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Abstract The current coarse-resolution global Community Earth System Model (CESM) can reproduce
major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g.,
low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code
into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model
limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 18

(40�60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two
on RASM’s 1/128 (�9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameteriza-
tion which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contrib-
uted to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher
resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic
Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20%
by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both
MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea
into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not
on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.

1. Introduction

The Arctic Ocean is warming more rapidly than other regions on the Earth and there is already evidence of corre-
sponding marine ecosystem response, such as the northward shift of subarctic and arctic marine communities
(Grebmeier et al., 2006) in the Pacific Arctic, an intensive under-ice phytoplankton bloom (Arrigo et al., 2012) in
the marginal ice zone, a shift in phytoplankton community composition toward smaller cells (Li et al., 2009) and
an increased vertical export of algal biomass (Boetius et al., 2013) in the Arctic Basin. Increasing temperature,
open water area, and duration have triggered increased primary production (PP) in the open waters of the Arctic
Ocean, as observed by remote sensing (Arrigo et al., 2011; Pabi et al., 2008). These large-scale trends can be sim-
ulated by climate models even at coarse resolution, e.g., a 18 global grid with Los Alamos National Laboratory’s
sea-ice model (CICE) and Parallel Ocean Program (POP), as described in Jin et al. (2012a, 2016). Increasing com-
puter power has enabled the development of high-resolution climate models that are assumed to better simu-
late ocean mixing and circulation near sharp bathymetric features, and transport (heat, salt, and other tracers)
through narrow channels (e.g., the Bering and Fram Straits). However, the benefits to both physical and biologi-
cal models have yet to be fully assessed, e.g., what are the temporal and spatial distributions (beyond bathymet-
ric features and narrow channels) of the benefits and are they different for different tracers?

Using a varying resolution regional model (minimum 4 km near the Alaska’s coast), Zhang et al. (2015)
found that under-ice blooms in the Chukchi Sea increased in recent decades due to both increasing light
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availability related to reducing sea-ice cover, and nutrient supply from the shelf break due to an intensifying
circulation, which is weaker in coarse resolution models. Arctic ecosystem model intercomparison studies
(Jin et al., 2016; Lee et al., 2015, 2016) also show that models with horizontal resolutions from 1 to 0.258,
and even higher for regional models, could simulate the mean states of the seasonal cycle of PP but with
less variability compared to in situ observations. But even with a general agreement of annual PP levels
among models and observations, Popova et al. (2012) found that different models with biogeochemistry
disagreed on the sources and strength of limiting factors (light versus nutrients). The scatter of the modeled
present-day Arctic Ocean nutrients in climate models has led to large uncertainties in the future projection
of Arctic PP (Vancoppenolle et al., 2013), as the phytoplankton limiting factors switch from light to nutrients
due to projected declining sea-ice cover in the future. Model biases in surface seawater nitrate concentra-
tion (NO3) were likely due to an unrealistic representation of ocean physics, such as circulation, mixing, sea-
ice processes, and biogeochemical parameterizations (Popova et al., 2012; Vancoppenolle et al., 2013).

Subsurface chlorophyll-a maxima (SCM) have been underestimated in satellite-based estimations of Arctic
Ocean PP (Arrigo & van Dijken, 2011). Failure to simulate SCM could be due to either too much nitrate and
hence no surface limitation or too little nitrate with limited surface growth (Steiner et al., 2016). An exten-
sive comparison of 21 regional and global ecosystem models against observations in the Arctic (1959–2011)
by Lee et al. (2016) evaluated modeled net primary productivity (NPP) and environmental variables such as
NO3, mixed layer depth (MLD), euphotic layer depth, and sea-ice concentration. They found that models
tend to perform relatively well at simulating NPP in the Beaufort Sea and central Arctic Basin, but less well
in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea-ice concentration in this
region. Since models in the above intercomparison differed not only in the grids used but also in their rep-
resentation of physical and biological processes and the choice of parameters, it is hard to pinpoint underly-
ing mechanisms or parameterizations among different models. It is therefore critical to examine the
different effects of spatial resolution, sea-ice model processes, and ocean vertical mixing parameterization
on the simulation of the Arctic biogeochemical cycling, by comparing simulations using the same code but
different resolutions and choices of parameters.

The advancement of supercomputer power enables climate models to test increased spatial resolution
from coarse, noneddy resolving toward eddy permitting or even eddy resolving grids (<10 km resolution in
the Arctic Basin). Still, the computational cost usually favors higher resolution only in smaller domains. It is
important to investigate where spatial resolution is critically needed and understand the compatibility of
model parameters with increased resolution. There are many small-scale physical processes, such as meso-
scale eddies, mixed layer dynamics, coastal and boundary currents, upper ocean stratification, and marginal
ice zone expansion that influence nutrient transport, light availability and ocean stratification, which are crit-
ical to marine PP and carbon cycling in the Arctic Ocean. Such physical processes, and feedbacks among

Table 1
Differences Between the Model Case Configurations

R9km R9km-NB G1deg G1deg-OLD

Domain and resolution Regional Pan Arctic. Horizontally �9 km,
45 vertical layers: 5 m in top 20 m,
increasing to 250 m at the bottom.

Global domain. Horizontally 18 (approximately 40�50 km in
the Arctic), 60 vertical layers: 10 m in top 150 m increasing
to 250 m at the bottom.

Subgrid brine rejection parameterization
(Jin et al., 2012b)

Yes No Yes Yes

Ocean-ice coupling time 20 min 20 min 1 h 1 day
Elastic subcycling time step (Hunke, 2001) 2 s 2 s 10 s 10 s
Thermodynamics Prognostic salinity (Turner & Hunke, 2015) Diagnostic salinity (Bitz &

Lipscomb, 1999)
Melt ponds Level Ice (Hunke et al., 2013) Virtual (Holland et al., 2012)
Delta-Eddington snow grain adjustment

(Briegleb & Light, 2007
rsnow 5 0.50 rsnow 5 1.75

Rheology EAP (Wilchinsky & Feltham, 2004) EVP (Hunke & Dukowicz, 1997)
Frictional loss

(Lipscomb et al., 2007)
Cf 5 21.3 Cf 5 17.0

Note. All other model settings not listed, such as the model code and atmospheric forcing, are the same for all cases.

