
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1997

A Taxonomy for Networked Environments

Macedonia, Michael R.; Zyda, Michael J.
IEEE

Macedonia, Michael R., and Michael J. Zyda. "A taxonomy for networked virtual
environments." IEEE multimedia 4.1 (1997): 48-56.
http://hdl.handle.net/10945/62183

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

We discuss virtual
environments in the
context of how to
distribute network
communications,
views, data, and
processes while
emphasizing those
aspects critical to
scaling
environments.
Systems that demand
strong data
consistency, causality,
and reliable
communications
while supporting
real-time interaction
are not likely to scale
very well.
Furthermore,
geographically
dispersed systems
require high-speed,
multicast
communication.

I
n this article we discuss what to consider
when building large-scale virtual environ-
ments. This frame of reference provides a
common understanding of distributed VE

systems’ many components. Currently, there are
relatively few examples of academic VE systems in
which to apply the framework. Several practical
factors have limited research into large-scale dis-
tributed virtual worlds. For example, immature
network technology has relegated most distributed
VEs to Ethernet local area networks (LANs). Large-
scale VEs will need to use wide area networks
(WANs) to expand both their geographical scope
and number of participating hosts. Furthermore,
until recently, real-time graphics performance was
confined to specialized and very expensive com-
puter image generators. Software development and
graphics databases have also progressed slowly,
and the interfaces for immersing the human into
the environment have been primitive at best.

These problems are being overcome to a limited
degree by high-speed inter-networks; low-cost, off-
the-shelf graphics workstations; and standard
graphics tools and libraries. Moreover, distributed
VEs hold promise for new educational, training,
entertainment, and medical applications. For
instance, more than 20 companies, including
Microsoft, are developing 3D computer gaming

networks. However, many challenges remain that
would appear trivial if these applications were not
distributed across a variety of networks.

Taxonomy
Virtual environments mimic many aspects of

operating systems. For example, the Human
Interface Technology Laboratory’s now-defunct
system, Virtual Environment Operating Shell
(VEOS), provided much of a distributed operating
system’s functionality with programming lan-
guage services. However, we are primarily con-
cerned with a single application and not a
general-purpose computing environment.
Therefore, the most important questions about VE
software architectures we address here are

❚ What is distributed?

❚ What are the modalities of the distribution?

❚ Why is it distributed?

Network communication
Several network communication aspects are

largely responsible for answering the three ques-
tions above. Figure 1 shows the primary dimen-
sions for VEs—bandwidth, latency, distribution
schemes, and reliability.

Bandwidth. We pay particular attention to the
effect of bandwidth in this article because the avail-
able network bandwidth determines a VE’s size and
richness. As the number of participants increases,
so do the bandwidth requirements. On local area
networks, this has not proved a major issue because
technologies such as standard Ethernet (10 Mbps)
are relatively inexpensive and the number of users
for LAN-based VEs limited. In contrast, for wide
area networks, bandwidths have generally been
limited to T1 (1.5 Mbps), but the potential user
base is much larger through the Internet.

However, networks are now becoming fast
enough to be true extensions to the computer’s
backplane and to develop distributed VR applica-
tions. Distributed VR can require enormous band-
width to support multiple users, video, audio, and
the exchange of 3D graphics primitives and mod-
els in real time. Moreover, the data mix requires
new protocols and techniques to handle data
appropriately over a network link. The technolo-
gies providing these gains in performance blur the
traditional distinction between local area and wide
area networks.

48 1070-986X/97/$10.00 © 1997 IEEE

A Taxonomy for
Networked
Virtual
Environments

Michael R. Macedonia
Fraunhofer Center for Research in Computer Graphics

Michael J. Zyda
Naval Postgraduate School

Immersive Telepresence

..

