
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2013-12

End-to-end formal specification, validation
and verification process: a case study of
space flight software

Alves, Miriam C. Bergue; Drusinsky, Doron; Michael,
James Bret; Shing, Man-Tak
IEEE

M.C.B. Alves, D. Drusinsky, J.B. Michael, M.-T. Shing, "End-to-end formal
specification, validation and verification process: a case study of space flight
software," IEEE Systems Journal, v.7, no.4, (December 2013), pp. 632-641.
http://hdl.handle.net/10945/56487

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

632 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 4, DECEMBER 2013

End-to-End Formal Specification, Validation,
and Verification Process: A Case Study

of Space Flight Software
Miriam C. Bergue Alves, Doron Drusinsky, James Bret Michael, Senior Member, IEEE, and

Man-Tak Shing, Senior Member, IEEE

Abstract—The quality of requirements and the effectiveness
of verification and validation (V&V) techniques in guaranteeing
that a final system reflects its established requirements have a
direct influence on the quality and dependability of the delivered
system. The V&V process can be efficient from a managerial
point of view, but ineffective from a technical perspective, and
vice versa. This paper presents an end-to-end formal computer-
aided specification, validation, and verification (SV&V) process,
whose feasibility and effectiveness were evaluated against the
flight software for the Brazilian Satellite Launcher. Unified
modeling language (UML) statechart assertions, scenario-based
validation, and runtime verification are used to formally specify
and verify the system, and metrics of the ongoing process and its
V&V results are collected during the application of the process.
The results of the case study indicate that the process and its
computer-aided environment were both technically feasible to
apply and managerially effective, will likely scale well to cater to
SV&V of mission-critical systems that have a larger number
of behavioral requirements, and can be used for V&V in a
distributed development environment.

Index Terms—Astronautics, behavior, formal methods, metrics,
process, requirements engineering, runtime execution
monitoring, software, statechart assertions, verification and
validation (V&V).

I. Introduction

M ISSION-CRITICAL systems are unique in that they
must be highly dependable. Complex real-world re-

quirements are hard to assess for accuracy and are often
difficult to specify and understand correctly [1]. As software
is an important and increasing part of these systems, several
techniques exist to conduct formal verification and validation
(V&V), aiming to establish that the final system implements

Manuscript received August 9, 2011; revised March 6, 2012; accepted
April 1, 2012. Date of publication November 12, 2012; date of current version
September 25, 2013. This work was supported in part by the State of São
Paulo Research Foundation under Grant 2010/08173-3.

M. C. B. Alves is with the Software Engineering Laboratory, Institute of
Aeronautics and Space, São José dos Campos, SP 12228-904, Brazil (e-mail:
miriammcba@iae.cta.br).

D. Drusinsky, J. B. Michael, and M.-T. Shing are with the Department of
Computer Science, Naval Postgraduate School, Monterey, CA 93943 USA
(e-mail: ddrusin@nps.edu; bmichael@nps.edu; shing@nps.edu).

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Brazilian Institute of
Aeronautics and Space, U.S. Department of Defense, or the U.S. Government.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2012.2220591

the requirements correctly, while avoiding the well-known
garbage-in garbage-out principle—in this context, poor speci-
fication leads to poor software implementation [2]–[4].

Early automatic analysis of software system requirements
has the advantage of helping analysts evaluate and reason
about complex behavior, such as time-constrained and time-
series sequencing behaviors [5]. To that end, natural lan-
guage requirements (NL) must be expressed formally in
machine-processable languages to enable eventual computer-
aided V&V. However, because contemporary V&V tools are
typically not well integrated into the development process, for-
mal specifications that have been validated in the requirements
phase are often not used “as is” in the verification phase,
thus making it difficult to guarantee that the delivered system
conforms to the system requirements.

In [6], Drusinsky et al. presented a computer-aided V&V
framework where NL requirements are formally specified
as human-readable and machine-processable statechart asser-
tions, validation is based on scenario testing, and subsequent
verification is accomplished using runtime execution monitor-
ing (REM). This paper builds upon that research and describes
an end-to-end formal specification, validation & verification
(SV&V) process, including a quantitative assessment—driven
by the goal-question-metric (GQM) approach [7] of the SV&V
process and its results. We present an SV&V process case
study of a set of critical time-constrained requirements for
the flight software of the Brazilian Satellite Launcher, using
distributed verification [8]. We describe how computer-aided
formal V&V, using the tool StateRover [9], addresses the
challenge of correctly capturing NL requirements, converting
the NL statements into formal requirement specifications, and
then checking the formal specifications to ensure that they
match the original intent of the stakeholders. Our approach
enforces a one-to-one mapping between NL requirements and
unified modeling language (UML) statechart assertions.

The remainder of this paper is organized as follows.
Section II provides a summary of the related work and
Section III presents a brief overview of statechart assertions.
Section IV describes our formal SV&V process. Section V
presents the flight software under study, the formalization of
the flight requirements as statechart assertions, and the V&V
of those requirements. Section VI discusses the V&V results
and Section VII presents some findings from applying the

1932-8184 c© 2012 IEEE

ALVES et al.: END-TO-END FORMAL SPECIFICATION, VALIDATION, AND VERIFICATION PROCESS 633

V&V process, based on the GQM approach. Section VIII
contains a summary of the benefits of the proposed process
and lessons learned from the flight software case study.

