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ABSTRACT 

 Ballistic impact into a soil target has broad military relevance. Understanding the 

forces during impact is crucial to predicting damage and survivability. This process 

involves several nonlinear physical mechanisms, making it difficult to describe. While 

some existing models of ballistic impact characterize the average response during 

penetration well, these models fail during the initial stages of impact when forces are the 

largest. There currently is no theoretical framework for understanding the forces and 

dynamics during these crucial early stages. 

 In this thesis, we use numerical simulations of intruders impacting granular 

media, coupled with existing experimental data, to understand the forces during the initial 

stages of impact. For slow impacts, forces are independent of speed and set by the weight 

of the intruder. For fast impacts, the impact forces grow as a non-linear power law in the 

impact velocity with exponent 4/3. This scaling depends on the size of the intruder and 

stiffness of the grains, and it is insensitive to gravity, friction, the nonlinear force law 

between grains, and the density of the intruder. We use dimensional analysis to collapse 

all data onto a single curve, providing a first step toward a comprehensive theoretical 

description of this process. 
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I. INTRODUCTION 

This thesis attempts to further the understanding of ballistic impact into granular 

materials by studying the peak force affecting an intruder in the early stages of penetration 

into a granular material. This study includes the analysis of unpublished experimental data 

obtained from a previous research as well as results from extensive discrete element 

method (DEM) simulations. In the present study, we analyze the peak force and time at 

which peak force occurs as a function of intruder size and density, grain stiffness, normal 

and tangential force interaction models, gravity, and spatial dimension of the system. This 

thesis is organized into six chapters: 

1. Chapter I Introduction 

2. Chapter II Background 

3. Chapter III Experimental and Simulations Set-up 

4. Chapter IV Results 

5. Chapter V Analysis 

6. Chapter VI Conclusions 

Chapter II provides a brief overview of past studies on intruder penetration in 

granular material along with a discussion on limitation of current models used to describe 

the dynamics between grains and intruder. Chapter III describes the experiments, 

conducted during previous research, and the DEM simulations from which the data 

analyzed in this study were obtained. Chapter IV and V present and analyze the 

experimental data and simulation results. Conclusions and recommendations for follow-on 

work are given in Chapter VI. 
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II. BACKGROUND 

The physics of impact into a granular material is a ubiquitous phenomenon of great 

significance. Applications include the more obvious asteroid impact and missile defense as 

well as the less obvious, but more commonplace locomotion on sand and dirt. Although 

we do not fully understand the physical properties of granular materials, we have learned 

how to use the most common granular material to build resilient and self-healing defenses 

against projectiles (trenches, sandbags, Hesco bastion) and to give them careful 

considerations when planning amphibious operations and land operations. The relevance 

of granular impact in so many aspects of our lives has made it a popular subject of study 

for several decades [1]. Additionally, recent technological advances, such as high-speed 

cameras and high-performance computing, have made it possible to study the problem from 

a grain-scale perspective.  

Enabled by these advances, Pica Ciamarra recorded and tracked the motions of an 

intruder, depicted in Figure 1, as well as conducted simulation of impacts into granular 

material using the discrete element method (DEM) [2]. He showed that an intruder’s impact 

into a granular material can be broken down into three separate stages (impact, penetration, 

and collapse). Figure 1 depicts the intruder’s progression through the granular material in 

each of those three stages. 

 

Figure 1. Representation of the three stages of an impact 
into a granular material. Source: [2]. 
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Figure 2 depicts the motion dynamics of the intruder throughout the event, with 

each stage, separated by dashed lines, harboring different dynamic behaviors. During the 

impact stage, the projectile rapidly decelerates, and during the penetration stage, the mean 

acceleration is constant. During the collapse stage, the projectile has almost stopped and 

the particles above it are collapsing to fill the gap created by the penetration [2]. To better 

understand what characterizes the force on the intruder during the impact phase—when the 

time-averaged, macroscopic force law models fail to capture the forces affecting the 

intruder—this thesis will specifically focus on classifying what sets the peak forces at 

impact. 

 

Figure 2. Dynamics of an intruder during impact into a granular materiel. 
(a) Depth of the intruder as a function of time, (b) Velocity of the 

intruder, in the y-component (vertical), as a function of time. 
Source: [2]. 

The long and sustained scientific interest in this field gave rise to several models 

able to approximate the dynamics between an intruder and granular material during impact. 

Without a practical way to look at the microscopic grain-grain interactions these models 

are usually conceived using space-time averaged macroscopic force laws and assumptions 
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of relevant physical principles to derive the various terms in its law [3], [4]. The most 

common model, often called the Poncelet model, is valid during the penetration phase of 

the impact process. It can be generalized by the following depth-dependent equation: 

 𝑚𝑚𝑖𝑖 𝑧𝑧�̈�𝚤 =  𝑚𝑚𝑖𝑖 𝑔𝑔 −  𝑓𝑓(𝑧𝑧𝑖𝑖) −  ℎ(𝑧𝑧𝑖𝑖)𝑧𝑧�̇�𝚤2 (1) 

Here, 𝑧𝑧𝑖𝑖 and 𝑚𝑚𝑖𝑖, represent the depth and mass of the intruder, g is gravity, and dots denote 

time derivatives. The functions 𝑓𝑓(𝑧𝑧𝑖𝑖) and ℎ(𝑧𝑧𝑖𝑖)𝑧𝑧�̇�𝚤2 are depth-dependent terms that account 

for the yielding of the material and inertial drag from the material, respectively. Figure 3 

shows how the Poncelet model, Equation (1), captures the time-averaged motion of the 

intruder during the impact. However, we see that rapid fluctuations in time are not entirely 

captured by this model. These fluctuations are particularly large at the moment of impact, 

in agreement with Figure 2. 

 

 

Figure 3. Comparison between a macroscopic force law, Poncelet model 
(black dashed line), recorded force acting on an intruder during 

impact (blue), time averaged recorded force acting on an intruder 
during impact (red). Source: [5]. 

