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Adaptive Quaternion Feedback Regulation
for Eigenaxis Rotations
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and
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A controller to rotate a rigid body between two successive orientations is designed. Particular features are the
fact that it is based on the quaternion approach, known to provide singularity-free attitude description, and it is
adaptive in the sense that it does not need specific knowledge of the inertia matrix. Global stability of the overall
controller is proved analytically and tested in computer simulations.

I. Introduction

T HE problem of orienting a rigid body with respect to inertial co-
ordinates is of considerable interest in the control of spacecraft

and robotic manipulators.
A basic issue is how to express the rotation of the body-fixed

reference frame with respect to a suitable inertial frame. It is well
known that use of a minimal representation by the three Euler an-
gles yields not only nonlinear kinematic equations but also singular
orientations where the solution is undetermined. By the addition of
a degree of redundancy, it has been shown by several authors that
the problems with Euler angles can be avoided.

The method of quaternions, discussed in Refs. 1 and 2, dates back
to Euler and Hamilton in the 1700s and 1800s. It is based on the
fact, proved by Euler, that any rotation of a frame with respect to
another can be represented by a rotation around a properly chosen
vector (the eigenaxis). This is another way of saying that any ro-
tation matrix, apart from the trivial case of identity, has a unique
eigenvector corresponding to the eigenvalue at 1.3

Control systems based on the quaternion approach have been in-
troduced by Mortensen4 and Ickes.5 For large maneuvers of space-
crafts Wie et al.6'7 have shown global stability and robustness of the
nonlinear controller. Optimal open- and closed-loop maneuvers are
given in Ref. 8 for combined use of reaction wheels and thrusters.
Spacecraft orientation is currently described in terms of quaternions
for the Space Shuttle and Galileo.9 A general framework for the at-
titude control problem for rigid bodies is given in Ref. 10.

A recent survey paper11 presents properties and an extensive list
of applications of the quaternion approach.

In space applications, the main parameters that need to be known
to the designer are the parameters of the inertia matrix. According
to the particular application, these can be changing with time due to
several reasons, such as fuel consumption. The development of space
robot concepts that envision mechanical manipulators performing
such diverse operations as grabbing objects12 calls for self-tuning
control schemes. In the particular case of space robotics the inertia
matrix changes with load and operating conditions.12

A previous approach by Slotine and DiBenedetto13 focuses on
the development of an adaptive controller based on the Gibbs rep-
resentation suitable for rotations of angles smaller than 360 deg.
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In this paper, we design a nonlinear adaptive controller that per-
forms vehicle orientation in the presence of large uncertainties of
the inertia matrix. The concept of adaptive control for linear time-
invariant systems dates back to the 1950s although reliable designs
of proven stability did not appear before the late 1970s.14'15 Both di-
rect and indirect adaptive control schemes are presented. The direct
adaptive controller has the advantage of simplicity in the imple-
mentation, since it is based on a simple gradient-type adaptation
law. However, the indirect approach we present, although of more
complex implementation, is based on a recursive least-squares iden-
tification algorithm that has the advantage of converging faster.

In general, adaptive controllers of nonlinear systems are based
on a linearized model of the plant, and stability can be shown only
locally. In a few cases the particular structure of a nonlinear system
lends itself to a globally stable adaptive control algorithm, such as
the case of robotic manipulators.16 The adaptive controller presented
below falls in this category, for which we can show global stability
of the overall system composed of the plant and the controller with
recursive estimates of the inertia matrix.

Eigenaxis rotation is presented in Sec. II. Three control tech-
niques are given next: a sliding-mode technique in Sec. Ill, direct
adaptive control in Sec. IV followed by an indirect approach in
Sec. V, whereas examples and conclusions are given in Sec. VI and
VII, respectively.

II. Eigenaxis Rotation
The problem of rotating a rigid structure using a body-fixed

torquing device has been widely treated in the literature. In par-
ticular, in Ref. 7 it is shown that using Euler's equations of motion,
any change in orientation of a rigid body can be accomplished by a
rotation around an axis called the eigenaxis. This defines the quater-
nion as a vector [q\, qi,q^, q$\T e R4 such that

i = 1,2,3

(1)

with c — [ci, C2, CI]T being the unitary vector parallel to the eige-
naxis in the reference frame and 0 the angular rotation around the
eigenaxis itself.