II. Related Work

Formal V&V languages and techniques vary in cost, ease
of use, required expertise, system coverage, and effectiveness.
See [10] for a tradeoff space that treats the cost and coverage
dimensions of formal V&V techniques.

In [11], Leveson et al. discussed the need for a specification
language to create requirements models that minimize the
semantic distance (i.e., the amount of effort to translate from
one model to another) between the system’s requirements
specification and the mental model of the system in the
stakeholder’s mind as well as the semantic distance between
the system’s requirements specification and its implementa-
tion. They identified state-based models as the specification
language that comes closest in meeting these needs. Statecharts
[9], [12], [13] and the requirements state machine language
(RSML) [11], [14] are some examples of such languages.

Classical model checking [15] is a formal verification
technique in which properties such as reachability, safety,
liveness, and fairness are formally captured using a formal
language. Some references in the literature [16]–[20] describe
applications of model checking to verification of safety-critical
systems. The SPIN model checker [21], a formal verifica-
tion technique, uses propositional linear-time temporal logic
(PLTL) [22], [23] for requirements specification. The main
issue associated with PLTL is its inability to describe real-
time requirements or time-series constraints. While model
checking can perform complete verification of relatively small
components, it provides for limited scalability due to the state-
explosion problem and its restricted support for the verification
of a rather weak set of properties (e.g., properties expressible
in PLTL or Buchi automata).

Jeffords and Heitmeyer [24] developed an algorithm for
automatic generation of invariants (i.e., properties that hold
in every reachable state of a state machine model) from the
requirements specification to be presented to the system users
for validation. The invariants are derived from specifications
expressed in the software cost reduction tabular notation
[25], [26]. Their approach can be used to supplement other
techniques such as model checking.

Execution-based model checking techniques use REM to
monitor the system runtime execution and check the observed
behavior against the formal specification of the system. In
[27] and [28], REM was used for formal runtime verification
of two safety-critical systems. The Eclipse-based StateRover
tool [9] uses REM, where system designers can formally
specify mission-critical requirements for subsequent runtime
verification and runtime recovery from specification violations.
REM has also been used as a component of execution-based
model checkers such as the Java Pathfinder [29], [30] and
StateRover white box test generator [9].

In [31], message sequence charts assertions were used
for specifying behaviors of a distributed network protocol,
where simulation of the formal assertions, automatic scenario

generation, and runtime monitoring were applied for V&V of
the behavioral models.

The work presented in this paper combines statechart for-
mal specification assertions and off-line runtime verification.
Validation is based on JUnit tests while verification is based
on JUnit tests created from the REM log files. In this way, our
approach differs from the aforementioned ones in that V&V
of requirements proceeds from specification to implementation
using a consistent formal specification notation. In addition,
the system under test (SUT) implementation does not need to
be abstracted prior to verification.

Our approach also includes data collection integrated within
the computer-aided formal V&V environment, data that is
later used to assess the technical feasibility and efficiency of
applying the process, and its results.

III. Statechart Assertions

While statecharts have been part of the UML for many
years, they are typically used either for documentation or
for modeling and subsequent code generation. In contrast,
a statechart assertion differs from a UML statechart in that
it has a built-in Boolean flag bSuccess, indicating success
or failure, thereby enabling Boolean specification of reactive
system properties.

A statechart assertion is a formalization of a requirement,
that is, a representation that a computer can process, written
from an external observer’s viewpoint. The purpose served
by the statechart assertion is to declare the detection of a
requirement violation, also known as a requirement failure,
by assigning bSuccess to false. The StateRover Eclipse plug-in
tool used in this research extends the statechart diagrammatic
notation using Java as an action language, resulting in a
Turing-equivalent notation, where code is generated from
statechart assertions for subsequent V&V using scenarios. As
such, statechart assertions monitor the inputs and outputs of
the SUT for both validation and verification tests.

To validate a statechart assertion as a correct representation
of its respective NL or cognitive requirement, validation JUnit
tests are performed. They help in visualizing the true meaning
of the assertions via scenario-based simulations, in which the
tester constructs a plurality of scenarios, including nominal and
failure scenarios, in order to validate the assertion’s behavior
under normal and adverse conditions. Once approved, the
statechart assertions become the reference model for the REM-
based verification phase.

IV. A Change in the V&V Paradigm

The desire to raise productivity and reduce costs associated
with software assurance has spurred on the adoption within
the industry of computer-aided V&V tools and methods of
automation. The V&V automation paradigm centers on the
use of formal specification models and on the automated
generation of source code, where the correctness of the models
(or specifications) determines the correctness of the derived
system [4]. A driving force on the cost side is to assure early
on in the development lifecycle that the formal specifications

634 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 4, DECEMBER 2013

Fig. 1. Software development V model.

Fig. 2. Model-based development.

represent the correct understanding of what the system should
and should not do, and the verifiability of the correct source-
code generation based on these specification models. The new
V&V paradigm, unlike that of the traditional V model shown
in Fig. 1, emphasizes the analysis and testing of the spec-
ification followed by the verification of the implementation.
Fig. 2 shows our adaptation of the V model in order to
align our V&V process with the new paradigm, where the
traditional acceptance testing is augmented with REM log file-
based qualification testing to determine if the requirements of
a specification are met at the coding, subsystem-integration,
and system-integration phases of the system development.

