈ +, 9 ∈ #/(BD?4A(8=: ∪ {4BB4;(8=:) (3.21)

*8,{,{ = 1 8 ∈ #, { ∈ + (3.22)∑
9∈#,(8, 9)∈�

-8, 9 ,2,{ =
∑
|∈+

(8,2,|,{ (8, 9) ∈ �, 2 ∈ �, { ∈ +, (3.23)

(8,2,|,{ ≤ "*8,{,| 8 ∈ #, 2 ∈ �, { ∈ +, | ∈ + (3.24)∑
{∈+

(8,2,|,{ ≤
∑

:∈#,(:,8)∈�
-:,8,2,| +

∑
9∈#

-8, 9 ,2,|BC0AC8,| 8 ∈ #, 2 ∈ �, | ∈ +1

(3.25)∑
{∈+

(8,2,|,{ ≤
∑

:∈#,(:,8)∈�
-:,8,2,| +

∑
9∈#

-(!8, 9 ,2,| 8 ∈ #, 2 ∈ �, | ∈ +2 (3.26)∑
{∈+

∑
|∈+

(8,2,|,{ =
∑

9∈#,(8, 9)∈�
/8, 9 ,2 8 ∈ #/BD?4A(8=:, 2 ∈ � (3.27)

�{B,{ ≤ <0G)8<4 ∀{ ∈ + (3.28)

�=,{ =
∑

8∈#,(8,=)∈�
.�8,=,{ +

38BC0=248,=

{4;{
.8,=,{ ∀{ ∈ +, = ∈ #/(BD?4A(8=:) (3.29)

.�8, 9 ,{ ≤ <0G)8<4.8, 9 ,{ ∀(8, 9) ∈ �, { ∈ + (3.30)

.�8, 9 ,{ ≤ �8,{ ∀(8, 9) ∈ �, { ∈ + (3.31)

.�8, 9 ,{ ≥ �8,{ − (1 − .8, 9 ,{)<0G)8<4 ∀(8, 9) ∈ �, { ∈ + (3.32)

*�=,|,{ ≤ <0G)8<4*=,|,{ ∀= ∈ #, {, | ∈ + (3.33)

*�=,|,{ ≤ �=,| ∀= ∈ #, {, | ∈ + (3.34)

*�=,|,{ ≥ �=,| − (1 −*=,|,{)<0G)8<4 ∀= ∈ #, {, | ∈ + (3.35)
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�=,{ ≥ ;>03=,{ + (*�=,|,{ + D=;>03=,|*=,|,{)
∀{, | ∈ +, = ∈ #/(BD?4A(8=: ∪ {4BB4;(8=:) (3.36)

• Objective Function maximizes the amount of demand satisfied. Supply classes are
weighted by |48�ℎC2 in case it is more important to deliver one type vs another. The
V penalty terms can be tuned to adjust priorities of the optimization.

• Constraint (3.3): ensures each vessel is of exactly one configuration and remains in
that configuration throughout the model.

• Constraint (3.4): flow balance constraint for vessels with fixed starting points. A vessel
that enters a demand node must must leave the node. The start variable allows for
flow to originate at the starting locations. Ensures each vessel travels a continuous
path in the network. Equality allows vessels to end their path at any node by using the
{4BB4;(8=: as the last node. Vessel might be dispatched directly to the {4BB4;(8=: ,
in which case the vessel is not used in reality.

• Constraint (3.5): same as Constraint (3.4), but for vessels with variable starting
locations.

• Constraint (3.6): ensures total outgoing flow per vessel is at most 1. Coupled with
Constraints (3.4) and (3.5), it means that if vessels starts at a node it cannot return to
the same node, avoiding round-trips.

• Constraint (3.7): ensures each vessel has to have an arc to the {4BB4;(8=: , which
means every vessel’s journey ends at the {4BB4;(8=: .

• Constraint (3.8): ensures the model delivers no more than demanded.
• Constraint (3.9): ensures the amount of each supply class flowing along an arc in a
vessel fits within capacity of the vessel’s configuration.

• Constraint (3.10): if there is no vessel on the arc, then there is no flow on the arc. If
there is a vessel, then M essentially makes this constraint irrelevant.

• Constraint (3.11): total flow of supply classes on an arc must equal the sum of flow
carried on vessels traversing the arc. This constraint does not apply for the final
demand going to BD?4A(8=: .

• Constraint (3.12): another flow balance constraint. The total flow of supply entering
a node must equal the flow exiting. Note that some of the flow exiting the node may
be satisfying demand (which occurs when flow travels from the node to BD?4A(8=:).

• Constraint (3.13): total demand satisfied by the model must equal the flow originated
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from the source nodes for vessels with fixed and variable starting points.
• Constraint (3.14): vessels in +2 must start at a physical node.
• Constraint (3.15): the amount of a of a supply class carried on a vessel must be less
than its capacity.

• Constraint (3.16): ensures the linearization -(!=, 9 ,2,{ is less than -=, 9 ,2,{.
• Constraint (3.17): ensures the linearization -(!=, 9 ,2,{ is greater than -=, 9 ,2,{. If
(!=,{=1, combining constraints (3.15)-(3.17) yields the linearization
-(!=, 9 ,2,{=-=, 9 ,2,{ as desired.

• Constraint (3.18): ensures vessels do not traverse BD?4A(8=: arcs. BD?4A(8=: arcs
are artificial arcs, not physical arcs. They are merely an accounting tool to track the
amount of demand satisfied at each demand node. Thus it is not possible for a vessel
to traverse this arc.

• Constraint (3.19): ensures there is no flow of supply classes on {4BB4;(8=: arcs.
• Constraint (3.20): ensures there is no flow of supply classes on vessels on {4BB4;(8=:
arcs.

• Constraint (3.21): is an aggregate risk constraint. It ensures that the probability each
vessel, {, survives traversing an arc is at least %{. Allows us to weigh different assets
by ;>BB4B{ because we are able to accept higher risk for certain assets.

• Constraint (3.22): a vessel always transfers to itself, an accounting constraint.
• Constraint (3.23): total amount of a supply class 2 on vessel { leaving node 8 must
equal the total transferred to { from other vessels|. Note, a vessel can transfer supplies
to itself.

• Constraint (3.24): the total amount of a supply class transferred is only positive if a
transfer occurs.

• Constraint (3.25): the total amount transferred from vessel | ∈ +1 to all other vessels
must be less than or equal to the amount of supplies that vessel | arrived with at node
8, i.e. a vessel cannot transfer more supplies than it has.

• Constraint (3.26): the total amount transferred from vessel | ∈ +2 to all other vessels
must be less than or equal to the amount of supplies that vessel | arrived with at node
8, i.e. a vessel cannot transfer more supplies than it has.

• Constraint (3.27): the total amount transferred at node 8 across all vessels must
equal flow out of the node. Here we exclude the BD?4A(8=: because transfers only
correspond to physical flow.
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• Constraint (3.28): ensures that all vessels arrive to the {4BB4;(8=: in the alotted time.
• Constraint (3.29): calculates the arrival time of a vessel { to a node =. The arrival time
is calculated by summing the departure time from the previous node and the transit
time.

• Constraint (3.30): forces the linearization .�8, 9 ,{ to zero if no vessel transits the arc.
• Constraint (3.31): ensures the linearization .�8, 9 ,{ is less than �8,{.
• Constraint (3.32): ensures the linearization .�8, 9 ,{ is greater than �8,{. If .8, 9 ,{=1,
combining constraints (3.30)-(3.32) yields the linearization .�8, 9 ,{=�8,{ as desired.

• Constraint (3.33): forces the linearization . �=,|,{ to zero if no transfer occurs.
• Constraint (3.34): ensures the linearization*�=,|,{ is less than �=,|.
• Constraint (3.35): ensures the linearization *�=,|,{ is greater than �=,|. If *=,|,{=1,
combining constraints (3.33)-(3.35) yields the linearization*�=,|,{=�=,| as desired.

• Constraint (3.36): calculates the departure time of a vessel { from a node =. The
departure time is calculated by summing the arrival time at node = and the unload-
ing/loading time. The combination of loading and unloading times gives the total
transfer time. The optimization penalizes for late delivery, so a vessel will always
leave an intermediary node as soon as it is able.
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CHAPTER 4:
Results

In this chapter, we present the results from our two different methods of analysis. The first
method applies network science to analyze the structure of the logistics network. The second
method applies our maximum flow algorithm to the network, providing feedback on routing
assignments and demand satisfaction.

4.1 Network Analysis
Figure 4.1 is a visualization of the uncontested layer of the logistics network. In this
visualization, the edges are weighted based solely upon the distance between nodes. Thicker
edges correspond to longer routes. Nodes are the same as presented in Table 3.1, and are sized
based upon the betweenness centrality of the node. A larger node has a higher betweenness
centrality value. Table 4.1 displays the characteristics of the network presented in Figure 4.1.
The colors of the nodes and edges represent the communities in the network.
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Figure 4.1. Network Visualization of Uncontested Layer of Logistics Network

The network modularity value indicates that communities are present; however, there is a
high level of connection across communities. We note that the communities are geograph-
ically biased, a South China Sea and an East China Sea/Western Pacific community. After
applying community detection algorithms to all layers (accounting for contested environ-
ments), we observe the same trend of low modularity.

Each layer in the contested environment was characterized by the presence of three commu-
nities. Geographically, these communities represented the South China Sea, East China Sea,
and Western Pacific. We did not gain major structural insight from community detection
and analysis, so we will not discuss it further.

We note that nodes in the Philippines have the highest degree. These nodes are geograph-
ically central; therefore, they connect to nodes in the South China Sea, East China Sea,
and the Western Pacific. The least connected nodes in this network are on the fringe of the
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Pacific Theater, such as Hawaii and Diego Garcia.

Table 4.1. Logistics Network Characteristics

Characteristic Value
Number of Nodes 21
Number of Edges 91
Average Unweighted Degree 8.66
Network Diameter 3
Average Shortest Path Length 1.69
Network Modularity 0.263
Number of Communities 2

Next we introduce and analyze the average nodal cost of a selection of nodes in three layers.

4.1.1 Average Nodal Cost
We now introduce the concept of an average nodal cost.

Definition 13. The average nodal cost, �>BC> 5 !>BB4B (in dollars per ton delivered), is
the average time-independent cost of one-way transit to/from a node.

The edge weighting scheme, Equation (3.2) in Section 3.2, gives the average cost of losses
for daily tonnage delivery; however, we divide by the transit time (in days) to get a time-
independent edge weight equivalent to �>BC> 5 !>BB4B

)>==0�4�4;8{4A43
. We note that this time-independent

edge weight is equivalent for vessels traversing to or from a given node. Since both of
these values are vessel dependent, each layer will have different average nodal costs, as we
describe next. The average nodal cost is calculated by dividing the aggregate incident edge
value (using the edge weights previously described), or weighted degree, by the unweighted
degree of the node.

