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Advancing the Use of an Analytical Hierarchy
Process and Improved Random Indexes for
Making Prioritized Decisions in Systems

Brian Connett , Member, IEEE, Bryan M. O’Halloran, and Anthony G. Pollman

Abstract—In the early stages of the systems engineering process,
an important focus is to create an understanding of the stakeholder
needs. This is primarily done to prepare the system specification
that forms the basis for the system’s design. By extension, example
steps in this process include surveying stakeholders to better cap-
ture their intent, deriving and documenting requirements, and then
using those requirements for subsequent activities, such as develop-
ing a functional baseline and candidate design alternatives. During
this process, it is important to consider the full system lifecycle.
As such, one major objective of a systems engineer is to translate
the stakeholder’s needs into functional and nonfunctional require-
ments (NFRs). Despite this important role, early system designs are
often faulty because important NFRs are poorly prioritized or not
prioritized at all. While the prioritization of all requirements can be
useful, this work focuses specifically on NFRs. It has been identified
that the inability to identify the most useful NFRs can lead to system
failure. Furthermore, the lack of NFR prioritization is considered
one of the most expensive and difficult errors to correct, as well as
one of the ten most significant risks in engineering. Systems need
more emphasis on the relationships between the system’s elements,
rather than on the individual elements or the whole system. Re-
lationships among elements in a system can illustrate more than
just the behavior of each element. The illustration can include
the purpose for the system and the implications of changing how
the NFRs associated with those elements are prioritized. This em-
phasis requires quantifiable tools and rigor to inform the decision
makers. This research’s objective is to contribute to quantifiable
decision-making methods and prioritization of NFRs in three ways:
the development of a process to determine unique random index;
the use of a continuous ranking scale; and the development of a
universal decision-making heuristic to accompany prioritization
of NFRs.

Index Terms—Analytical hierarchy process (AHP), consistency
index (CI), consistency ratio (CR), engineering management,
nonfunctional requirements (NFRs), prioritization, quality
function, quality requirements, random index (RI), ratio, systems
engineering (SE).
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I. INTRODUCTION

THE management of technical functions, such as research,
development, and engineering in industry, government,

university, and other settings, according to this journal [1], is
used to emphasize the studies carried on within an organization
to help in decision-making. The impact of the study presented
here is through the interpretation of subject matter experts
(SMEs) relative to each other and those needs of the customer.
These interpretations are derived from desired behavior under-
standing of the system.

Adapting the principles presented here is important to the en-
gineering management process from which the decision maker
can provide informed prioritization of nonfunctional require-
ments (NFRs) and subsequently dictating the allocation of re-
sources for system implementation. Ultimately, by applying the
advanced analytical hierarchy process (AHP) heuristics to engi-
neering management processes, this effort provides an updated
tool set and management framework through which managerial
understanding is significantly increased.

The use of AHP as a system design, engineering management,
and decision-making tool is evident across several industries.
AHP was introduced by T. L. Saaty. In his most referenced work,
“What is the analytic hierarchy process?” [2], Saaty discusses
how we make choices of “what tasks to do or not to do, when to
do them, and whether to do them at all.”

Saaty introduces AHP with examples of how those tasks show
up in industry and academia, such as buying a home, choosing
a school, buying business equipment, allocating funds within a
government department, and voting on council issues. These are
complex problems of choice, he says, that involve making logical
decisions sometimes difficult for the human mind because of the
number of factors and the effects in play simultaneously. The
crux of the problem with making decisions, Saaty continues, is
that humans make haphazard judgments or use models based on
unverifiable assumptions. This leads to conclusions that may not
be useful.

Developing hierarchical relationships can represent the or-
ganization needed for decision-making, but it is not sufficient.
The judgments and measurements from stakeholders must be
included. AHP is one of the answer’s to this problem. As it was
when introduced, AHP remains an appropriate scientific exper-
iment for paired comparisons with relative values that are the
same as the underlying physical laws dictating the system being
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measured. Even when underlying characteristics of the system
are not quantifiable, AHP serves as a unique tool to harness
subjective, or abstract comparisons using relevant facts about the
relationships in the system. These relevant facts, in particular, are
often derived from the instinct of the SMEs most familiar with
the system. As a decision-making tool, AHP makes numerical
value assignment to abstract concepts possible. In turn, the
numerical assignment of ranking and prioritization can then be
applied to a larger system of interest (SoI) in a way that makes
measurable sense. The planning, prioritization, and resource
allocation [3] that accompanies decision-making in complex
systems [4] can be applied to business, economics, technology,
energy, health, social, and transportation environments [5], [6].
Akin to decision, prediction, projection, and forecasting, AHP
has proven to be a valuable tool in financial markets, political
contests, games, contests, and sporting events [7].

The preceding examples are seemingly self-serving as they
are presented by the original author of AHP. However, the
applications do not end there. AHP follow-on research presents
evidence of AHP value for decision-making. Market applica-
tions are some of the earliest examples of AHP usefulness,
as presented by Wind and Saaty [8]. Albayrakoglu [9] pre-
sented a strategic approach to use AHP as a justification of
new manufacturing technologies. The justification of advanced
manufacturing technology is a complex problem that requires
a number of tangible and intangible factors to be considered,
especially at higher levels of integration. It is necessary to use
multiple-criterion techniques, such as AHP to justify advanced
manufacturing technology, since the problem involves a number
of diverse and sometimes off-related attributes.

An adaptation of the AHP in [10] by Gawlik, Głuszak, and
Małkowska focused on the elicitation of rental housing pref-
erences. To illustrate the application of AHP to the problem
of selection, Janic and Reggiani [11] examined a new avia-
tion hub for a hypothetical airline assumed to operate within
a liberalized air transport market. The application of AHP in
this hypothetical is intended to lead to a preliminary judgment
on its utility as additional decision-making tools for practical
use. In [12], Bayazit relied on AHP make decisions regarding
flexible manufacturing systems. He found that AHP was most
useful for engineering management by determining the relative
importance and influence of the most critical factors. In the
postal industry, Chan et al. [13] applied AHP to benchmark
logistics performance. This work led to a new benchmarking
process for continuous improvement against market leaders. In
outsourcing work to external agencies, AHP has also been used
by Longaray et al. [14] to evaluate the quality of services. Their
work focused intently on engineering management through the
development of a decision support system in the retail industry.
Using AHP, they concluded it was possible to develop an assess-
ment model capable of measuring the performance of quality
indicators and evaluating outsourced service products. AHP has
also been shown to effectively integrate with other management
and decision-making process. In [15], Singh et al. developed
a strategy using AHP for selecting sustainable manufacturing.
In particular, AHP allowed Singh to demonstrate that dynamic

external influences can still be addressed in the engineering
management aspect. AHP focused on the improvement in per-
formances of economic, environmental, and social aspects of an
organization. Moradi et al. [16] used AHP to evaluate the per-
formance of the digital game industry. They premise that despite
the high market performance of the game industry, there remains
many examples of business failure. To design the evaluation
system, the strategies and visions, and corresponding attributes
and measures of the game companies are extracted and evaluated
using AHP. The implementation of AHP decision-making tool
provide a measure of efficiency for performance evaluation.
Finally, and perhaps the current foremost authority on AHP is
E. Forman. In both personal conversation (E. Forman, e-mail
to author, June 2019) and through his work [17], Forman has
conveyed the value of using AHP in engineering management
and requirements prioritization. He uses many examples in his
often-cited research and publicly available tool at expert choice.