There is also a convergence between networks
that traditionally carried only voice and video over
point-to-point links (circuit-switching) and those
that handle packet-switched data. The actual num-
ber of VEs to take advantage of these high-speed
networks has been small and associated with Grand
Challenge (high-performance computing) prob-
lems. The Multidimensional Applications and Giga-
bit Internetwork Consortium (Magic) network is a
gigabit-per-second ATM network that connects
Minneapolis, Minnesota; Sioux Falls, South Dako-
ta; Lawrence, Kansas; and Ft. Leavenworth, Kansas.
Magic (http://www.ai.sri.com:80/magic) allows a
military commander to see 3D photorealistic com-
puter-generated images of a very large interest area
in real time, both from ground level and from the
air, using data stored in a remote database. These
images can be generated from elevation data (digital
elevation maps), aerial photographs, building mod-
els, and vehicle models whose positions are updat-
ed in real time via the Global Positioning System.
For example, a terrain database of Germany viewed
on a workstation in Kansas receives images from
California texture-mapped onto the terrain in real
time. The network provides trunk speeds of 2.4
Gbps and access speeds of 622 Mbps, allowing an
application to use a supercomputer (CM-5) to
process data from a database at a second location
and display the results on a workstation at a third
location. The NASA Computational Aerosciences
Project plans to use high-speed networks to support
visualization of large computational fluid dynam-
ics data sets by distributing processing onto several
supercomputers across the United States. Gigabit
networks will move supercomputer-generated actu-
al geometries to remote graphics workstations for
rendering. Similarly, the Electronic Visualization
Laboratory at the University of Illinois has used a
combination of Ethernet, Fiber Distributed Data
Interface (FDDI), and High-Performance Parallel
Interface (HiPPI) networks to develop a distributed
VE application. The operator navigates through the
VE using a CAVE (Cave Automatic Virtual Environ-
ment, a system that projects images on three walls
or a hemicube for simulating “walkthroughs”), con-
nected to Silicon Graphics workstations for render-
ing and control, which in turn connect to a CM-5
for actual simulation.1

Distribution. Some distribution schemes scale
better than others. Figure 2 shows three such
methods. Multicast services allow arbitrarily sized
groups to communicate on a network via a single
transmission by the source. Multicast provides

one-to-many and many-
to-many delivery ser-
vices for applications
such as teleconferenc-
ing and distributed sim-
ulation needing to
communicate with sev-
eral other hosts simul-
taneously. For example,
a multicast teleconfer-
ence lets a host send
voice and video simul-
taneously to a set of
(but not necessarily all)
locations. With broad-
cast, data is sent to all
hosts, while unicast or
point-to-point estab-
lishes communication between two hosts.

Most distributed VEs employ some broadcast
form—hardware-based, the Internet Protocol (IP),
or point-to-point communications. For example,
the MR Toolkit Peer Package, which creates dis-
tributed virtual reality applications over the
Internet, originally used unicast for communica-
tions among the applications.2 Unicast is also the
general approach for Grand Challenge applications
like Magic. The NASA project discussed above is
another example where the network logically
serves as a part of the visualization system, in a
manner analogous to traditional image generators.

However, these schemes prove bandwidth inef-
ficient for large groups. Furthermore, broadcast,
which is used in SimNet—an early military
Simulator Network developed by Bolt, Beranek,
Newman (BBN) and Delta Graphics—and in most
military Distributed Interactive Simulation (DIS)
implementations, does not suit inter-networks
because the network becomes flooded with
unwanted traffic and cannot easily avoid routing
loops. Moreover, IP broadcast requires that all
hosts examine a packet even if the information is
not intended for that host. This incurs a major per-
formance penalty for that host because it must
interrupt operations to perform this task at the
operating system level. (SimNet uses the Ethernet’s

49

Jan
uary-M

arch
 1997

• Distribution
 Broadcast, multicast, or unicast
• Latency
 Lag, jitter
• Reliability
 Acknowledgements, negative acknowledgements
• Bandwidth

Figure 1. Network

communication issues

for VEs.

Network

A

CB D

Network

Broadcast

Network

A

CB D

Unicast

Multicast

A

CB D

Figure 2. Examples of

communication

distribution methods—

broadcast, multicast,

and unicast.

.

hardware multicast capability, but only to create a
single multicast group for the entire distributed
simulation.) Point-to-point requires establishing a
connection or path from each node to every other
node in the network for a total of n(n − 1)/2 virtu-
al connections in a group (see Figure 3). For exam-
ple, with a 1,000-member group, each of the 1,000
individual hosts would have to separately address
and send 999 identical packets.

Some researchers have proposed different ideas
for using multicast to support VEs. Partitioning vir-
tual worlds into spaces is a common metaphor for
VEs. MERL, a Mitsubishi Electric Research Lab,
developed the innovative Spline VE architecture.
Spline uses multicast peer-to-peer communication.
It also incorporates a region-based filtering
scheme. These regions or “locales” partition the

VE, while “beacons” provide entity updates about
other objects in the VE.3 MERL has implemented
a prototype VE called Diamond Park using the
Spline architecture (Figure 4).