This measure provides a means of comparison between layers without bias regarding a
vessel’s velocity. Table 4.2 presents the average nodal cost of a selection of ten nodes for
the LCS, ORCA, and T-AKR layers of the logistics network.
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Table 4.2. Average Nodal Cost

Rank ORCA LCS
1 Okinawa $136,905 Bandar Seri Begawan $247,105
2 Yokosuka $136,444 Zuoying $244,558
3 Zuoying $124,882 Manila $244,463
4 Bandar Seri Begawan $124,589 Cebu $242,991
5 Puerto Princesa $124,500 Okinawa $241,751
6 Manila $124,246 Palau $239,532
7 Guam $144,712 Puerto Princesa $228,097
8 Cebu $123,241 Guam $208,963
9 Palau $120,620 Singapore $208,280
10 Singapore $108,794 Yokosuka $193,601
Rank T-AKR
1 Zuoying $365,859
2 Okinawa $351,879
3 Bandar Seri Begawan $351,632
4 Manila $341,736
5 Palau $339,610
6 Puerto Princesa $337,183
7 Cebu $333,401
8 Guam $294,803
9 Singapore $281,368
10 Yokosuka $266,169

Table 4.2 shows that nodes located within high threat regions are generally more expensive,
on the order of 20%, than nodes on the fringe of the threat region. This is an indication that
is is advantageous to route vessels through nodes with lower risk whenever possible. The
next paragraph details the strategic takeaways from Table 4.2 and the overall average nodal
cost analysis.

The vessel parameters discussed in this paragraph are detailed in Appendix C. For more
information on the vessels considered, consult the SEA-29 Capstone Report [4]. The LCS
is an combat-oriented naval vessel with a high cost and a small tonnage capacity. The
LCS also has defensive layers, so it is more survivable in contested environments. The
ORCA is a very small tonnage capacity, inexpensive vessel with no defenses. The ORCA is
submerged, and has the highest survivability values on every route. The T-AKR is a vessel
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used by the MSC in the current logistics force structure. It is an expensive, large tonnage
capacity, undefended asset. The high monetary losses associated with the T-AKR indicate
that conventional logistics assets are ill-suited for operations in contested environments.
The LCS is cheaper to use per ton, despite its small capacity and high cost. This indicates
that the presence of defensive layers on logistics vessels may decrease the average nodal
cost. The ORCA has the smallest tonnage capacity, but its low cost and high survivability
make it the cheapest asset. This indicates that UUVs are viable assets for use in contested
environments.

Next we examine the betweenness centrality of nodes in the same layers of the network.

4.1.2 Betweenness Centrality Analysis
Betweenness centrality is a measure of the proximity of a node to geodesics in the net-
work [13]. In logistics networks, with edge weights given as penalties based on distance
or other factors, betweenness centrality is a prominent metric in determining nodal impor-
tance. This makes logical sense, since the shortest path between two nodes minimizes the
penalty experienced for transiting between those two nodes.

Table 4.3 ranks the top five nodes in the uncontested, LCS, ORCA, and T-AKR layers by
betweenness centrality.
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Table 4.3. Betweenness Centrality Ranking

Rank Uncontested LCS
1 Singapore Singapore
2 Manila Guam
3 Guam Manila
4 Palau Okinawa
5 Cebu Darwin
Rank ORCA T-AKR
1 Palau Guam
2 Bandar Seri Begawan Singapore
3 Cebu Diego Garcia
4 Manila Palau
5 Phuket Darwin

The uncontested layer of the logistics network is an indication of the geographic betweenness
centrality of nodes in the network. The LCS, ORCA, and T-AKR all represent betweenness
centrality in a contested environment.

As a product of its defenses the LCS is able to operate within threat regions with a reasonable
chance of survival, but it still prefers to travel through nodes on the fringe of the threat region.

The ORCA has very high survivability within the threat regions, but is slow. In order
to maximize the daily tonnage delivery, the ORCA exhibits clear bias towards transiting
through a geographically proximate cluster of nodes within the first island chain despite
their location in a high threat region.

The T-AKR is undefended, so it has a low probability of survival along edges within the
threat region. The low survivability of the T-AKR in the threat region skews the betweenness
centrality metric to favors nodes on the fringe, or completely outside the threat region. If
assets similar to the T-AKR are used in contested environments, they perform better on
short transits, providing increased survivability and a higher daily tonnage delivery rate.
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Betweenness centrality is an indicator of the importance of a node to flow throughout
the network, so nodes with high betweenness values are crucial to facilitating resource
flow. A small subset of nodes have high betweenness centrality values across layers. For
example, Singapore and Guam are consistently important across layers that have large
tonnage capacity. Their importance means that they are vulnerable to adversary action,
closure of these hubs would have a severe negative effect on the performance of the logistics
network.

4.1.3 Centrality Comparison
Figure 4.2 compares the degree centrality values of the nodes in the logistics network.While
the edge weights may be different, all layers have the same nodes and edges and therefore
each layer has the same degree centrality distribution, according to the equation detailed in
Chapter 3.

Figure 4.2. Comparison of Degree Centrality Values

The degree centrality metric is important in logistics networks because it indicates how
many hubs a node can directly send supplies to. In our graph, the most important nodes by
degree centrality are located at positions of geographic significance such as the first island
chain cluster, Singapore, and Guam.

For full centrality tables, consult Appendix B, which has the different centrality rankings
and values for each layer of the network.
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Figures 4.3-4.5 compare the eigenvector, closeness, and betweenness centrality metrics
for the LCS, ORCA, and T-AKR layers. In these graphs, eigenvector and betweenness
centralities are plotted on the primary vertical axis, since they are normalized within the
range [0,1]. The closeness centrality metric is not normalized, so it is plotted on the
secondary vertical axis.

Figure 4.3. Comparison of Centrality Metrics in the LCS Network Layer

Figure 4.4. Comparison of Centrality Metrics in the ORCA Network Layer
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Figure 4.5. Comparison of Centrality Metrics in the T-AKR Network Layer

Every layer has approximately the same top nodes ranked by closeness, geographically they
are the first island chain node cluster. The nodes ranked after the top five exhibit variability
across layers, while large assets have roughly the same rankings. Similarly, small tonnage
vessels have roughly equivalent closeness centrality rankings, due to the edge weighting
scheme. The edge weighting scheme values the daily tonnage delivery rate, which is much
smaller for low capacity carries traversing long routes. Closeness centrality has utility is
differentiating between general classes of vessels, but is less useful in comparing specific
layers.

Eigenvector centrality, in logistic terms, ranks nodes based on their proximity to highly
connected hubs in the network. In eigenvector centrality, the rankings are almost identical
across all classes of vessel. Upon closer inspection, the values have different distributions.
Carriers with lower �>BC> 5 !>BB4B exhibit a flatter distribution, while vessels with higher
�>BC> 5 !>BB4B have a small subset of nodes with significantly higher eigenvector central-
ity values, and many nodes with near-zero values. Eigenvector centrality is ill-suited for
comparing layers of the logistics network.

Betweenness centrality appears to be the most discerning centrality metric. It takes the
total network structure into account when determining a node’s centrality, rather than
just a node’s neighborhood. Betweenness centrality also appears to be the most apt for
distiguishing between layers of the network, valuing low-threat nodes preferentially for
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expensive and vulnerable assets. As expected, betweenness centrality is the most applicable
to examining nodal importance in logistics networks.

Centrality analysis supports the hypothesis that conventional logistics assets are unsuitable
for operations in contested environments. We find that assets with integrated defensive
capabilities are able to operate in the threat region with higher effectiveness. We also find
that expendable assets are favored for operations in contested environments, pointing to the
utility of smaller vessels and unmanned assets as logistic platforms.

4.2 Maximum Flow Analysis
In this section we review the inputs and results of the maximum flow algorithm presented in
Chapter 3. For detailed inputs and results data from the maximum flow algorithm, consult
Appendix C. The inputs in Appendix C were created in cooperation with the SEA-29
Capstone group [4].

The ;>BB4B{ parameter is the combined worth of the vessel and its supply load in millions of
dollars. We prescribe acceptable risk levels, %{ to each vessel based upon their cost, cargo
capacity, and military utility. We consider four possible configurations: A, B, C, and D.
Configuration D evenly partitions {4BB4;�0?{, with one third of the cargo space allocated
for each supply class. Configurations A, B, and C each favor a different supply class; stores-
heavy, fuel-heavy, and ordnance-heavy respectively. Each of these configurations allocate
50% of {4BB4;�0?{ to the preferred supply class and 25% of {4BB4;�0?{ to each other
supply class. Constraint 3.21 in our mixed linear program is not constructed to handle arcs
with no risk. In order to prevent an undefined value, from the value of the logarithm evaluated
at zero, we set a near-zero probability of destruction for risk free arcs. For simplicity’s sake,
the values of ;>03{ and D=;>03{ are set to five, and equal for every vessel. The <0G)8<4
parameter for each scenario is set to 600 hours. The demand signal for each scenario is
calculated by multiplying <0G)8<4 and 34<0=3=,2, the average hourly demand of each
node for a given supply class. This gives the total demand based on the prescribed delivery
timescale. All supply classes are assumed to have equal importance, |48�ℎC2. We set two
source nodes in the network: Hawaii and Diego Garcia. Setting these two nodes as the only
sources represents pushing all supplies from out of theater hubs. Having one source in the
Pacific Ocean and one source in the Indian Ocean allows us to compare the efficiency of
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routing supplies into theater along Easterly or Westerly routes. Due to the limitations of the
mixed integer linear program, not every vessel can have a variable starting location. In order
to have a non-empty+1, we dictate that TAKR1 started at Hawaii. All of the aforementioned
assumptions hold for every test scenario.

We use Pyomo, an optimization modeling language based in Python, to create our algorithm
[26], [27]. We use the CPLEX solver to solve our Mixed Integer Linear Program. The full
theater problem, considering more than 150 total vessels, is too large for the solver to
handle. We scope the vessel set to two vessels per class, leading to 30 total vessels. By
scoping the problem, we allow the solver to arrive at a reasonably optimal solution while
still providing insight on vessel routing and configuration assignment. All four scenarios
arrive at a solution within a factor of two of optimal.

Most integer programming solvers use a sequence of steps to bring the solution successively
closer to optimality. One step improves the best current solution for the objective function.
The other step solves for an upper bound on the objective function, and successively lowers
this upper bound. Our solutions are within a factor of two of optimal, meaning that the
current solution for the objective function is over half of the upper bound of the objective
function. In the case of Scenario 4, the solver’s best solution for the objective value function
is 73716.5489, while the upper bound is 144327.5500. We guarantee that our solution is
within a factor of two of optimal, but it may be better than that. The actual optimal value
for the objective function could lie anywhere between the current solution and the upper
bound of the objective function.

Next, we present the results of four different scenarios. Due to the limited set of vessels, and
without scoping the demand signal, the total demand is unable to be satisfied. We also note
that due to an issue with the linear program, many vessels are not loaded to full capacity,
contributing to the lack of demand satisfaction. All scenarios saw the same amount of
supplies delivered: 73932.0 tons aggregated across all demand nodes.