Buede wrote that the basis of the system engineering process
is the original set of requirements [18]. The INCOSE handbook
relates that defining engineering requirements is one of the first
steps in systems development [19]. However, system designs
are often faulty because important NFRs are vague, not properly
prioritized, or unaddressed. During the elicitation phase of the
system engineering life cycle, NFRs are often overlooked, due
in part to the “lack of understanding of NFR and the lack of ef-
fective NFR elicitation, modeling, and documentation methods”
[20]. Due diligence must be paid by all stakeholders, ensuring
an effective decision early in the design process, to inform the
analysis effort that follows.

There are several processes to develop NFRs for a system.
With specific relevance to this research, one approach is to
select the requirements from a given set of candidate NFRs
based on customer needs. For example, this selection process
is often accomplished by dissecting systems specifications from
similar systems as well as handbooks and standards. When a
selection process is followed, the system is more likely to achieve
preferences of the SME, more likely to retain the technical
constraints, and more likely to maximize the overall business
value [21].

While exploring possible design solutions, systems engineer-
ing (SE) tasks should focus on understanding stakeholder needs
holistically and simultaneously. Developing possible design so-
lutions gives life to the primary objective of a system engineer
through all phases of the system engineering lifecycle [22].
Recall that the primary objective of a system engineer is to
translate customer’s needs into requirements, and then into a
functioning system [23]. Achieving this objective can be en-
hanced, in part, with the prioritization of NFRs. Lubars et al.
suggested that effective and systematic methods for prioritizing
NFRs [24] are absent from SE and they link this to the labor and
difficulty involved in prioritizing NFRs. Aurum and Wohlin [25]
contended that there is not a process and the way to handle
NFRs differs greatly among decision makers. As such, a new
process that leads to prioritized NFRs is needed. No formal
ranking and priority is in place to ensure that there is consensus
among the SME rankings of the NFRs. A consensus exists when
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logical continuity or consistency exists. Consistency exists in
the conformity in the way SMEs compare NFRs. This confor-
mity is governed by the logic proposed by the decision makers
related to the system. Consistency can be explained through a
short illustrative narrative regarding the transitive property. If
a decision maker prefers some system, System B, to another
system, System A, then it can be said that System B has greater
value than System A. Next, if the same decision maker prefers
System A, to another system, System C, then it is said that
System A has greater value than System C. Since System B
is preferred to System A, and System A is preferred to System
C, then logically we expect that System B is preferred to System
C. This is representative of the transitive property and represents
a consistency of ranking [26]. In contrast, the inconsistency
is considered the total or partial absence of consistency. This
research hypothesizes that SE projects often fail due to the scope
creep and failure to meet NFRs. Therefore, if the NFRs can be
prioritized and aligned as a consensus of SME NFR rankings,
then the risk of project failure can be reduced [28], [29].

SE tasks during a standard design process are carried out
using methods that link the technical processes [19], the needs of
stakeholders, and the process of defining NFRs; the definition
of system NFRs and the process of defining the architecture
are identified in ISO15288 (a SE standard covering processes
and lifecycle stages) and the INCOSE handbook. The way to
execute these methods begins with the traditional SE elicitation,
but the contribution of this work is revealed by the use of tech-
niques found in many multicriteria decision-making methods
(MCDMs) for building empirical consensus of ranking NFRs
between SMEs. Several approaches have been attempted in prior
investigations with limited scales of ranking and measurement.
Despite some constraints of social order, such as the difficulty
of reflecting the preference of a group derived from individual
choices, consensus can be developed using rational and interval
ranking methods. The system engineer can use the results of
MCDM to ensure transparency of rankings and subsequent pri-
oritization through a process known as negotiation or bargaining.
The transparency ensures that decision makers make informed
decisions with the use of clear and effective communication of
information [36].

The AHP has suffered from poor acceptance in SE due to a
lack of rigor. However, AHP remains in use in both research and
education, demonstrating its core value. As shown throughout
this work, the lack of rigor is apparent, especially in the cal-
culation and statistical approach used to determine the primary
measurement heuristic, the random index (RI). In practice, var-
ious ranking scales are used by decision makers but the choice
of RI values is never changed, which leads to an inaccurate
measurement of the agreement regarding the ways NFRs are
ranked and prioritized. The RI is meant to be a reliable point of
reference so that some valuable meaning can be gleaned from
the ratio of consistency observed as an AHP output. However,
the lack of rigor leads to variation of this AHP output.

There is no singularly correct requirements process in prac-
tice, and a cursory review of industry practices reveals that
the functional requirements prioritization practices varies [25].

There are few effective or systematic requirements prioritiza-
tion methods in practice to handle the complex prioritizations
necessary [24]. The result of this challenge is that practition-
ers prioritize through various informal methods that fall short
of consistently providing reliable information. Ranking and
prioritization remain an elusive practice for NFRs. A variety
of methods have been proposed for prioritization, including
the numerical assignment technique [31], the MoSCoW tech-
nique [32], the priority groups technique [33], the bubble sort
technique [34], the binary search tree technique [34], and the
cumulative voting technique [35]. In general, these methods
do not allow for the evaluation of the SMEs’ rankings of the
NFRs. The techniques are limited in the number of pairwise
comparisons that can be analyzed, and they do not provide a
method of transforming subjective SME evaluations to objective
measurements.

This research focuses on AHP because of its appropriate-
ness for handling intangibles, such as NFRs, the measurable
prioritization outputs, its ability to test the consistency of a
stakeholders’ preferences, and the opportunity to provide a
structure for implementation. This work specifically improves
the aspect of AHP used for measuring the agreement of ranking
NFRs.

This work is organized in the following way. First, Saaty’s
original RI is investigated and discussed along with the fun-
damental ranking scale he offered to the stakeholders. Next,
a process is used to validate that a correct approach has been
developed for quantifying an RI. The process used to validate
the approach includes a discussion to determine the modeling
resources necessary. The results of new RI calculation method
are compared to the original Saaty RI to show that one RI size can
fit all multisets. However, if the minimum and maximum values
of those sets are expanded and allowed to be used by the SME,
then the RI must be reevaluated to match SME allowable choices.
To strengthen these findings, the ranking scales remain bounded
at the maximum and minimum but are expanded, granularity
of the fundamental ranking scale, RI values are included and
larger pairwise comparison matrices are calculated. Note that it
is possible to have an unbounded ranking scale, but the decision
maker loses control of any standardization when the SMEs set
out to rank the NFRs.

This work has led to several contributions including the
following.

1) Development of a standard process that delineates the
steps necessary to calculate RI and identifies the appro-
priate mathematical approximation.

2) Identification of the need to include a multiset measure-
ment scale that always requires the inclusion of a “1” with
a multiplicity of 2.

3) Determination that the RI is not dependent upon the set of
the ranking scale, rather it is strictly dependent upon the
size of the pairwise comparison matrix and the maximum
and minimum boundary values.

4) Development of an RI scale that is more appropriate
for the growing size of current systems. This includes a
replication for RIs up to a matrix size, n = 150.
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A. Research Objective

AHP [26] as a decision-making tool can be used to prior-
itize system NFRs and thereby improve the decision-making
processes. Some traditional parameters of this decision-making
tool have been in continual use since the introduction of AHP.
The problem with these parameters is that they are not suitable
for working with all systems. For example, an ordinal ranking
parameter limits the granularity with which designers can rank
system elements and relationships. Similarly, an accepted low
value of an inconsistency parameter disregards the rapid and
natural growth of systems.