Multiuser Dungeons (MUDs) have used the idea
of spatialization. The Jupiter from Xerox PARC
extended the concept to associating “rooms” with
multicast video and audio teleconferences (ftp://
ftp.parc.xerox.com/pub/MOO/papers/MUDsGrow
Up.ps). Also at Xerox, Schilit and Theimer4 devel-
oped an active map service that publishes object
locations in a region using dynamic multicast
groups associated with different region parts. For
example, the system can track persons in a build-
ing by using active badges. Using multicast for
updates reduces aggregate message traffic.

Benford described a concept for the spatial
interaction of objects in a large-scale VE.5 The spa-
tial model uses different awareness levels between
objects based on their relative distance and medi-
ated through a negotiation mechanism. The
Swedish Institute of Computer Science’s Distrib-
uted Interactive Virtual Environment (DIVE)—an
advanced experimental VE—implements this con-
cept using “standard VR collision detection” to
determine when transitions between awareness
levels should occur.6

Others have suggested using multicast for DIS,
but very few have actually conducted extensive
research or implemented VEs using multicast com-
munications. The Stanford Research Institute rec-
ommended multicast in an early 1990 white paper
and it has been recommended for the IEEE 1278
standards group.

Van Hook at the MIT Lincoln Laboratories pro-
posed using a grid-filtering combination to reduce
the computational requirement of object filtering,
an O(n2) operation.7 Van Hook also suggested on-
demand forwarding, in which entities would send
a low-rate broadcast with terse state information.
Each receiver would compute a range check and
send state data to the visible entities. However,
object-filtering and on-demand forwarding essen-
tially establish a multicast group for every receiv-
er. For example, in Figure 5, Entity 1 and 2 join
each other’s multicast groups. Entity 3 lies outside
the range of 1 and 2 and therefore is a member of
only its own group.

Until 1994, the DIS community resisted using
IP Multicast because of the Defense Advanced
Research Projects Agency’s (Darpa) support for
other network technologies, the lack of software
architectures and algorithms that could exploit it,
and limited hardware support. IP Multicast’s sta-

50

IE
EE

 M
ul

ti
M

ed
ia

Player

Player Player

Player

Player Player

Figure 3. Point-to-point

or mesh distributed

model.

Figure 4. Spline-based

MERL Diamond Park

virtual environment.

Im
ag

e
co

ur
te

sy
 o

f M
ER

L.

.

tus in the DIS world has changed. It is now part of
the standard. Moreover, Pullen and others have
suggested a two-level architecture using IP
Multicast mapping to ATM multicast facilities.8

Latency. Another communication dimension,
latency, controls the VE’s interactive and dynam-
ic nature—how well the players mesh in behavior.
For a distributed environment to emulate the real
world, it must operate in real time in terms of
human perception. A key challenge is that the
appropriate systems involving human operators
must deliver packets with minimal latency and
generate textured 3D graphics at 30 to 60 Hz to
guarantee the illusion of reality. On top of this,
introducing player communication services
requires real-time audio, video, and imagery.

Latency poses a problem for network cue corre-
lation. Both the delay of an individual cue (such
as seeing an object move) and the variation in the
length of the delay are important, particularly in
closely coupled tasks that require a high degree of
correlation (for example, flying in formation). This
becomes a major challenge in systems that use
wide area networks because of delays induced by
long paths, switches, and routers. Network laten-
cy can be reduced to a certain extent by using ded-
icated links (or virtual ones using protocols like the
Reservation Protocol), improvements in router and
switching technologies, faster interfaces, and faster
computers.

However, more bandwidth is not necessarily a
complete solution. Operating at gigabit speeds pre-
sents a new set of problems. New methods for han-
dling congestion are required because of the high
ratio of propagation time to cell transmission time.
By the time a computer in New York sends a mes-
sage telling a host in San Francisco to stop sending
data, it is too late to have stopped a gigabit worth
of information from being transmitted.

The bottlenecks will most likely occur in the
network interfaces, memory architectures, and
operating systems of the computers on either end.
The slow progress in increasing the FDDI’s inter-
face performance exemplifies the lag in technolo-
gies we will probably see as high-speed networks
are fully deployed. Nor have memory speeds kept
up with the leaps made in CPU and network per-
formance. At the operating system level, most VR
applications build upon commercial Unix versions
not designed for real-time performance.