Journal of Geophysical Research: Oceans 10.1002/2017JC013365

359



them, might be intimately involved in the recent dramatic changes observed in the Arctic, yet understand-
ing of their representation in state-of-the-art global climate and earth system models is still limited.

The main motivation of this study is to examine the effects of some key physical model processes (e.g., sea-
ice model parameters which strongly affect ice extent and thickness, ocean horizontal and vertical mixing,
etc.) on biogeochemical simulations in the Arctic Ocean. In order to identify the causes of model errors in
the physical and biogeochemical fields, we compared outputs from four ice-ocean model runs, all of which
use the same CICE and POP updated codes including ocean lower-trophic-level ecosystem and biogeo-
chemical cycling (BGC, Jin et al., 2012a, 2016; Moore et al., 2013) modules, and forced by the same atmo-
spheric data. This study focused on model spatial resolution and model processes selected from newly
available POP and CICE model updates. These factors can significantly affect ocean mixing which has been
shown to influence the modeled Arctic nutrient bias described in Popova et al. (2012). The model processes
are organized into two categories: (1) the brine rejection parameterization in POP and (2) a group of param-
eters in CICE and the POP’s coupling time with CICE and atmospheric forcing data (see Table 1 for details).

2. Physical and Biogeochemical Model Configurations

2.1. Physical Model
In this study, we use the ice-ocean model components of RASM in its native regional domain grid (e.g., Cas-
sano et al., 2017; Hamman et al., 2017; Roberts et al., 2015) and in a global domain grid from CESM. The
RASM domain (Figure 1) covers the entire Northern Hemisphere marine cryosphere, major oceanic inflow
and outflow pathways, with optimal extension into the North Pacific and Atlantic oceans to account for the
origin and passage of cyclones over marginal ice zones and into the Arctic. The RASM ocean and sea-ice
models are POP version 2 and CICE version 5.1.2, respectively. With a focus on examining ice-ocean bio-
physical model efficiencies using validation with observations, we use reanalysis data forced ice-ocean
model configurations instead of fully coupled ocean-ice-atmosphere-land-BGC simulations; therefore we
only describe the POP and CICE models in this paper.

In contrast to POP and CICE in CESM version 1.1, RASM has incorporated the following new model innova-
tions. In POP, subgrid scale brine rejection parameterization (Jin et al., 2012b) is implemented to improve
ocean vertical mixing under sea-ice cover. In CICE, the following adjustments were made: (1) ‘‘mushy-layer’’
thermodynamics (Turner & Hunke, 2015); (2) new thermodynamic coupling to the ocean, whereby the basal
freezing temperature is identical to the temperature of the liquid phase within sea ice, rather than set at a
fixed temperature of 21.88C in CESM Version 1; (3) explicit level ice ponds instead of virtual melt ponds in

CESM Version 1, and (4) Wilchinsky and Feltham (2004) Elastic Anis-
tropic Plastic (EAP) sea-ice rheology instead of the Elastic Viscous Plas-
tic (EVP) mechanics of Hunke and Dukowicz (1997), with the frictional
parameter (Cf) adjusted to increase mechanical dissipative loss, follow-
ing Tsamados et al. (2013). The RASM ice-ocean components also dif-
fer in their coupling methods. While both CESM Version 1 and RASM
utilize the coupler of Craig et al. (2012), the ice-ocean coupling step is
either daily or hourly in CESM, but 20 min in the RASM 9 km grid to
resolve coupled ice-ocean inertial oscillations (Roberts et al., 2015).
Atmospheric forcing data are linearly interpolated to each time step
in the model.

In order to fully examine the effects of model spatial resolution and
physical processes in ocean and sea ice on the BGC model perfor-
mance, we configured four comparison cases with differences shown
in Table 1:

(1) R9km: RASM 1/128 (�9 km) ice-ocean regional grid (Figure 1); (2)
G1deg: nominally 18 global grid adopted from CESM used in Hurrell
et al. (2013) with a varying resolution of 40–111 km grid from the
polar to tropical regions; (3) R9km-NB: the same as R9km except turn-
ing off the subgrid scale brine rejection parameterization (Jin et al.,
2012b) that improves ocean mixing under sea-ice cover; and (4)

Figure 1. The RASM ocean and sea-ice model domain is shown by the red line
bounded box and the colors denote the ocean bathymetry.
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G1deg-OLD: the same as G1deg except using the old parameter set for CICE version 4 and a daily coupling
time between POP and coupler. Note that R9km and G1deg are the control runs for the 9 km regional grid
and 18 global grid, respectively, while R9km-NB and G1deg-OLD are comparison cases with old physics of
the POP and CICE, similar to those used in previous Arctic ecosystem model studies (Jin et al., 2012a;
Popova et al., 2012). Cases 1 and 2 are used to examine the model improvement due to increased resolu-
tion. Cases 3 and 4 are used to examine the recent development of sea ice and ocean models and their
effects on ocean vertical mixing (represented by MLD) and biogeochemical simulations in the Arctic Ocean.

2.2. Biogeochemical Model
The biogeochemical cycling module consists of linked pelagic and sea-ice algal components (Jin et al.,
2012a, 2016). The ice algal component represents assemblages in a 3 cm layer at the bottom of each sea-
ice thickness category, coupled to the pelagic model through nutrient and biotic fluxes. This submodel was
first developed based on fast-ice core data collected offshore Barrow, Alaska (Jin et al., 2006). It has been
tested and validated through coupling with a 1D column pelagic ecosystem model in the southeastern
Bering Sea (Jin et al., 2007) and the Chukchi and Beaufort Seas (Lee et al., 2010), global CICE with a simple
slab ocean model (Deal et al., 2011), and the aforementioned global coupled POP-CICE and 3D pelagic eco-
system configuration (Jin et al., 2012a). The ice algal model includes six components: ice algae, three
nutrients (NO3, ammonium (NH4) and silicate (Si)), and two biogenic sulfur compounds (dimethylsulfide
(DMS), and dimethylsulfoniopropionoate (DMSP); see Elliott et al., 2012). The sea-ice physical model com-
putes the thermodynamic and dynamic properties of the ice in each grid cell using a multicategory ice
thickness distribution method (Hunke et al., 2015). The biological model is solved with the physical input of
ice thickness growth rate, temperature, salinity, and light intensity in the bottom ice layer. The biological
variable in a grid cell is the sum over each ice thickness category (there are five categories representing
thinnest to thickest ice in each grid cell). Horizontal advection of biological constituents is calculated for
each ice category using the same numerical scheme as tracers in the sea-ice physical model. Transport
across the water-ice interface is represented as the lower boundary condition for the sea-ice BGC model.