The research objective is to address the issue of insufficiently
ranking of NFRs for systems by developing an expanded ranking
process. A ratio scale for ranking of NFRs is introduced using
a continuous ratio scale, thus addressing the current granularity
limitations of the traditional AHP. This higher level of sensitivity
ranking allows elements to be ranked against each other with
any choice of magnitude. Finally, a heuristic tool using the
linear and equal interval ranking scale is presented that informs
the decision-making process with a more granular level of
information.

B. Research Method and Rationale

Literature survey, modeling and simulation, and grounded
theory are the methodologies used to support this research.
The literature review is used to locate and summarize relevant
studies about the topics of: choice theory, modeling theory,
utility theory, and decision-making. The literature survey in-
cludes research studies, conceptual articles, and opinion articles
to provide this research’s framework for considering the topic
of SE and requirements engineering. Modeling and simulation
is the quantitative approach used to develop the necessary data
from which prioritization heuristics are developed. Grounded
theory is part of the qualitative approach used to derive the
general theory that a collection of negotiation methods for NFRs’
prioritization is essential to developing a good system.

This study first employs exploratory sequential combined
methods [27]. This qualitative research is meant to identify the
prioritization order of NFRs that best meets the stakeholder’s
needs. After collection, the data are analyzed, interpreted, and
validated. The nature of this type of SE decomposition is suitable
for an embedded combined method [27], an advanced process
that requires the repetitive use of quantitative and qualitative
data embedded in the overall design.

Combined methods allow researchers and stakeholders to
understand increasingly complicated relationships in a broader
context [39]. Independently, each qualitative and quantita-
tive method of study has received significant criticism from
academia. The criticism of quantitative methods is that they fail
to include subjective assertions from stakeholders [37]. Con-
versely, qualitative methods are criticized for failing to include
objective analysis, scalability, and generalizability [38]. The
broader context includes the subjective and objective analyses
relevant to the motivation presented. Perhaps the most com-
pelling rationale for using combined methods are the following
from [46].

1) Complementarity: “Using data obtained by one method
to illustrate results from another.” For example, the data
used in AHP are used to illustrate the effectiveness of using
SMEs to rank NFRs.

2) Development: “Using results from one method to develop
or inform the users of the other method.” For example, the
SMEs’ subjective rankings are used to establish priority
rankings among NFRs mathematically.

3) Initiation: “Using results from different methods specif-
ically to look for areas of incongruence to generate new
insights.” Testing the subjective rankings from the SMEs
against utility theory ensures rational decision-making.

4) Expansion: “Setting out to examine different aspects of
a research question, where each aspect warrants different
methods.” The focus of this study is within the system
design phase of the SE framework. From the requirements
to detailed phase, the method ensures that the relative
ranking of an NFR passes to subsequent phases.

5) Triangulation: “Using data obtained by both methods to
corroborate findings.” The corroboration contributes to the
modeling and strengthens the findings by combining NFRs
to develop aggregated and sufficient prioritization of those
NFRs.

II. BACKGROUND

A. What is the Analytical Hierarchy Process?

AHP is one of the MCDMs that was originally developed by
T. L. Saaty. R. W. Saaty summarizes as follows.

The Analytic Hierarchy Process is a general theory of mea-
surement. It is used to derive ratio scales from both discrete
and continuous paired comparisons. These comparisons may be
taken from actual measurements or from a fundamental scale
which reflects the relative strength of preferences and feelings.
AHP has a special concern with departure from consistency, its
measurement and on dependence within and between the groups
of elements of its structure. It has found its widest applications in
multicriteria decision-making, planning and resource allocation
and in conflict resolution. In its general form AHP is a non-
linear framework for carrying out both deductive and inductive
thinking without use of the syllogism by taking several factors
into consideration simultaneously and allowing for dependence
and for feedback, and making numerical tradeoffs to arrive at a
synthesis or conclusion. T. L. Saaty developed AHP in 1971–
1975 while at the Wharton School (University of Pennsylvania,
Philadelphia, PA, USA) [30].

B. Terms of AHP

In the understanding of AHP and associated parameters, the
literature presents several ways of naming characteristics and
variables. Ranking scales are used to describe the set of values
provided to the SMEs so that pairwise comparisons can be made
between NFRs. The measurement scale is the set of values
provided for the calculations of the RI. A consistency index (CI)
is the value calculated from a pairwise comparison matrix using
the chosen mathematical method (power method, geometric
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method mean, or eigenvector method). An RI is determined by
populating many pairwise comparison matrices, accumulating
those values and then calculating the average value. Some au-
thors use the term mean CI, or mean random CI. To measure
the level of inconsistency in a comparison matrix, a consistency
ratio (CR) is used to represent the ratio of the RI and CI. The
value calculated is the percentage of inconsistency that exists in
the rankings.

Consistency is a term used to illustrate the existence of ranking
conformity in the way SMEs compare NFRs. This conformity is
governed by the logic proposed by the decision makers related to
the system. Consistency can be explained through an illustrative
narrative regarding the transitive property. To be consistent,
for example, the ranking of three NFRs should be such that
if NFR A is weakly or slightly favored to NFR B, and NFR
B is moderately-plus favored to NFR C, then by the axiom of
transitivity, NFR A is very, very strongly favored to C. While
intransitivities are unlikely in a small example with few com-
parisons, the likelihood is greater with larger and more complex
systems. Furthermore, inconsistency can be created even when
the axiom of transitivity is met (i.e., A > B > C). This is due
to the fact that an intensity of importance is assigned between
comparisons. For example, if A’s intensity of importance to B is
2, and B’s intensity of importance to C is 4, then a numerically
consistent comparison would expect to have A’s intensity of
importance to C as 8. However, if the SME indicates that A is
intensely important to C by any other value then an inconsistency
exists. This is representative of the transitive property and a
consistency of decision [26]. Mathematically, Saaty found that
in a reciprocal matrix of totally consistent comparison matrix,
the largest eigenvalue is equal to the size (nxn) of the com-
parison matrix, or λmax = n. He determined that a measure of
consistency of comparison matrix can be shown as (1), and called
the CI to determine the deviation from total consistency. Saaty
proposed using this CI by comparing it to an appropriate CI
that he calls the RI. He randomly generated a reciprocal matrix
500 times from the ranking scale 1

9 ,
1
7 ,

1
5 ,

1
3 , 1, 3, 5, 7, and 9,

measured the CI of each randomly generated matrix, summed
the 500 matrices, and used the average as the bench mark for each
matrix size up size n = 10. With both the CI of the comparison
matrix being considered and the RI of that same size matrix,
Saaty proposed that the amount of consistency be measured
using (2). He noted that if the ratio is less than or equal to 0.10,
then the inconsistency in the comparisons is acceptable.

CI =
λmax − n

n− 1
(1)

CR =
CI
RI

(2)

To determine the relative importance of the NFRs being
compared, the use of the principal eigenvalue and the normalized
right-eigenvector is warranted. This right-eigenvector weighting
is from the local weights calculated with respect to all other
NFRs associated with the same parent node. From this, a priority
vector is produced. The priority vector is a numerical ranking
of the NFRs that indicates an order of priority among them
reflecting intensity or priority as indicated by the ratios of the

numerical values [26]. The priority vector shows relative weights
among the things that we compare.