Figure 4 depicts a large collection of impact data, involving intruders of various 

sizes, shapes and aspect ratios, fitted to the Poncelet model, Equation (1) [4]. This figure 

shows that the drag coefficient, ℎ(𝑧𝑧𝑖𝑖), is relatively constant at mid-course, is well described 

by the Poncelet model during the penetration phase. However, at the initial stage, called 

the impact phase in Figure 1, ℎ(𝑧𝑧𝑖𝑖) fluctuates significantly and the Poncelet model diverges 
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from experimental results. We see that ℎ(𝑧𝑧𝑖𝑖) is higher for more blunt intruders and lower 

for pointy intruders. These forces during the very early stages of impact represent the 

largest forces that will be experienced during the entire process, and thus they are most 

important for fracture, survivability, and other failure-related measures. Understanding the 

forces right at the initial stages of impact (including how discrepancies away from a 

constant drag coefficient arise from interactions at the grain scale) is the subject of this 

thesis. 

 

Figure 4. Fit of the drag coefficient ℎ(𝑧𝑧) using experimental data. Blue 
circles represent the circular intruders (blunt), red triangles represent 
ogive intruders of ratio a/b = 3 (pointy) and green triangles represent 

ogive intruders of aspect ratio a/b = 1 (blunt). Source: [4]. 

Capturing images of intruders impacting into 2D beds of photoelastic disks using a 

highspeed camera, Clark was able to see the force interaction at the microscopic level [4], 

[5], [6], [7], [8]. The association between the acoustic activity below the intruder’s edge 

and the magnitude of the forces affecting its course, shown in Figure 5, emphasize that the 

forces in the granular material, which generate the forces back on the intruder, are strongly 

dependent on how force is transmitted from one grain to the next along complex networks 

known as force chains. Clark showed the acoustic activity present at the leading edge of 

the intruder controls the intruder’s motion and the large force fluctuations at short time 

scale [6]. 
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Figure 5. (a) Acoustic activity in a photoelastic granular material 
associated to (c) the granular force response affecting an intruder 

during impact, over time. The force response is approximated as the 
sum of the discreet gradient squared, G2(t), of the (b) depth 

variation of the image intensity as a function of time. Source: [6]. 

At the initial moments of impact, there is a shock that propagates away from the 

intruder. The speed at which this shock propagates follows a nonlinear power-law that 

depends on the details of the nonlinear interactions between grains and the initial velocity 

of the intruder [8]. These relationships are described by the following equations. 

 𝑣𝑣𝑓𝑓
𝑣𝑣𝑏𝑏

∝ �
𝑣𝑣0
𝑣𝑣𝑏𝑏
�
𝛼𝛼−1
𝛼𝛼+1

   
(2) 

 
𝑓𝑓 = 𝐸𝐸∗𝑤𝑤𝑤𝑤 �

𝛿𝛿
𝑤𝑤
�
𝛼𝛼

 
(3) 

Here, 𝑣𝑣𝑓𝑓 is the force propagation speed, 𝑣𝑣𝑏𝑏 is a characteristic sound speed inside a grain, 

𝑣𝑣0 is the speed of the intruder right at impact, 𝐸𝐸∗, 𝑤𝑤 and 𝑤𝑤 are the effective Young’s 

modulus, diameter and thickness of a grain, 𝛿𝛿 is the displacement, and 𝛼𝛼 ≈ 1.4 for the disk-

shaped photoelastic grains used in these studies. The geometry of the grain interaction is 

depicted in Figure 6. 
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Figure 6. Geometry of interaction between grains 

Assuming system boundaries are sufficiently far away, the peak force affecting the 

intruder during impact is limited to a finite number of grains reached by the forces as they 

propagate through the granular medium. Thus, a reasonable assumption might be that the 

nonlinear force law described by Equation (3), which sets the speed and spatial structure 

of shock propagation, might also control the magnitude and time scale of the peak force 

during the early stages of the impact. Thus, varying the grain scale properties in Equations. 

(2) and (3) (e.g., 𝐸𝐸∗,𝑤𝑤,𝛼𝛼, 𝑣𝑣𝑏𝑏) would provide a convenient way to test this hypothesis, which 

we do in this thesis. 

Finally, we note the results from a parallel field of study regarding impacts into 

dense suspensions, where grains are suspended in a Newtonian fluid such as water. 

Waitukaitis and Jaeger [9] investigated impact-activated solidification of dense 

suspensions showing plots of peak force on an intruder and its time of occurrence as a 

function of intruder’s initial velocity. Interestingly, their results (depicted in Figure 7) 

shows how both relationships follow power law relations with approximate slopes 4/3 (for 

peak acceleration) and −2/3 (for time of peak acceleration). As we will show in this thesis, 

these slopes are similar to the case we study here, namely intruders impacting into dry 

granular materials [10]. The apparent agreement between these two cases suggests that this 

power law scaling maybe a universal property for impact into particulate materials.  
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Figure 7. Peak force and time at peak force as a function of intruder initial 
velocity for experiments of an intruder impacting into a dense 

suspension. Source: [9]. 