The pelagic BGC component is a medium-complexity Nutrients-Phytoplankton-Zooplankton-Detritus
(NPZD) model (Moore et al., 2002, 2004, 2013), with multiple phytoplankton functional groups including dia-
toms, small phytoplankton (flagellates), and diazotrophs, to accommodate diverse ecological regimes
around the globe; bacterial activity is implicit in the nutrient and organic carbon remineralization rates. The
model includes 24 state variables: NO3, NH4, iron (Fe), Si, phosphate (PO4), three types of phytoplankton
(explicit carbon, Fe, and chlorophyll-a pools for each phytoplankton functional group, an explicit Si pool for
diatoms and an implicit CaCO3 pool for small phytoplankton, totaling 11 state variables), a herbivorous zoo-
plankton pool, dissolved organic nitrogen, carbon, iron, and phosphate (DON, DOC, DOFe, DOP), oxygen
(O2), dissolved inorganic carbon (DIC), and alkalinity.

2.3. Model Numerical Settings
All model cases use the same sea-ice thickness configuration of five thickness categories, with gradations as
described in Roberts et al. (2015). The atmospheric forcing and river runoff are prescribed from the reanaly-
sis Coordinated Ocean-ice Reference Experiment Forcing Version 2.0 (CORE-II) data from 1948 to 2009
(Large & Yeager, 2009). Model temperature and salinity along the RASM 9 km lateral boundaries are
restored to the monthly Polar science center Hydrographic Climatology (PHC 3.0, Steele et al., 2001) data
with a time scale of 30 days.

Initial conditions for ocean T and S are from PHC, and nutrient variables (NO3, Si) are from the gridded
World Ocean Atlas (WOA2013) on the National Oceanic and Atmospheric Administration (NOAA) web site
https://www.nodc.noaa.gov/OC5/woa13/woa13data.html. The initial conditions for other ecosystem compo-
nents are from the recent version of CESM global 18 grid initial conditions (Moore et al., 2013). All model
runs start from 1965 with no motion in the ocean and no sea ice to 1975, then restart with the sea-ice field
of 1975 but no motion in ocean and initial T and S. This approach was used in model simulations by Steiner
et al. (2016) to reduce the effects of initial ice formation on the ocean T and S field. Only the model results
from 1980 onward were used for model-data comparison as observational data used in this study start from
1980, though most data were collected after 2000.
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3. Model Results

The RASM sea ice and ocean physical model results have been vali-
dated in various previous studies (Cassano et al., 2017; DuVivier et al.,
2016; Hamman et al., 2017; Roberts et al., 2015). However, since the
marine ecosystem model results are significantly affected by the simu-
lated sea ice and ocean physical environments, we also include physi-
cal model validations and comparisons.

3.1. Sea Ice and Ice Algae
Both R9km and G1deg simulated well the seasonal and interannual
changes of the monthly mean northern hemisphere sea-ice extent as
compared with the remote sensing data (Figure 2) from the National
Snow and Ice Data Center (NSIDC). The root mean square errors
(RMSE; the smaller the RMSE, the better the model performs) over the
30 year (1980–2009) period are shown in Table 2. The ice extents are
almost the same for the R9km and R9km-NB cases, because the brine
rejection parameterization improves mostly on ocean vertical mixing
under pack ice, but less on the marginal ice zone and sea-ice extent.
The ice extent RMSE of the R9km and R9km-NB cases are 25% lower
than that of G1deg, and the RMSE of G1deg is 10% lower than that of
G1deg-OLD, indicating that both increasing spatial resolution and
enhancing sea-ice model processes play important roles in improving
sea-ice extent simulation. The RMSEs of monthly mean ice extent for
R9km are generally lower than those for G1deg (Table 2) except for
January, February, March, and October. The superior performance of
R9km in spring to fall months provides a more realistic basis for bio-
geochemical simulations since the major bloom period in the Arctic

Ocean is from May to September (Jin et al., 2016).

Sea-ice thickness was derived from upward looking sonar (ULS) data at three multiyear mooring stations A,
B, and C (locations in Figure 3a) in the Canada Basin (Krishfield et al., 2014). The simulated sea-ice thickness
for R9km and G1deg (Figures 3b and 3c) agrees in timing and magnitude with the observed seasonal cycles
most of the time. The RMSE is 45 cm for R9km, lower than the other cases which are 52, 51, and 99 cm for
R9km-NB, G1deg, and G1deg-OLD, respectively. The sea-ice model process improvements (G1deg versus
G1deg-OLD) led to a significant RMSE reduction in simulated ice thickness. Individually, the brine rejection
parameterization and increasing resolution can reduce the ice thickness RMSE by about 5% for the three
stations in the Canada Basin. The modeled 5 year (2005–2009) average ice thickness in the pan-Arctic from
January to March (Figure 4) are the thickest in G1deg-OLD. Note that the relative ice thickness between
model cases in other seasons (spring, summer, and fall) are similar to that in winter and hence not shown
here. The ice thickness in R9km is similar to R9km-NB overall and only slightly thicker in the East Siberian
Sea. The ice thickness in G1deg is thicker than R9km in the Beaufort Gyre region, but thinner in the East
Siberian Sea and eastern Arctic Ocean.