4.2.1 Scenario 1: Full Demand Signal Uncontested
Table 4.4 presents the demand signal at each node in the network, where all nodes not listed
have zero demand. Table 4.4 also shows the amount of demand satisfied at each node within
the allotted time period.
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Table 4.4. Demand Satisfaction of Maximum Flow Scenario 1

Node
Demand (tons) Demand Satisfied (tons)

Stores Fuel Ordnance Stores Fuel Ordnance
Singapore 2551 9049 629 999 0 0
Guam 51679 19064 15023 15435 14936 14785
Darwin 11696 17971 6706 5695 5695 6395
Yokosuka 279 9417 1191 0 0 0
Sasebo 27913 18057 11665 0 0 0
Okinawa 20313 24407 12424 2498 2498 2997
Busan 14237 26747 8910 0 0 0
Manila 23069 42300 12053 0 999 999

Of the vessel set, 27% start at Diego Garcia and 66% start at Hawaii. Due to the slow transit
speed of the ORCA, it is unable to make any transits within the given time constraints,
so 7% of the vessels traverse no arcs. All commodities are prioritized evenly; however,
stores-heavy is the most common vessel configuration. Routing assignments ensure that
despite supply class preferential configurations each node receives approximately equivalent
amounts of each supply class. Since all routes in this scenario have negligible risk, routing is
determined based on the quickest paths from source to demand nodes. Vessels that resupply
Southern demand nodes originate from Diego Garcia, while vessels resupplying north of
the Philippines start from Hawaii. It is important to note that this model flows supplies from
both sides of the theater, showing the value of the Indian Ocean path in logistics supply
routing.

The objective function is designed to promote timely deliveries. Since the model is unable
to satisfy the entire demand signal, it delivers to demand nodes that are the shortest distance
from source nodes. Demand nodes that are farther from source nodes have little or no
demand satisfied.
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4.2.2 Scenario 2: Full Demand Signal Contested
Table 4.5 presents the demand signal at each node in the network, where all nodes not listed
have zero demand. Table 4.5 also shows the amount of demand satisfied at each node within
the allotted time period.

Table 4.5. Demand Satisfaction of Maximum Flow Scenario 2

Node
Demand (tons) Demand Satisfied (tons)

Stores Fuel Ordnance Stores Fuel Ordnance
Singapore 2551 9049 629 1849 2497 629
Guam 51679 19064 15023 14836 13986 14137
Darwin 11696 17971 6706 1998 1998 1998
Yokosuka 279 9417 1191 0 0 0
Sasebo 27913 18057 11665 0 0 0
Okinawa 20313 24407 12424 5495 5494 5495
Busan 14237 26747 8910 0 0 0
Manila 23069 42300 12053 0 2018 999

Of the vessel set, 20% start at Diego Garcia and 73% start at Hawaii. Due to the slow transit
speed of the ORCA, it is unable to make any transits within the given time constraints, so 7%
of the vessels traverse no arcs. All commodities are prioritized evenly; however, stores-heavy
is the most common vessel configuration. Routing assignments ensure that despite supply
class preferential configurations each node receives approximately equivalent amounts of
each supply class. Assets with high ;>BB4B{ and A8, 9 ,{ parameters are routed along low risk
routes. The algorithm tasks more survivable and cheaper vessels to supply runs inside the
threat region. The assignment of the T-AKR class to the risk-free Hawaii-Guam route and
LCS/JHSV vessels to routes within the threat region support this conclusion. Since the
vessel set is unable to meet all demand, vessels are primarily used to meet demand at nodes
in low threat areas that lie closer to source nodes. Similar to Scenario 1, supplies flow into
the theater from both sides. In this scenario, Hawaii is the heavily favored source node,
while Diego Garcia is still as the starting point for resupplying Southerly demand nodes.
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4.2.3 Scenario 3: Partial Demand Signal Uncontested
Table 4.6 presents the demand signal at each node in the network, where all nodes not listed
have zero demand. Table 4.6 also shows the amount of demand satisfied at each node within
the allotted time period.

Table 4.6. Demand Satisfaction of Maximum Flow Scenario 3

Node
Demand (tons) Demand Satisfied (tons)

Stores Fuel Ordnance Stores Fuel Ordnance
Sasebo 27913 18057 11665 3996 3996 3996
Okinawa 20313 24407 12424 11988 12988 11988
Busan 14237 26747 8910 0 0 0
Manila 23069 42300 12053 8642 8342 7993

In order to force vessels to resupply nodes in high threat regions, we remove the demand at
the Singapore, Guam, Yokosuka, and Darwin nodes for this scenario.

Of the vessel set, 33% start at Diego Garcia and 60% start at Hawaii. Due to the slow transit
speed of the ORCA, it is unable to make any transits within the given time constraints,
so 7% of the vessels traverse no arcs. All commodities are prioritized evenly; however,
stores-heavy is the most common vessel configuration. Routing assignments ensure that
despite supply class preferential configurations each node receives approximately equivalent
amounts of each supply class. Since all routes in this scenario have negligible risk, routing is
determined based on the quickest paths from source to demand nodes.Vessels that resupplied
Southern demand nodes originated from Diego Garcia, while vessels resupplying north of
the Philippines started from Hawaii. It is important to note that this model flows supplies
from both sides of the theater, showing the importance of the Indian Ocean route in logistics
supply routing.

As in Scenario 1, the model is unable to satisfy the entire demand signal, it delivers to
demand nodes that are the shortest distance from source nodes. Nodes that are farther from
source nodes have less demand satisfied.
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4.2.4 Scenario 4: Partial Demand Signal Contested
Table 4.7 presents the demand signal at each node in the network, where all nodes not listed
have zero demand. Table 4.7 also shows the amount of demand satisfied at each node within
the allotted time period.

Table 4.7. Demand Satisfaction of Maximum Flow Scenario 4

Node
Demand (tons) Demand Satisfied (tons)

Stores Fuel Ordnance Stores Fuel Ordnance
Sasebo 27913 18057 11665 4846 5694 4846
Okinawa 20313 24407 12424 6993 6993 6993
Busan 14237 26747 8910 4695 3847 3847
Manila 23069 42300 12053 8441 8292 8442

In order to force vessels to resupply nodes in high threat regions, we remove the demand at
the Singapore, Guam, Yokosuka, and Darwin nodes for this scenario.

Of the vessel set, 33% start at Diego Garcia and 60% start from Hawaii. Due to the slow
transit speed of the ORCA, it is unable to make any transits within the given time constraints,
so 7% of the vessels traverse no arcs. All commodities are prioritized evenly; however,
stores-heavy is the most common vessel configuration. Routing assignments ensure that
despite supply class preferential configurations each node receives approximately equivalent
amounts of each supply class. Assets with high ;>BB4B{ and A8, 9 ,{ parameters are routed along
low risk routes. The algorithm tasks more survivable and cheaper vessels to supply runs
inside the threat region. In support of this claim, ESB2 and T-AKR1 transport supplies to
Yokosuka which are subsequently shuttled to demand nodes along higher threat routes by
more attritable assets. As in previous scenarios, supplies flow into the theater from both
directions. In this scenario, Hawaii is the favored source node, while Diego Garcia is still the
starting point for resupplying Southerly demand nodes. The bias towards the Hawaii source
node is less extreme that in Scenario 2, which is because the model flows more supplies to
southern demand nodes in this scenario. In this scenario, demand is satisfied more equally
across all demand nodes. It is interesting to note that the introduction of risk causes some
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vessels to route to more distant nodes, because it is advantageous to satisfy demand at those
nodes.

The outputs of the maximum flow algorithm support the hypothesis that the current MSC
force structure is unsuitable for operations in contested environments. We observe that
vessels are routed differently in contested and uncontested environments, given the same
demand signal. Vessels have higher probability of survival in the threat area if they are
either less detectable or have integrated defensive capabilities. The vessels that are assigned
to transport supplies to high threat nodes are characterized by their expendability or higher
probability of survival. In order to maintain logistic support in contested environments, con-
sideration should be given to the development and acquisition of assets that are expendable
or more survivable in the face of hostile threats.
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CHAPTER 5:
Conclusion and Future Work

In this thesis, we examine the maritime logistics network in the Pacific theater. In this
chapter we summarize our findings and suggest potential areas for future research.

5.1 Conclusion
In the first portion of this thesis, we summarize the data that we created in collaboration
with the SEA-29 Capstone Group [4]. Using that data, we use network theoretic principles
to examine the structure of the maritime logistics network in the Pacific theater. Our primary
measure of importance, betweeness centrality, relies on shortest paths that maximize daily
tonnage delivery while minimizing losses. We observe that vessels that are currently in the
MSC inventory prefer to traverse nodes in uncontested or low-threat areas. Vessels with
defensive capabilities prefer low-threat regions, but are more capable of traversing edges
in contested environments. Inexpensive vessels are also more capable of operations in high
threat environments than current logistics assets, due to their expendability. Additionally,
we present a comparison of centralities across the layers of our network. A small subset of
nodes are highly central across layers, indicating points of vulnerability in the network.

Logistics systems are not static, in reality supplies must flow through the network. In the
case of our maritime logistics network, discrete vessels carry supplies between nodes. We
present an algorithm that maximizes the demand satisfied at nodes throughout the network.
We compare scenarios that maximize flow in uncontested and contested environments. We
observe that expensive conventional logistics assets are routed to preferentially deliver to
nodes in low-threat environments. Defended or inexpensive vessels are routed to higher
threat nodes. The results of our maximum flow algorithm concur with the conclusions
developed through network analysis. Current MSC logistics vessels are not optimal for
operations in contested environments.

Consideration should be given to using expendable or more survivable assets to provide
logistic support in contested environments.
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5.2 Future Work

5.2.1 Further Application of Methodology
Our nominal logistics network only features major hubs in the Pacific theater. The incorpo-
ration of more nodes into the network would affect the structure of the network, providing
insight on the effectiveness of small expeditionary logistics hubs. The methodology used
in this thesis can also be applied to the logistics problem in other theaters, notably the
Atlantic and Mediterranean regions. The military logistics system relies on airborne and
land-based transportation of supplies. Incorporating connections via overland and air routes
would provide insight into the overall structure of the U.S. logistics network. Additionally,
incorporating air and ground assets into the maximum flow algorithm would provide the
capability to compare the efficiency of seaborne, airborne, and land-based logistics con-
nectors. Convoys are a common naval strategy, the methods presented in this thesis can be
used to examine their worth in modern contested environments. Further trials will be able to
analyze the effect of changing the demand signal on the solution generated by the maximum
flow algorithm.

5.2.2 Distance Centrality Analysis
In 2018, Roginski created a new centrality metric: distance centrality. Distance centrality
results in a determination of which vertices whose removal have the greatest (and least)
change in a matrix’s distribution of distances [28]. Used in conjunction with the weighting
systems used in our logistics network, the distance centrality measure could indicate the
effect of removing a node on the structure of the logistics network.

5.2.3 Maximum Flow Algorithm Improvements
The maximum flow algorithm presented in this thesis has potential for improvement.
Changes to the linear program could allow for round-trips between nodes, enabling ex-
pendable assets to serve as shuttles for supplies within high threat regions. The 14C0
parameters can be tuned, realigning the priorities of the objective function. Adjusting the
demand signal, either by simple scaling or different nodal distribution, would have an im-
pact on routing. Changes to the constraints will be able to fix the partial loading issue. In
practicality, not all nodes are equal. The demand signal at forward operating locations is
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prioritized over demand at nodes removed from combat. Modifications to this maximum
flow algorithm would allow for demand at certain nodes to be preferentially satisfied.