C. How Others Have Contributed to AHP

There are many researchers who provide amplification of the
original AHP [43], [44], [51], [55], [56]. Those researchers
address classic SE challenges. Specifically, the challenge of
making decisions that involve intangibles that need to be traded
off. The tradeoff, though, must be measured against the un-
derstood objectives of the stakeholders. Pairwise comparisons,
rankings, and prioritization of NFRs by SMEs are processes that
are used to measures those tradeoffs. The decision makers rely
on those SMEs to provide a good ranking of the elements, so that
a true priority representation can be provided to inform further
decision-making.

The SMEs provide a complete collection of rankings that
illustrate how much more one NFR dominates another NFR
concerning any chosen system attribute. The inherent flaw of
subjective human decision-making injects inconsistency into
the comparisons. AHP provides a method to assess the incon-
sistency, using established mathematical rigorous concepts. A
survey finds that follow-on practitioners of AHP are built on
two distinct characteristics of AHP. The first is that the ranking
scale is a linear ordinal scale and bounded to nine distinct values
1
9 ,

1
7 ,

1
5 ,

1
3 , 1, 3, 5, 7, and 9. The second characteristic is that

the level of comparison inconsistency was generally acceptable
when found to be 10% or less. These two traits are still found in
subsequent research, although much debate surrounds the value
of strict compliance to these two characteristics.

Harker and Vargas defend some of the major criticism of AHP
stating that the strict compliance to original ranking scale and
the low inconsistency level creates a firm “theoretical foundation
and is a viable, usable decision-making tool” [40]. With the
unique set of axioms of AHP in mind, designers should not
view the process as a subset of the traditional design methods.
The common theme is that humans are inconsistent and that their
inconsistency should be considered in a formal manner, rather
than one that is ad hoc. They propose that future research leading
to the development of efficient stand-alone implementations of
AHP is a worthwhile venture.

Systems need more emphasis on the relationships between
the system’s elements, rather than on the individual elements, or
the whole system [41]. In [42], Lootsma begins by addressing
concerns found in systems design aggregation. He investigates
the original process that disregards cross-ranking of subcriterion
within a hierarchy of evaluation. Lootsma then summarizes his
findings by addressing ways in which design methodologies can
be enhanced when the processes of both top–down and bottom–
up design are combined.

Donegan and Dodd [43] also argue the need to prioritize
system elements. Like other AHP practitioners, Donegan and
Dodd focus on a feature of AHP, which is used to check the
consistency of the SME rankings, and subsequent prioritization
of the elements ranked. They adopt Saaty’s comparison of the
CI of its matrix with the chosen RI from a matrix of that
same order. Donegan and Dodd seek to capitalize on Saaty’s
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TABLE I
SAATY’S RI (SOURCE: [58])

self-acknowledged lack of statistically significant estimates.
They discuss two statistical tools that future researchers might
consider to build a reliable RI. The first tool necessary is the need
to determine a good sample size so that an appropriate random
value can be generated and analyzed. The second tool generates
multiple samples for each system size so that the RI for that
system-size equates to the mean of all of the samples [43], [56].
Exhaustive tests by other practitioners, using Saaty’s ranking
set, demonstrated very close to the exact RI for matrices of
order 3 and 4. Before proceeding to larger systems Donegan and
Dodd indicate that the “estimates by Saaty are systematically
overlarge” [43]. Donegan and Dodd conclude that it “might
make sense to standardize the raw data” [43] of the set. The
final survey includes an examination by Salo and Hämäläinen
into the measurement of preferences [51] in AHP. The work
describes the effects caused by bounded and discrete ratio scales
and that the process can be modified to produce improved value
measurements. Still, opportunities exist to contribute to these
works. In this research, a few areas are explored: the use of a
near-zero scale, the use of an infinite real number ranking scale,
and the introduction of a decision-making heuristic.

III. UNDERSTANDING SAATY’S RI

Saaty’s original RI calculation is not well understood, and
still receives significant academic attention to better understand
its role in prioritization. Some challenges found in reviewing
Saaty’s work, which are specific to creating a process that
quantifies the RI, include: determining the mathematical ap-
proximation method used, determining the membership used
in the original ranking scale (i.e., the scale of ranking values
from which the SME will choose), and measurement scale (i.e.,
the scale of ranking values from which the decision maker will
use to develop a unique RI), and measuring the accuracy of
the traditional process beyond the matrix size, n = 10. The
purpose of this section is to understand the process to develop
the original Saaty RI in AHP. An RI is calculated using the same
scale (measurement scale) that the stakeholder will use (ranking
scale) to populate the pairwise matrix. Saaty used the scale
{ 1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5, 6, 7, 8, 9} in the traditional

RI estimation. He then generated a random matrix selecting from
the ranking scale, of which each entry has a equal probability
of being selected. For each size matrix, the corresponding CI
is calculated. This process was completed 500 times for each
size matrix, and then the mean of all those consistency indices
is the RI for the matrix size. Refer to Table I. The next section
replicates the original values provided by Saaty, given that these
RI values have remained unchanged since their inception. A
pairwise matrix is developed by a single person and represents
the relative rankings between NFRs. A specific cell within
the matrix represents the relative ranking between two specific
NFRs.

Fig. 1. Saaty’s fundamental ranking scale of absolute numbers. Source [30].

A. Use of the Fundamental Ranking Scale of Absolute
Numbers

As mentioned, various ranking scales are used by decision
makers leading to unreliable measures of consistency in AHP. To
set the stage for how users apply a preference to a pair of NFRs,
understanding Saaty’s fundamental ranking scale of absolute
numbers is necessary. Once understood, this work introduces an
extension of the fundamental ranking scale that can be applied
universally, to include the use of a multiset continuous ranking
scale and a varied maximum and minimum ranking scale. While
normally reserved for background and related work, the inclu-
sion of this section here should highlight its critical contribution
to the understanding and findings of this research.

The calculation of the RI was based on a ranking scale from
Saaty’s notion that humans are relatively comfortable with the
use of a ranking system that has an absolute reference frame.
The absolute reference in a ranking scale arises from some social
standard that indicates a convenience and familiarity in ranking
(i.e., good, better, and best); in contrast, a relative reference
frame is used to explain something that is the best among a
pair of NFRs (i.e., preferred or not preferred). For the purpose
of creating an RI heuristic, Saaty based his calculations on the
static fundamental ranking scale of absolute numbers.

Because Saaty states that he uses “a randomly generated
reciprocal matrix using the scale l/9, l/8, ..., 1, ..., 9” [30],
we must investigate how to employ this ranking scale. First,
a nominal scale is used to apply linguistic definitions (e.g.,
equal importance, weak importance, very strong importance,
and extreme importance). Second, an intensity of importance
is associated with each of the linguistic definitions (e.g., 1 =
equal importance, 5 = strong importance, and 9 = extreme
importance). Third, the set of reciprocal values of the aforemen-
tioned intensities of importance are identified. If an NFR has
a nonzero number assigned when compared to another NFR,
then the second NFR has the reciprocal value when compared
to the first. Fig. 1 summarizes Saaty’s fundamental ranking
scale.
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IV. DEVELOPING A PROCESS TO DETERMINE THE RI

This section highlights a major contribution of this research.
This effort addresses the need to model and/or replicate the
original RI values to validate a process that produces all possible
RIs. To do that effectively, the following process is provided
that replicates the results of Saaty’s original experiment [58].
The evolution of an RI, presented in this work, is intended to
improve on the currently available RI. More specifically, this
part of the research develops a detailed process to determine
the RI for any ranking scale and matrix size n. If the proposed
expansion of the fundamental ranking scale is to be used, then it
follows that a measurement scale should be commensurate with
that same expansion. That is to say, each unique ranking scale
has its own unique RI. However, that has not been the approach
followed in the traditional AHP, and it is evident in the literature
review that the basic RI developed by Saaty is still used for AHP
evaluations. Because this investigation and research reveal the
process of determining an RI through exploratory data analysis,
the following steps are provided in pseudocode as a contribution
to those decision makers developing their own RI for use in AHP.