A. V&V Process

The focus of V&V of reactive software systems is to guar-
antee that the system correctly implements its functionality
and expected behavior, as prescribed by systems requirements.
The semantic differences between the requirements model
and its implementation in embedded control systems impose
even more challenges for the V&V process [32]. While some
control requirements are mathematically set in a continuous
time, assuming concurrent execution and instantaneous switch-
ing in the problem domain, the final target code is running
on a digital computer platform, subjected to sampling inter-
vals, round-off errors, and communication delays, possibly
producing different system behavior. Thus, it is necessary to
dynamically verify the requirements specified in NL against
the final code running on the target environment [33].

Fig. 3. Validation activities.

The proposed SV&V process is explained in the follow-
ing sections. In the specific case of the flight software, we
used distributed verification, where specification and valida-
tion activities were performed in Monterey, CA, generation
of log files took place in São José dos Campos, Brazil,
and requirements verification was conducted in Monterey,
CA [8].

B. Specification and Validation Activities

The requirements specification and validation follow an
abstract-validate-refine process, as shown in Fig. 3, with the
following steps.

1) Requirements modeling: statechart assertions are created
for a set of critical NL requirements; they are a computer
executable version of the NL requirements.

2) Validation: a set of test scenarios is created for every
assertion with the purpose of assuring that the asser-
tion conforms to the intent of its corresponding NL
requirements. Some scenarios are designed to satisfy the
requirement, while others capture event sequences that
deliberately fail the requirement, expecting the assertion
to flag the requirement violation. In other words, vali-
dation testing assures the assertion being validated is a
good representative of the NL requirement.

3) Failure of a validation JUnit test: an unexpected
validation-test outcome occurs when either the assertion
fails when it is expected to succeed, or vice versa. When
this occurs, the scenario in question is further examined
to determine which of the following issues caused the
unexpected assertion behavior: a) a “bug,” that is, the
statechart assertion exhibits a behavior different from
what the developer expects; b) the developer misunder-
stood the requirement (e.g., when the NL requirement
is ambiguous) thereby creating an erroneous statechart
assertion; and c) the validation test contains a error
(i.e., a “driver error”). In the first case, the statechart
assertion is reviewed for correction and the second step
is repeated. In the second case, the NL requirement is
reviewed with the stakeholder to uncover missing or ill-

ALVES et al.: END-TO-END FORMAL SPECIFICATION, VALIDATION, AND VERIFICATION PROCESS 635

Fig. 4. Verification activities.

specified behaviors and the first step is repeated. In the
third case, the test itself has to be corrected.

C. Verification Activities

Fig. 4 describes the verification framework based on an
abstract-verify-refine process. It involves the following steps.

1) Runtime execution monitoring: data is gathered in a log
file by observing the system behavior in its real-time or
simulated execution environment.

2) Log-file-based verification: a set of JUnit verification
tests is autogenerated from the log files. The tests are
executed against the assertions.

3) Failure tests: At this time, all assertions are expected
to succeed. Verification tests that fail an assertion are
examined to determine whether they are due to an
implementation error or due to abnormal system exe-
cution. In the latter case, the problem is reported to the
stakeholders. Otherwise, the process proceeds.

4) Design review: feedback is given to the system-design
and implementation team. Given the updated design and
code, the loop proceeds to the first step.

V. Flight Software Formal SV&V

A. Specification

For our case study, the SUT is the flight control software of
the Brazilian satellite launcher. The software is responsible for
the control of the launcher, except for the launcher destruction,
from a few minutes preceding liftoff until the satellite has been
deployed into Earth’s orbit. The software is also in charge
of the main launcher’s subsystems verification (e.g., inertial
platforms, autopilot chain, and sequencing chain) during flight
preparation.

The external interfaces of the flight software include a
variety of analog and digital components and, as a conse-
quence, the interface has to be able to detect and recover
from error conditions resulting from interaction with the
embedded environment. The algorithms and control loops,
which operate during the powered and ballistic phases of flight,
compare the measured state of the vehicle (i.e., position, speed,
acceleration, and attitude) with the desired state, and generate

Fig. 5. Statechart assertion for the Req−Ref−B.

pitch and roll guidance commands in order to minimize the
difference between the measured and desired state. The flight-
events sequence characterizes the different stages of the flight
and determines when and which algorithms and control loops
have to be executed during the flight. As a critical part of
the software, with very tight time-constraint requirements,
we chose to formally specify this sequence. The sequence is
specified by 44 requirements, representing approximately 80%
of the behavioral requirements of the flight phase.

There are two distinct types of events in the flight sequence:
reference events and relative events. The reference events
are the main events in each flight stage; the time of their
occurrence dynamically determines the occurrence time of the
relative events. The relative events determine a certain set of
actions to be performed at each stage of flight.

Reference events must occur in a predetermined timeframe,
and depend on the time occurrence of the previous reference
events during the flight. Consider the following four reference
events:

1) reference event A: LiftOff;
2) reference event B: ThrustDrop−1Stage;
3) reference event C: ThrustDrop−2Stage;
4) reference event D: ThrustDrop−3Stage.

We created a statechart-assertion specification for all refer-
ence event and relative event requirements based on the NL
specifications; the NL specification for reference events A and
B requirements is as follows.

1) Req−Ref−A: Once the navigation starts (time = 0), A
must occur (only) within the time interval [lA, uA].

2) Req−Ref−B: B must be detected (only) within the time
interval [lB, uB] of the detection of A.