Other methods ameliorate latency effects. BBN
developed dead-reckoning techniques for SimNet,
which reduces a network’s communications loads

and perceived delays
because of predictive
modeling by the local
host.9 Briefly, a local
entity passes state vec-
tors to remote simula-
tions. Both the local
and remote simulations
model the entity’s prob-
able path. The local
entity sends update
state vectors when its
current location or ori-
entation exceeds some
predetermined error
threshold from the modeled path. Singhal pro-
posed a new dead-reckoning method that exploits
position history.10

However, lag time can never be totally elimi-
nated for widely distributed VE environments (for
example, Earth to Mars). Therefore, we must use
techniques such as synthetic fixtures, providing
force and visual clues to operators in limited
domains about that environment.11

Reliability. Finally, communications reliabili-
ty often forces a compromise between bandwidth
and latency. Reliability means that systems can
logically assume that data sent is always received
correctly, thus obviating the need to periodically
resend the information. Unfortunately, to guaran-
tee delivery, the underlying network architecture
must use acknowledgment and error recovery
schemes, which can introduce large amounts of
delay—common in WANs and large distributed
systems. Additionally, some transport protocols
such as the Transport Control Protocol (TCP) use
congestion control mechanisms unsuitable for
real-time traffic—they throttle back the packet rate
upon detecting congestion.

Real-time, reliable multicast protocols are cur-
rently not practical for large groups because guar-
anteeing that a packet is properly received by every
host in the group requires an acknowledgment and
retransmission scheme. With a large distributed
simulation, reliability, as provided in TCP, would
penalize real-time performance merely by main-
taining timers for each host’s acknowledgment and
by holding up flow when a packet is lost for
retransmission. Flow control introduces delays to
the network to reduce congestion. Therefore, it is
also not appropriate for DIS, which can recover
from a lost packet more gracefully than from late
arrivals—it is impossible for real-time simulations

51

Jan
uary-M

arch
 1997

Multicast Group 1

Entity 1
Multicast Group 2

Entity 2
Multicast Group 3

Entity 3

Figure 5. Multicast

groups resulting from

object-based filtering.

.

to go backward in time. For example, when a pack-
et is lost, the receiving host notifies the sender, pos-
sibly—due to propagation and network processing
delay—invalidating a number of packets already
sent. The sender must retrieve a copy of the lost
packet and retransmit it. This also affects the win-
dowing behavior, which in turn slows throughput.

However, researchers are trying to develop a
reliable and scalable multicast service. The ISIS sys-
tem, developed by Ken Birman, uses a reliable mul-
ticast service to guarantee that VE databases are
accurately and synchronously replicated.6 (A

recent version of ISIS
implements a reliable
transport layer on top
of IP Multicast.)

Whetten and Kap-
lan developed the Reli-
able Multicast Protocol
(RMP), based on a
token ring protocol
that sits atop IP Multi-
cast (http://www.mlds.
com, http://research.
ivv.nasa.gov/projects/
RMP/). This method
uses sequencing and

negative acknowledgments (Nacks). The problem
with this method is the potential for Nack implo-
sions over the Internet, in which a group of
receivers simultaneously send Nacks, adding to
congestion and consequently causing the loss of
more packets, introducing more Nacks. Again, reli-
able systems are not likely to operate in real time.

Netrek, an Internet multiplayer game that uses
X Window system graphics, uses different degrees
of reliability to gain better real-time performance.
(Mark Pullen of George Mason University suggest-
ed a similar concept for DIS called the Selective
Reliability Transport Protocol.) Previous game ver-
sions used TCP. New versions have a protocol that

❚ guarantees the reliability of certain packets with
TCP—such as error conditions and session
setup—and information sent infrequently
(server message of the day);

❚ does not guarantee reliability for frequent and
noncritical data such as player state (speed,
direction);

❚ allows switching on demand from TCP to UDP
(User Datagram Protocol)/TCP and back; and

❚ won’t hang or cause abnormal termination if a
UDP packet is lost.

Views
Views are windows into the VE from a person’s

or processes’ perspective. We define two useful
views for distributed environments: synchronous
and asynchronous. An example synchronous view
is in a distributed flight simulator, where one
machine controls the forward image and two
other hosts each process the left and right cockpit
window perspectives. The images are coordinated
to give the illusion that they are all part of a single
cockpit view.

Synchronism demands both high reliability and
low latency. Therefore, VEs requiring synchronous
views are restricted to high-speed, local networks.
An example of such an environment is the Raven
simulator developed by Southwest Research
Institute for NASA. It synchronizes shuttle astro-
naut viewpoints and renders them on different
machines to improve rendering performance. The
CAVE uses a similar approach to synchronize each
image frame projected on a hemicube’s screen. It
also synchronizes the simulation run separately on
a CM-5. Originally, this was done using a ScramNet
(proprietary fiber optic, shared memory LAN).
Later, it was accomplished using multiple raster
managers on a Silicon Graphics Reality Engine
Onyx and shared memory.