Sea-ice thickness, snow depth, sea surface NO3 concentration, and ice algal biomass were measured on the
offshore fast ice west of Utqiagvik (formerly Barrow) (station D in Figure 3a) in 2002 and 2003 (Jin et al.,

Figure 2. Model comparison of monthly mean northern hemisphere sea-ice
extent with NSIDC data: (a) R9km and (b) G1deg.

Table 2
Model RMSE of Monthly Northern Hemisphere Ice Extent (1011m2) and RMSE of All Data in the Last Column

Month 1 2 3 4 5 6 7 8 9 10 11 12 All data

R9km 4.9 6.7 5.3 2.9 3.3 4.8 7.8 6.5 5.6 6.2 2.1 2.7 5.2
R9km-NB 4.9 6.7 5.3 2.9 3.3 4.9 7.6 7.0 5.9 6.2 2.2 2.7 5.3
G1deg 2.7 2.9 4.2 8.6 11.0 7.2 9.6 7.9 8.0 4.3 2.6 3.2 6.7
G1deg-OLD 2.8 3.8 6.9 11.4 13.3 7.4 10.6 6.9 5.9 5.2 2.5 3.3 7.5

Note. The bold numbers denote less RMSE for R9km.
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2006). Note that the existing versions of the sea-ice model, CICE, are not capable of simulating landfast ice,
due to the lack of a mechanism for a small (subgrid size) ice keel to ground on the shallow ocean bottom
and a subsequent trigger mechanism for the grounded ice to break free. Another challenge is that landfast
ice along the Alaska coast is often too narrow, even for a higher-resolution case to resolve. Further develop-
ment of the ice model is needed to improve this aspect of sea-ice simulations. The modeled sea-ice thick-
ness for the nearest point near this location (Figure 5a) shows much larger temporal variations than
observed in winter, as the ice was mobile in the model. The R9km-NB displays negligible differences from
R9km for all variables in Figure 5 and therefore is not shown here. The sea-ice thickness variations are simi-
lar between R9km and G1deg, and relatively larger than in G1deg-OLD, in winter, because of the different
ice processes and parameters in G1deg-OLD. This suggests that sea-ice processes play a more important
role than spatial resolution in the temporal variation of simulated ice thickness. The modeled snow depth
(Figure 5b) compares reasonably well with observations for R9km but less so for G1deg and G1deg-OLD.
The modeled sea surface NO3 concentration (Figure 5c) shows good agreement with the few existing obser-
vations during ice melt, with a sharp decline in concentration at the end of the ice algal bloom in late May
for all cases. The NO3 concentration before the decline was overestimated in R9km and underestimated in
G1deg and G1deg-OLD. The lower nutrients and thicker snow depth in G1deg and G1deg-OLD led to lower
magnitudes of ice algal biomass than in R9km and observations (Figure 5d).

There were two spring (March–May) cruises in the Bering Sea (ice core stations in Figure 6a) during the
Bering Sea Ecosystem Studies (BEST) program (Szymanski & Gradinger, 2016). The ice algal measurements
were made at 1 or 2 cm vertical intervals in the bottom 5–10 cm and at 10 cm intervals above 10 cm. The
ice algal chlorophyll-a concentration (Chl-a) reached above 1,000 mg/m3 in the bottom 3 cm but dropped
rapidly to less than 10% above 10 cm for most of the ice cores. The model output for the skeletal layer,

Figure 3. (a) Sea-ice thickness was measured at stations A, B, and C in the Beaufort Sea. Model comparisons with observed monthly mean sea-ice thickness at sta-
tions A, B, C from left to right, respectively: (b) R9km (RMSE 5 45 cm) and (c) G1deg (RMSE 5 51 cm). The red ‘‘D’’ denotes the location of the fast ice station used
in Figure 5.
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representing the bottom 3 cm ice algal Chl-a concentrations, is compared to average measurements in the
bottom 3 cm in 2008 and 2009 (Figure 6b). The R9km-NB case had negligible differences with R9km and is
not shown in the figure. In 2008, all model cases show similar results that are comparable to the variations
of the observations, but with higher maxima and lower minima than the observations. For 2009, R9km
model results match the observations more closely than G1deg and G1deg-OLD in March to early April, but
similarly afterward. All model cases capture the spatial variations between stations, especially for the R9km
in 2009.

3.2. Ocean Environmental Conditions and Phytoplankton Bloom
The RMSE of modeled sea surface variables (temperature (SST), salinity, and NO3 and Chl-a concentrations)
(Table 3) were calculated against the BEST cruise data in March to May of 2008 and 2009 (stations shown in
Figure 7a). The RMSE (Table 3) are generally similar for the same resolution model cases. The RMSE for
higher-resolution model cases are lower for salinity, NO3, and Chl-a, but higher for SST. Since salinity is the
main control on ocean stratification in winter, RMSE of NO3 and Chl-a for R9km are also smaller. The Taylor
diagram (Taylor 2001) with normalized standard deviation, root-mean-square difference

Figure 4. (a) January–March averaged 5 year mean (2005–2009) sea-ice thickness (m) from (a) R9km; (b) R9km-NB; (c) G1deg; and (d) G1deg-OLD.
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denote the modeled and observational variables, respectively) and correlation coefficient (Figure 7b) shows
that R9km had better model-data correlations for all four variables and smaller RMSD except for

Figure 5. Model comparison with observations at the station to the west of Barrow (red ‘‘D*’’ in Figure 3a): (a) ice thick-
ness; (b) snow depth; (c) sea surface NO3; and (d) ice algal biomass in the skeletal layer.

Figure 6. (a) Map of ice core measurement stations (‘‘*’’) and M2 mooring station (‘‘o’’) in the Bering Sea. (b) Modeled ice
algal biomass comparison with ship observations in 2008 and 2009.
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temperature, similar to the RMSE results. The standard deviations (rep-
resenting variability) for R9km are closer to observations for salinity
and NO3, but larger for SST and smaller for Chl-a when compared to
G1deg. The large errors in modeled NO3 are mainly because the mod-
eled phytoplankton bloom started later than observed at some sta-
tions, where observed NO3 were drawn down to low levels while
modeled NO3 were still at prebloom highs (around 10–15 mmol/m3).
A 10% reduction in the NO3 RMSE for the R9km case over the coarse
resolution model case G1deg reveals that the simulation of NO3 con-
centrations can be improved, although the absolute errors are still

large for the current models. The improvements may come from better simulated ocean mixing, e.g., direct
mixing of nutrients and biological consumption of nutrients under improved bloom timing which depends
on stratification (or ocean mixing) conditions.