Fig. 5 shows the statechart assertion for Req−Ref−B (su-
perimposed on Req−Ref−A). It enters Error−A state when it

636 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 4, DECEMBER 2013

Fig. 6. Statechart assertion for the Req−Rel−Bi.

observes the event A while in state Nav−On, before event A’s
interval of occurrence lower limit (lA) has been reached (lA
is manifested in Fig. 5 by the timeout value timer−LA) or
when in state Waiting−A, it observes that event A’s interval
of occurrence upper limit (uA) has been reached (uA is
manifested in Fig. 5 by the timeout value timer−UA) and A
was not detected. The statechart assertion enters the Error−B
state when it observes the event B while in state A, before
event B’s interval of occurrence lower limit (lB) has been
reached (lB is manifested in Fig. 5 by the timeout value
timer−LB) or when in state Waiting−B, it observes that event
B’s interval of occurrence upper limit (uB) has been reached
(uB is manifested in Fig. 5 by the timeout value timer−UB)
and B was not detected. StateRover’s code generator creates a
Java class for every statechart-assertion file that is integrated
with the JUnit Java testing framework [34].

There exist five relative events that must be detected within
a pre-established time interval after the detection of event
B, with a tolerance of m milliseconds. Let δi be the earliest
occurrence time of the relative events Bi, i = 0, 1, . . . , 4. The
relative event requirement Bi is as follows.

Req−Rel−Bi: whenever B is detected, then Bi must occur
between δi and δi + m milliseconds afterward.

Fig. 6 illustrates the statechart-assertion formalization pat-
tern for these requirements. The associated Java class gener-
ated by StateRover was then refactored for each of the relative
requirements and a special Java function was created to set the
corresponding δi for each Bi.

The first part of the statechart assertion in Fig. 6 formalizes
the detection of the events A and B, as explained previously.

The remaining part (states colored gray) formalizes the generic
relative event requirement Bi (in Fig. 6 event R−E stands
for relative event Bi). The statechart assertion will enter the
Error−Rel state if it observes the R−E event when in state
B, before its δi timeout has expired (δi is manifested in
Fig. 6 by the timer2, which is the timeout value for the ith
instance of the assertion), or when in state Waiting−Relative
for more than m milliseconds (m is manifested in Fig. 6 by
the timer3).

The requirements for reference events C and D are as
follows.

1) Req−Ref−C: C must be detected within the interval [lC,
uC] after the detection of A.

2) Req−Ref−D: D must be detected within the interval [lD,
uD] after the detection of C.

Because a statechart assertion represents a corresponding
flight-sequence requirement, there is a potential overlap be-
tween the statechart assertions—an overlap induced by re-
quirement dependences. As a result, the set of validation tests
created to validate Req−Ref−A, for example, could be reused
as part of the validation tests for Req−Ref−B, Req−Ref−C, and
Req−Ref−D.

The use of the StateRover tool and the creation of the
statechart-assertion patterns for the relative-events require-
ments were instrumental in rapidly creating a large plurality
of assertion instances. The initial requirements analysis, the
creation of statechart assertions and their validation, took
approximately three months of work by one subject matter
expert in flight-event sequencing. Two more months were
spent in verification testing with the assistance of another
expert, which included the simulations and REM.

B. Validation Tests

JUnit tests were hand coded. They consisted of sequences of
events and timing information. In order to cover all scenarios
of interest in the statechart assertion, the creation of the JUnit
validation tests followed the following approach [35].

1) Obvious success: test a trivial scenario that conforms to
the NL requirement.

2) Obvious failure: test a trivial scenario that violates the
NL requirement.

3) Full scenario success: test a nontrivial scenario that goes
through the entire basic scenario while in agreement
with the NL requirement.

4) Full scenario failure: test a nontrivial scenario that goes
through the entire basic scenario while violating the NL
requirement.

Let us take the relative event B1 (denoted as R−E in Fig. 6)
requirement as an example. B1 is supposed to occur 1000 ms
(δ1 = 1000) after the B occurrence. Fig. 7 illustrates the
timeline associated with three JUnit tests, for the following
scenarios: 1) a success scenario, where the event R−E occurs
1000 ms after B; 2) a failure scenario, where the event
R−E occurred too late, after 1000 + m ms (m = 50); and
3) a failure scenario where R−E occurred 1 ms before its
interval-of-occurrence lower limit had been reached. Scenarios
2 and 3 violate the requirement.

ALVES et al.: END-TO-END FORMAL SPECIFICATION, VALIDATION, AND VERIFICATION PROCESS 637

Fig. 7. Three validation tests. (a) Full scenario success test. (b) Full scenario
failure where the event R−E occurred too late. (c) Scenario where R−E
occurred early.

C. Verification Tests

The flight control software executes on a target computer
governed by the VxWorks real-time operating system (RTOS);
the RTOS communicates with the embedded environment and
the host computer (Fig. 8), where the log files are created
during execution. The StateRover tool provides automatic
code instrumentation [36] that is optimized to collect the
sequences of flight events and their corresponding time of
occurrence. The relationship between the statechart assertions,
the statechart-assertions Java code, the instrumented source
code, and the log files is shown in Fig. 9. Fig. 10 presents an
excerpt of the instrumented code and the resulting log file.

Four log files were created and analyzed to date. Using
StateRover’s log-file-to-JUnit converter, the log files were im-
ported into the offline verification environment, and converted
into an equivalent JUnit Java class. This class contained the
log-file-based verification tests for the statechart assertions.