The process is delineated in Section IV-B with appropriate
steps determined to adequately replicate Saaty’s RI measure-
ments. This process is a generic approach to determining the
measurements. However, it is found through this research that
specific conditions should be enacted if a universally appli-
cable RI is desired. In particular, it is known that the itera-
tions used to calculate the original RI was 500, and follow-on
authors used repeated bootstrapping methods. However, using
statistical parameters, the precise number of iterations can be
identified, as discussed in Section IV-A. Before choosing the
measurement scale for this process, it is important to understand
how the original ranking scale was presented as discussed in
Section V-A. Then, the understanding needs to be turned to
how the process can be used with a continuous scale. The scale
includes predefined minimum and maximum values of the rank-
ing scales presented to the SMEs, as discussed in Section V-C.
This interpretation of the ranking scale can now be presented
in a way that provides granular options to the SME, as dis-
cussed in Section V-B. Finally, the process calls for an iteration
through matrix sizes to foster scaling of the RI, as discussed in
Section V-D.

A. Determining the Modeling Iterations Necessary to
Identify the RI

This section identifies the number of simulation runs to de-
termine RI. In the context of this work, a simulation run is
defined as determining a single CI value. Therefore, this section
equivalently determines the number of CI. Since the RI is the
average CI, the idea is to understand how many CIs are needed
to achieve an adequate RI. For clarity, the CI referenced here is
based on the random selection of values from the ranking scale.
This is in comparison to the traditional use of CI that is discussed,
where CI is calculated based on the rankings provided by SMEs
during the ranking process.

In light of this, there are two reasons for why this section is
needed. First, the RI values published by Saaty are going to be
compared to the values produced by the process in Section IV-B.

In order to do this, given that Saaty’s value are presented as
scalars, the RI produced in this work must include a confidence
interval. Otherwise, the two scalar RI values would have no
basis for comparison. The second reason for this section is to
offer insight into “when is enough” for practical users of AHP.
Less emphasis is placed on this reason due to the abundance
of computing resources available in most instances where RI
would be quantified. That said, AHP is broadly used across many
application areas, and therefore, this point is worth noting.

To determine the number of runs necessary using a Monte
Carlo simulation, one must calculate a confidence interval of a
particular width given a desired confidence level. A confidence
interval is a range of values used to estimate the true value of
a population parameter [54]. A confidence level is the proba-
bility 1− α that the confidence interval contains the population
parameter during the estimation process that is repeated [54].
In constructing the intervals, most literature lists the critical
assumption that the random variables must be independent and
identically distributed.

To determine an RI for use in the method developed in this
work, a model ratio or interval data must be used. The RI being
developed is a unit less measurement and can be described on
a target confidence interval width containing positive and real
values, v: {v ∈ R | v > 0}. Equation (3) is calculation for the
confidence interval, where x̄ is the sample mean, zα

2
is the value

of the standard normal (alpha level’s z-score for a two-tailed
test), s is the sample standard deviation, and “# runs” is the
number of runs necessary for the simulation. In the value of
the standard normal, α is the probability of rejecting the null
hypothesis when the null hypothesis is true, or simply it is the
probability of making a wrong decision.

Confidence Interval : x̄± zα
2
s√

# runs
(3)

Because the comparison of the importance of the NFRs is a
representative model of human decision-making, the assumption
can be made that the standard deviation will scale with the
mean [53]. That is, models with matrix size n = 131 have larger
standard deviation than models with matrix size n = 3. This
scaling, (4) [54], is called the coefficient of variation (CV) and
can be assumed to be constant for the purpose of adequately
determining the number of runs of the model (#runs).

CV =
s

x̄
(4)

These two assumptions can be combined mathematically with
the standard equation for a confidence interval. According to
Byrne [53], the process is as follows. If the interval width v
is taken to be a multiplier of mean vx̄, then the width of the
confidence interval can be computed using (5), and then, solving
for “# runs,” the number of the model runs necessary, (6), and
replacing s

x̄ with (4) to determine (7).

vx̄ = zα
2

s√
# runs

(5)

# runs =
(zα

2

v

s

x̄

)2

(6)

# runs =
(zα

2

v
CV

)2

(7)
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TABLE II
# OF MODEL RUNS NECESSARY AS A FUNCTION OF STATISTICAL PARAMETERS TARGET CONFIDENCE INTERVAL AND THE CV (0.1–1.6)

The problem, however, is that there is no obvious way to know
a model’s CV [54]. Instead the decision makers should create a
CV that is appropriate for the amount of variance acceptable for
simulation [60]. Table II indicates the number of runs necessary
to meets these statistical parameters.

B. Steps of a Process Designed to Develop RI

The following pseudocode was developed to replicate Saaty’s
work and provided to verify a repeatable process designed to pro-
duce an RI based on the appropriate mathematical formulations
and appropriate sample iterations. This process loops through
a randomly populated matrix a predetermined amount of times,
with each iteration producing a CI measurement based on the
measurement scale provided and with the chosen estimation
process. The CIs are accumulated and then averaged at the
conclusion of the predetermined iterations, and then averaged
to provide an RI for that matrix size. This process is repeated
until all matrix sizes are satisfied.

Inputs to this process are as follows:
1) measurement scale and membership;
2) number of runs necessary to match statistical parameters

indicated in Table II;
3) number of matrices desired;
The enumerated process are as follows.
1) Initialize the ranking scale set.
2) Initiate iteration first loop using the maximum number

of samples appropriate for each matrix size.
3) Initiate iteration second loop using the maximum matrix

size (i.e., n× n) desired.
4) Populate each matrix element on upper triangle with

random values and immediately assign reciprocal value
to the lower triangle.

5) Populate matrix diagonal with ones.
6) End second loop.
7) Calculate the maximum lambda value.
8) Calculate the CI. CI = λmax−n

n−1 .

9) End first loop.
10) Calculate average CI. This is the RI for that matrix

size.

C. Calculating the RI With an Established Confidence
Interval and CV

This section is used to systematically compare RI values pub-
lished by Saaty (i.e., those from Table I) to values produced using
the process presented in Section IV-B. As such, this is a valida-
tion for the process presented in Section IV-B. This validation is
done for all RI values of comparison matrix sizes 3 to 10, and for
the ranking scale { 1

9 ,
1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Despite not knowing the matrix entries used by Saaty in
the original 500 runs to determine an RI, the aforementioned
discussion on determining the number of simulation runs can be
used as an approach to compare RI values. As an example, to
establish a 99% target confidence interval with an average CV
of 0.8, the chart indicates that 98 345 simulations will provide
an adequate RI for comparison. Similarly, the same amount
of simulations are needed if one desires to establish a 98%
target confidence interval with an average CV of 1.6. The values
used to develop the RIs, sampled from the ranking scale of
{1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5, 6, 7, 8, 9}, are illustrated in

Fig. 2. These values resulted in the RI value of 0.5237 in the
confidence interval of 0.5174 to 0.5300, which includes Saaty’s
0.52 RI value for matrix size n = 3.