Waitukaitis [9] suggested the intruder motion in a dense suspension can be solved 

numerically using an added mass model. The model describes the impact between the 

intruder and the dense suspension as an inelastic collision with a mass growing below the 

intruder as it penetrates the suspension, Figure 8. The growing mass causes an upward 

force against the intruder. The rod dynamics are captured by a force balance equation 

 
  (𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑎𝑎) 𝑎𝑎𝑖𝑖 =  −�

𝑤𝑤𝑚𝑚𝑎𝑎

𝑤𝑤𝑑𝑑
� 𝑣𝑣𝑖𝑖 + 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒, 

(4) 

where 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 comes from gravity, 𝐹𝐹𝑔𝑔 =  −𝑚𝑚𝑖𝑖𝑔𝑔, and the buoyant force of the suspension, 𝐹𝐹𝑏𝑏 ≈

1 3⁄ 𝜋𝜋𝜋𝜋𝑔𝑔 (𝑟𝑟𝑖𝑖 + 𝑘𝑘 |𝑧𝑧𝑖𝑖|)2|𝑧𝑧𝑖𝑖| . 𝑎𝑎𝑖𝑖, 𝑣𝑣𝑖𝑖 , 𝑧𝑧𝑖𝑖 are the acceleration, velocity and position of the 

intruder along a vertical axis. The growing mass, 𝑚𝑚𝑎𝑎 is approximated as a mass with a 

cone-like volume that grows proportionally with the velocity of the intruder 𝑚𝑚𝑎𝑎 =

 𝑐𝑐𝜋𝜋𝑔𝑔
1
3

 𝜋𝜋 (𝑅𝑅𝑖𝑖 + 𝐾𝐾|𝑧𝑧𝑖𝑖|)2|𝑧𝑧𝑖𝑖|. 𝑅𝑅𝑖𝑖 is the radius of the intruder and 𝑐𝑐 = 0.37 and 𝐾𝐾 = 12.5 are 

empirical propagation constants.  
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Figure 8. Added mass model as depicted by Waitukaitis [9] 
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III. EXPERIMENTS AND SIMULATIONS SET-UP 

This thesis uses experiments and numerical simulations to study impact into 

granular materials. The experiments, involving intruders impacting 2D beds of photoelastic 

disks, were conducted by Clark in the context of research on nonlinear force propagation 

during granular impact [8]. This earlier paper studied only the force propagation speed and 

spatial structure. Here, we reuse the results of the same experiments, but focus instead on 

the intruder trajectories, from which we can extract the force on the intruder as a function 

of time. We also use custom DEM simulations to isolate key parameters and study their 

effects on the peak force affecting the intruder and the time of its occurrence.  

A. EXPERIMENTAL TECHNIQUES 

These experiments were carried out using the protocol described in Refs. [6] and 

[8]. Since these experiments were conducted by a different team, for a different research 

goal, the techniques used will not be described in detail. In summary, the experiments 

dropped thin circular metal intruders into 10,000 thin photoelastic disks sandwiched 

between two thick Plexiglass sheets, as shown in Figure 9. The density of the intruder was 

varied using bronze and aluminum as its composition material, its size varied between 

diameters of 6.35 cm, 10.16 cm, 12.7 cm and 20.32 cm, and its speed varied between 0.0 ≤

 𝑣𝑣0 ≤ 6.6 m/s. The stiffness of the photoelastic disks was varied by using three different 

photoelastic materials, cut into disks of size 0.6 cm and 0.9 cm. 
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Figure 9. Bronze intruder impacting into a 2D photoelastic granular 
material. Experimental device built by Clark to investigate the 

microscopic grain-grain interactions controlling the forces affecting 
the intruder throughout its trajectory. The intruder is dropped from 
various heights translating into specific intruder impact velocities. 

Adapted from  [6], [8]. 

The motion of the intruder and spatial structure of forces within the bed were 

captured using a high-speed camera; images of the results are shown in Figure 10. From 

these experiments we obtained the position, velocity, and acceleration of the intruder as a 

function of time, as well as the photoelastic signal from the grains, which is roughly 

proportional to the force. Through a review of the spatial structure of the forces we can 

confirm that at the time peak force is reached, the root like force networks did not reach 

the boundaries of the system. Since there was no influence from the boundaries, the force 

affecting the intruder at the time of peak force originate entirely from the granular material. 
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Figure 10. Sequential images of an intruder impacting into a 2D 
photoelastic granular material. Source: [6]. 

B. DEM SIMULATIONS 

To compare with the results of these experiments, we ran simulations of intruders 

impacting into a granular material composed of 10,000 grains using the protocol described 

in Ref. [7]. An example from the simulation is shown in Figure 11. The simulations used 

dimensionless intruder and particle parameters similar to the experiments. To prevent the 

formation of ordered lattices in the bed we used equal numbers of large and small grains, 

with diameters 𝑤𝑤 and 1.4𝑤𝑤, where the grain mass is proportional to its diameter squared. 

We added an element of randomness to the simulations by creating five randomly 

generated granular beds for each set of parameters simulated. Each granular bed used a 

different seed for our random number generator and the results shown in this paper are the 

ensemble averages of those simulations. The intruder diameter was varied between 5𝑤𝑤, 

10𝑤𝑤 and 15𝑤𝑤, and its density was varied between 1 and 4 times the grain density. The 

velocity of the intruder at contact was varied over four orders of magnitude. Gravity was 

varied by a factor of 4. To study the influence of grain-grain interactions on the peak force 

affecting the intruder and the time of its occurrence we ran simulations with linear and 

nonlinear normal force interactions, as well as frictionless and frictional tangential force 

interactions using various grain stiffness. We also ran 2-dimensional and 3-dimensional 

simulations to study the effect of changing the spatial dimension. 
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Figure 11. Example image of a simulation of an intruder impacting a 2D 
granular material. Red gradient represents an increased pressure. 