The seasonal cycles of phytoplankton biomass in the Bering Sea are characterized by a strong but brief
period of pulse-like blooms in the spring time. This is illustrated in the comparisons (Figure 8) of model
results of R9km and G1deg with remotely sensed sea surface Chl-a from daily mean Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) data (from NASA web site, https://oceancolor.gsfc.nasa.gov/) and relative
fluorescence data from the M2 mooring at 12 m depth (Stabeno et al., 2001) in 2003 and 2004. The Chl-a
results are only slightly different between R9km and G1deg, and almost the same between the same spatial
resolution cases (not shown). The fluorescence data (volt units) were scaled to have the same maximum as
the model Chl-a in Figure 8, to compare the relative changes in magnitude. The simulated bloom timing
and magnitude in both R9km and G1deg showed a comparable range of values to the remotely sensed
Chl-a concentration in the top optical depth and in the subsurface 12 m layer. Although R9km showed
improvements in modeled salinity, nutrients, and Chl-a over G1deg in Figure 7, the phytoplankton bloom
differences between the high and coarse resolution model cases (Figure 8) were actually small, suggesting
that model resolution is not critical on the broad Bering Sea shelf, possibly due to the gentle bathymetric
slope. The modeled bloom period at the sea surface is close to that of remotely sensed Chl-a, but the bloom
duration at 12 m is narrower than that from the fluorescence measurements.

3.3. Mixed Layer Depth, Nutrients, and Primary Production
An earlier arctic biogeochemical model intercomparison (Popova et al., 2012) identified model errors in sur-
face nitrate concentration in the Arctic Basin as a major deficiency that may be caused by unrealistic repre-
sentation of ocean physics, in particular vertical mixing due to commonly overestimated MLD. The four
model cases are compared with 29 year-long ice-tethered profilers (ITP) in the Arctic Basin (Toole et al.,
2010; a list of deployment time periods in Table 4 and tracks in Figure 9a) to investigate the effects of model

Table 3
Model RMSE for Sea Surface Temperature, Salinity, NO3 and Chl-a at the BEST
Stations in the Bering Sea from March to May of 2008 and 2009

Temperature
(8C)

Salinity
(psu)

NO3

(mmol/m3)
Chl-a

(mg/m3)

R9km 0.65 0.29 7.73 0.89
R9km-NB 0.89 0.32 7.78 0.89
G1deg 0.48 0.70 8.52 1.04
G1deg-OLD 0.47 0.70 8.29 1.00

Figure 7. (a) Map of in situ ocean measurement stations (‘‘*’’) in the Bering Sea. (b) Taylor diagram of the normalized
standard deviation (meridional direction, 1 denotes the closest to observation) and correlation coefficient (zonal direction,
1 denotes the best correlation between model and observation) and bias (the contour lines, the smaller the better) of the
ocean surface temperature, salinity, NO3 and Chl-a.
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resolution, sea-ice processes, and brine rejection parameterization on the simulated MLD. The MLD was cal-
culated from ITP temperature and salinity profiles, using the same method as in POP (Large et al., 1997).
Note that ITPs can reach only 7–8 m below the sea surface to avoid hitting sea ice, so the surface density
needed for reference in those calculations might be overestimated, resulting in deeper MLD estimates than
from in situ data (Peralta-Ferriz & Woodgate, 2005). The model RMSE of MLD (at the same date and location
as the ITP data) against all 29 ITP data sets are 10.4, 16.3, 11.1, and 14.0 m for R9km, R9km-NB, G1deg, and
G1deg-OLD, respectively. R9km and R9km-NB showed the lowest and highest MLD errors, and the brine
rejection parameterization resulted in a 36% reduction of the simulated MLD RMSE. The sea-ice processes
improvement from G1deg-OLD to G1deg (Table 1) led to a 20% reduction of MLD RMSE, and the indirect
influences of changing sea ice thermodynamics/dynamics on ocean mixing deserve further study in the

Figure 8. (left column) Model comparison with SeaWiFS sea surface Chl-a and (right column) 12 m depth fluorescence
data at mooring station M2 in the Bering Sea (location shown in Figure 6a).

Table 4
List of ITP Data: The ITPs are Numbered in the Order of Deployment Time in the Arctic Ocean

ITP number Starting time
Ending

time ITP number Starting time
Ending

time

1 2005.08.16 2007.01.06 19 2008.04.08 2008.11.21
3 2005.08.24 2006.09.08 21 2008.08.04 2009.09.23
4 2006.09.03 2007.08.17 23 2008.08.05 2010.07.06
5 2006.09.08 2007.09.06 24 2008.10.03 2009.09.25
6 2006.09.05 2008.06.23 25 2008.09.22 2009.07.07
7 2007.04.28 2007.10.24 26 2008.09.11 2009.03.11
8 2007.08.13 2009.03.23 27 2008.09.10 2009.01.20
9 2007.09.12 2008.10.03 28 2008.09.01 2008.12.18
10 2007.09.10 2008.05.15 29 2008.08.31 2010.09.15
11 2007.09.09 2009.09.03 32 2009.10.04 2010.01.13
12 2007.09.15 2007.12.23 33 2009.10.07 2011.01.24
13 2007.08.14 2008.07.16 34 2009.10.11 2010.11.26
15 2007.09.11 2008.10.05 35 2009.10.09 2010.03.30
16 2007.09.03 2008.01.01 37 2009.08.30 2010.12.24

Note. The missing numbers are those with few or no data due to instrument failure. The starting and ending time of
ITPs are in the format of ‘‘year.month.day’’.