If we define q = [q\, q^, qi\T, it is shown in Ref. 7 that, given the
angular velocity vector co = [o>i, o>2, ̂ ]r the quaternion satisfies
the differential equations

q=

(2)
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1288 CRISTI, BURL, AND RUSSO: EIGENAXIS ROTATIONS

with 17 being the skew symmetric matrix

(3)

It is well known that the quaternion vector [qT, q4]T as defined in
Eq. (1) has the property that its magnitude is constant for all t > 0,

which implies that both q and u; are L^ functions. Most of the time
this implies that u;, q -> 0 apart from some particular cases of
signals with unbounded derivatives. A technical and rigorous proof
of this theorem is given in Ref. 19.

A sliding-mode regulator can be designed to compensate for the
dynamic uncertainty/. In particular, let the control input be

qT(t)q(t) + q4(t)2 = qT'(0)0(0) + ̂ (4)

u(t) = -yju>(t) - yajq(t) - Sl(t)Jw(t) - ajq(t) + u(t)

withtt(r) = [wi(0, «2(0, "3(01, ' = 1, 2, 3, and

The angular velocity vector LJ itself is the solution of the differ-
ential equation of motion

; +/ -f u (5)
Then we can show that the state w, q of the closed-loop system
tends to the surface u? + aq = 0 and slides to the equilibrium point
[u;, q] = 0. This can be easily seen by combining the dynamic
equation (5) with the control input to obtain

J(e + ye)=u +/

with J being the inertia matrix and u — [MI , HI, u^\T the control
torque vector. The term/ indicates dynamic errors in the model,
due to viscous friction or other effects in general due to the inter-
action between the system to be controlled and its environment. In
this research we assume that this perturbation/ = [/i, /2, /3]r is Definition of the Lyapunov function
unknown and that rough estimates of its bound are available,

\fi(t)\ < Fi(w, q, 0, 1 = 1,2,3 (6)
V(e) = \eTJe

with FI satistying the assumption

w e Loo => F G (1)

(With LOO we denote the set of uniformly bounded functions in
R.) Given the two equations for motion [Eq. (5)] and quaternion
[Eq. (2)], stable control laws have been designed6'7 in order to take
the rigid body (a spacecraft in particular) from an initial angular
position to a desired one, provided the inertia matrix J is known.
In the particular case of exact modeling (when the uncertainty term
/ = 0), it is shown that a control law of the form

with properly chosen gains D and K yields stable regulation, in
the sense that the quaternion vector tends to [#(00), #4(00)] =
[0, 0, 0,1], causing the body to align with the reference frame start-
ing from any orientation.

III. Sliding-Mode Control
When the moment of inertia J is known at least within a certain

approximation, we are able to design a controller to perform regula-
tion in the presence of model uncertainties/ with known bounds F.
Using an approach well known in the literature, we identify a class
of sliding surfaces in the state space [a;, q] in R6 along the same
lines of Ref. 17. In particular we show in the following that, for any
positive constant, a, the surface

-f aq — 0 (9)

is a sliding surface in the sense that u; + aq —> 0 implies w, q -> 0
as t —> oo. In particular we can show the following.

Theorem L Let a be an arbitrary positive constant and define

If cj,

then

e = u + aq

lim e(t) = 0
t-+oo

lim o;(0 = 0, lim q(t) = 0

(10)

To prove this theorem, we can make use of the interesting result
shown by Vadali18 that shows that the sliding surface (9) is optimal
in the sense that it minimizes the cost function

=1°Jo
of2qTq + u

with derivative

V(e) = -yeTJe ft(t)] < 0

proves the result.

IV. Direct Adaptive Control
In the adaptive case, we assume the inertia matrix J to be unknown

to the designer or changing under different load conditions, and
therefore we replace the control input in Eq. (8) by the expression

(U)aj(t)q(t)+u(t)

with a and y being arbitrary positive constants. The term J(t) rep-
resents the estimate of the inertia matrix J at time t e R. Notice
that the term q in the control input can be computed from Eq. (2)
without involving differentiators.