The normal force interaction between the grain is computed using a damped spring force 

equation, 

 𝐹𝐹𝑖𝑖,𝑗𝑗𝑛𝑛 =  �𝑘𝑘𝑛𝑛𝑥𝑥𝛼𝛼 −  𝛾𝛾𝑛𝑛𝑚𝑚 𝑣𝑣𝑖𝑖,𝑗𝑗�𝑛𝑛, (5) 

where 𝑘𝑘𝑛𝑛 is the spring stiffness constant related to the material property of the particles, 𝑥𝑥 

is the relative displacement between the particles, 𝑚𝑚 is the reduced mass between particle 

i and j, 𝑣𝑣𝑖𝑖,𝑗𝑗 is the relative velocity between particle i and j and 𝑛𝑛 is the unitary vector 

pointing along the center-to-center distance between the two grains in contact. 𝛼𝛼 is the 

Hertz coefficient. We set 𝛼𝛼 = 1 to simulate linear interactions between particles 𝛼𝛼 = 3/2  

for nonlinear (Hertzian) interactions [11]. The damping term 𝛾𝛾𝑛𝑛 𝑚𝑚 𝑣𝑣𝑖𝑖,𝑗𝑗 removes energy 

during collisions, and it is related to the restitution coefficient 𝑒𝑒𝑛𝑛 via  𝛾𝛾𝑛𝑛 =  −2 𝑙𝑙𝑛𝑛 𝑒𝑒𝑛𝑛
𝜏𝜏𝑐𝑐

. We 

set 𝑒𝑒𝑛𝑛  =  0.2, and ignore any velocity dependence. Figure 12 depicts the normal force 

interactions between two particles colliding in this model. 
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Figure 12. Two particles colliding using a damped spring model 

When friction is enabled, the tangential force interaction between the grains is 

treated using a Cundall-Strack model [12] 

 𝐹𝐹𝑖𝑖,𝑗𝑗𝑒𝑒 =  −𝑠𝑠𝑔𝑔𝑛𝑛(𝜉𝜉𝑒𝑒) 𝑚𝑚𝑚𝑚𝑛𝑛�𝑘𝑘𝑒𝑒|𝜉𝜉𝑒𝑒|,𝜇𝜇𝐹𝐹𝑖𝑖,𝑗𝑗𝑛𝑛 �. (6) 

Here, 𝜉𝜉𝑒𝑒 =  ∫ 𝑣𝑣𝑒𝑒𝑤𝑤𝑑𝑑
𝑒𝑒
𝑒𝑒0

 is the elongation of an imaginary tangential spring with 𝑑𝑑0 the 

time at which the particles touch each other and 𝑣𝑣𝑒𝑒 the relative tangential velocity of the 

contact point between two grains. 𝑘𝑘𝑒𝑒 is the stiffness of the tangential spring and 𝜇𝜇 is the 

coefficient of friction. For our simulations, we set 𝜇𝜇 = 0.3 and 𝑘𝑘𝑒𝑒  = 𝑘𝑘𝑛𝑛 3⁄  . Figure 13 

depicts the tangential force interaction between two particles in this model. 

 

Figure 13. Two particles shearing using a Cundall-Strack model 
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The simulations use Newton’s second law of motion to resolve the forces applied 

on the intruder and on each grain at every timestep, 

 
𝑚𝑚𝑖𝑖

𝑤𝑤2𝑟𝑟𝑖𝑖
𝑤𝑤𝑑𝑑2

=  𝐹𝐹𝑖𝑖,𝑗𝑗𝑛𝑛 +  𝐹𝐹𝑖𝑖,𝑗𝑗𝑒𝑒 + 𝑚𝑚𝑖𝑖𝑔𝑔 
(7) 

Rotational motion is described by 

 𝐼𝐼𝑖𝑖
𝑑𝑑𝜔𝜔𝑖𝑖
𝑑𝑑𝑒𝑒

=  −1
2
𝑤𝑤𝑖𝑖𝑛𝑛 × 𝐹𝐹𝑖𝑖,𝑗𝑗𝑒𝑒 , (8) 

where 𝑟𝑟𝑖𝑖, 𝐼𝐼𝑖𝑖 ,𝜔𝜔𝑖𝑖,𝑤𝑤𝑖𝑖 are the position, moment of inertia, angular velocity and diameter of the 

intruder, respectively. 

The velocity and position of every particle is obtained by integrating the equations 

of motion with a velocity Verlet algorithm [13].  

 𝑟𝑟𝑖𝑖(𝑑𝑑 + 𝛥𝛥𝑑𝑑) = 𝑟𝑟𝑖𝑖(𝑑𝑑) + 𝑣𝑣𝑖𝑖(𝑑𝑑)𝛥𝛥𝑑𝑑 +
1
2
𝑎𝑎𝑖𝑖(𝑑𝑑) 𝛥𝛥𝑑𝑑2 (9) 

 𝑣𝑣𝑖𝑖(𝑑𝑑 + 𝛥𝛥𝑑𝑑) = 𝑣𝑣𝑖𝑖(𝑑𝑑) +
1
2

(𝑎𝑎𝑖𝑖(𝑑𝑑) + 𝑎𝑎𝑖𝑖(𝑑𝑑 + 𝛥𝛥𝑑𝑑)) 𝛥𝛥𝑑𝑑 (10) 

In this case, a velocity Verlet integration provides a good approximation without 

sacrificing too much performance when compared to other popular integration algorithms 

(Euler, Runge Kutta). 

The system has wrapped periodic boundaries along the horizontal axis and solid 

boundaries along the vertical axis. Although our simulation uses relatively simple 

equations, it must verify whether or not every particle in the system collides with every 

another at each timestep. This process cannot be vectorized and must be repeated for every 

particle in the system. Figure 14 demonstrates how particle 1 is compared with particles 2, 

3, 4 and 5 to evaluate the forces affecting its trajectory. Since the distance between the 

centers of particles 1 and 2 is shorter than the sum of their radius, particle 1 is in contact 

with particle 2. The distances between the center of particle 1 and the centers of particles 

3, 4 and 5 are greater than the sum of their radius, therefor none of these particle touches 

particle 1.  
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Figure 14. Verification of a particle colliding with every particle in a system 

Using this contact detection algorithm, the performance of the simulation scales 

𝑂𝑂(𝑁𝑁2), where 𝑁𝑁 is the number of particles in the system. To ensure the peak force is not 

influenced by forces reflected or transferred by the boundaries, we found a system of 

approximately 10,000 particles is necessary. We also ran simulations with less particles 

(1000, 2000, 4000) to confirm that system size did not influence our results. We are 

satisfied this is the case; however, the peak force affecting the intruders with higher initial 

kinetic energy were heavily influenced by the boundaries. To properly analyze all the 

possible parameters affecting the peak force (gravity, particle stiffness, intruder velocity, 

intruder size, intruder density, grain-grain interactions, degrees of freedom) we require 

over 10,000 simulations, which would take weeks, if not months, on the cluster computer, 

using the current MATLAB code. 