The concept of heuristics can be applied to the optimization presented in this thesis. The
development of a vessel assignment heuristic would allow for faster solutions and the ability
to solve larger problems.
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APPENDIX A:
Sample Edge Table: LCS Layer of the Network

Type Weight Source Name Target Name
LCS 252.631579 Hawaii Kwajalein
LCS 162.367865 Hawaii Guam
LCS 28.8142826 Hawaii Palau
LCS 158.912208 Hawaii Yokosuka
LCS 27.6079811 Hawaii Okinawa
LCS 83.8696436 Yokosuka Guam
LCS 242.708804 Yokosuka Kwajalein
LCS 183.77038 Yokosuka Sasebo
LCS 182.961978 Yokosuka Busan
LCS 145.939603 Yokosuka Okinawa
LCS 64.4956005 Yokosuka Cebu
LCS 64.2852586 Yokosuka Manila
LCS 265.447947 Okinawa Sasebo
LCS 214.015477 Okinawa Busan
LCS 93.4637616 Okinawa Guam
LCS 43.1546509 Okinawa Kwajalein
LCS 390.130624 Guam Kwajalein
LCS 167.424508 Guam Palau
LCS 60.891319 Guam Darwin
LCS 75.6784634 Guam Sasebo
LCS 69.3447147 Guam Busan
LCS 76.5934884 Guam Manila
LCS 93.3296345 Guam Cebu
LCS 58.5690376 Guam Bandar Seri Begawan
LCS 44.2288778 Guam Singapore
LCS 92.1981267 Palau Darwin
LCS 95.5788661 Palau Okinawa
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Type Weight Source Name Target Name
LCS 61.5721691 Palau Kwajalein
LCS 116.473241 Palau Manila
LCS 175.428334 Palau Cebu
LCS 90.9357201 Palau Bandar Seri Begawan
LCS 58.5193238 Palau Singapore
LCS 117.416917 Cebu Okinawa
LCS 78.2741906 Cebu Sasebo
LCS 296.890134 Cebu Manila
LCS 113.054701 Cebu Cam Ranh Bay
LCS 90.1023466 Cebu Haiphong
LCS 175.963472 Cebu Bandar Seri Begawan
LCS 81.1431437 Cebu Singapore
LCS 119.314798 Manila Okinawa
LCS 86.1787874 Manila Sasebo
LCS 157.078037 Manila Cam Ranh Bay
LCS 120.902967 Manila Haiphong
LCS 163.675118 Manila Bandar Seri Begawan
LCS 84.9904619 Manila Singapore
LCS 190.667451 Haiphong Cam Ranh Bay
LCS 97.3013554 Haiphong Bandar Seri Begawan
LCS 87.8299192 Haiphong Singapore
LCS 207.736356 Cam Ranh Bay Bandar Seri Begawan
LCS 151.842519 Cam Ranh Bay Singapore
LCS 151.910985 Bandar Seri Begawan Singapore
LCS 63.6544933 Bandar Seri Begawan Darwin
LCS 62.5894074 Singapore Darwin
LCS 246.153846 Singapore Diego Garcia
LCS 154.571593 Darwin Diego Garcia
LCS 295.709571 Phuket Diego Garcia
LCS 995.555556 Phuket Singapore
LCS 85.3631191 Phuket Bandar Seri Begawan
LCS 49.4688874 Phuket Darwin
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Type Weight Source Name Target Name
LCS 150.231203 Pattaya Singapore
LCS 111.811617 Pattaya Bandar Seri Begawan
LCS 145.376519 Pattaya Cam Ranh Bay
LCS 79.7363207 Pattaya Manila
LCS 72.5881156 Pattaya Cebu
LCS 46.4690639 Pattaya Darwin
LCS 128.060495 Zuoying Busan
LCS 131.506502 Zuoying Sasebo
LCS 85.2086819 Zuoying Yokosuka
LCS 73.5419911 Zuoying Guam
LCS 91.3227165 Zuoying Palau
LCS 211.369876 Zuoying Manila
LCS 138.862685 Zuoying Cebu
LCS 139.937249 Zuoying Puerto Princesa
LCS 300.503074 Perth Darwin
LCS 188.697789 Perth Diego Garcia
LCS 52.0540555 Perth Singapore
LCS 42.0135953 Perth Cebu
LCS 42.5463537 Perth Puerto Princesa
LCS 38.9055008 Perth Manila
LCS 41.4462999 Perth Bandar Seri Begawan
LCS 70.453574 Puerto Princesa Guam
LCS 115.28331 Puerto Princesa Palau
LCS 96.280586 Puerto Princesa Okinawa
LCS 55.5658837 Puerto Princesa Yokosuka
LCS 70.5122329 Puerto Princesa Sasebo
LCS 341.051164 Puerto Princesa Manila
LCS 323.494307 Puerto Princesa Cebu
LCS 168.400559 Puerto Princesa Cam Ranh Bay
LCS 106.892929 Puerto Princesa Haiphong
LCS 300.262263 Puerto Princesa Bandar Seri Begawan
LCS 104.721977 Puerto Princesa Singapore
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APPENDIX B:
Centrality Rankings