Synchronous views are also important for com-
puter-aided design and systems used for concur-
rent engineering. The Fraunhofer Institute for
Computer Graphics developed Coconut, a virtual

52

Figure 6. A shared 3D

CAD viewer from

Coconut.

Im
ag

e
co

ur
te

sy
 o

f F
ra

un
ho

fe
r I

ns
tit

ut
e

fo
r C

om
pu

te
r G

ra
ph

ic
s

Ghost ships in wire frame
(controlled by other player
updates and dead reckoning)

Live ship (controlled by
this player)

Player X's view

Player Y has a different
"live" ship than player X

Player Y's view

Figure 7. Two views of a

simulation from the

local and remote

perspective.

.

prototyping environment that implements a
shared 3D CAD viewer (Figure 6).12 The VE demon-
strates the ability of engineering teams to work
globally via the Fraunhofer Transatlantic Research
and Development Environment (Trade).

In the paradigm of the asynchronous view,
multiple users have individual control over when
and what they can see concurrently in the VE
(Figure 7). Participants can be physically separat-
ed over a LAN or a WAN. Their awareness of each
other’s presence, if they are represented by an
object, is brought about inside the VE. The Naval
Postgraduate School’s VE, NPSNet, supports the
DIS protocol and uses the asynchronous model
where each view is a simulated entity (http://www.
cs.nps.navy.mil/research/npsnet). Views not asso-
ciated with an entity are often referred to as
“magic carpets” or “stealth” vehicles (Figure 8).
Stealth entities just “listen” to the distributed
world traffic because the world does not need to
have knowledge of the viewer. Large-scale VEs will
use asynchronous views because they are more
cost efficient than WANs. Synchronous views will
be important for small VEs requiring precise coop-
erative object manipulation and device communi-
cations distributed over LANs.

Data
Perhaps the most difficult decision in building a

distributed environment is determining where to
put the data relevant to the state of the virtual
world and its objects. These decisions affect the VE
data’s scale, communication requirements, and
reliability. For example, a real-time system
demanding strong consistency will be inherently
difficult to scale because it requires causality and
automaticity. For now, at least, large VEs only
allow weak consistency among group members.
There are many conceivable ways of distributing
persistent or semi-persistent data (see Figure 9).
Here we present some of the methods most preva-
lent in current VEs.

Replicated homogeneous world. A common
method for large VEs is to initialize the state of
every system participating in the distributed envi-
ronment with a homogeneous world database
containing information about the terrain, model
geometry, textures, and behavior of everything
represented in the VE. Object state changes such
as vehicle location or events such as the detona-
tion of a simulated missile or collisions between
two objects are communicated among all envi-
ronment users. The advantage of this approach is

that messages remain
relatively small. The
disadvantages are, it is
relatively inflexible and
as VE content increases,
so must everyone’s
database. Moreover,
over time, the world
becomes inconsistent among the participants
through the loss of state and event messages. This
is the model for SimNet. However, once a simula-
tion begins, each host maintains its own database
without making any effort at guaranteeing consis-
tency except through the use of “heartbeat” mes-
sages and event updates.

Shared, centralized databases. On the other
hand, the Virtual Space Teleconferencing System
(Vistel) uses a shared world database.13 As its name
implies, Vistel is a teleconferencing system that
displays 3D models of each conference participant.
Changes in a model’s shape, reflecting changes in
a person’s facial expression, are sent via messages
to a central server and redistributed. Only one user
at a time can modify the database (see Figure 10,
next page).

MUDs use this model, although they employ rel-
atively primitive clients. Text-based MUDs use TCP
connections to a central server that does almost all
the computation and maintains the virtual world’s
state. For text communication, this typically scales
to about 50 concurrent users who “move” about
among rooms, create and delete new objects or
actions, and communicate with each other.
LamdaMoo from Xerox Palo Alto Research Center
is probably the most advanced MUD (ftp://ftp.
parc.xerox.com/pub/MOO/papers/MUDsGrowUp.
ps). Using a centralized server for 3D virtual worlds
obviously limits participants to a few because of I/O

53

Jan
uary-M

arch
 1997

Figure 8. NPSNet’s

asynchronous view of

“stealth” vehicles.