Using this same process with 98 345 simulations, the addi-
tional RIs, specifically those associated with matrix sizes n = 4
to n = 10, are determined with associated confidence intervals
and are presented in Table III. Each of the RIs are within the
constructed confidence interval, indicating a correct process.
The RI column are those values calculated by the process
described to replicate Saaty’s work. The confidence interval
includes the constructed 99% interval for all 98 345 values from
that simulation. The last column, Saaty RI, is the original value
of RI calculated by Saaty in 1980.

Authorized licensed use limited to: NPS Dudley Knox Library. Downloaded on June 08,2020 at 23:15:44 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CONNETT et al.: ADVANCING USE OF AHP AND IMPROVED RANDOM INDEXES FOR MAKING PRIORITIZED DECISIONS IN SYSTEMS 9

Fig. 2. RI simulation results for matrix size n = 3, 98 345 simulations from
fundamental ranking scale of absolute measure. RI = 0.5237.

TABLE III
CALCULATED CI ON FUNDAMENTAL RANKING SCALE

{ 1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5, 6, 7, 8, 9}

FOR 98 345 SIMULATION RUNS

D. Statistical Comparison of the Process Results

To provide a side-by-side statistical and value comparisons
of RIs using the aforementioned simulation methods, the CI of
each matrix size is calculated 500 times as was done by Saaty
in his original work. Recall, a stakeholder is consistent if the
following are satisfied [26].

1) aij · ajk = aik ∀i, j, k.
2) λmax = n.
3) CI = 0.
This process is then iterated 5000 times to determine the

RI convergence. The RIs converge over many simulation runs
resulting in the CI. Since Saaty only reports that he took 500
samples once to determine his RI, this process will help to
validate his findings without knowing the reciprocal matrix
entries he randomly selected.

The average of averages is an acceptable process in math-
ematics to develop a population parameter. If the number of
elements of all groups is the same or when all the group averages
are zero then the average of averages is equal to the average
of all values. Consider two sets X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn} and their averages

x =
∑n

i=1 xi

n , y =
∑m

i=1 yi

m .
The average of the averages is

average(x, y) =

∑n

i=1
xi

n +

∑m

i=1
yi

m

2 =
∑n

i=1 xi

2n +
∑m

i=1 yi

2˜m .

Fig. 3. RI simulation results for matrix size n=3, 5000 simulations for 500 CIs
on ranking scale { 1

9 ,
1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5, 6, 7, 8, 9}. RI = 0.5244.

TABLE IV
CALCULATED RI ON FUNDAMENTAL RANKING SCALE

{ 1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5, 6, 7, 8, 9} FOR 5000

SIMULATION RUNS WITH 500 CIS AT EACH ITERATION

Now, consider Z = {x1, x2, . . . , xn, y1, y2, . . . , yn} and its
average

z =

∑n
i=1 xi +

∑m
i=1 yi

n+m
.

When the sets are the same size (i.e., n = m), then an average
of the averages is an appropriate measurement tool. This notion
of the average of averages is an acceptable tool to determine
the convergence of a value to represent the population being
analyzed. Using this approach, the process presented is run for
5000 simulations with 500 CIs calculated at each iteration. This
results in the average RI. Fig. 3 illustrates the results of this
simulation for a matrix size of 3.

Because Saaty originally calculated the RI value for each of
the matrix sizes up to and including n = 10, those simulated
values are provided in Table IV.

To check if the simulation is correct, the table includes the
99% confidence interval constructed around the simulated RI. It
appears that Saaty’s lack of significant digits is a result of round-
ing, although he never indicates as such. Still, the confidence
intervals are provided alongside each of the RIs and demonstrate
that the process is valid for replicating Saaty’s original work. A
side-by-side comparison is provided in Table V. This part of
the process is provided to lend credibility calculating each RI
with 98 345 simulations for each matrix size, and then using the
average of those 98345 CIs to determine the RI. The original
Saaty process for RI determination has now been confirmed.
We understand how he developed the original RI and, therefore,
can use this process to address limitations of AHP, such as
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TABLE V
SIDE-BY-SIDE COMPARISON OF THE REPLICATED RIS USING TWO METHODS

Note: The first column is a method of determining the iterations necessary (98 345)
to provide a high level of confidence with the smallest possible interval width to
calculate individual CIs, then take one average for each matrix size. The second
column provides the values calculated from 500 iterations averaged for each matrix
size, then replicated 5000 times to develop the RI. Both processes serve to validate
the process, ranking scale, and probability of matrix entry selection necessary to
codify the unique RI process. The third column is the original published RI from
Saaty.

ranking scales, measurement scales, and matrix size RIs for
larger comparison matrices.

V. IMPROVING THE PROCESS TO DETERMINE THE RI

With the development of a standardized process regarding the
calculation of the RI, some improvements are introduced. The
following sections investigate four distinct improvements de-
signed to provide the decision maker more flexibility and insight
into the ranking and prioritization process. These improvements
include a departure from the original fundamental ranking scale
of absolute measures, examination of the ranking scale to include
ranking granularity, an interpretation of the fundamental ranking
scale of absolute measures, and the scaling of the heuristic to
include larger matrices.

A. Departure From the Original Fundamental Ranking Scale
of Absolute Measures

Saaty used the 17-element set of { 1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 ,

1, 2, 3, 4, 5, 6, 7, 9} for calculation of his published RI; he called
this the fundamental ranking scale of absolute measures. There
is evidence in the literature and textbooks that some practitioners
of AHP offer ranking scales with fewer members, such as
{1
9 ,

1
7 ,

1
5 ,

1
3 , 1, 3, 5, 7, 9}. One conjecture of this research was

that changing the number of members from which the stake-
holder can choose would require the recalculation of the heuristic
to determine consistency of rankings. Using the validated pro-
cess aforementioned in this section to replicate the original Saaty
process, an investigation was conducted into varying the number
of pairwise matrix entries from which to choose. Fig. 4 illustrates
the three side-by-side calculations of RI with varying element
membership (increasing discretization). Those sets that include
the fewest entries bounded by values 1

z to z will converge to an
RI value that is larger than a set bounded by the same values, but
with a larger membership. The impact of using only one RI for
all ranking scale sets is that the total consistency of the pairwise
comparison will be miscalculated. If a decision maker relies
on the same Saaty methodology for RI determination, they must
also change their RI for consistency measurement. It is important
that the decision makers take the time and effort to establish
the RI commensurate with the bounds and discretization of the

Fig. 4. RI simulation results for matrix size n = 3, 5000 simula-
tions for 500 CIs using various ranking scales: { 1

9 ,
1
7 ,

1
5 ,

1
3 , 1, 3, 5, 7, 9},

{ 1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5, 6, 7, 9}, and { 1

9 , . . . , 9}.

TABLE VI
CALCULATED RIS FOR RI A: { 1

9 ,
1
7 ,

1
5 ,

1
3 , 1, 3, 5, 7, 9}; RI C:

{ 1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5, 6, 7, 8, 9}; AND RI E: { 1

9 , . . ., 9}

ranking scale provided to the SMEs. However, this approach is
neither efficient nor necessary. Section V-C examines how to
remedy the inefficiency.