Uncontested
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Puerto Princesa 0.426
2 Guam 0.700 Manila 0.409
3 Manila 0.700 Cebu 0.395
4 Singapore 0.650 Bandar Seri Begawan 0.325
5 Puerto Princesa 0.650 Cam Ranh Bay 0.259
6 Bandar Seri Begawan 0.600 Singapore 0.215
7 Palau 0.550 Palau 0.215
8 Yokusuka 0.500 Zuoying 0.212
9 Okinawa 0.500 Okinawa 0.193
10 Darwin 0.400 Haiphong 0.179
11 Zuoying 0.400 Guam 0.177
12 Sasebo 0.350 Sasebo 0.166
13 Cam Ranh Bay 0.350 Yokusuka 0.140
14 Perth 0.350 Pattaya 0.134
15 Haiphong 0.300 Busan 0.080
16 Pattaya 0.300 Perth 0.062
17 Hawaii 0.250 Darwin 0.060
18 Kwajalein 0.250 Phuket 0.059
19 Busan 0.200 Kwajalein 0.033
20 Diego Garcia 0.200 Hawaii 0.018
21 Phuket 0.200 Diego Garcia 0.015
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Uncontested
Rank Closeness Value Betweenness Value
1 Cebu 334.038 Singapore 0.192
2 Manila 332.951 Manila 0.179
3 Puerto Princesa 332.622 Guam 0.089
4 Bandar Seri Begawan 312.986 Palau 0.079
5 Cam Ranh Bay 292.571 Cebu 0.047
6 Zuoying 292.230 Zuoying 0.047
7 Palau 291.059 Puerto Princesa 0.047
8 Okinawa 282.234 Okinawa 0.042
9 Singapore 264.333 Yokusuka 0.026
10 Guam 255.168 Darwin 0.021
11 Haiphong 247.793 Bandar Seri Begawan 0.016
12 Sasebo 247.280 Cam Ranh Bay 0.011
13 Busan 236.313 Sasebo 0.005
14 Pattaya 234.202 Hawaii 0.000
15 Yokusuka 223.958 Kwajalein 0.000
16 Phuket 214.911 Busan 0.000
17 Darwin 212.402 Haiphong 0.000
18 Kwajalein 166.159 Diego Garcia 0.000
19 Perth 157.483 Phuket 0.000
20 Diego Garcia 135.720 Pattaya 0.000
21 Hawaii 108.684 Perth 0.000
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LCS
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Singapore 0.439
2 Guam 0.700 Phuket 0.362
3 Manila 0.700 Puerto Princesa 0.336
4 Singapore 0.650 Manila 0.319
5 Puerto Princesa 0.650 Cebu 0.309
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.290
7 Palau 0.550 Cam Ranh Bay 0.220
8 Yokusuka 0.500 Palau 0.177
9 Okinawa 0.500 Diego Garcia 0.174
10 Darwin 0.400 Guam 0.167
11 Zuoying 0.400 Zuoying 0.153
12 Sasebo 0.350 Haiphong 0.147
13 Cam Ranh Bay 0.350 Okinawa 0.143
14 Perth 0.350 Pattaya 0.128
15 Haiphong 0.300 Yokusuka 0.118
16 Pattaya 0.300 Sasebo 0.117
17 Hawaii 0.250 Darwin 0.106
18 Kwajalein 0.250 Perth 0.097
19 Busan 0.200 Kwajalein 0.087
20 Diego Garcia 0.200 Busan 0.058
21 Phuket 0.200 Hawaii 0.054
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LCS
Rank Closeness Value Betweenness Value
1 Cebu 87.999 Singapore 0.189
2 Manila 87.154 Guam 0.158
3 Puerto Princesa 86.475 Manila 0.158
4 Bandar Seri Begawan 81.682 Okinawa 0.105
5 Palau 79.249 Darwin 0.079
6 Cam Ranh Bay 76.385 Diego Garcia 0.068
7 Zuoying 74.251 Cebu 0.063
8 Okinawa 72.442 Palau 0.058
9 Singapore 67.961 Yokusuka 0.053
10 Guam 67.923 Puerto Princesa 0.053
11 Phuket 64.868 Zuoying 0.047
12 Sasebo 62.681 Kwajalein 0.037
13 Kwajalein 62.419 Bandar Seri Begawan 0.026
14 Haiphong 62.230 Cam Ranh Bay 0.011
15 Busan 60.231 Sasebo 0.005
16 Yokusuka 59.839 Hawaii 0.000
17 Diego Garcia 59.331 Busan 0.000
18 Pattaya 58.540 Haiphong 0.000
19 Darwin 58.269 Phuket 0.000
20 Perth 53.865 Pattaya 0.000
21 Hawaii 52.408 Perth 0.000
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JHSV
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.656
2 Guam 0.700 Singapore 0.653
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Darwin 0.097
5 Puerto Princesa 0.650 Perth 0.094
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.060
7 Palau 0.550 Pattaya 0.039
8 Yokusuka 0.500 Puerto Princesa 0.037
9 Okinawa 0.500 Manila 0.030
10 Darwin 0.400 Cam Ranh Bay 0.029
11 Zuoying 0.400 Cebu 0.029
12 Sasebo 0.350 Palau 0.018
13 Cam Ranh Bay 0.350 Guam 0.013
14 Perth 0.350 Haiphong 0.008
15 Haiphong 0.300 Zuoying 0.007
16 Pattaya 0.300 Kwajalein 0.007
17 Hawaii 0.250 Okinawa 0.004
18 Kwajalein 0.250 Yokusuka 0.004
19 Busan 0.200 Hawaii 0.004
20 Diego Garcia 0.200 Sasebo 0.002
21 Phuket 0.200 Busan 0.001
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JHSV
Rank Closeness Value Betweenness Value
1 Puerto Princesa 36.902 Palau 0.432
2 Palau 36.828 Guam 0.384
3 Cebu 36.594 Puerto Princesa 0.279
4 Manila 35.314 Bandar Seri Begawan 0.263
5 Bandar Seri Begawan 35.274 Kwajalein 0.258
6 Guam 33.143 Cebu 0.226
7 Kwajalein 31.824 Yokusuka 0.221
8 Singapore 30.163 Singapore 0.205
9 Phuket 30.056 Diego Garcia 0.205
10 Diego Garcia 30.049 Darwin 0.189
11 Darwin 29.570 Cam Ranh Bay 0.100
12 Yokusuka 29.254 Manila 0.058
13 Perth 28.803 Hawaii 0.000
14 Hawaii 28.767 Okinawa 0.000
15 Zuoying 26.488 Sasebo 0.000
16 Okinawa 25.946 Busan 0.000
17 Cam Ranh Bay 24.067 Haiphong 0.000
18 Busan 21.816 Phuket 0.000
19 Sasebo 21.523 Pattaya 0.000
20 Pattaya 21.181 Zuoying 0.000
21 Haiphong 16.066 Perth 0.000
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T-AOE
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.666
2 Guam 0.700 Singapore 0.658
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Perth 0.074
5 Puerto Princesa 0.650 Darwin 0.066
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.000
7 Palau 0.550 Pattaya 0.000
8 Yokusuka 0.500 Cam Ranh Bay 0.000
9 Okinawa 0.500 Puerto Princesa 0.000
10 Darwin 0.400 Palau 0.000
11 Zuoying 0.400 Guam 0.000
12 Sasebo 0.350 Manila 0.000
13 Cam Ranh Bay 0.350 Haiphong 0.000
14 Perth 0.350 Kwajalein 0.000
15 Haiphong 0.300 Cebu 0.000
16 Pattaya 0.300 Hawaii 0.000
17 Hawaii 0.250 Yokusuka 0.000
18 Kwajalein 0.250 Zuoying 0.000
19 Busan 0.200 Okinawa 0.000
20 Diego Garcia 0.200 Sasebo 0.000
21 Phuket 0.200 Busan 0.000
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T-AOE
Rank Closeness Value Betweenness Value
1 Puerto Princesa 14.531 Palau 0.411
2 Cebu 14.456 Guam 0.374
3 Palau 13.978 Puerto Princesa 0.284
4 Manila 13.860 Cebu 0.274
5 Bandar Seri Begawan 13.244 Kwajalein 0.247
6 Guam 12.324 Bandar Seri Begawan 0.247
7 Kwajalein 12.319 Singapore 0.226
8 Yokusuka 12.307 Diego Garcia 0.226
9 Hawaii 12.304 Yokusuka 0.216
10 Singapore 11.618 Darwin 0.184
11 Phuket 11.618 Manila 0.053
12 Diego Garcia 11.618 Cam Ranh Bay 0.037
13 Darwin 11.613 Pattaya 0.026
14 Perth 11.611 Hawaii 0.000
15 Zuoying 10.150 Okinawa 0.000
16 Okinawa 9.031 Sasebo 0.000
17 Sasebo 8.567 Busan 0.000
18 Busan 8.524 Haiphong 0.000
19 Cam Ranh Bay 8.162 Phuket 0.000
20 Pattaya 8.132 Zuoying 0.000
21 Haiphong 8.123 Perth 0.000
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T-AO
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.665
2 Guam 0.700 Singapore 0.658
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Perth 0.076
5 Puerto Princesa 0.650 Darwin 0.069
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.003
7 Palau 0.550 Pattaya 0.002
8 Yokusuka 0.500 Cam Ranh Bay 0.002
9 Okinawa 0.500 Puerto Princesa 0.001
10 Darwin 0.400 Manila 0.001
11 Zuoying 0.400 Haiphong 0.001
12 Sasebo 0.350 Cebu 0.001
13 Cam Ranh Bay 0.350 Palau 0.001
14 Perth 0.350 Guam 0.001
15 Haiphong 0.300 Kwajalein 0.000
16 Pattaya 0.300 Hawaii 0.000
17 Hawaii 0.250 Yokusuka 0.000
18 Kwajalein 0.250 Zuoying 0.000
19 Busan 0.200 Okinawa 0.000
20 Diego Garcia 0.200 Sasebo 0.000
21 Phuket 0.200 Busan 0.000
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T-AO
Rank Closeness Value Betweenness Value
1 Puerto Princesa 35.441 Guam 0.268
2 Cebu 35.252 Singapore 0.216
3 Manila 34.834 Diego Garcia 0.216
4 Bandar Seri Begawan 33.466 Darwin 0.174
5 Palau 33.285 Kwajalein 0.158
6 Singapore 30.785 Manila 0.153
7 Phuket 30.779 Bandar Seri Begawan 0.132
8 Diego Garcia 30.779 Yokusuka 0.126
9 Darwin 30.716 Puerto Princesa 0.111
10 Perth 30.692 Okinawa 0.068
11 Cam Ranh Bay 30.475 Cam Ranh Bay 0.068
12 Guam 29.396 Cebu 0.042
13 Kwajalein 29.352 Hawaii 0.000
14 Yokusuka 29.248 Palau 0.000
15 Hawaii 29.206 Sasebo 0.000
16 Zuoying 27.774 Busan 0.000
17 Okinawa 26.901 Haiphong 0.000
18 Sasebo 24.125 Phuket 0.000
19 Pattaya 23.523 Pattaya 0.000
20 Haiphong 23.429 Zuoying 0.000
21 Busan 23.390 Perth 0.000
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T-AKE
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.665
2 Guam 0.700 Singapore 0.658
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Perth 0.076
5 Puerto Princesa 0.650 Darwin 0.070
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.005
7 Palau 0.550 Pattaya 0.003
8 Yokusuka 0.500 Cam Ranh Bay 0.002
9 Okinawa 0.500 Puerto Princesa 0.001
10 Darwin 0.400 Manila 0.001
11 Zuoying 0.400 Palau 0.001
12 Sasebo 0.350 Haiphong 0.001
13 Cam Ranh Bay 0.350 Guam 0.001
14 Perth 0.350 Cebu 0.001
15 Haiphong 0.300 Kwajalein 0.000
16 Pattaya 0.300 Hawaii 0.000
17 Hawaii 0.250 Yokusuka 0.000
18 Kwajalein 0.250 Zuoying 0.000
19 Busan 0.200 Okinawa 0.000
20 Diego Garcia 0.200 Sasebo 0.000
21 Phuket 0.200 Busan 0.000
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T-AKE
Rank Closeness Value Betweenness Value
1 Puerto Princesa 33.789 Palau 0.326
2 Cebu 33.376 Guam 0.311
3 Palau 32.325 Singapore 0.216
4 Manila 32.302 Diego Garcia 0.216
5 Bandar Seri Begawan 31.162 Puerto Princesa 0.195
6 Singapore 28.995 Kwajalein 0.184
7 Phuket 28.985 Darwin 0.174
8 Diego Garcia 28.985 Cebu 0.163
9 Darwin 28.883 Yokusuka 0.142
10 Perth 28.844 Bandar Seri Begawan 0.132
11 Guam 27.547 Manila 0.100
12 Kwajalein 27.457 Okinawa 0.063
13 Yokusuka 27.261 Cam Ranh Bay 0.047
14 Hawaii 27.221 Hawaii 0.000
15 Cam Ranh Bay 25.390 Sasebo 0.000
16 Okinawa 25.044 Busan 0.000
17 Zuoying 23.957 Haiphong 0.000
18 Pattaya 22.326 Phuket 0.000
19 Haiphong 20.425 Pattaya 0.000
20 Busan 20.311 Zuoying 0.000
21 Sasebo 20.310 Perth 0.000
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LHA
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.665
2 Guam 0.700 Singapore 0.657
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Perth 0.077
5 Puerto Princesa 0.650 Darwin 0.071
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.011
7 Palau 0.550 Pattaya 0.007
8 Yokusuka 0.500 Cam Ranh Bay 0.007
9 Okinawa 0.500 Puerto Princesa 0.005
10 Darwin 0.400 Manila 0.004
11 Zuoying 0.400 Cebu 0.004
12 Sasebo 0.350 Haiphong 0.004
13 Cam Ranh Bay 0.350 Palau 0.003
14 Perth 0.350 Guam 0.003
15 Haiphong 0.300 Kwajalein 0.001
16 Pattaya 0.300 Hawaii 0.001
17 Hawaii 0.250 Yokusuka 0.000
18 Kwajalein 0.250 Zuoying 0.000
19 Busan 0.200 Okinawa 0.000
20 Diego Garcia 0.200 Sasebo 0.000
21 Phuket 0.200 Busan 0.000
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LHA
Rank Closeness Value Betweenness Value
1 Puerto Princesa 88.721 Guam 0.268
2 Cebu 86.862 Singapore 0.216
3 Manila 85.923 Diego Garcia 0.216
4 Palau 84.391 Palau 0.200
5 Bandar Seri Begawan 83.408 Darwin 0.174
6 Singapore 75.880 Kwajalein 0.158
7 Phuket 75.826 Bandar Seri Begawan 0.132
8 Diego Garcia 75.822 Yokusuka 0.126
9 Darwin 75.242 Manila 0.111
10 Cam Ranh Bay 75.177 Puerto Princesa 0.111
11 Perth 75.020 Okinawa 0.074
12 Guam 71.778 Cam Ranh Bay 0.042
13 Kwajalein 71.379 Cebu 0.026
14 Yokusuka 70.448 Hawaii 0.000
15 Hawaii 70.077 Sasebo 0.000
16 Zuoying 69.598 Busan 0.000
17 Okinawa 68.493 Haiphong 0.000
18 Sasebo 60.015 Phuket 0.000
19 Pattaya 58.581 Pattaya 0.000
20 Busan 58.185 Zuoying 0.000
21 Haiphong 57.874 Perth 0.000
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LSD
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.662
2 Guam 0.700 Singapore 0.656
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Perth 0.085
5 Puerto Princesa 0.650 Darwin 0.082
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.034
7 Palau 0.550 Cam Ranh Bay 0.023
8 Yokusuka 0.500 Pattaya 0.021
9 Okinawa 0.500 Puerto Princesa 0.018
10 Darwin 0.400 Manila 0.016
11 Zuoying 0.400 Cebu 0.015
12 Sasebo 0.350 Haiphong 0.012
13 Cam Ranh Bay 0.350 Palau 0.010
14 Perth 0.350 Guam 0.010
15 Haiphong 0.300 Kwajalein 0.005
16 Pattaya 0.300 Hawaii 0.003
17 Hawaii 0.250 Yokusuka 0.002
18 Kwajalein 0.250 Zuoying 0.002
19 Busan 0.200 Okinawa 0.001
20 Diego Garcia 0.200 Sasebo 0.001
21 Phuket 0.200 Busan 0.000
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LSD
Rank Closeness Value Betweenness Value
1 Puerto Princesa 88.046 Guam 0.237
2 Manila 87.953 Singapore 0.205
3 Cebu 87.311 Diego Garcia 0.163
4 Palau 82.639 Manila 0.142
5 Bandar Seri Begawan 82.329 Palau 0.132
6 Cam Ranh Bay 77.584 Kwajalein 0.126
7 Zuoying 73.283 Cebu 0.121
8 Singapore 73.047 Darwin 0.116
9 Phuket 72.702 Yokusuka 0.095
10 Diego Garcia 71.913 Okinawa 0.063
11 Darwin 70.095 Bandar Seri Begawan 0.053
12 Guam 70.050 Cam Ranh Bay 0.042
13 Okinawa 69.615 Puerto Princesa 0.026
14 Perth 69.561 Sasebo 0.005
15 Kwajalein 69.024 Hawaii 0.000
16 Yokusuka 66.700 Busan 0.000
17 Hawaii 65.801 Haiphong 0.000
18 Sasebo 61.504 Phuket 0.000
19 Haiphong 61.342 Pattaya 0.000
20 Pattaya 59.492 Zuoying 0.000
21 Busan 58.354 Perth 0.000
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LPD
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.661
2 Guam 0.700 Singapore 0.656
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Perth 0.085
5 Puerto Princesa 0.650 Darwin 0.083
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.037
7 Palau 0.550 Cam Ranh Bay 0.024
8 Yokusuka 0.500 Pattaya 0.022
9 Okinawa 0.500 Puerto Princesa 0.020
10 Darwin 0.400 Manila 0.017
11 Zuoying 0.400 Cebu 0.015
12 Sasebo 0.350 Haiphong 0.013
13 Cam Ranh Bay 0.350 Palau 0.011
14 Perth 0.350 Guam 0.010
15 Haiphong 0.300 Kwajalein 0.005
16 Pattaya 0.300 Hawaii 0.003
17 Hawaii 0.250 Yokusuka 0.002
18 Kwajalein 0.250 Zuoying 0.002
19 Busan 0.200 Okinawa 0.002
20 Diego Garcia 0.200 Sasebo 0.001
21 Phuket 0.200 Busan 0.000
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LPD
Rank Closeness Value Betweenness Value
1 Puerto Princesa 89.851 Guam 0.242
2 Cebu 88.219 Singapore 0.200
3 Manila 87.860 Diego Garcia 0.163
4 Bandar Seri Begawan 83.803 Bandar Seri Begawan 0.153
5 Palau 83.660 Puerto Princesa 0.147
6 Cam Ranh Bay 78.307 Kwajalein 0.126
7 Singapore 73.391 Darwin 0.121
8 Phuket 73.022 Yokusuka 0.095
9 Diego Garcia 72.475 Manila 0.084
10 Zuoying 71.956 Okinawa 0.079
11 Guam 71.842 Cebu 0.037
12 Darwin 70.851 Cam Ranh Bay 0.037
13 Kwajalein 70.668 Palau 0.026
14 Perth 70.225 Sasebo 0.005
15 Okinawa 69.779 Hawaii 0.000
16 Yokusuka 68.091 Busan 0.000
17 Hawaii 67.098 Haiphong 0.000
18 Sasebo 61.773 Phuket 0.000
19 Haiphong 61.442 Pattaya 0.000
20 Pattaya 59.615 Zuoying 0.000
21 Busan 59.133 Perth 0.000
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OSV
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.651
2 Guam 0.700 Singapore 0.651
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Darwin 0.119
5 Puerto Princesa 0.650 Perth 0.109
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.076
7 Palau 0.550 Cam Ranh Bay 0.034
8 Yokusuka 0.500 Puerto Princesa 0.032
9 Okinawa 0.500 Pattaya 0.030
10 Darwin 0.400 Manila 0.027
11 Zuoying 0.400 Cebu 0.026
12 Sasebo 0.350 Haiphong 0.020
13 Cam Ranh Bay 0.350 Palau 0.018
14 Perth 0.350 Guam 0.016
15 Haiphong 0.300 Kwajalein 0.008
16 Pattaya 0.300 Hawaii 0.005
17 Hawaii 0.250 Zuoying 0.004
18 Kwajalein 0.250 Yokusuka 0.004
19 Busan 0.200 Okinawa 0.004
20 Diego Garcia 0.200 Sasebo 0.003
21 Phuket 0.200 Busan 0.001