Three steps were taken to optimize the memory footprint and performance of the 

simulations. First, we converted the existing MATLAB code to C++, which runs 

significantly faster with a lower memory footprint. Second, we converted from procedural 

code to object-oriented code to improve its efficiency. Although the conversion to object-

oriented does not automatically improve performance, treating particles as objects greatly 

simplifies the use of more abstract patterns, such as linked list, hash tables and sparse 
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matrices, which enables systemic enhancements to increase the overall efficiency. Figure 

15 shows the overall structure of the object-oriented program. Conversion to object-

oriented code also hides the underlying complexity of the DEM algorithms from the user, 

making the code easier to maintain and upgrade. 

 

Figure 15. Object-oriented structure of the simulation code 

Lastly, we improved the detection collision algorithm by limiting the number of 

particles being verified to those within a certain range. Figure 16 shows how this was 

achieved using a cell list algorithm [14] where each particle is assigned a cell based 

on its coordinates. Like our previous algorithm, the program iterates through every particle 

in the system; however, it only verifies if a collision occurs for particles contained in 

adjacent cells. Using a cell list contact detection algorithm, the performance of the 

simulation now scales as 𝑂𝑂(𝑁𝑁 log𝑁𝑁), drastically improving performance for systems sized 

above 1000 particles. 
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Figure 16. Verification of a particle colliding with its immediate neighbors 
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IV. RESULTS 

The raw data collected from the experiments and simulations consist of the forces 

affecting the intruder and the trajectory of the intruder as a function of time, including its 

velocity and position. Figure 17 shows the result obtained from a single DEM simulation 

of an intruder of diameter 15 and density 8 impacting into a granular material at velocity 

12.8. The force from the granular bed acting on the intruder quickly climb to a peak and 

gradually decreases to a magnitude equivalent to the force of gravity acting on the intruder. 

The object of this thesis is to understand the peak force exerted by the grains onto 

the intruder throughout the event. The second peak observed on the force curve is 

representative of a force being reflected by the bottom and sides boundaries of the bed. The 

system was scaled in size and the restitution coefficient tuned to prevent any ambiguity 

between the force originating from a direct impact into the grains and this reflected force. 

The results of more than 10,000 simulations were extracted and processed, using 

MATLAB, to capture the peak force, the time of its occurrence and the initial parameters 

of interest associated with that particular experiment or simulation (intruder diameter, 

density and velocity at impact, grain stiffness, friction coefficient, gravity constant, type of 

model used for grain-grain interaction, number of dimensions).  

 

Figure 17. Dynamic of an intruder during its course in a granular material. 
Simulation data. Dimensionless unit 
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A. EXPERIMENTAL DATA 

Using the experimental data, we plot the peak force over the range of intruder initial 

velocities. Panel (a) of Figure 18 shows the peak force experienced by the intruder as a 

function of its initial velocity for different intruder sizes; panel (b) of the figure shows the 

time of the peak force, also as a function of the initial velocity and for multiple shapes and 

sizes.  

From the plateau, we see that for slow intruder speeds the magnitude of the peak 

forces exerted onto the intruder is independent of speed and is set by the weight of the 

intruder. The force of gravity on the intruder, by size, is 0.65N, 1.63N, 2.54N and 6.5N for 

the bronze intruder and 0.78N for the aluminum intruder. For fast intruder speeds, the peak 

forces grow as a non-linear power law scaling with the impact velocity 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 ∝ 𝑣𝑣0
4 3⁄   in 

contrast with the Poncelet model which scales the force with 𝐹𝐹 ∝ 𝑣𝑣02. Changes in intruder 

size and density result in quantitative offsets of the power law with the heavier intruders 

translating into an increase in the peak force. Variations in particle stiffness appears to have 

little to no effect on the magnitude of the peak force.  

Panel (b) of Figure 18 shows that the time at peak force follows a power law 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 ∝

𝑣𝑣0
−2 3⁄  where the heavier intruders and softer particles take more time to reach peak force. 
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(a)  

(b)  

Figure 18. Peak force and time of occurrence as a function of intruder 
initial velocity. Experimental data 

B. SIMULATION RESULTS 

We used DEM simulations to isolate key parameters and demonstrate their effects 

on the magnitude and time of occurrence of the peak force. To assert the validity of our 

simulation we first compared the magnitude of the peak force obtained with the simulations 

with those from the experiments. The results of the simulations are shown in Figure 19 

using the same format as the experimental results shown in Figure 18. From the figure we 

see the simulations provide curves that match closely the experiments on a logarithmic 
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scale, with the same non-linear scaling along 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 ∝ 𝑣𝑣0
4 3⁄  and 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 ∝ 𝑣𝑣0

−2 3⁄   as well as 

similar offsets due to intruder size.  

More interestingly, this plot includes all variants of the grain-grain force laws used 

in our simulations (e.g., linear versus nonlinear springs, frictional versus nonfrictional 

interactions), and the strong agreement between live experiments and simulations is not 

limited to simulations with Hertzian frictional grain interactions. Simulations involving 

frictionless and linear grain interactions give essentially the same result. The extended 

range of intruder’s initial velocities used for the simulations highlights the plateau obtained 

for 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 in the live experiments and unveil a change in the behavior of the 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 relation 

for lower speeds. At very slow intruder initial speed, 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 remains constant along a plateau 

strongly affected by the intruder’s density and size.  