Journal of Geophysical Research: Oceans 10.1002/2017JC013365

367



future. The increasing model resolution from G1deg to R9km resulted
in only a 6% reduction of MLD RMSE, much smaller than the reduction
due to the brine rejection parameterization (R9km versus R9km-NB)
and the sea-ice processes (G1deg versus G1deg-OLD). MLD from the
three deep basins in the Arctic Ocean (red tracks in Figure 9a) are
shown in Figures 9b–9d. The MLD RMSE in R9km-NB was largest from
November to June, especially from March to early June. The winter
MLD in G1deg-OLD was overestimated in Figures 9b and 9d, similar to
R9km-NB, but matched well the observations in Figure 9c.

In a pan-Arctic view, the modeled 5 year (2005–2009) mean MLD from
January to March (Figures 10b–10e) also showed similar contrasts
between the four model cases. MLD from the shallowest to the deep-
est was R9km, G1deg, G1deg-OLD, and R9km-NB, the same order as
the MLD RMSE in the comparison with ITP data. The PHC data-derived
climatological mean MLD from January to March (Figure 10a) is in the
middle of the four cases, but note that it is deeper than R9km because
PHC data are biased toward heavier sea ice and weaker stratification
in those data before 2000 compared to 2005–2009.

The January–March mean sea surface NO3 (Figure 11) in the Arctic
deep basin from the lowest to the higher concentrations are in the
order of R9km, R9km-NB, G1deg, and G1deg-OLD, different from that
of MLD in Figure 10. This suggests that vertical mixing, as defined by
MLD, cannot fully explain the positive NO3 bias in the Arctic Basin,
and that model resolution also played a crucial, and more important
role than vertical mixing in the cases we compared here. There is a
large horizontal gradient of NO3 from the Chukchi shelf to the Arctic
Basin (see the WOA data Figure 11a), and a false horizontal diffusion
due to the poorly resolved Chukchi Sea shelf break in the coarse reso-
lution model increased the positive NO3 bias in the central Arctic
Basin. The horizontal mixing effect is evident from the nutrient gra-
dients along the Chukchi Sea shelf break (Figure 11): the gradients are
very strong in R9km and R9km-NB, but much weaker in G1deg and
G1deg-OLD.

The modeled annual vertically integrated PP (gC/m2/yr) for ice algae
and phytoplankton, averaged from 2005 to 2009, are shown in Figure
12. Both ice algal and phytoplankton PP are similar for R9km and
R9km-NB in most regions, except in limited areas of the Arctic Basin,
where PP in R9km was lower due to lower upper ocean nutrients, as
shown in Figure 10. The spatial patterns and strong gradients of PP in
R9km were more aligned with bathymetric features than in G1deg,
e.g., along the shelf break in the Gulf of Alaska, Bering Sea, Labrador
Sea, and the northern Atlantic Ocean. PP in both ice and ocean in
G1deg-OLD are lower than in G1deg in the Arctic Ocean due to stron-
ger light attenuation through thicker sea ice in G1deg-OLD (Figure 4),
although NO3 in G1deg-OLD was higher. Although nutrient concen-
trations in the Arctic Basin of G1deg display a larger bias than in
R9km, PP does not show a significant difference, suggesting that light
limitation is most likely the controlling factor of phytoplankton pro-
duction in this region.

A comparison of modeled sea surface NO3 and Chl-a with measure-
ments made during a 2008 Chinese arctic expedition from 12 August
to 7 September (Figure 13) showed that the most significant NO3 bias
was in the Canada Basin from G1deg-OLD due to both coarse

Figure 9. (a) ITP tracks (29 total) and comparison of modeled MLD with ITP
data derived MLD along the three red tracks displayed in (b) ITP 8; (c) ITP 24;
and (d) ITP 29.
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resolution and deeper MLD bias, as shown in Figures 10 and 11. The NO3 concentration in the Canada Basin
for G1deg biased slightly higher only in some points in late August than those in R9km and R9km-NB. In con-
trast, there were no corresponding biases in the Chl-a concentration in the Canada Basin among all model
cases, suggesting that phytoplankton growth was limited mainly by light instead of nutrients. Most of the dif-
ferences in Chl-a concentration were in the first eight stations at the Chukchi and Beaufort shelf breaks, while
good agreement between observations and model results occurred for the rest of the stations.

To assess where the model resolution difference between R9km and G1deg is important for BGC simulation
in the Arctic Ocean, a model error comparison with in situ sea surface NO3 and Chl-a data collected from
1980 to 2009 (Lee et al., 2016; Matrai et al., 2013) is shown in Figure 14, where colors denote the absolute

Figure 10. January–March averaged MLD from (a) PHC climatology data; and 5 year mean (2005–2009) of (b) R9km; (c)
R9km-NB; (d) G1deg; and (e) G1deg-OLD.
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errors of G1deg minus those of R9km. The red/blue dots denote higher/lower model errors in G1deg, while
black dots denote similar model errors between R9km and G1deg. Sea surface NO3 concentration in R9km
showed primarily lower errors in the Canada Basin and the interior of the Canada Archipelago (Figure 14a)
due to the better simulated MLD (Figure 10) and less horizontal diffusion of NO3 from the Chukchi Sea into
the Beaufort Sea (Figure 11). For Chl-a, model errors in R9km are only lower downstream of the Bering Strait,
while both cases agree in the Canada Basin (Figure 14b), suggesting that phytoplankton growth was mainly
controlled by light limitation rather than nutrient limitation. Overall, the modeled nutrients showed
improvements where both vertical and horizontal ocean mixing was better presented, e.g., in the Canada
Basin, but Chl-a improvements might not be only linked to ocean mixing improvements as Chl-a is also
strongly affected by light, especially in the Arctic Ocean.