StateRover’s namespace mapping tool was used to create
a namespace mapping linked the SUT’s name space (events
and variables as defined in the source code) to the assertion
repository’s namespace. The StateRover’s namespace mapping
in Fig. 11 depicts on the left-side tree (denoted the source
tree) events taken from a log file and, on the right-side
tree (denoted the target tree) events from all assertions in
the assertion repository. Connections between the source and
the target trees were created algorithmically—using a built-
in matching algorithm—with a few handpicked connections
created manually via the user interface.

The verification tests were executed according to the scheme
shown in Fig. 12. The main driver (assertionrepository.java) is
in charge of running JUnit tests using the namespace mapping,
thus verifying the statechart-assertion’s behavior against se-
quences of events (acceptance-test scenarios) collected during
runtime system execution.

VI. Product Evaluation

Table I summarizes the tests and their results for the V&V
process. Two hundred and twenty JUnit validation tests were
created to validate 44 requirements represented as statechart
assertions. In the validation phase, approximately 40% of the
tests were created to fail the assertion.

In the verification phase, we observed that approximately
30% of the assertions were violated due to late reference-
events detection. The time in the log files was compared
to the telemetry time data, which was collected under the
same testing conditions, but with no instrumentation in the
code. In both data sets, the events’ occurrence times were

Fig. 8. Lab setup scheme for runtime execution monitoring.

Fig. 9. Code instrumentation and verification testing.

very similar, hence eliminating instrumentation overhead as a
possible cause of delays. The late detection of some events
is likely attributable to interface-communication delays and
also to unrealistic timing requirements specified by the stake-
holders. For instance, in one of the test scenarios, the event
B (thrust drop of the first stage) occurred approximately 4 s
after the upper limit time specified for its detection. In this
specific case, the flight software would not detect the event B
and the rest of the flight events that depend on this event-
detection would be compromised, as they are serialized in
time. Should the specified time interval be redefined? The
answer for this question certainly relies on the judgment of
subject matter experts. We believe that acceptable tradeoffs
between the flight’s functional and environmental requirements
can be found without sacrificing the desired performance
standards for the mission.

The V&V results also indicate that there is room for
improving the system requirements in the area of failure and
fault management. For instance, the failure caused by out-of-
time errors in the events sequence was not properly addressed
in the NL requirements.

In addition to detecting implementation errors using au-
tomated V&V, the computer-aided process assisted in high-
lighting requirements ambiguities and implementation defi-
ciencies (e.g., the absence of few events detection and fault
management in the implementation code) that could only be
discovered using runtime verification.

VII. Process Evaluation

Typical measurement frameworks are ambitious undertak-
ings that often require substantial data collection and anal-

638 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 4, DECEMBER 2013

Fig. 10. Instrumented code and the resulting log file.

Fig. 11. Namespace mapping for verification testing.

Fig. 12. Verification tests execution from log files.

ysis. Unfortunately, such frameworks frequently become pro-
hibitively costly, resulting in large amounts of data that is never
analyzed or used.

Berander and Jönsson presented an extended GQM ap-
proach that focuses on the most important measurements for
an organization regarding a specific project [7]. Goals generate
questions, which in turn generate metrics. Metrics in the
context of this paper are understood to be the application of
measurement-based techniques to the software V&V process
and its products with the goal of providing significant and
timely actionable-information to product, project, or program
managers. Nevertheless, the main focus of this section is to

TABLE I

Summary of the Validation and Verification Tests

Validation Tests Verification Tests
220 (around five tests per
assertion)

Four log files (four tests per
assertion)

220 JUnit classes—one
JUnit class per test

4 JUnit class—one JUnit
class per log file

132 success scenarios
(around 60% of the
scenarios)

31 assertions passed in all
tests (around 70% of the
assertions)

88 premeditated failure
scenarios (around 40% of
the scenarios)

13 assertions failed at least
in one test (around 30% of
the assertions)

Fig. 13. Number of validation tests per reference events (metric S1).

present a sample of some product and process information that
was obtained from the SV&V data collection.

One of the key factors for a successful measurement
framework is to start with a small set of goals, metrics,
and measurements, and subsequently grow them incremen-
tally as the organization matures. There is always a risk of
choosing unsuitable metrics and measurements, resulting in
an overwhelming amount of data. The StateRover’s embed-
ded database collects data for predefined datasets during the
ongoing V&V process. This productivity database was used
to define the datasets for our metrics and measurements.

ALVES et al.: END-TO-END FORMAL SPECIFICATION, VALIDATION, AND VERIFICATION PROCESS 639

Fig. 14. Validation tests results X requirements (metric S2).

A. The Environment and Data Gathering

StateRoverDB plug-in (database) combines the Derby
database engine and the BIRT Eclipse reporting plug-in.
The StateRoverDB provided the data collection and report
generation framework for our metric-generation process.

The reporting tool was used to present selected data,
as database views, collected automatically during the active
execution of the V&V process. The tool provided us with
an continuously updated overview of the progress of the
V&V effort—an overview that helped us prioritize our V&V
tasks, focusing on critical areas of assurance while avoiding
unnecessary tasks.

B. Goals and Metrics

Metrics are normally responses to questions linked to the
goals, with different questions yielding different metrics. We
defined two categories of goals: 1) flight software product, and
2) V&V process. Examples of metrics are given as follows.