 (a)  

(b)  

Figure 19. Peak force and time of occurrence as a function of intruder 
initial velocity. Simulation data. Dimensionless units. 
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We confirmed that for the plateau obtained in 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 and 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 the intruder is being 

accelerated by the force of gravity to a specific speed, beyond 𝑣𝑣0 and highly dependent on 

its mass, before being slowed down to a stop by the material. Figure 20 shows how those 

plateau are highly dependent on the weight of the intruder. The mechanism that allow 

lighter, slow-moving intruders to reach higher peak force relative to their weight is 

unknown at this time.  

 

Figure 20. Peak force as a function of intruder weight for velocities below 
non-linear regime 

1. Grain-Grain Interactions 

To verify that Hertzian and linear interactions give the same result, we compare the 

peak force and its time of occurrence as a function of intruder’s initial velocity between 

simulations with Hertzian interactions and simulations with linear interactions. Figure 21 

illustrate how, although Hertzian interactions may have a slight impact on the shape of the 

power laws, it is insignificant compared to the phenomenon that scales the peak force along 

a slope of 4/3. The insensitivity to the type of interaction between grains depicted in the 

relation between 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 and 𝑣𝑣0 reaffirm the fact that Hertzian interactions between grains is 

not what sets the peak forces. 
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(a)  

(b)  

Figure 21. Peak force and time at peak force as a function of intruder initial 
velocity. Hertzian (smaller icons) vs linear interactions. 

Dimensionless units. 

Next, we compare the peak force as a function of intruder’s initial velocity between 

simulations with frictional and frictionless interactions. Figure 22 shows that, other than a 

slight offset, friction does not play a role in the magnitude of the peak force or the time of 

its occurrence. 
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(a)   

(b)  

Figure 22. Peak force and time at peak force as a function of intruder initial 
velocity. Frictional vs frictionless interactions. Dimensionless units. 

2. Intruder and Grains Parameters 

Since Hertzian interactions and frictional interactions are not contributing to the 

peak force we compare the peak force for various intruder size and densities, using only 

frictionless linear interactions. Figure 23 shows that the contribution of the intruder density 
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to the peak force is insignificant, but the intruder’s size does significantly offset the 

magnitude and time of occurrence of the peak force. Changes in size appear to scale the 

peak force linearly and does not appear to affect the 4/3 slope of the peak force at higher 

speed. We also see that the 𝑑𝑑max(𝑣𝑣0) relationship retain a slope of -2/3 for all intruder.  

(a)  

(b)  

Figure 23. Peak force and time at peak force as a function of intruder initial 
velocity. Intruder density and size. Dimensionless units. 
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Figure 24 shows that the peak force appears to become independent of the value of 

intruder density for large densities. 

 

Figure 24. Peak force as a function of intruder density 

Next we compare the peak force and its time of occurrence as a function of 

intruder’s initial velocity while varying the grain’s spring constant using linear interactions. 

According to Figure 25, the spring constant may play an important role in controlling the 

time of occurrence of the peak force and significantly offset the magnitude of the peak 

force. The fact that variations in grain stiffness result in a change in the -2/3 slope of the 

𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒(𝑣𝑣0) relationship suggesting that the relaxation time of the granular material may be 

an important component of the process leading to our peak force but does not entirely 

govern its magnitude. 
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(a)  

(b)  

Figure 25. Peak force and time at peak force as a function of intruder initial 
velocity. Grain stiffness. Dimensionless units. 

In Figure 26 we evaluate the effect of gravity over the same process. Gravity does 

not play a role at all at higher speeds. The fact that it does significantly affects the plateau 

in both relations adds to the validity that these plateau may be linked to the acceleration 

from gravity affecting the intruder as it slowly settles into the material at low impact speed. 
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(a)  

(b)  

Figure 26. Peak force and time at peak force as a function of intruder initial 
velocity. Gravity. Dimensionless units. 

3. Spatial Dimensions 

Running 3D simulations with linear frictionless grain interactions, we looked at 

how adding an extra spatial dimension affects peak force and time at peak force. Figure 27 

shows how the results obtained from the 3D simulations are also similar to results from the 
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experiments and the 2D simulations. We find plateau at low velocity that transitions to 

non-linear power laws of slope 4/3, in the case of the peak force, and slope -2/3 for the 

time at peak force.  

(a)  

(b)  

Figure 27. Peak force and time at peak force as a function of intruder initial 
velocity. 3D simulations. Dimensionless units. 
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4. Cluster of Grains Parameters 

By selecting only grains that experienced a change in acceleration greater than 

0.01% of their initial acceleration from the start of the simulation to the time at peak force 

we captured data on the cluster of grains influenced by the intruder. The data includes an 

extensive range of physical variables that are related to the systems parameter (i.e., 

potential energy, kinetic energy, momentum, average number of contacts between grain, 

mass, force, compression overlap, speed of the front, growth rate and distance traveled by 

the cluster).  

 

Figure 28. Example of a grain cluster influenced by the intruder.  
Color indicates a normalized magnitude of the particle’s velocity 
pointing along a specific axis. Red indicates a negative velocity 

in the z component, green is a positive velocity in the z component 
and blue is the absolute value of the x component. The junction 

between white grains and colored grain represent the 
force front propagating outwards 

Of the 53 variables tracked, three are worth mentioning as their scaling behavior 

follows non-linear power laws and could contribute to the non-linear scaling of 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 and 

𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒. The first variable, the total mass of the cluster, scales along 𝑀𝑀𝑐𝑐 ∝  𝑣𝑣0
−2 3⁄  similar to 

the relation 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒(𝑣𝑣0). The second variable the propagation radius of the force wave below 

the intruder scales along 𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑒𝑒 ∝  𝑣𝑣0
−1 3⁄ . This scaling is tied to the cluster mass as the 
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mass grows like a half circle with 𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑒𝑒 representing its radius. The third variable, the 

average speed in the 𝑧𝑧 component (vertical) of grains included in that cluster, scales along 

𝑣𝑣𝑎𝑎𝑎𝑎𝑔𝑔 ∝  𝑣𝑣0
4 3⁄  similar to the relation 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒(𝑣𝑣0). The scaling of the average speed of the 

grains contained in the mass suggest the peak force might be the result of how much mass 

is being accelerated at a given speed; therefore the added mass model proposed by 

Waitukaitis [9] could be contributing to the peak force of an impact into a granular material. 