Figure 11. (a) January–March averaged sea surface NO3 concentration from (a) WOA2013 climatology data; and 5 year
mean (2005–2009) of (b) R9km; (c) R9km-NB; (d) G1deg; and (e) G1deg-OLD.
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3.4. Subsurface Chlorophyll-a Maximum in the Canada Basin
The SCM is an important feature in the Arctic Basin which contributes significantly to vertically integrated
Chl-a (Steiner et al., 2016) and is also very useful for checking a model’s ability to capture the subtle balance

Figure 12. Five-year mean (2005–2009) sea-ice algae (left) and ocean phytoplankton integrated primary production (PP,
mg C/m2/yr) from (a) R9km; (b) R9km-NB; (c) G1deg; and (d) G1deg-OLD.
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between light and the deepening depth of available nutrients post phytoplankton bloom. In a previous
study (Steiner et al., 2016), SCM was captured only by five out of nine ecosystem models with different reso-
lutions and the suggested reason for failure to capture the SCM was either excessive surface nutrients or
insufficient nutrients in the entire upper mixed layer. The in situ data from cruises in the Canada Basin
(McLaughlin & Carmack, 2010) in August 2005 and 2006 (Figures 15a and 15b) were averaged and vertically
interpolated into 10 m layers for coincident model-data comparison. Note that the observed SCM depths
differed by stations and the averaged SCM depths (observed and model cases) are shown in the Figure 15.
In both years, salinity, the dominant factor controlling ocean stratification in the Arctic Ocean, is similar for
R9km and G1deg and closer to the observations than for the other two cases. The RMSE of salinity in R9km,

Figure 13. (a) Track of 2008 China Arctic cruise. The track started from the Chukchi Sea in August going northward along
the blue line and back southward along the red line. Model comparison of (b) NO3 and (c) Chl-a along the track. The two
thick black triangles in the x axis of Figures 13b and 13c indicate the stations also marked in thick black triangles in Figure
13a.

Figure 14. Model errors differences (G1deg minus R9km) for sea surface (a) NO3 (mmol/m3), (b) Chl-a (mg/m3). There are
a total of 500 NO3 and 678 Chl-a stations. The red/blue colors denote R9km has lower/higher errors than G1deg.
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R9km-NB, G1deg, and G1deg-OLD are 1.08, 1.26, 1.09, and 1.33 psu, respectively, indicating that the errors
in salinity profiles are mainly caused by sea-ice processes and ocean mixing schemes rather than by model
resolution. Here we do not see large errors caused by cross-shelf mixing in the coarse resolution model
cases as was the case for NO3, because the salinity differences between shelf and basin are much smaller
than those of NO3. The averaged profiles show a SCM for all cases except for G1deg-OLD in 2005, though all
simulated profiles are too high in magnitude in both years. Among the total 92 profiles for the 2 years, the
percentage of profiles with SCM for R9km, R9km-NB (98 and 90%) are much closer to the observations
(95%) than G1deg and G1deg-OLD (79 and 52%). The RMSE of vertically averaged Chl-a in R9km, R9km-NB,
G1deg, and G1deg-OLD are 0.28, 0.37, 0.35, and 0.32 mg/m3, respectively. Here, for the three cases R9km-
NB, G1deg, and G1deg-OLD, the lower salinity RMSE does not correspond to lower Chl-a RMSE in the Can-
ada Basin, suggesting that the vertical profiles of Chl-a are controlled by more complicated multifactors
than salinity. Overall, R9km shows less RMSE in salinity and Chl-a, and a higher skill in reproducing SCM
than the other cases.

4. Discussion

Higher spatial resolution, and improved ocean and sea-ice processes are expected to jointly enhance model
performance, as demonstrated in this study with the validations of both regional and global model

Figure 15. Ship measurement stations in August (a) 2005 and (b) 2006. Model comparison of averaged profiles of (c)
salinity and (d) Chl-a for 2005, (e) salinity and (f) Chl-a for 2006.
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simulations. Since Popova et al. (2012) already identified the mostly positive model bias of Arctic Ocean
nutrient concentrations and possible causes due to modeled MLD bias, we decided to test the following
methods that improve simulated Arctic Ocean MLD: (1) a lower Arctic background mixing coefficient sug-
gested by Zhang and Steele (2007), (2) subgrid scale brine rejection schemes applied in the Massachusetts
Institute of Technology general circulation model (MITgcm) by Nguyen et al. (2009), and (3) in CESM by Jin
et al. (2012a). The latter also includes the lower Arctic background mixing coefficient reported by Zhang
and Steele (2007). The Jin et al. (2012b) scheme showed significant improvement in MLD after it was imple-
mented in the high-resolution physical RASM, and was the most relevant ocean model process for the cor-
rection of MLD bias in the Arctic Ocean. Therefore, R9km-NB was selected in this study as a reference case
for investigating the effects of improved ocean model processes on biogeochemistry. The five sea-ice pro-
cesses and ice ocean coupling time listed in Table 2 were developed individually and each improved the
physical CICE. These processes were implemented into CICE after the Popova et al. (2012) study. They collec-
tively improved the simulation of Arctic Ocean MLD, possibly through improved ice-ocean momentum
stress, heat and salt fluxes, snow depth, ice thickness and thus penetrating light reaching the ocean surface,
etc. All are important factors for calculation of vertical mixing in K-Profile Parameterization (KPP, Large et al.,
1997). More detailed dynamic mechanisms may deserve further studies. G1deg-OLD was also selected as a
reference case in this study for investigating the collective effects of improved sea-ice model processes
(Table 1) on Arctic marine and sea-ice biogeochemistry. Indeed, the comparison results confirm that the
subgrid scale brine rejection scheme and the new ice processes are beneficial not only to the physical
ocean and ice model results, but also to the Arctic Ocean biogeochemistry. Therefore, we suggest including
these new processes in climate models.

Most of the model validation in this study is in ice covered areas, and thus significant model improve-
ments are seen in sea surface salinity as well as MLD, but are not or less evident in sea surface tempera-
ture which is close to freezing levels with much less variability. Modeled nutrient concentrations are
improved mainly due to improved vertical mixing and also partly due to improved horizontal mixing
where large NO3 gradients exist between the shelf and the basin, such as for the Canada Basin. Improve-
ments in simulated nutrient concentrations do not necessarily translate into improved simulation of Chl-a
or PP, especially in the Arctic Basin, where phytoplankton growth under sea-ice cover is strongly limited
by light.