Im
ag

e
co

ur
te

sy
 o

f M
ic

ha
el

 Z
yd

a,
 N

av
al

 P
os

tg
ra

du
at

e
Sc

ho
ol

• Replicated homogeneous world database
 SimNet
• Shared, centralized
 Vistel
• Shared, distributed, peer-to-peer
 DIVE
• Shared, distributed, client-server
 BrickNet

Figure 9. Distributed

data models for VEs.

.

contention and the dif-
ficulty of maintaining a
dynamic object data-
base in real time. The
I/O problem afflicts
Netrek, which scales to
about 18 players with
UDP and uses an asym-
metric communications
model. The data in
Figure 11 from J. Mark
Noworolski shows how
the server becomes the
bottleneck because it

must retransmit all other players’ state to each
client. In this case, communication from individual
clients reaches only 168 bps. The server, however,
must take every client message and redistribute it to
all the other clients with a required order of magni-
tude increase in bandwidth.

Shared, distributed databases with peer-to-
peer updates. Many distributed systems strive to
simulate shared memory architectures. For exam-
ple, DIVE has a homogeneous, fully replicated,
distributed database. However, unlike SimNet, the

entire database is
dynamic and uses reli-
able multicast protocols
to actively replicate new
objects. A disadvantage
with this approach is
the difficulty of scaling
up because of the com-
munications costs asso-
ciated with maintaining

reliability and consistent data across WANs. Mod-
eling complex or dense objects, such as construct-
ing a large CAD model or changing a terrain
database, is very expensive (though highly desir-
able) in terms of the number of polygons that
might be created, changed, and communicated
over a network. VEs that use Linda, the parallel pro-
gramming language, also trade performance for a
relatively simple blackboard programming model.
For example, Amselem14 developed a VE using
Linda with an unusual hand-held interface—a
portable LCD television with a space tracker for VE
navigation. The multiuser system’s lackluster per-
formance limited its use to three participants. Lin-
da’s simplicity and illusion of shared memory also
contributed to the system’s poor performance. Data
must reside somewhere. In this case, it was on a cen-
tral server.

Shared, distributed, client-server databases.
Another technique uses a variant of the client-
server model in which the database is partitioned
among clients and a central server mediates com-
munication. In WorldNet, as an entity moves
through the VE, an object-request broker on a
server that has knowledge of which client main-
tains that part of the world updates WorldNet’s
database.15 WorldNet is more appropriate for large
CAD or game environments because it tackles the
walkthrough problem of a VE that has huge num-
bers of component models and provides multiple
views simultaneously to user groups. However, in
a dynamic large-scale world, the servers can quick-
ly become I/O bottlenecks, increasing the VE’s
inherent latency.

In a similar approach to WorldNet and DIVE,
the Model, Architecture, and System for Spatial
Interaction in Virtual Environments16 (Massive)
system uses a spatial model for data partitioning
among clients. In this case, an entity declares its
world to a local “aura” manager, which in turn
informs other aura collision managers. These man-
agers broker between objects by detecting proxi-
mal collisions and informing each peer entity’s
mutual interface references. Pure client-server sys-
tems that strictly use classic remote procedure calls
(RPCs) do not scale well for a number of reasons.
RPCs are poorly suited for high-speed networks
because communication depends on sending a
message and waiting for a reply. As relative net-
work delays increase, RPCs become expensive.

Processes
Distributing processes to multiple hosts increas-

es a simulation’s aggregate computing power. We
can use this not only to distribute views but also
to handle different input devices. SimNet and its
descendants, such as DIS-compliant systems, use
aggregate computing power by taking advantage
of dead-reckoning to reduce the need for network
communication.

With the exception of the DIS model, practical-
ly all distributed environments assume that similar
processes run on each host that has the same
function (although architectures may differ). The
advantage of this approach is consistency. The dis-
advantage is inflexibility. The DIS protocol lets dif-
ferent developers create different simulations on
different machines that theoretically can share in
the same VE because they can communicate at some
common level. Unfortunately, no protocol is com-
plete, including DIS. For example, new objects can-
not be introduced without a change in the standard.

54

IE
EE

 M
ul

ti
M

ed
ia

Player

Player Player

Player

Player Player

Database

Figure 10. A centralized

database model.

Server -> Client network usage:
Maximum CPS during normal play: 3,588 bps
Standard deviation: 918
Total bytes received 1,795,888, average CPS: 803.0

Client -> Server network usage:
Maximum CPS out during normal play: 168 bps
Standard deviation out: 21
Total bytes sent 20,580, average CPS: 18.0

Figure 11. Server versus

client communication

in Netrek.