 

(a) (b)  

(c)  

Figure 29. Non-linear scaling of the cluster’s mass, Mc, and the average 
speed, vavg, in the vertical component of all grains in that cluster as 

a function of the intruder’s initial velocity 
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V. ANALYSIS 

A. PEAK FORCE 

We perform a dimensional analysis using Buckingham’s Pi theorem [15] to obtain 

the relationship between the variables contributing to the peak force, 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒, and the time at 

peak force, 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒. The theorem states the solution to a problem involving 𝑛𝑛 variables over 

𝑘𝑘 primary dimensions (e.g., time, length and mass) can be reduced to a physical equation 

involving a set of 𝑛𝑛 –  𝑘𝑘 dimensionless parameters. 

We showed that gravity, Hertzian interactions, friction, and number of spatial, 

dimensions had little to no effect on the magnitude of the peak force. We therefore assume 

for our dimensional analysis that the peak force is entirely determined by the diameter (𝐷𝐷𝑔𝑔), 

density (𝜋𝜋𝑔𝑔) and stiffness (𝐾𝐾) of the grains, the diameter (𝐷𝐷𝑖𝑖), density (𝜋𝜋𝑖𝑖) and initial 

velocity (𝑣𝑣0) of the intruder. If our assumption is valid, we should find a solution to the 

magnitude of the peak force of the form 

 𝑓𝑓�𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 ,𝐷𝐷𝑔𝑔,𝜋𝜋𝑔𝑔,𝐾𝐾,𝐷𝐷𝑖𝑖 ,𝜋𝜋𝑖𝑖 , 𝑣𝑣0� = 0. (11) 

Using Buckingham’s Pi theorem, we subtract the 3 dimensions (time, length and 

mass) and obtain the following 4 dimensionless parameters, which Buckingham refers to 

as Pi groups, 

 
𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝐷𝐷𝑔𝑔𝐾𝐾
,  𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑖𝑖

𝐷𝐷𝑔𝑔
,  𝜋𝜋𝑖𝑖 = 𝜌𝜌𝑖𝑖

𝜌𝜌𝑔𝑔
  and  𝑣𝑣0 = 𝑣𝑣0�

𝜌𝜌𝑔𝑔
𝐾𝐾

. 
(12) 

This gives us a dimensionless solution of the form 

 
𝑓𝑓 �

𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒
𝐷𝐷𝑔𝑔𝐾𝐾

,
𝐷𝐷𝑖𝑖
𝐷𝐷𝑔𝑔

,
𝜋𝜋𝑖𝑖
𝜋𝜋𝑔𝑔

, 𝑣𝑣0�
𝜋𝜋𝑔𝑔
𝐾𝐾
� = 0 →  

𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒
𝐷𝐷𝑔𝑔𝐾𝐾

= 𝑓𝑓′ �
𝐷𝐷𝑖𝑖
𝐷𝐷𝑔𝑔

,
𝜋𝜋𝑖𝑖
𝜋𝜋𝑔𝑔

, 𝑣𝑣0�
𝜋𝜋𝑔𝑔
𝐾𝐾
�. 

(13) 

Experimenting with these parameters we obtain a satisfying collapse of our data 

scaling along a power law of slope 4/3 using the relation  𝐹𝐹
�𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝚤𝚤���

 as a function of 𝑣𝑣0; this 

result is shown in Figure 30. 
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Figure 30. Dimensionless solution for the magnitude of the peak force 

B. TIME AT PEAK FORCE 

Going through the same exercise for 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 we should find a solution for the time at 

which peak force occurs of the form 

 𝑓𝑓�𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 ,𝐷𝐷𝑔𝑔,𝜋𝜋𝑔𝑔,𝐾𝐾,𝐷𝐷𝑖𝑖 ,𝜋𝜋𝑖𝑖 , 𝑣𝑣0� = 0, (14) 

with the following 4 dimensionless parameters 

 
𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 = 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 �

𝐾𝐾
𝑀𝑀𝑔𝑔

 ,  𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑖𝑖
𝐷𝐷𝑔𝑔

,  𝜋𝜋𝑖𝑖 = 𝜌𝜌𝑖𝑖
𝜌𝜌𝑔𝑔

  and  𝑣𝑣0 = 𝑣𝑣0�
𝜌𝜌𝑔𝑔
𝐾𝐾

, 
(15) 

to find a dimensionless solution of the form 

 
𝑓𝑓 �𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 �

𝐾𝐾
𝑀𝑀𝑔𝑔

 ,
𝐷𝐷𝑖𝑖
𝐷𝐷𝑔𝑔

,
𝜋𝜋𝑖𝑖
𝜋𝜋𝑔𝑔

, 𝑣𝑣0�
𝜋𝜋𝑔𝑔
𝐾𝐾
� = 0 →  𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 �

𝐾𝐾
𝑀𝑀𝑔𝑔

 = 𝑓𝑓′ �
𝐷𝐷𝑖𝑖
𝐷𝐷𝑔𝑔

,
𝜋𝜋𝑖𝑖
𝜋𝜋𝑔𝑔

, 𝑣𝑣0�
𝜋𝜋𝑔𝑔
𝐾𝐾
�. 