The observational data used for model validation in this study are limited to a few regions, mostly to the
Pacific Arctic Ocean (Bering, Chukchi, Beaufort Seas, and Canada Basin), and less so to the Eurasian Basin,
Fram Strait, and Barents Sea, while there are no or few data available from the Russian shelf seas (East Sibe-
rian, Laptev, and Kara Seas). The spatial distribution of the model improvements in MLD and NO3 are most
evident in the Canada Basin, while a less consistent spatial distribution, with mixed improved and nonim-
proved stations, is seen in the shallow shelf seas, e.g., Chukchi, Beaufort, and Barents Seas. Model improve-
ments for NO3 and MLD in the Eurasian Basin are not clear because there are few data available and the
MLDs are deeper and more affected by North Atlantic water intrusions than those in the Canada Basin.
Additional in situ data are needed from the Eurasian Basin and the Russian shelf seas for further validation
of the effects on the biogeochemical responses from enhanced model spatial resolution and improved
physical processes.

It is best to compare 3D biological models with time series data and large-scale spatial patterns when such
data are available because biological variables, such as NO3 and Chl-a, are usually highly variable in time
and space. Using RMSE as a metric for model skill does not provide a means to evaluate whether the mod-
eled large-scale spatial patterns are reasonable, but it is a useful metric to detect if most of the variables in
one model case are consistently improved over other case(s) (e.g., salinity, NO3 and Chl-a improvement for
R9km in Table 3), especially when observations were made at different times and locations, for example,
along a ship cruise track. Although fast ice is not simulated by CICE, we used observations on the fast ice for
comparison in Figure 5, because this was the only time series available to us having biophysical observa-
tions at a fixed location that include a full ice algal spring bloom cycle as well as coincident snow depth and
ice thickness measurements. The comparison shows that modeled snow depth, ice thickness, and nutrient
environment as well as the timing and magnitude of an ice algal bloom are reasonably simulated. It is
important to develop sea-ice models with fast ice (ice without motion, e.g., stuck with land or anchored to
sea floor) simulation ability.
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5. Summary and Conclusions

The RASM model has been designed to serve as a testbed for future high-resolution and high fidelity cli-
mate models in the Arctic Region. One of the key goals is to help understand and reduce model biases
inherent in coarser resolution models. Sea-ice algal and pelagic ecosystem modules were incorporated into
the RASM physical model framework for the first time in this study. Forced ice-ocean simulations in the
pan-Arctic region show promising improvements in the higher-resolution simulations over the coarser reso-
lution global one, which could be expected since the physical processes, e.g., mixing and transport, were
improved in the higher resolution RASM configurations. It is important to note that besides increasing
model resolution, improvements in the model representations of ice and ocean physical processes are also
very important for improving model fidelity.

The four forced ice-ocean simulations representing different resolutions and schemes for new ice and ocean
processes were validated over the Bering Sea and Arctic Ocean with various observational data, e.g., sea-ice
extent and thickness, ice algae, ocean temperature, salinity, MLD, NO3, and Chl-a. The sea-ice extent and
thickness in R9km are improved over all other cases, especially over G1deg and G1deg-OLD, indicating
higher resolution and new ice processes are important for the fidelity of sea-ice simulation. The simulated
ice algal biomass in the higher-resolution regional grid cases show closer agreement with observations in
the peak bloom period in the Chukchi Sea than the coarser resolution global grid cases. The modeled spa-
tial variations of ice algal biomass in the Bering Sea matched well with observations for most of the stations
for all cases, except for a few stations with larger discrepancies for the coarse resolution global grid cases.
The salinity profiles for R9km compared better with observations in the Bering Sea shelf, leading to lower
RMSE of NO3 and MLD, which are critical for the improved simulation of ocean mixing of nutrients and Chl-
a in the BGC model.

The positive MLD biases in the Arctic Ocean have been identified as the key cause for the excessively high
surface nutrients (Popova et al., 2012) and a missing SCM (Steiner et al., 2016) in the Canada Basin. Here, by
comparing four model cases, R9km, R9km-NB, G1deg, and G1deg-OLD, we found that the MLD biases were
mainly caused by deficiencies in the ocean vertical mixing scheme shown by R9km-NB, and some model
schemes representing sea-ice dynamics and thermodynamics shown by G1deg-OLD. The coarse resolution
(G1deg versus R9km) contributed a relatively smaller portion to the MLD biases than the other two causes.

The modeled NO3 biases in the Arctic Basin were found to be caused by both model biases in MLD and the
coarse horizontal resolution grid that introduced excessive horizontal mixing of high sea surface NO3 across
the Chukchi Sea shelf break into the Beaufort Sea. Due to the large NO3 gradients between the Chukchi Sea
shelves and the Arctic Basin, the coarse resolution contributed even more to the NO3 biases than the MLD
biases, as seen in the comparison of MLD and NO3 between R9km-NB and G1deg (Figures 10c, d and 11c,
d). Improved vertical and horizontal mixing will be an asset to all biogeochemical simulations in the Arctic
Ocean. Furthermore, additional in situ data from the Eurasian Basin and the Russian shelf seas will greatly
benefit validation of biogeochemical simulations in those regions.

In regions with sharp bathymetric gradients (e.g., shelf break in the Gulf of Alaska, Bering Sea, and Beaufort
Sea), the simulated PP distribution in the higher resolution cases retained the sharp gradient corresponding
to the bathymetric features. The NO3 concentrations in R9km are significantly improved over G1deg in the
Canada Basin, but simulated Chl-a did not show a corresponding improvement in this region, due to light lim-
itation persisting as the dominant factor controlling primary production under sea-ice cover in the current cli-
mate regime. Therefore, improvements of simulation of ocean stratification, light transmission
parameterization, and sea-ice processes, which can affect snow depth, ice thickness, and light penetration, are
all critical for better simulation of the primary production in the Arctic Ocean. Overall, higher resolution and
improved schemes for the new sea-ice and ocean processes in the R9km model improved the physical model
fidelity and hence the biogeochemical simulation in the Arctic Ocean, including mean states and variability.
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