.

The Aviary system has homogenous processes
but contains object servers, which permits migra-
tion of lightweight objects to enable load balanc-
ing. These objects represent the entities and
processes that control them. DIVE uses process
groups from ISIS to partition the VE into rooms or
spatial regions. The MR Toolkit distributes process-
es that support different VE components, such as
input devices.2 It provides an interpreted language,
the Object Modeling Language (OML) that allows
platform independence for developing VEs. OML
specifies a VE entity’s behavior and geometry. Sim-
ilarly, WorldNet uses a language called Starship.
WorldNet objects can share or transfer behaviors
specified in Starship. These behaviors are either
environmentally dependent, reactive, or capabili-
ty based.

Other more general-purpose scripting lan-
guages use active messaging to migrate processes
and objects across diverse platforms. Sun’s Java is
the primary example of this class. A byte-
compiled, interpretive language, similar to C++,
Java melds to the World Wide Web’s client-server
architecture. Java also supports peer IP Multicast
communication and, in the future, a host of multi-
media components.

The Virtual Reality Modeling Language (VRML)
is a language for describing multi-participant inter-
active simulations—virtual worlds networked via
the global Internet and hyperlinked with the
World Wide Web (http://www.eit.com/vrml/
vrmlspec.html). VRML describes 3D scenes and
methods for interacting with models. Though
VRML 2.0 lets Java provide object behaviors,
VRML itself does not provide a mechanism for
communication among distributed users.

Telescript is an interpreted language specifical-
ly designed for communication. It provides prim-
itives that allow the script to suspend, migrate to
another network node, and resume execution
from the same point. The key idea is procedural
messaging. With Telescript, write agents are sent
around the network to accomplish the tasks you
want. Instead of having a client dealing with a
server by sending messages back and forth, you
build an agent and send it where the server resides.
The agent is smart enough to interact with the
server and returns the required information to the
sender. This reduces bandwidth consumption and
lets users build agents that seek information on
our behalf.

In a distributed VE, clients can be homoge-
neous, as in DIVE. Clients can also be dissimilar
except for the communications protocols among

them, providing interoperability (for example, DIS
and SimNet, which exchange standard state and
event data). Furthermore, processes can migrate
across homogeneous architectures like Aviary.
New scripting languages like Safe-Tcl offer the
opportunity for migrating processes across hetero-
geneous systems, therefore efficiently exchanging
object behaviors as well as entity states within
large, heterogenous VEs.

Summary
We have discussed VEs in the context of how

communications, views, data, and processes are
distributed. We have not exhausted all the consid-
erations for developing VEs but have emphasized
those aspects critical to scaling environments. Most
of the systems described here scale to accommo-
date a handful of users. We also know that systems
that demand strong data consistency, causality,
and reliable communications, and at the same time
need to support real-time interaction, are not like-
ly to scale well. Geographically dispersed systems
require high-speed, multicast communication.
Replicated world databases are more communica-
tion efficient than centralized or distributed shared
database schemes. However, they generally lack a
way to maintain world consistency—a problem
with unreliable transport mechanisms like UDP.
They also cannot update the VE with new objects
or behaviors. However, large VEs could use a mixed
model—client initialization with small replicated
data sets and a distributed client-server model. This
would allow more data consistency and persistence
if a mechanism or heuristic is used to reduce trans-
fer latency.

We believe that the current trend toward a pure
client-server paradigm of the WWW in VEs is a
future dead-end unless we use hybrid architectures
that incorporate peer communications. New lan-
guages like Java and VRML will provide innovative
methods for building virtual worlds. However, the
problem of achieving scalability, reliability, and
real-time interaction simultaneously will likely not
be resolved soon. MM

Acknowledgments
A grateful thanks to Rich Gossweiller for letting

us use his figures (Figures 3, 7, and 10). This work
would not have been possible without the support
of our research sponsors: Darpa, DMSO, USA
Stricom, USA TRAC. A version of this article was
originally presented at the Second IEEE Workshop
on Networked Realities, Boston, Massachusetts, 26-
28 October, 1995.

55

Jan
uary-M

arch
 1997

.

References
1. T.M. Roy et al., “Steering a High Performance

Computing Application from a Virtual Environment,”

Presence, Vol. 4, No. 2, Summer 1995, pp. 110-120.

2. C. Shaw and M. Green, “The MR Toolkit Peers

Package and Experiment,” Proc. VRAIS 93, IEEE Press,

Piscataway, N.J., 1993, pp. 463-469.