71



OSV
Rank Closeness Value Betweenness Value
1 Puerto Princesa 34.922 Guam 0.226
2 Cebu 34.534 Singapore 0.221
3 Manila 34.167 Diego Garcia 0.179
4 Bandar Seri Begawan 32.740 Bandar Seri Begawan 0.174
5 Palau 29.666 Puerto Princesa 0.116
6 Singapore 29.383 Kwajalein 0.111
7 Phuket 29.176 Manila 0.105
8 Diego Garcia 28.707 Darwin 0.105
9 Zuoying 28.522 Yokusuka 0.079
10 Cam Ranh Bay 28.429 Zuoying 0.053
11 Darwin 27.127 Cebu 0.037
12 Perth 27.034 Okinawa 0.011
13 Okinawa 26.702 Cam Ranh Bay 0.011
14 Guam 26.085 Sasebo 0.005
15 Kwajalein 25.532 Hawaii 0.000
16 Yokusuka 24.365 Palau 0.000
17 Hawaii 23.922 Busan 0.000
18 Sasebo 23.106 Haiphong 0.000
19 Haiphong 22.614 Phuket 0.000
20 Busan 22.271 Pattaya 0.000
21 Pattaya 21.429 Perth 0.000
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SEATRAIN
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Singapore 0.633
2 Guam 0.700 Phuket 0.607
3 Manila 0.700 Diego Garcia 0.316
4 Singapore 0.650 Bandar Seri Begawan 0.174
5 Puerto Princesa 0.650 Darwin 0.164
6 Bandar Seri Begawan 0.600 Perth 0.136
7 Palau 0.550 Puerto Princesa 0.108
8 Yokusuka 0.500 Manila 0.095
9 Okinawa 0.500 Cam Ranh Bay 0.094
10 Darwin 0.400 Cebu 0.092
11 Zuoying 0.400 Pattaya 0.070
12 Sasebo 0.350 Haiphong 0.057
13 Cam Ranh Bay 0.350 Palau 0.057
14 Perth 0.350 Guam 0.053
15 Haiphong 0.300 Zuoying 0.029
16 Pattaya 0.300 Kwajalein 0.027
17 Hawaii 0.250 Okinawa 0.025
18 Kwajalein 0.250 Yokusuka 0.023
19 Busan 0.200 Sasebo 0.020
20 Diego Garcia 0.200 Hawaii 0.017
21 Phuket 0.200 Busan 0.008
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SEATRAIN
Rank Closeness Value Betweenness Value
1 Puerto Princesa 38.039 Singapore 0.237
2 Cebu 37.256 Bandar Seri Begawan 0.216
3 Manila 37.051 Guam 0.179
4 Bandar Seri Begawan 35.432 Manila 0.116
5 Palau 32.335 Diego Garcia 0.116
6 Singapore 31.526 Puerto Princesa 0.111
7 Zuoying 31.382 Cebu 0.084
8 Cam Ranh Bay 31.204 Okinawa 0.074
9 Phuket 30.518 Yokusuka 0.068
10 Okinawa 29.634 Kwajalein 0.058
11 Diego Garcia 29.253 Darwin 0.058
12 Guam 28.250 Cam Ranh Bay 0.011
13 Kwajalein 26.990 Palau 0.005
14 Darwin 26.927 Sasebo 0.005
15 Perth 26.372 Hawaii 0.000
16 Sasebo 25.747 Busan 0.000
17 Yokusuka 25.233 Haiphong 0.000
18 Haiphong 25.094 Phuket 0.000
19 Busan 24.413 Pattaya 0.000
20 Hawaii 24.027 Zuoying 0.000
21 Pattaya 23.450 Perth 0.000
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MOTHERSHIP
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.665
2 Guam 0.700 Singapore 0.658
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Perth 0.075
5 Puerto Princesa 0.650 Darwin 0.068
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.004
7 Palau 0.550 Pattaya 0.002
8 Yokusuka 0.500 Cam Ranh Bay 0.001
9 Okinawa 0.500 Puerto Princesa 0.001
10 Darwin 0.400 Manila 0.001
11 Zuoying 0.400 Haiphong 0.001
12 Sasebo 0.350 Cebu 0.001
13 Cam Ranh Bay 0.350 Palau 0.001
14 Perth 0.350 Guam 0.001
15 Haiphong 0.300 Kwajalein 0.000
16 Pattaya 0.300 Hawaii 0.000
17 Hawaii 0.250 Yokusuka 0.000
18 Kwajalein 0.250 Zuoying 0.000
19 Busan 0.200 Okinawa 0.000
20 Diego Garcia 0.200 Sasebo 0.000
21 Phuket 0.200 Busan 0.000
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MOTHERSHIP
Rank Closeness Value Betweenness Value
1 Puerto Princesa 37.845 Singapore 0.263
2 Cebu 37.559 Guam 0.216
3 Manila 37.189 Diego Garcia 0.216
4 Bandar Seri Begawan 35.509 Bandar Seri Begawan 0.184
5 Singapore 33.497 Puerto Princesa 0.163
6 Phuket 33.481 Palau 0.147
7 Diego Garcia 33.445 Okinawa 0.132
8 Darwin 33.307 Darwin 0.132
9 Perth 33.306 Manila 0.111
10 Palau 32.980 Kwajalein 0.105
11 Cam Ranh Bay 29.418 Yokusuka 0.074
12 Zuoying 29.160 Cam Ranh Bay 0.047
13 Okinawa 28.630 Cebu 0.026
14 Guam 28.223 Hawaii 0.000
15 Kwajalein 28.187 Sasebo 0.000
16 Yokusuka 28.101 Busan 0.000
17 Hawaii 28.066 Haiphong 0.000
18 Sasebo 24.128 Phuket 0.000
19 Pattaya 23.227 Pattaya 0.000
20 Busan 23.006 Zuoying 0.000
21 Haiphong 22.736 Perth 0.000
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MOLA
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Puerto Princesa 0.422
2 Guam 0.700 Manila 0.400
3 Manila 0.700 Cebu 0.388
4 Singapore 0.650 Bandar Seri Begawan 0.347
5 Puerto Princesa 0.650 Cam Ranh Bay 0.259
6 Bandar Seri Begawan 0.600 Singapore 0.255
7 Palau 0.550 Palau 0.209
8 Yokusuka 0.500 Zuoying 0.197
9 Okinawa 0.500 Okinawa 0.186
10 Darwin 0.400 Haiphong 0.179
11 Zuoying 0.400 Guam 0.172
12 Sasebo 0.350 Sasebo 0.156
13 Cam Ranh Bay 0.350 Pattaya 0.135
14 Perth 0.350 Yokusuka 0.131
15 Haiphong 0.300 Darwin 0.079
16 Pattaya 0.300 Busan 0.075
17 Hawaii 0.250 Perth 0.075
18 Kwajalein 0.250 Phuket 0.046
19 Busan 0.200 Kwajalein 0.023
20 Diego Garcia 0.200 Hawaii 0.012
21 Phuket 0.200 Diego Garcia 0.006
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MOLA
Rank Closeness Value Betweenness Value
1 Puerto Princesa 14.244 Bandar Seri Begawan 0.242
2 Cebu 13.992 Okinawa 0.184
3 Manila 13.909 Puerto Princesa 0.184
4 Bandar Seri Begawan 13.650 Palau 0.168
5 Singapore 12.361 Singapore 0.163
6 Palau 12.330 Manila 0.105
7 Cam Ranh Bay 12.267 Phuket 0.074
8 Zuoying 12.010 Darwin 0.042
9 Okinawa 11.806 Cam Ranh Bay 0.042
10 Darwin 10.516 Cebu 0.037
11 Haiphong 10.429 Zuoying 0.021
12 Guam 10.319 Guam 0.011
13 Sasebo 10.218 Sasebo 0.005
14 Pattaya 9.822 Hawaii 0.000
15 Busan 9.733 Kwajalein 0.000
16 Yokusuka 9.046 Yokusuka 0.000
17 Phuket 8.947 Busan 0.000
18 Perth 8.476 Haiphong 0.000
19 Kwajalein 6.752 Diego Garcia 0.000
20 Hawaii 4.507 Pattaya 0.000
21 Diego Garcia 3.380 Perth 0.000
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T-AK
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.664
2 Guam 0.700 Singapore 0.657
3 Manila 0.700 Diego Garcia 0.339
4 Singapore 0.650 Perth 0.080
5 Puerto Princesa 0.650 Darwin 0.075
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.008
7 Palau 0.550 Pattaya 0.005
8 Yokusuka 0.500 Cam Ranh Bay 0.005
9 Okinawa 0.500 Puerto Princesa 0.004
10 Darwin 0.400 Manila 0.003
11 Zuoying 0.400 Haiphong 0.002
12 Sasebo 0.350 Cebu 0.002
13 Cam Ranh Bay 0.350 Palau 0.002
14 Perth 0.350 Guam 0.002
15 Haiphong 0.300 Kwajalein 0.001
16 Pattaya 0.300 Hawaii 0.000
17 Hawaii 0.250 Yokusuka 0.000
18 Kwajalein 0.250 Zuoying 0.000
19 Busan 0.200 Okinawa 0.000
20 Diego Garcia 0.200 Sasebo 0.000
21 Phuket 0.200 Busan 0.000
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T-AK
Rank Closeness Value Betweenness Value
1 Cebu 34.788 Guam 0.268
2 Puerto Princesa 34.541 Singapore 0.216
3 Manila 34.074 Diego Garcia 0.216
4 Palau 33.984 Palau 0.179
5 Bandar Seri Begawan 32.431 Darwin 0.174
6 Singapore 30.170 Kwajalein 0.158
7 Phuket 30.154 Bandar Seri Begawan 0.132
8 Diego Garcia 30.153 Yokusuka 0.126
9 Darwin 29.984 Puerto Princesa 0.105
10 Perth 29.920 Cebu 0.095
11 Cam Ranh Bay 29.593 Okinawa 0.068
12 Guam 28.674 Manila 0.068
13 Kwajalein 28.557 Cam Ranh Bay 0.042
14 Yokusuka 28.283 Hawaii 0.000
15 Hawaii 28.173 Sasebo 0.000
16 Zuoying 27.596 Busan 0.000
17 Okinawa 26.599 Haiphong 0.000
18 Sasebo 23.801 Phuket 0.000
19 Pattaya 23.575 Pattaya 0.000
20 Haiphong 23.321 Zuoying 0.000
21 Busan 22.703 Perth 0.000
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T-AKR
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.665
2 Guam 0.700 Singapore 0.657
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Perth 0.078
5 Puerto Princesa 0.650 Darwin 0.072
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.006
7 Palau 0.550 Pattaya 0.004
8 Yokusuka 0.500 Cam Ranh Bay 0.003
9 Okinawa 0.500 Puerto Princesa 0.002
10 Darwin 0.400 Manila 0.002
11 Zuoying 0.400 Haiphong 0.002
12 Sasebo 0.350 Cebu 0.002
13 Cam Ranh Bay 0.350 Palau 0.001
14 Perth 0.350 Guam 0.001
15 Haiphong 0.300 Kwajalein 0.001
16 Pattaya 0.300 Hawaii 0.000
17 Hawaii 0.250 Yokusuka 0.000
18 Kwajalein 0.250 Zuoying 0.000
19 Busan 0.200 Okinawa 0.000
20 Diego Garcia 0.200 Sasebo 0.000
21 Phuket 0.200 Busan 0.000
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T-AKR
Rank Closeness Value Betweenness Value
1 Puerto Princesa 33.938 Guam 0.268
2 Cebu 33.777 Singapore 0.216
3 Manila 33.272 Diego Garcia 0.216
4 Palau 32.368 Palau 0.179
5 Bandar Seri Begawan 31.624 Darwin 0.174
6 Singapore 29.103 Kwajalein 0.158
7 Phuket 29.092 Bandar Seri Begawan 0.132
8 Diego Garcia 29.091 Yokusuka 0.126
9 Darwin 28.976 Puerto Princesa 0.111
10 Perth 28.931 Manila 0.089