Table VI and Fig. 5 are corresponding table and graph
to demonstrate the differences in RI due to varying the
ranking scale matrix entries. Specifically, this shows RI for
three separate rankings scales: RI A: { 1

9 ,
1
7 ,

1
5 ,

1
3 , 1, 3, 5, 7, 9};

RI C: {1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5, 6, 7, 8, 9}; and RI E:

{1
9 , . . ., 9}. Using the process presented in Section IV-B, any RI

can be developed to inform the prioritization process.

Authorized licensed use limited to: NPS Dudley Knox Library. Downloaded on June 08,2020 at 23:15:44 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CONNETT et al.: ADVANCING USE OF AHP AND IMPROVED RANDOM INDEXES FOR MAKING PRIORITIZED DECISIONS IN SYSTEMS 11

Fig. 5. RIs for matrix size 1–150 on various ranking scales.

B. Examining the RI Heuristic to Include Granularity From
Fundamental Ranking Scale

The use of different scales of measurements beyond the
fundamental ranking scale of absolute numbers is an important
consideration when seeking opportunities to resolve conflicts or
contradictions in rankings of NFRs. Suppose a decision maker
wants to limit or expand the ranking scale membership provided
to the SMEs for use during pairwise comparisons. The current
published RIs do not compensate for such a change, although
there is recurring evidence in the literature that the same RI scale
is used against modified ranking scales to determine the amount
of consistency in a comparison matrix.

When using a ranking scale of discrete values,ability of select-
ing a matrix entry is equal. In comparison though, if a granular
ranking scale of continuous values is to be used, it is imperative
that the distribution of those values be appropriate. For example,
a continuous ranking scale such asS = { 1

z , . . .z} should have an
equal probability of selection on both sides of the median value,
“1,” where z is some value on the continuous number line. The
goal here is not to define the probability density function (PDF)
mathematically. Rather, the point is to ensure that when creating
a new RI, the sample values for calculation be selected half of
the time from a range from 1 to z and then half of the time be
selected by from range of inverted vales 1

z to 1. The PDF is used
to specify the probability of the random variable falling within a
particular range of values, as opposed to taking on any one value.
Fig. 6 illustrates this PDF for values 1

9 to 9. Because the range
from 1

9 to 1 is smaller than the range of 1 to 9, it appears to build
up on the left-hand side of 1. However, the left and right sides of
the median value represent the same relative probability (50%)
of selection. No absolute values for probability of selection can
be inferred from this distribution.

C. Discussion on the Literal Interpretation of the
Fundamental Ranking Scale of Absolute Measures
(See Fig. 1) in the Calculation of Saaty’s RI

Some researchers [43], [59] disagree on the utilization of
the ranking scale for calculation of the RI. For example, if the
set of fundamental rankings exists, S1 = {a, b, c, d, e}, then it

Fig. 6. Probability distribution of continuous ranking scale { 1
9 , . . . , 9}.

is also true that a second set of fundamental rankings exists,
S2 = { 1

e ,
1
d ,

1
c ,

1
b ,

1
a}. The union of these two sets of-

fer a set of discrete calculation values S1 ∪ S2 = S3 =
{a, b, c, d, e, 1

e ,
1
d ,

1
c ,

1
b ,

1
a}, and permit multiset representation

with higher multiplicity for the value “1.” This set combination
provides the first insight into how follow-on authors investigat-
ing Saaty’s RI might have misrepresented the original calcula-
tion of the RI. In [43], Donegan and Dodd surmised that “the
estimates of Saaty are systematically overlarge” but they cannot
provide conclusive evidence supporting this conjecture. Still,
their explanation focuses on a perceived missed opportunity to
include the value “1” in each of the sets, which provides a bias
against the choice of “1” as a matrix entry. The choice to not
include the reciprocal of “1” leads to a larger RI when compared
to including the reciprocal. They conclude that because all of
the possible matrix entry options must be equally likely, then
the probability of selecting “1” must inherit a probability that is
twice that of each other entry option. The use of “1” and “1/1,”
treated as distinct members for the reasons given by Donegan and
Dodd in [43], changes the probability of selection for only the
purpose of calculating the RI. More specifically, the inclusion of
“1/1” in the ranking scale is not relevant to the decision maker
when populating the pairwise comparison matrix because the
reciprocal is equal to the original value and has no inherent
linguistic value to the SME.

The interpretation of the way a fundamental ranking scale
includes the value of “1” in its list of matrix entries and the
statistical effect of that decision is worth noting. The discussion
is important to determine if the inclusion of a repeated value will
shift or skew the statistical representation of the population being
analyzed. Using a discrete set of ordinal, interval, or ratio values
will all have a uniform and equal probability of being selected
in a random process as applied to emulate human choice.

The inclusion of “1” in the measurement scale to determine
the RI is important and will have significant effect on the way
that AHP is used to measure consistency of SMEs’ rankings.
When a bounded ranking scale is used (i.e., { 1

z , . . .z}), and a
balanced set union that includes “ 1

1” and “1” for measurements
is used, then there is no need for different RIs regardless of
the original ranking scale membership. Fig. 7 shows the RI
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Fig. 7. RI simulation results for matrix size n = 3 to n = 10 on a ranking scale
bounded by 1

9 and 9 but with increasing membership of 10, 18, and infinite
members in each plot.

TABLE VII
REVISED RI FOR INFINITE SCALE 1

9 TO 9 REGARDLESS OF

RANKING SCALE MEMBERSHIP

simulation results of three ranking scales { 1
9 , . . . ,

1
1 , 1, . . . , 9},

{ 1
9 ,

1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 ,

1
1 , 1, 2, 3, 4, 5, 6, 7, 8, 9}, and {1

9 ,
1
7 ,

1
5 ,

1
3 ,

1
1 , 1, 3, 5, 7, 9}.
This is strong evidence that the original RI determined by

Saaty used only the membership of his fundamental rank-
ing scale of absolute measures. This poses considerable prob-
lems for any decision maker who chooses to use a ranking
scale with a different amount of members. Instead, if S1 =
{a, b, c, d, e}, then it is also true that a second set of fundamen-
tal rankings exists, S2 = { 1

e ,
1
d ,

1
c ,

1
b ,

1
a}. The union of these

two sets offer a set of discrete calculation values S1 ∪ S2 =
S3 = {a, b, c, d, e, 1

e ,
1
d ,

1
c ,

1
b ,

1
a}). By designing a simulation to

include the appropriate union of ranking members and their
reciprocals, we will be able to use a singular constant RI in
the decision-making processes that only changes with the size
of the comparison matrix, refer to Table VII.

D. Scaling the RI Heuristic to Include Larger Matrices

The use of RIs larger than those published (2 ≤ n ≤ 10) in
the literature are necessary to inform the decision-making for
applications to large and complex systems. An evaluation of
matrices up to n = 150 is provided, see Table VIII.

The current limitations of the RI are tied to the design of
those systems that require the use of tools capable of handling
the prioritization of many NFRs but cannot due to the limited
size of published heuristics. Military, commercial, and instances
of personal-use systems present hundreds or thousands of in-
dividual requirements. It is difficult to prioritize such a large
collection of requirements, however, this should not relegate
a decision maker into groupings of requirements because of a
limitation in the design tools available.