3. J.W. Barrus, R.C. Waters, and D.B. Anderson, “Locales

and Beacons: Efficient and Precise Support for Large

Multi-User Virtual Environments,” Proc. VRAIS 96, IEEE

Computer Soc. Press, Los Alamitos, Calif., 1996, pp.

204–213.

4. B.N. Schilit and M.M. Theimer, “Disseminating Active

Map Information to Mobile Hosts,” IEEE Network,

Sept. 1994, pp. 22-32.

5. S. Benford et al., “Managing Mutual Awareness in

Collaborative Virtual Environments,” Proc. VRST 94,

World Scientific Publishing, N.J., 1994, pp. 223-236.

6. C. Carlsson and O. Hagsand, “DIVE—A Multiuser

Virtual Reality System,” Proc. VRAIS 93, IEEE Press,

Piscataway, N.J., 1993, pp. 394-400.

7. D.J. Van Hook and J.O. Calvin, “Approaches to

Relevance Filtering,” 11th DIS Workshop, Inst. For

Simulation and Training, Orlando, Fla., Sept. 1994,

pp. 367-369.

8. M. Pullen, “Dual-Mode Multicast,” DIS

Communications Architecture Subgroup Winter

Workshop, Jan. 1995, http://bacon.gmu.edu/

lsma/publications.html.

9. D. Miller, “Long-Haul Networking of Simulators,”

Proc. Tenth Interservice/Industry Training Systems Conf.,

ADPA, Arlington, Va., 1989, p. 2.

10.S.K. Singhal, “Using a Position History-Based Protocol

for Distributed Object Visualization,”Designing Real-

Time Graphics for Entertainment (Course Notes for

Siggraph 94 Course #14), ACM Press, N.Y., July 1994.

11.C. Sayers and R. Paul, “An Operator Interface for

Teleprogramming Employing Synthetic Fixtures,”

Presence, Vol. 3, No. 4, Winter 1994, pp. 309-320.

12.B.G. Anderson, U. Jasnoch, and H. Joseph,

“Coconut—A Virtual Protoyping Environment,” Com-

puter Graphic Topics, Vol. 8, Mar. 1996, pp. 20-22.

13. J. Ohya et al., “Real-Time Reproduction of 3D Human

Images in Virtual Space Teleconferencing,” Proc.

VRAIS 93, IEEE Press, Piscataway, N.J., 1993, pp. 408-

414.

14.D. Amselem, “A Window on Shared Virtual

Environments,” Presence, Vol. 4, No. 2, Spring 1995,

pp. 140-145.

15.G. Singh, “A Software Toolkit for Network-Based

Virtual Environments,” Presence, Vol. 3, No. 1,

Summer 1994, pp. 19-34.

16.C. Greenhalgh and S. Benford, “Massive, A

Collaborative Virtual Environment for Tele-

Conferencing,” ACM Trans. Computer-Human

Interaction (special issue on Virtual Reality Software

and Technology), Vol. 2, No. 3, 1995, pp. 239-261.

Michael R. Macedonia is vice

president in charge of developing

global work environments for

commerce, government, and edu-

cation at the nonprofit Fraunhofer

Center for Research in Computer

Graphics, in Providence, Rhode Island. He received a BS

from the US Military Academy in 1979, an MS in

telecommunications from the University of Pittsburgh

in 1989, and a PhD in computer science from the Naval

Postgraduate School in 1995. He is a member of the IEEE

Computer Society, IEEE Communications Society, ACM

Siggraph and Sigcomm, Society for Computer

Simulation, and Society of Manufacturing Engineers.

Michael Zyda is a professor and

the Academic Chair in the

Department of Computer Science

at the Naval Postgraduate School,

Monterey, California. He received

a BA in bioengineering from the

University of California, San Diego in 1976, an MS in

computer science/neurocybernetics from the University

of Massachusetts, Amherst in 1978, and a DSc in com-

puter science from Washington University, St. Louis,

Missouri in 1984. His main research focus is in comput-

er graphics, specifically the development of large-scale,

networked 3D virtual environments. Zyda is a member

of the Technical Advisory Board of the Fraunhofer Center

for Research in Computer Graphics, Providence, Rhode

Island.

Contact Macedonia at Fraunhofer Center for Research

in Computer Graphics, 321 S. Main Street, Providence,

RI, 02906, e-mail mmacedon@crcg.edu, Web site

http://www.crcg.edu.

56

IE
EE

 M
ul

ti
M

ed
ia

.