In the sequej we determine an algorithm to recursively update
the estimates J(f) of the inertia matrix and compensate for the un-
certainties/ based on a suitable error signal. In order to make the
argument more fluent, first define the following signals:

(12)

61 62 — c

(13)

(14)

Then we show the following.
Theorem 2. The plant defined by Eqs. (5) and (2) and control

input (11) is globally asymptotically stable and

lim [qT(t), q4(t)] = [0, 0, 0, 1] (15)

provided the inertia matrix estimate 7(0 is updated as

0(0 = A,*(0c(0 (16)

co ? — &>? €l ~

with e(0 = [ti, €2, 63] defined as

€(t) = yw(t) + ayq(t) + aq(t)
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and the input term u = [MI , «2» u$]T is given by

i = 1,2,3 (17)

where A is an arbitrary positive constant.

The proof follows the derivation of preliminary results.
In order to show the global stability and tracking properties of the

adaptive system, let us write the control input (11) as

= -yJw(t)-y<xJq(t)-SlJw(t)-aJq(t)+u(t)+u(t) (18)

with

u(t) = yj(t)w(t) + yaj(t)q(t) + O7(fM* ) + <*j(t)q(t) (19)

j(t)=J-J(t) (20)

It is just a matter of algebra to write Eq. (19) in a compact form:

fi(0 = *r(r)0(0 (21)
where we define the parameter error vector

~ 7"
0 =

Combining (18) with (5), we obtain the dynamics of the system in
terms of the parameter error vector

J[e(t) + ye(t)] = u(t) +f(t) + u(t) (22)

where the dynamic tracking error e is defined in Eq. (10).
Now we can show that the error signals e, 0 and the angular

velocity vector u; have the following properties.
Lemma 1. The system defined by Eqs. (22), (21), (16), and (17)

with arbitrary initial conditions is such that
a)e e L2 n LOO,
b) 0 e Loo,
c) (jj € LOO, and a; 6 L^, and
d)linWoo<KO = 0,

with L2 and LOO denoting the square-integrable and uniformly
bounded functions, respectively.

Proof. Define the Lyapunov function

V(e, 9) = \eT(t)Je(t) (23)

Then

Substituting for 0 — 0 and using Eq. (16), we obtain

which, combined with Eqs. (22) and (21), yields

V(e, 0) = -yeTJe + eTf + eTu

By definition of u it is easy to verify that the two rightmost terms
of the above expression can be bounded as

3

eT(t)u(t) + eT(t)f(t) = ^P[-|e/(OI^(0 + ei(t)fi(t)'\ < 0

nonpositive since 0 < |//| < Ff by assumption. Therefore, substi-
tuting for 3>r0 = M and using (22) we obtain

V(e, 0) < -yeTJe < 0 > 0 (24)

This implies 0 < V(oo) < V(t) < V(0) < oo for all t > 0, and
therefore

/

+00 /»+00

V(t)dt<-y eT(t)Je(t)dt (25)
^o

Now we make the following claims:
i) e e LOO and 0 e LOO since 0 < V(t) < V(0) for all t > 0;
ii) e € L2 from Eq. (25) and the fact that / is positive definite;
iii) u; 6 LOO since u? = e — aq from Eq. (10) and the fact that the

vector q is uniformly bounded;
iv) since u; and 0 are uniformly bounded, then in turn also <£,/

(by assumption), and u are uniformly bounded [this together with
Eq. (5) shows that u; 6 LOO]; and

v) from Eqs. (22) and (21) we can write

Since 0, <I>, and e are bounded from i), ii), and iii) above, it follows
that e is also bounded. Therefore, by the fact that e e L2 and from
Barbalat's theorem,17 it follows that e — > 0, which proves claim iv).

Now we have to show that from the dynamic error e being as in
Lemma 1, the system with dynamics (5) and (2) yields u; -> 0,
q — > 0, i.e., asymptotic positioning of the rigid body along the
inertial reference axis. This is easily done by applying the result of
Theorem 1 in the previous section, for which e -» 0 and cj, u; e LOO
yield u,q -> 0.

V. Indirect Adaptive Control
From a control perspective, one of the advantages of using the

quaternion approach is its optimality in terms of minimal angular
rotation. It is shown in Ref . 7 that a control of the form (8) yields only
one angular rotation around the eigenaxis. This fact holds provided
the inertia matrix is known to the designer.