TABLE VIII
RI MATRICES ON THE INFINITE RANKING SCALE FOR n = 1 TO n = 150

VI. IN PRIORITIZING NFRS, HOW DOES ALL OF THIS

HELP US?

The process to quantify RI is a critical calculation for AHP
in that it helps to determine the total consistency of ranking
of NFRs in a pairwise matrix. To be consistent, for example,
the ranking of three NFRs should be such that if NFR A is
weakly or slightly favored to NFR B, and NFR B is moderately
plus favored to NFR C, then by the axiom of transitivity NFR
A is very, very strongly favored to C. While intransitivities are
unlikely in a small example with few comparisons, the likelihood
is greater with a larger number of comparisons. Furthermore,
inconsistency can be created even when the axiom of transitivity
is met (i.e., A � B � C). This is due to the fact that a numerical
preference is assigned between comparisons. For example, if A’s
intensity of importance to B is 2, and B’s intensity of importance
to C is 4, then a numerically consistent comparison would expect
to have A’s intensity of importance to C as 8. However, if the
SME indicates that A is intensely important to C by any other
value then an inconsistency exists. However, the method and
heuristic with which to measure inconsistencies using AHP are
still debated.

Saaty’s original RI was investigated and discussed along with
the fundamental ranking scale he offered to the stakeholder. To
identify and validate that the correct process for determining the
RI is developed, a process was presented along with a discussion
to determine the modeling resources necessary. These results
were compared to the original Saaty RI to show that one RI size
can fit all membership multisets that are bounded by the same
minimum and maximum boundary values. However, if those
minimum and maximum values are expanded and allowed to
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TABLE IX
AGD—CONTINUOUS RANKING SCALE 1

9 , . . . , 9

be used by the SME, then the RI must be reevaluated to main-
tain commensurate measure of SME rankings. To strengthen
these findings, the bounds of the ranking scales were ex-
panded, granularity of the fundamental ranking scale RI values
were included, and larger pairwise comparison matrices were
calculated.

This work has led to several contributions, which include the
following:

1) development of a standard process that delineates the steps
necessary to calculate RI and identifies the appropriate
mathematical approximation;

2) identification of the need to include a multiset measure-
ment scale that always requires the inclusion of a “1” with
a multiplicity of 2;

3) determination that the RI is not dependent upon the mem-
bership of the ranking scale, rather it is strictly dependent
upon the size of the pairwise comparison matrix and the
maximum and minimum boundary values;

4) development of an RI scale that is more appropriate for
the growing size of current systems. This includes a repli-
cation for RIs up to a matrix size, n = 150.

VII. APPLICATION IN EXISTING/CURRENT METHOD:
ARTIFICIALLY GENERATED DATA (AGD)

A case study is generated from artificial data. The artifi-
cial data are created using the continuous set 1

9 , . . . , 9. For
comparison, this same data are then modified to fit the tra-
ditional ranking scales, AHP 1 : 1

9 ,
1
8 , . . . , 8, 9 and AHP 2:

1
9 ,

1
7 , . . . , 7, 9 used in the relevant research. The comparisons

that will be made from these different scales will demonstrate
that the measure of consistency and prioritization ranking can be
apparent.

A. Preparing AGD for AHP

The precedence of using an AGD set has been established
by prior authors. In particular, Kamishima and Akaho [61]
generated 100 sample sets for the use in ranking comparisons.
For each sample set, they ran sample algorithms five times using
different clustering methods, and then the best cluster of data was
selected. Similarly, artificial data are generated here to create a
sample pairwise comparison matrix of size n = 7 with a CR
that falls below 10%, this is shown in Table IX. The generation
of data for this case study was achieved through a similar
process that is used in Section IV-B. However, the difference
is that the loop was terminated once a dataset was found to
satisfy the 10% threshold for CR compared to the proposed
universal RI.

TABLE X
AGD—AHP 1 { 1

9 ,
1
8 , . . . , 8, 9}

B. Apply SDNPM to the AGD

Again, the axioms of completeness and continuity are the
first checks of rationality included in Step 1 of the SDNPM.
The third axiom, transitivity, is combined with the AHP check
for magnitude transitivity using axiomatic design. The AHP
measurements associated with Table IX are λmax = 7.756 and
CI = 0.126 (1) leading to CR = 0.099 (2). If the threshold of
consistency is satisfied with the calculated CR, then the process
ends and a prioritized list of NFRs is produced. If the decision
maker does not accept this measured level of consistency, then
negotiation can be applied.

In negotiation, the axiom of transitivity is used as a reference
tool to facilitate scrutiny of each of the pairs of comparisons
when the threshold of inconsistency is exceeded. An example
shows the NFR 5 intensity of importance to NFR 3 is 7.69 and
the NFR 3 intensity of importance to NFR 6 is 2.12; however,
the NFR 5 intensity of importance to NFR 6 is only 4.61. The
expected transitive value for the intensity of importance of NFRs
5 to 6 is 16.30. This is a specific example of where a glaring
inconsistency exists in the pairwise rankings, and a point of
information is now available to the decision maker to initiate
negotiation among SMEs.

For a comparative analysis regarding the choice of ranking
scales, the artificial data from Table IX are manipulated next
to create a sample pairwise comparison matrix of size n = 7.
This uses the traditional ranking scale (AHP 1) provided by
Saaty and is presented in Table X. The measurements associated
with this table are λmax = 7.870 and CI = 0.145 leading to
CR = 0.107. The first observation from these calculations is
that the inconsistency of the rankings has increased simply by
restricting the ranks from which the SME can choose. Even
still, a second observation is reached if the limited ranking
scale is permitted and compared to the proposed universal RI.
When RI = 1.26, which reflects the multiset for 1

9 , . . . , 9, then
CR = 0.115. The traditional RI overestimates the total amount
of consistency in the comparison rankings.

Continuing the comparative analysis, the artificial data from
Table IX are manipulated once more here to create a sam-
ple pairwise comparison matrix of size n = 7 but using the
second traditional ranking scale (AHP 2) provided by Saaty,
this is shown in Table XI. The measurements associated with
this table are λmax = 7.942 and CI = 0.157 leading to CR =
0.116. Again, viewed differently and using the proposed uni-
versal RI RI = 1.26 that reflects the multiset for 1

9 , . . . , 9 then
CR = 0.125. The conclusion is that the traditional RI over-
estimates the total amount of consistency in the comparison
rankings.
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TABLE XI
AGD—AHP 2 { 1

9 ,
1
7 ,

1
5 , . . . , 5, 7, 9}

TABLE XII
PRIORITIZATION OF AGD CASE STUDY

Table XII summarizes the prioritization of the AGD case
study. Clearly, the prioritization values are distributed differently
among the NFRs. Particular attention should be paid to the
change in priorities that occurs with NFRs 2 and 4. Limiting
the ranking scale granularity and membership has an outward
effect on the prioritization of the NFRs.

VIII. CONCLUSION

AHP is a valuable tool to inform the decision-making process.
Some traditional parameters have been used since the intro-
duction of the decision-making tool. The parameters, ordinal
rankings and a 10% inconsistency allowance, have been iden-
tified by the authors in related research and require extensive
consideration and evaluation. The authors of this research have
taken the steps to address deliberate ranking of NFRs using
a modified ranking process and a new measurement heuristic.
These two contributions allow elements to be ranked against
each other with a sensitivity-level of magnitude comparison
appropriate to the needs of the system designer.
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