11 Cam Ranh Bay 28.617 Okinawa 0.079
12 Guam 27.652 Cebu 0.068
13 Kwajalein 27.572 Cam Ranh Bay 0.042
14 Yokusuka 27.383 Hawaii 0.000
15 Hawaii 27.307 Sasebo 0.000
16 Zuoying 26.541 Busan 0.000
17 Okinawa 25.998 Haiphong 0.000
18 Sasebo 22.628 Phuket 0.000
19 Pattaya 22.449 Pattaya 0.000
20 Haiphong 22.076 Zuoying 0.000
21 Busan 22.072 Perth 0.000
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RORO
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.664
2 Guam 0.700 Singapore 0.657
3 Manila 0.700 Diego Garcia 0.339
4 Singapore 0.650 Perth 0.080
5 Puerto Princesa 0.650 Darwin 0.076
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.009
7 Palau 0.550 Pattaya 0.006
8 Yokusuka 0.500 Cam Ranh Bay 0.005
9 Okinawa 0.500 Puerto Princesa 0.004
10 Darwin 0.400 Manila 0.003
11 Zuoying 0.400 Cebu 0.003
12 Sasebo 0.350 Haiphong 0.003
13 Cam Ranh Bay 0.350 Palau 0.002
14 Perth 0.350 Guam 0.002
15 Haiphong 0.300 Kwajalein 0.001
16 Pattaya 0.300 Hawaii 0.001
17 Hawaii 0.250 Yokusuka 0.000
18 Kwajalein 0.250 Zuoying 0.000
19 Busan 0.200 Okinawa 0.000
20 Diego Garcia 0.200 Sasebo 0.000
21 Phuket 0.200 Busan 0.000
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RORO
Rank Closeness Value Betweenness Value
1 Cebu 33.549 Guam 0.268
2 Puerto Princesa 33.416 Palau 0.221
3 Manila 33.057 Singapore 0.216
4 Palau 32.547 Diego Garcia 0.216
5 Bandar Seri Begawan 31.564 Darwin 0.174
6 Singapore 29.079 Kwajalein 0.158
7 Phuket 29.061 Bandar Seri Begawan 0.132
8 Diego Garcia 29.060 Yokusuka 0.126
9 Darwin 28.877 Puerto Princesa 0.105
10 Perth 28.806 Manila 0.068
11 Cam Ranh Bay 28.542 Okinawa 0.053
12 Guam 27.775 Cebu 0.053
13 Kwajalein 27.647 Cam Ranh Bay 0.047
14 Yokusuka 27.346 Hawaii 0.000
15 Hawaii 27.225 Sasebo 0.000
16 Zuoying 26.583 Busan 0.000
17 Okinawa 25.940 Haiphong 0.000
18 Pattaya 22.799 Phuket 0.000
19 Sasebo 22.719 Pattaya 0.000
20 Haiphong 22.363 Zuoying 0.000
21 Busan 22.211 Perth 0.000
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LCU
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Puerto Princesa 0.425
2 Guam 0.700 Manila 0.403
3 Manila 0.700 Cebu 0.392
4 Singapore 0.650 Bandar Seri Begawan 0.330
5 Puerto Princesa 0.650 Cam Ranh Bay 0.261
6 Bandar Seri Begawan 0.600 Singapore 0.231
7 Palau 0.550 Palau 0.212
8 Yokusuka 0.500 Zuoying 0.206
9 Okinawa 0.500 Okinawa 0.189
10 Darwin 0.400 Haiphong 0.179
11 Zuoying 0.400 Guam 0.174
12 Sasebo 0.350 Sasebo 0.160
13 Cam Ranh Bay 0.350 Pattaya 0.133
14 Perth 0.350 Yokusuka 0.131
15 Haiphong 0.300 Darwin 0.083
16 Pattaya 0.300 Perth 0.078
17 Hawaii 0.250 Phuket 0.078
18 Kwajalein 0.250 Busan 0.075
19 Busan 0.200 Kwajalein 0.038
20 Diego Garcia 0.200 Diego Garcia 0.022
21 Phuket 0.200 Hawaii 0.021
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LCU
Rank Closeness Value Betweenness Value
1 Manila 15.769 Singapore 0.226
2 Puerto Princesa 15.663 Manila 0.179
3 Cebu 15.503 Guam 0.147
4 Bandar Seri Begawan 14.807 Okinawa 0.111
5 Cam Ranh Bay 14.186 Puerto Princesa 0.089
6 Zuoying 13.548 Darwin 0.084
7 Palau 13.369 Cebu 0.058
8 Okinawa 12.929 Palau 0.032
9 Singapore 12.788 Yokusuka 0.032
10 Haiphong 11.822 Phuket 0.026
11 Guam 11.788 Cam Ranh Bay 0.011
12 Sasebo 11.409 Sasebo 0.005
13 Darwin 11.124 Hawaii 0.000
14 Pattaya 11.022 Kwajalein 0.000
15 Phuket 10.913 Busan 0.000
16 Busan 10.811 Bandar Seri Begawan 0.000
17 Yokusuka 10.096 Haiphong 0.000
18 Perth 9.020 Diego Garcia 0.000
19 Kwajalein 8.213 Pattaya 0.000
20 Diego Garcia 6.906 Zuoying 0.000
21 Hawaii 5.597 Perth 0.000
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ESB
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.666
2 Guam 0.700 Singapore 0.658
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Perth 0.074
5 Puerto Princesa 0.650 Darwin 0.066
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.000
7 Palau 0.550 Pattaya 0.000
8 Yokusuka 0.500 Cam Ranh Bay 0.000
9 Okinawa 0.500 Puerto Princesa 0.000
10 Darwin 0.400 Manila 0.000
11 Zuoying 0.400 Haiphong 0.000
12 Sasebo 0.350 Cebu 0.000
13 Cam Ranh Bay 0.350 Palau 0.000
14 Perth 0.350 Guam 0.000
15 Haiphong 0.300 Kwajalein 0.000
16 Pattaya 0.300 Hawaii 0.000
17 Hawaii 0.250 Yokusuka 0.000
18 Kwajalein 0.250 Zuoying 0.000
19 Busan 0.200 Okinawa 0.000
20 Diego Garcia 0.200 Sasebo 0.000
21 Phuket 0.200 Busan 0.000
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ESB
Rank Closeness Value Betweenness Value
1 Puerto Princesa 32.909 Guam 0.268
2 Cebu 32.712 Singapore 0.216
3 Manila 32.142 Diego Garcia 0.216
4 Palau 31.389 Palau 0.179
5 Bandar Seri Begawan 30.585 Darwin 0.174
6 Singapore 28.593 Puerto Princesa 0.163
7 Phuket 28.593 Kwajalein 0.158
8 Diego Garcia 28.593 Bandar Seri Begawan 0.132
9 Darwin 28.585 Yokusuka 0.126
10 Perth 28.582 Manila 0.105
11 Cam Ranh Bay 27.229 Cebu 0.095
12 Guam 26.747 Okinawa 0.079
13 Kwajalein 26.742 Cam Ranh Bay 0.047
14 Yokusuka 26.730 Hawaii 0.000
15 Hawaii 26.725 Sasebo 0.000
16 Okinawa 25.066 Busan 0.000
17 Zuoying 25.030 Haiphong 0.000
18 Pattaya 21.807 Phuket 0.000
19 Sasebo 21.554 Pattaya 0.000
20 Busan 21.061 Zuoying 0.000
21 Haiphong 21.020 Perth 0.000
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ESD
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Phuket 0.666
2 Guam 0.700 Singapore 0.658
3 Manila 0.700 Diego Garcia 0.338
4 Singapore 0.650 Perth 0.074
5 Puerto Princesa 0.650 Darwin 0.066
6 Bandar Seri Begawan 0.600 Bandar Seri Begawan 0.000
7 Palau 0.550 Pattaya 0.000
8 Yokusuka 0.500 Cam Ranh Bay 0.000
9 Okinawa 0.500 Puerto Princesa 0.000
10 Darwin 0.400 Manila 0.000
11 Zuoying 0.400 Haiphong 0.000
12 Sasebo 0.350 Cebu 0.000
13 Cam Ranh Bay 0.350 Palau 0.000
14 Perth 0.350 Guam 0.000
15 Haiphong 0.300 Kwajalein 0.000
16 Pattaya 0.300 Hawaii 0.000
17 Hawaii 0.250 Yokusuka 0.000
18 Kwajalein 0.250 Zuoying 0.000
19 Busan 0.200 Okinawa 0.000
20 Diego Garcia 0.200 Sasebo 0.000
21 Phuket 0.200 Busan 0.000
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ESD
Rank Closeness Value Betweenness Value
1 Puerto Princesa 32.909 Guam 0.268
2 Cebu 32.712 Singapore 0.216
3 Manila 32.142 Diego Garcia 0.216
4 Palau 31.389 Palau 0.179
5 Bandar Seri Begawan 30.585 Darwin 0.174
6 Singapore 28.593 Puerto Princesa 0.163
7 Phuket 28.593 Kwajalein 0.158
8 Diego Garcia 28.593 Bandar Seri Begawan 0.132
9 Darwin 28.585 Yokusuka 0.126
10 Perth 28.582 Manila 0.105
11 Cam Ranh Bay 27.229 Cebu 0.095
12 Guam 26.747 Okinawa 0.079
13 Kwajalein 26.742 Cam Ranh Bay 0.047
14 Yokusuka 26.730 Hawaii 0.000
15 Hawaii 26.725 Sasebo 0.000
16 Okinawa 25.066 Busan 0.000
17 Zuoying 25.030 Haiphong 0.000
18 Pattaya 21.807 Phuket 0.000
19 Sasebo 21.554 Pattaya 0.000
20 Busan 21.061 Zuoying 0.000
21 Haiphong 21.020 Perth 0.000
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ORCA
Rank Degree Value Eigenvector Value
1 Cebu 0.700 Puerto Princesa 0.433
2 Guam 0.700 Manila 0.417
3 Manila 0.700 Cebu 0.404
4 Singapore 0.650 Bandar Seri Begawan 0.328
5 Puerto Princesa 0.650 Cam Ranh Bay 0.263
6 Bandar Seri Begawan 0.600 Palau 0.216
7 Palau 0.550 Zuoying 0.212
8 Yokusuka 0.500 Singapore 0.209
9 Okinawa 0.500 Haiphong 0.183
10 Darwin 0.400 Okinawa 0.181
11 Zuoying 0.400 Guam 0.166
12 Sasebo 0.350 Sasebo 0.161
13 Cam Ranh Bay 0.350 Pattaya 0.134
14 Perth 0.350 Yokusuka 0.115
15 Haiphong 0.300 Busan 0.067
16 Pattaya 0.300 Perth 0.063
17 Hawaii 0.250 Darwin 0.062
18 Kwajalein 0.250 Phuket 0.026
19 Busan 0.200 Kwajalein 0.017
20 Diego Garcia 0.200 Hawaii 0.009
21 Phuket 0.200 Diego Garcia 0.000
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ORCA
Rank Closeness Value Betweenness Value
1 Cebu 5.965 Palau 0.189
2 Puerto Princesa 5.960 Bandar Seri Begawan 0.184
3 Manila 5.959 Cebu 0.126
4 Bandar Seri Begawan 5.942 Manila 0.100
5 Cam Ranh Bay 5.908 Phuket 0.100
6 Palau 5.904 Puerto Princesa 0.089
7 Zuoying 5.901 Okinawa 0.079
8 Okinawa 5.883 Singapore 0.068
9 Singapore 5.850 Zuoying 0.047
10 Haiphong 5.833 Sasebo 0.037
11 Sasebo 5.819 Cam Ranh Bay 0.011
12 Guam 5.808 Hawaii 0.000
13 Pattaya 5.795 Kwajalein 0.000
14 Busan 5.787 Guam 0.000
15 Darwin 5.782 Yokusuka 0.000
16 Yokusuka 5.722 Busan 0.000
17 Phuket 5.714 Darwin 0.000
18 Kwajalein 5.568 Haiphong 0.000
19 Perth 5.551 Diego Garcia 0.000
20 Hawaii 5.241 Pattaya 0.000
21 Diego Garcia 0.315 Perth 0.000
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APPENDIX C:
Maximum Flow Inputs and Results