1) Product Goal: This validates the flight software re-
quirements according to the expected system behavior, with
specific emphasis on what the system should do, what the
system should not do, and what it should do under adverse
conditions.

Three possible associated questions and their corresponding
metrics are as follows.

Q1: Did the validation tests cover all the flight events as
specified by the users?

Metric S1: Number of validation tests involving an event
(system-events testing coverage).

Q2: Are the NL requirements easily understandable?
Metric S2: Number of validation test runs per requirement

and their results. This is an indirect measure of statechart-
assertion rework since the corresponding validation tests are
rerun after each statechart-assertion update.

Q3: Did the validation tests cover all the requirements?
Metric S3: Number of validation tests per requirement. Note

that metric S3 only provides a simple measure of test coverage.
It does not measure the effectiveness or sufficiency of the tests.

Structured query language queries retrieved information
associated with the aforementioned metrics. Fig. 13 presents
the resulting chart for metric S1 (with visualization restricted
to flight events A, B, C, and D). We can observe that the

Fig. 15. Number of validation tests per requirement (metric S3).

Fig. 16. Validation test results per day (metric P1).

number of tests that involves event A is greater than the
ones involving events B, C, and D. This is due to the
presence of event A in the tests involving events B, C,
and D, caused by the dependence among the corresponding
requirements.

A snapshot of metric S2 is illustrated in the report depicted
in Fig. 14. At the time this metric was collected, the number
of validation test runs per requirement was unbalanced, high-
lighting those requirements that require additional allocation of
assurance resources to ensure that their counterpart statechart
assertions are correct. Metric S3 is illustrated in Fig. 15; it
depicts S3 for six selected requirements. In fact, the number
of validation tests for each statechart assertion represents the
number of scenarios covering at least all of its possible states
and events.

2) Process Goal: Assessment of the effort spent on V&V
activities.

Two possible associated questions and their corresponding
metrics are as follows.

Q1: To what degree was the V&V process effective in
finding and correcting problems in the requirements (i.e., man-
ifested as errors in the assertions, developer misunderstandings
of the requirements, and validation test-driver errors) during a
certain time period (e.g., month)?

Metric P1: Results of the validation tests per day during one
month. The idea behind this metric is to observe if there is a
reduction in the number of tests that fail the assertion when
they were supposed to succeed, and if new failures were not
introduced. Fig. 16 illustrates this metric.

640 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 4, DECEMBER 2013

Q2: How many tests were executed per day during a certain
month?

Metric P2: Total number of validation and verification
tests runs per day. This number tends to get smaller if the
tests results are satisfactory and rework is not necessary
anymore.

The collected metrics for the Brazilian Satellite Launcher
Project can be compared with those of other software devel-
opment projects that adopt the approach to V&V described in
this paper.

VIII. Conclusion

We presented in this paper an end-to-end process for formal
SV&V of reactive systems. Having an ample specification of
a set of real-world requirements, simple, formal, and visual
requirements representation and their correct understanding
are among the most prominent advantages that statechart
assertions and validation tests can bring to early stages of
software development projects.

Another equally important benefit includes checking re-
quirements correctness with respect to the hardware and soft-
ware platforms on which the system will run, by monitoring
at runtime the system implementation’s behavior against the
formal requirements model, without any additional language
translation. Managerial and technical data collected by mon-
itoring the V&V process and its results make it possible
to document dependability cases for the product, system, or
service, in addition to providing useful data for improving the
quality-assurance process.

We presented a defined repeatable process with the requisite
level of tool integration and automation to make distributed
V&V efficient and effective, and demonstrated the application
of the process on the flight software of the Brazilian Satellite
Launcher. In addition, this paper, to our knowledge, is the first
to document in the open literature the details of how to go
about conducting distributed computer-aided formal V&V, in
which software execution in its real embedded environment
occurred in one location and the collected log files were
analyzed in a different location. Distributed V&V is im-
portant for software-development projects, in which multiple
geographically dispersed project teams collaborate with one
another. For instance, in the development of video games it
is now uncommon for the developers of the game engine to
be physically collocated with the developers of the other parts
of the game or even the visual artists, storyline writers, music
composers, or quality-assurance team [37].

Our research yielded several lessons learned about apply-
ing statechart assertions. Because part of the flight software
requirements specification was close to the pseudocode level,
it was challenging to abstract away from the design and
flowchart-like logic (i.e., the accidents of a software entity
according to Brooks [38]) and to specify the problem (i.e., the
essence of a software entity). With practice, it is possible to
write simple and readable specifications that can be understood
and reviewed by subject matter experts with a minimal knowl-
edge of REM and other aspects of computer-aided formal
V&V. Readability and simplicity are very important: when

the resulting statechart assertion is complex, chances are that it
captures the design logic instead of the software requirements,
which will have the opposite effect from what we aim for in
formal V&V.

Our follow-on research includes further improving test
coverage and requirements comprehensiveness, wider use of
the StateRover database plug-in for process- and test-quality
assessment, and completing a case study of an industrial space
ground system.

Acknowledgment

The authors would like to thank M. A. Romani, Institute of
Aeronautics and Space, Brazil, for running the flight simula-
tions and collecting the log files.

References

[1] A. Dekhtyar, J. H. Hayes, S. Sundaram, A. Holbrook, and O. Dekhtyar,
“Technique integration for requirements assessment,” in Proc. 15th IEEE
Int. Requirements Eng. Conf., Oct. 2007, pp. 141–150.