(16) 

Experimenting with these parameters we obtain a satisfying collapse of our data 

scaling along a power law of slope -2/3 using the relation  𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝑖𝑖

 as a function of  𝑣𝑣0; this 

result is shown in Figure 31. 
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Figure 31. Dimensionless solution for the time at peak force 

C. NUMERICAL SOLUTION TO THE ADDED MASS MODEL 

Having determined the contribution of each parameter to the peak force and the 

time of the peak force, we find the non-linear scaling of 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒(𝑣𝑣0) and 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒(𝑣𝑣0) are not 

significantly affected by any parameters except the speed and physical size of the intruder 

as well as the stiffness and mass density of the grains. To get more insight on those non-

linear scaling we turn to Waitukaitis’ proposed added mass model that explains the process 

controlling the intruder’s dynamics during an impact in a dense suspension [9]. Figure 32 

shows how well the peak force he obtained from experiments matches the results from 

even the most basic 3D linear frictionless simulations.  
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(a)  

(b)  

Figure 32. Peak force and time at peak force comparison between impact 
into dense suspension (vibrant colored dots) and dry granular 

material. 𝜂𝜂 is the viscosity of the liquid and 𝜙𝜙 is the packing fraction 
of the granular material 

We reproduced Waitukaitis’s numerical solution, described in the second chapter 

of this paper, to evaluate how his model applies to the peak force and the time at peak force 

for impacts into a granular material. Figure 33 shows the curves resulting from the 
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integration of equation (4) using MATLAB with the same solution parameters described 

in ref [9]. These curves show a behavior similar to the dynamics of an intruder impacting 

in a dry granular material displayed previously in Figure 2. 

 

Figure 33. Dynamic of an intruder impacting in a dense suspension. 
numerical solution for an intruder of density 6400 kg

m3  

After extracting the peak acceleration and time at peak acceleration from the curves 

obtained, we analyzed their scaling along the initial velocity of the intruder. Figure 34 

shows the peak acceleration of the intruder scaling along a power law of slope 2 and the 

time at peak acceleration scaling along a power law of slope -1. Although the dynamics of 

the intruder shown at Figure 33 do seem to match fairly well the overall dynamics of 

Waitukaitis live experiment, they do not agree with the peak acceleration he recorded at 

ref [9] and they do not agree with our scaling of 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 ∝ 𝑣𝑣0
4 3⁄   and 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 ∝ 𝑣𝑣0

−2 3⁄ . The 

numerical solution also scales the peak acceleration linearly with the intruder’s density, 

when experiments and simulations demonstrate that this scaling trends towards a plateau 

for high 𝜌𝜌𝑖𝑖
𝜌𝜌𝑔𝑔

 ratios. 
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(a) (b)    

Figure 34. Peak acceleration and time at peak force of an intruder 
impacting in a dense suspension. Numerical solution based on 

intruder’s speed. 

Figure 35 shows results of Waitukaitis added mass numerical solutions modified to 

account for the geometry and speed of the force propagating in the material (𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑒𝑒) when 

calculating the added mass. The panel (a) and (b) of the figure use a model where the 

propagation grows as a half sphere at a rate equivalent to the bulk sound speed in the 

material, 𝑚𝑚𝑎𝑎 =  𝜋𝜋𝑔𝑔
1
2
4
3
𝜋𝜋 (𝑣𝑣𝑏𝑏 𝑑𝑑 )3. Since this model has the mass growing at a linear rate, 

𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒  scales also linearly with the initial speed of the intruder, and 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 remains constant 

throughout. We saw earlier that 𝑧𝑧𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑒𝑒 ∝  𝑣𝑣0
1 3⁄ . Panel (c) of Figure 35 shows how, when 

we modify the added mass model to account for 𝑚𝑚𝑎𝑎 dependence on 𝑣𝑣0, 𝑚𝑚𝑎𝑎 =

 𝜋𝜋𝑔𝑔
1
2
4
3
𝜋𝜋 ��𝑎𝑎0

𝑎𝑎𝑏𝑏
�
1 3⁄

 𝑣𝑣𝑏𝑏𝑑𝑑�
3

, we obtain a scaling for 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 that agrees with our experiments 

and simulations 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 ∝ 𝑣𝑣0
4 3⁄ . Panel (d) shows, however, 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 scaling along 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 ∝ 𝑣𝑣0

−1 3⁄ . 

These results suggest that future work on the added mass model could result in an improved 

model able to capture more accurately the power law scaling we have demonstrated in this 

thesis. Figure 36 depicts a modified added mass model where the mass grows at a none 

linear rate after the intruder’s impact with the granular material.  
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(a)   (b)  

(c) (d)  

Figure 35. Peak acceleration and time at peak force of an intruder 
impacting in a dense suspension. (a) and (b) are from numerical 

solution based on bulk sound speed of the material, (c) and (d) are 
based on intruder’s speed and bulk sound speed of the material  
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Figure 36. Adjusted added mass model 
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VI. CONCLUSIONS 

The main objective of this thesis was to understand what characterize the forces 

during the initial stages of impact in a granular material. We accomplished our objective 

using experimental and DEM simulated data to classify what sets the peak forces at impact. 

We then performed a dimensional analysis to obtain the relationship between the variables 

contributing to the peak force, 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒, and the time at peak force, 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒. 

For slow impacts, forces are independent of speed and are set by the weight of the 

intruder. For fast impacts, the peak forces grow as a non-linear power law in the impact 

velocity with exponent 4/3 and the time at peak force scales as a non-linear power law in 

the impact velocity with exponent -2/3. These scaling depend qualitatively on the velocity 

of the intruder and they depend quantitatively on the size of the intruder and the relaxation 

time of the granular material 𝑑𝑑𝑓𝑓𝑒𝑒𝑙𝑙𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒𝑖𝑖𝑓𝑓𝑛𝑛 = �𝑚𝑚
𝐸𝐸∗

  [16], where m is the mass of a grain and 

𝐸𝐸∗ the effective Young’s modulus of the granular material. 𝐹𝐹𝑚𝑚𝑎𝑎𝑒𝑒 and 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 are insensitive 

to gravity, friction, the nonlinear force law between grains, and the density of the intruder.  

We also showed that, in its current form, the numerical solution to the added mass 

model proposed by Waitukaitis [9] does not return the expected scaling behavior for the 

peak force and time at peak force. However, with future work, the numerical solution may 

be modified so that the added mass model more accurately capture the forces affecting the 

intruder during the early stage of impact.  
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