Vessel Defenses %{ ;>BB4B{ {4BB4;�0?{ {4;{

LCS Y 0.6 527.89364 1400 16
JHSV N 0.01 229.27156 600 35
T-AOE N 0.7 686.783907 29291 25
T-AO N 0.7 670.969279 26838 15
T-AKE N 0.7 621.822545 11075 20
LHA Y 0.6 1741.8178 16460 16
LSD Y 0.6 394.376744 6440 15
LPD Y 0.6 1716.95255 5691 16
OSV N 0.5 14.5052 2000 13
ORCA N 0.01 11.0120208 8 3
T-AK N 0.7 2345.60955 9578 15
T-AKR N 0.7 2363.5838 13000 15
RORO N 0.6 493.000711 8158 15
ESD N 0.9 1528.11146 193830 15
ESB N 0.9 1528.11146 193830 15
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Uncontested Routing with Full Demand Signal
Vessel �{ Routing
LCS1 C Diego Garcia - Darwin
LCS2 C Diego Garcia - Darwin
JHSV1 B Hawaii - Guam
JHSV2 D Hawaii - Guam
T-AOE1 A Hawaii - Okinawa
T-AOE2 A Diego Garcia - Darwin
T-AO1 A Hawaii - Guam
T-AO2 A Hawaii - Guam
T-AKE1 A Diego Garcia - Darwin
T-AKE2 A Hawaii - Okinawa
LHA1 A Hawaii - Guam
LHA2 A Diego Garcia - Darwin
LSD1 A Hawaii - Guam
LSD2 A Hawaii - Guam
LPD1 A Diego Garcia - Singapore - Manila
LPD2 A Hawaii - Guam
OSV1 A Hawaii - Guam
OSV2 C Hawaii - Okinawa
ORCA1 - -
ORCA2 - -
T-AK1 A Hawaii - Guam
T-AK2 A Hawaii - Guam
T-AKR1 A Hawaii - Guam
T-AKR2 A Hawaii - Guam
RORO1 A Hawaii - Guam
RORO2 A Hawaii - Guam
ESD1 C Hawaii - Guam
ESD2 C Diego Garcia - Darwin
ESB1 A Diego Garcia - Darwin
ESB2 D Hawaii - Guam
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Contested Routing with Full Demand Signal
Vessel �{ Routing
LCS1 A Hawaii - Guam
LCS2 A Diego Garcia - Singapore - Manila
JHSV1 C Diego Garcia - Singapore - Manila
JHSV2 C Hawaii - Guam
T-AOE1 A Hawaii - Guam
T-AOE2 A Diego Garcia - Singapore - Manila
T-AO1 A Hawaii - Guam
T-AO2 A Hawaii - Guam
T-AKE1 A Hawaii - Guam
T-AKE2 A Diego Garcia - Phuket - Singapore - Manila
LHA1 A Hawaii - Guam
LHA2 A Hawaii - Guam
LSD1 A Hawaii - Okinawa
LSD2 A Hawaii - Okinawa
LPD1 A Hawaii - Okinawa
LPD2 A Hawaii - Okinawa
OSV1 A Hawaii - Guam
OSV2 C Hawaii - Okinawa
ORCA1 - -
ORCA2 - -
T-AK1 A Hawaii - Guam
T-AK2 A Hawaii - Guam
T-AKR1 A Hawaii - Guam
T-AKR2 A Hawaii - Guam
RORO1 A Diego Garcia - Darwin
RORO2 A Hawaii - Guam
ESD1 C Diego Garcia - Darwin
ESD2 C Hawaii - Guam
ESB1 A Hawaii - Okinawa
ESB2 D Hawaii - Guam

95



Uncontested Routing with Partial Demand Signal
Vessel �{ Routing
LCS1 B Diego Garcia - Singapore - Manila
LCS2 A Hawaii - Okinawa
JHSV1 A Diego Garcia - Singapore - Manila
JHSV2 D Hawaii - Okinawa
T-AOE1 A Hawaii - Yokosuka - Sasebo
T-AOE2 A Hawaii - Yokosuka - Sasebo
T-AO1 A Diego Garcia - Singapore - Manila
T-AO2 A Hawaii - Okinawa
T-AKE1 A Hawaii - Yokosuka - Sasebo
T-AKE2 A Hawaii - Yokosuka - Sasebo
LHA1 A Diego Garcia - Perth - Manila
LHA2 A Diego Garcia - Singapore - Manila
LSD1 A Hawaii - Okinawa
LSD2 A Hawaii - Okinawa
LPD1 A Hawaii - Okinawa
LPD2 A Diego Garcia - Singapore - Manila
OSV1 A Hawaii - Okinawa - Sasebo
OSV2 A Diego Garcia - Phuket - Singapore - Manila
ORCA1 - -
ORCA2 - -
T-AK1 A Hawaii - Okinawa
T-AK2 A Hawaii - Okinawa
T-AKR1 A Hawaii - Okinawa
T-AKR2 A Hawaii - Okinawa
RORO1 A Diego Garcia - Singapore - Manila
RORO2 A Diego Garcia - Singapore - Manila
ESD1 C Hawaii - Okinawa
ESD2 C Hawaii - Okinawa
ESB1 A Hawaii - Okinawa
ESB2 D Diego Garcia - Singapore - Manila
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Contested Routing with Partial Demand Signal
Vessel �{ Routing
LCS1 A Hawaii - Yokosuka - Busan
LCS2 B Hawaii - Yokosuka - Sasebo
JHSV1 C Diego Garcia - Singapore - Manila
JHSV2 A Diego Garcia - Phuket - Singapore - Manila
T-AOE1 A Diego Garcia - Singapore - Manila - Guam - Okinawa
T-AOE2 A Hawaii - Guam - Okinawa
T-AO1 A Hawaii - Yokosuka - Sasebo
T-AO2 A Hawaii - Kwajalein - Yokosuka - Sasebo
T-AKE1 A Hawaii - Okinawa - Yokosuka - Sasebo
T-AKE2 A Diego Garcia - Singapore - Manila
LHA1 A Hawaii - Okinawa
LHA2 A Hawaii - Okinawa
LSD1 A Hawaii - Yokosuka - Busan
LSD2 A Hawaii - Yokosuka - Busan
LPD1 A Hawaii - Yokosuka - Sasebo
LPD2 A Diego Garcia - Singapore - Manila
OSV1 A Hawaii - Yokosuka - Busan
OSV2 B Hawaii - Yokosuka - Sasebo
ORCA1 - -
ORCA2 - -
T-AK1 A Diego Garcia - Singapore - Manila
T-AK2 A Hawaii - Guam - Okinawa
T-AKR1 A Hawaii - Yokosuka
T-AKR2 A Diego Garcia - Singapore - Manila
RORO1 A Hawaii - Kwajalein - Okinawa - Busan
RORO2 A Diego Garcia - Singapore - Manila - Cebu -

Sasebo - Yokosuka - Busan
ESD1 C Diego Garcia - Singapore - Bandar Seri Begawan - Manila
ESD2 C Diego Garcia - Phuket - Singapore - Cam Ranh Bay - Manila
ESB1 A Hawaii - Okinawa
ESB2 D Hawaii - Yokosuka
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