[2] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamil-
ton, “Experiences using lightweight formal methods for requirements
modeling,” IEEE Trans. Softw. Eng., vol. 24, no. 1, pp. 4–14, Jan.
1998.

[3] J. M. Thompson, M. P. E. Heimdahl, and S. Miller, “Specification-based
prototyping for embedded systems,” in Proc. Joint Meeting Eur. Softw.
Eng. Conf. ACM SIGSOFT Symp. Foundations Softw. Eng., LNCS 1687.
1999, pp. 163–179.

[4] M. P. E. Heimdahl, “A case for specification validation,” in Verified
Software: Theories, Tools, Experiments (LNCS, vol. 4171), B. Meyer
and J. Woodcock, Eds. Berlin, Germany: Springer-Verlag, 2005, pp.
392–402.

[5] D. Drusinsky and M. Shing, “Verification of timing properties in rapid
system prototyping,” in Proc. 14th IEEE Int. Workshop Rapid Syst.
Prototyping, Jun. 2003, pp. 47–53.

[6] D. Drusinsky, J. B. Michael, and M. Shing, “A framework for computer-
aided validation,” Innovations Syst. Softw. Eng., vol. 4, no. 2, pp. 161–
168, 2008.

[7] P. Berander and P. Jönsson, “A goal question metric based approach for
efficient measurement framework definition,” in Proc. ACM/IEEE Int.
Symp. Empirical Softw. Eng., Sep. 2006, pp. 316–325.

[8] M. C. B. Alves, D. Drusinsky, J. B. Michael, and M. Shing, “Formal
validation and verification of space flight software using statechart-
assertions and runtime execution monitoring,” in Proc. 6th IEEE Int.
Syst. Syst. Conf., Jun. 2011, pp. 155–160.

[9] D. Drusinsky, Modeling and Verification Using UML Statecharts:
A Working Guide to Reactive System Design, Runtime Monitor-
ing and Execution-Based Model Checking. Burlington, MA: Elsevier,
2006.

[10] D. Drusinsky, J. B. Michael, and M. Shing, “A visual trade-off space
for formal verification and validation techniques,” IEEE Syst. J., vol. 2,
no. 4, pp. 513–519, Dec. 2008.

[11] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese,
“Requirements specification for process-control systems,” IEEE Trans.
Softw. Eng., vol. 20, no. 9, pp. 684–706, Sep. 1994.

[12] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Programming, vol. 8, no. 3, pp. 231–274, 1987.

[13] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot, “Statemate: A working envi-
ronment for the development of complex reactive systems,” IEEE Trans.
Softw. Eng., vol. 16, no. 4, pp. 403–414, Apr. 1990.

[14] M. P. E. Heimdahl and N. G. Leveson, “Experiences from specifying
the TCAS II requirements using RSML,” in Proc. 17th Digital Avionics
Syst. Conf., vol. 1. Oct. 1998, pp. 1–8.

[15] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
P. Schnoebelen, and P. Mckenzie, Systems and Software Verification:
Model-Checking Techniques and Tools. Berlin, Germany: Springer-
Verlag, 2001.

[16] F. Schneider, S. M. Easterbrook, J. R Callahan, and G. J. Holzmann,
“Validating requirements for fault tolerant systems using model check-
ing,” in Proc. 3rd Int. Conf. Requirements Eng., Apr. 1998, pp. 4–13.

ALVES et al.: END-TO-END FORMAL SPECIFICATION, VALIDATION, AND VERIFICATION PROCESS 641

[17] P. R. Glück and G. J. Holzmann, “Using SPIN model checking for flight
software verification,” in Proc. IEEE Aerospace Conf., Mar. 2002, pp.
105–113.

[18] K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and
J. L. White, “Formal analysis of the remote agent before and after
flight,” presented at the 5th NASA Langley Formal Methods Workshop,
Williamsburg, VA, Jun. 2000.

[19] K. Havelund, M. Lowry, and J. Penix, “Formal analysis of a space craft
controller using SPIN,” IEEE Trans. Softw. Eng., vol. 27, no. 8, pp.
749–765, Aug. 2001.

[20] F. Schneider, S. M. Easterbrook, J. R. Callahan, and G. J. Holzmann,
“Validating requirements for fault tolerant systems using model check-
ing,” in Proc. 3rd Int. Conf. Requirements Eng., 1998, pp. 4–13.

[21] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Softw. Eng,
vol. 23, no. 5, pp. 1–17, May 1997.

[22] U. Nitsche, “Propositional linear temporal logic and language homomor-
phisms,” in Proc. 3rd Int. Symp. Logical Found. Comput. Sci., LNCS
813. 1994, pp. 265–277.

[23] W. Thomas, “Automata on infinite objects,” in Handbook of Theoretical
Computer Science: Formal Models and Semantics, vol. B, J. van
Leeuwen, Ed. Cambridge, MA: MIT Press, 1990, pp. 133–191.

[24] R. Jeffords and C. L. Heitmeyer, “Automatic generation of state invari-
ants from requirements specifications,” in Proc. 6th Int. Symp. Found.
Softw. Eng., Nov. 1998, pp. 56–69.

[25] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw, “Automated consis-
tency checking of requirements specifications,” ACM Trans. Softw. Eng.
Methodol., vol. 5, no. 3, pp. 231–261, 1996.