The adaptive controller presented in the previous section does not
require explicit convergence of the inertia matrix. It is well known
that a steepest descent algorithm like in Eq. (16) has far slower
convergence than more efficient algorithms such as the recursive
least squares (RLS). The price paid for faster convergence is the
requirement for higher complexity.

In this section we present an adaptive controller based on RLS es-
timation of the inertia matrix parameters. For simplicity we assume
that there is no dynamic perturbation, i.e.,/ = 0. In the general
case when dynamic uncertainties/ are present with known bounds
F, the use of dead zones as in Ref. 20 would ensure the stability of
the algorithm.

The overall structure of the proposed controller plus estimator is
hybrid (or two time scale) in the sense that estimator and controller
operate at two different updating rates. For analysis purposes we
will keep assuming the controller to be operating in the analog do-
main, whereas the parameter estimator is updated at discrete times.
Hybrid adaptive controllers have appeared in the literature20"22 as a
viable alternative to the all-digital and all-analog approaches. They
all show that the adaptive gains can be updated at a lower rate and
still guarantee global stability, at least in principle.

The error model for the adaptive controller is derived from Eq. (5),
rewritten here for convenience,

(26)

linear in the parameter /. In order not to require differentiation of
the angular velocity u;, we can filter both sides of (26) to obtain

Uf = - (27)

with the subscript / denoting filtering. By simple algebraic manip-
ulations we can write

u/ =
with a > 0 an arbitrary constant,

(28)

(29)

(30)

and $ being as in (13) with e = w
Since Eq. (30) is valid for all / € R it also holds at the sampling

instants as

(31)
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1290 CRISTI, BURL, AND RUSSO: EIGENAXIS ROTATIONS

By applying the RLS algorithm the estimate of 0 is updated recur-
sively as

Ok+l =0k + Pk+l*f(tk)[uf(tk) - $>T
f

Pk+l = Pk- Pk&f(tk)[l

(32)

(33)

with the nonnegative definite matrix Q representing a forgetting
factor. Well-known properties of the RLS algorithm are shown by
different authors. In particular, it is shown in Ref. 23 that a limit
always exists as

1.2

1

0.8

0.6

0.4

0.2

0
0 1

lim Ok = (34)

2 3 4 f

time

Fig. 1 Quaternion parameters for direct adaptive control example.

which is not necessarily the actual value of the parameters unless
the matrix <fr/fe) is persistently exciting (PE), i.e.,

^lim^min ^T
[_ k=0

= 00 (35)

with A.min denoting the minimum eigenvalue. Although this condition
is difficult to verify analytically, extensive simulations show that the
transient signals during regulation are sufficiently exciting to drive
the parameter estimates to their correct values.

Once an estimate of the inertia matrix parameters is obtained,
any of the control techniques designed for the known inertia matrix
can be applied substituting its true value J with the current estimate
j(t). Simulation results shown in the next section point to the fact
that in general J ( t ) -* J very rapidly, thus providing a satisfactory
control action.

VI. Simulation Results
In this section we present two simulation results pertinent to the

direct and indirect adaptive algorithms presented in Sees. IV and
V, respectively.

In the first example we simulate an extreme case when the in-
ertia matrix is completely unknown, and the system performs the
desired regulation with the direct adaptive controller. The second
example is an indirect adaptive controller for a crew/equipment re-
triever (CER).12 This controller is designed to perform optimally
(in the sense of minimal angular rotation) when the inertia matrix
is uncertain.

A. Direct Adaptive Control Example
To illustrate the performance of the direct adaptive controller, we

tested it in a computer simulation of a system with inertia matrix
given by

1200 100 -200'
100 2200 300

-200 300 3100
Kg.m2 (36)

We assume the inertia matrix to be completely unknown, and
we start with an initial estimate of J = 0. The goal is to drive
the body to be aligned with the inertial reference frame from
an initial condition (as used in Eq. 7) given by the Euler angles
[1.9168, -0.4876, 1.9168] rad, which corresponds to a quaternion
[q, q4] = [0.57, 0.57, 0.57, 0.159]. The desired slewing maneuver
then covers an eigenangle of 162 deg. Bounded actuator noise, uni-
formly distributed in the interval ±1000, is included in the simula-
tion. This noise is an order of magnitude smaller than the maximum
control signals in this application. Gaussian measurement noise is
also included with the standard deviation of the quaternion mea-
surements being 0.01 and the standard deviation of the angle rate
measurements being 0.001 rad/s. These measurement noises are
consistent with those obtained using relatively inexpensive sensors.
The trajectories of the controller are shown in Fig. 1, for the quater-
nion and Fig. 2 for the Euler angles.