[26] K. L. Heninger, “Specifying software requirements for complex systems:
New techniques and their application,” IEEE Trans. Softw. Eng., vol. 6,
no. 1, pp. 2–13, Jan. 1980.

[27] D. Drusinsky, K. M. Shing, and A. Demir, “Test-time, run-time, and
simulation-time temporal assertions in RSP,” in Proc. 16th IEEE Int.
Workshop Rapid Syst. Prototyping, Jun. 2005, pp. 105–110.

[28] D. Drusinsky and G. Watney, “Applying run-time monitoring to the
deep-impact fault protection engine,” in Proc. 28th IEEE/NASA Softw.
Eng. Workshop, Dec. 2003, pp. 127–133.

[29] K. Havelund and T. Pressburger, “Model checking Java programs using
Java Pathfinder,” Int. J. Softw. Tools Technol. Transfer, vol. 2, no. 4, pp.
366–381, 2000.

[30] K. Havelund and G. Rosu, “An overview of the runtime verification
tool Java PathExplorer,” Formal Methods Syst. Design, vol. 24, no. 2,
pp. 189–215, 2004.

[31] D. Drusinsky and M. Shing, “Verifying distributed protocols using MSC-
assertions, run-time monitoring, and automatic test generation,” in Proc.
18th IEEE/IFIP Int. Workshop Rapid Syst. Prototyping, Jun. 2007, pp.
82–88.

[32] A. Madhukar, S. Fischmeister, Y. Hur, J. Kim, and I. Lee, “Generating
reliable code from hybrid-systems models,” IEEE Trans. Comput., vol.
59, no. 9, pp. 1281–1294, Sep. 2010.

[33] M. C. B. Alves, D. Drusinsky, and M. Shing, “A practical formal
approach for requirements validation and verification of dependable
systems,” in Proc. 5th Latin-American Symp. Dependable Comput., Apr.
2011, pp. 47–51.

[34] K. Beck and E. Gamma, “Test infected: Programmers love writing tests,”
Java Rep., vol. 3, no. 7, pp. 37–50, 1998.

[35] D. Drusinsky, B. Michael, T. Otani, and M. Shing, “Validating UML
statechart-based assertions libraries for improved reliability and assur-
ance,” in Proc. 2nd Int. Conf. Secure Syst. Integr. Reliability Improve-
ment, Jul. 2008, pp. 47–51.

[36] D. Drusinsky, J. B. Michael, and M. Shing, “Rapid runtime system
verification using automatic source code instrumentation,” in Proc. 6th
IEEE Int. Syst. Syst. Eng. Conf., Jun. 2011, pp. 1–6.

[37] T. Fields, Distributed Game Development: Harnessing Global Talent to
Create Winning Games. Burlington, MA: Focal Press, 2010.

[38] F. Brooks, The Mythical Man-Month, anniversary ed. Reading, MA:
Addison-Wesley, 1995.

Miriam C. Bergue Alves received the Doctoral de-
gree in applied computer science from the National
Institute for Space Research, São José dos Campos,
Brazil, in 1999.

She is currently a Government Researcher with
the Software Engineering Laboratory, Institute of
Aeronautics and Space, São José dos Campos. From
2010 to 2011, she was a Post-Doctoral Researcher
with the Department of Computer Science, Naval
Postgraduate School, Monterey, CA. She has been
developing aerospace software systems since 1995

and currently leads the team responsible for software development of the
Brazilian Satellite Launcher Program. Her current research interests include
modeling, specification, and formal verification and validation of mission-
critical systems.

Doron Drusinsky received the Ph.D. degree in
computer science from the Weizmann Institute of
Sciences, Rehovot, Israel, in 1988.

He is currently an Associate Professor with the De-
partment of Computer Science, Naval Postgraduate
School, Monterey, CA, and is the President of Time-
Rover, Cupertino, CA. He was with Sony, Atsugi,
Japan, from 1988 to 1993. He has authored Better-
State, a UML statecharts design tool that was later
acquired by ISI/WindRiver Systems, Alameda, CA,
and the Temporal Rover and StateRover verification

and validation (V&V) tools that are currently in active use by the NASA IV&V
Facility. He has published two books on V&V of mission-critical systems. His
current research interests include computer-aided specification and V&V of
mission-critical systems.

James Bret Michael (S’87–M’92–SM’97) received
the Ph.D. degree in information technology from
George Mason University, Fairfax, VA, in 1993.

He is currently a Professor with the Department
of Computer Science and the Department of Electri-
cal and Computer Engineering, Naval Postgraduate
School, Monterey, CA. Prior to that, he was an
Assistant Research Engineer with the University of
California, Berkeley. His current research interests
include formal methods, reliability, safety, and secu-
rity.

Dr. Michael won the 2010 Engineer of the Year Award from the IEEE
Reliability Society for his contributions to the field of trustworthy distributed
systems. He is an Associate Editor of the IEEE Systems Journal.

Man-Tak Shing (M’03–SM’07) received the Ph.D.
degree in computer science from the University of
California, San Diego.

He is currently an Associate Professor with the
Department of Computer Science, Naval Postgrad-
uate School, Monterey, CA. His current research
interests include modeling, specification, and formal
verification and validation of real-time system be-
haviors.

Dr. Shing is on program committees of several
conferences dedicated to software engineering. He

has served as the Program Co-Chair of the IEEE International Conference on
System of Systems Engineering and as the Program and General Co-Chair of
the IEEE International Symposium on Rapid System Prototyping.