120

100

-^ 80

I 6°
S 40

^ 20
•fw 0

-20

-40

yaw

/pitch

0 1 2 3 4 5
time

Fig. 2 Euler angles for direct adaptive control example.

B. Indirect Adaptive Control of the Crew/Equipment Retriever
The attitude slewing control system of a spacecraft, like the pro-

posed CER, must operate with large uncertainties in the inertia
matrix. The CER is a space-based robot used to retrieve objects
detached from the space station. The object to be retrieved, or tar-
get, is captured in a net (which opens and closes) and is returned to
the space station. The largest target the CER is designed to intercept
is an astronaut plus spacesuit and manned maneuvering unit. The
mass of this target is comparable to the fully fueled CER. The large
relative mass and the long lever arm of an object in the net com-
bine to yield large changes in the inertia matrix. These changes are
not known a priori since the target may vary and the location and
orientation of the target after capture are uncertain.

The control law (11), using the RLS inertia matrix estimate, was
used to slew the CER in computer simulation. The results depicted
are for the worst-case scenario where the target is a person equiped
with the manned maneuvering unit. In this case the inertia matrices
relative to the empty CER (Jo) and the CER with a fully equiped
crew member (JO are given by (in slug ft2)

Jo-
39.6

0
0

0 0 '
55 0
0 55

(37)
112.92 8.44 -111.88'

8.44 527.14 -17.00
-111.88 -17.00 497.54

The parameters in the control law (11) were selected based on the
simulations as a = y — 0.22, in order to result in a reasonable
settling time (approximately 50 s) and damping when the inertia
matrix is known. The control updating time in the simulations is
0.1 s whereas the updating time for the parameter estimator is 0.3
s. A forgetting factor is included in the RLS algorithm since both
measurement and actuator noises are present. The RLS algorithm is
then equivalent to a Kalman filter.

The initial orientation and the measurement noises are the same
as in the previous example. Bounded actuator noise uniformly dis-
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20 40 60 80 100

600

-200

40 60
time

Fig. 3 Adaptive control of CER.

80 100

20 80 -10040 60
time

Fig. 4 Inertia matrix parameter estimates.

tributed in the range ±1 is included in the simulation. This noise is
two orders of magnitude smaller than the maximum control signals
that represent reasonable actuator performance. The empty CER in-
ertia matrix /0 is used to initialize the inertia matrix estimator. The
time histories of the quaternions and control torques are given in
Fig. 3. The noise on the control torques initially consists of mea-
surement noise. Once the state trajectory nears the sliding surface,
the control torques become more noisy since the measurement noise
causes the signum function to rapidly oscillate. This rapid oscillation
of the control torque can be removed by filtering the measurements
and by addition of a dead zone to the signum function. The esti-
mated inertia matrix parameters are presented in Fig. 4, and the
final estimates (after 100 iterations) yield

/(100) -
108.7 1.8 -116.3'

1.8 529.6 3.8
-116.3 3.8 499.9

(38)

which is close to the actual inertial matrix J\ above. Figure 4 shows
how rapidly the estimated parameters converge to their final values.
Also eigenaxis rotation is indicated by the first three elements of the

quaternion remaining proportional to their initial values (all equal in
this case). From Fig. 3, we see that the adaptive controller generates
near eigenaxis rotations.

VII. Conclusions
An adaptive controller has been developed for rotational ma-

neuvers of a rigid body with considerable dynamic uncertainties.
The inertia matrix is supposed to be unknown, which might be
the case of a mobile manipulator in space designed to pick up ob-
jects of various sizes and weights. Unmodeled dynamic effects are
also taken into account in a control scheme reminiscent of sliding-
mode techniques. Global stability of the overall adaptive system
has been shown analytically and its behavior tested in computer
simulations.
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