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RECURRENCES FOR ENTRIES OF POWERS OF MATRICES

GABRIELA N. STĂNICĂ AND PANTELIMON STĂNICĂ

Abstract. In this note, giving course to a challenge in a recent paper of Larcombe [2], we
find the entries of any nth power of a 3×3 matrix, and as a byproduct, we recover Larcombe’s
result on 2× 2 matrices. Further, we look at block matrices and show an invariance result for
the powers of such matrices.
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1. Introduction

In [2], Larcombe considered the matrix A =

(
a1 b1
d1 e1

)
and showed that its powers An =(

an bn
dn en

)
satisfy the invariance property bn/dn = b1/d1, for all n ≥ 1 (or, bnd1 = b1dn without

assuming that d1 6= 0). While the result could have been obtained (as the author of [2] also
observed) from previous work by McLaughlin [3] or Williams [5] (among others), Larcombe
provided several proofs for this result. He challenged the community to find extensions of this
result to higher dimension matrices. It is the intent of this note to look at 3× 3 matrices and
find closed forms for the entries of their nth powers, as well as point toward the general case,
as well, although, the results are not as simple as the one for the 2× 2 matrices. Further, we
consider block matrices and show an invariance result for their powers.

Throughout, for a matrix A = (aij)1≤i,j≤k, let Tr(A) =
∑k

i=1 aii denote the trace of A, and
let det(A) denote the determinant of A. We also let Ik be the k × k identity matrix.

2. Powers of 3× 3 matrices

We will start with an observation from which we can derive all the previous results, quite
easily, in fact. It is known (this is customarily called Cayley-Hamilton theorem) that a matrix
A = (aij)1≤i,j≤k satisfies its own characteristic polynomial pA(λ) = det(λIk − A) = λk −
ck−1λ

k−1 − · · · − c1λ − (−1)k−1det(A)Ik, with ck−1 = Tr(A), ck−2 = Tr(A2)−Tr(A)2
2 , etc., with

all the coefficients being described in terms of the eigenvalues of A. Thus,

Ak = ck−1A
k−1 + · · ·+ c1A+ (−1)k−1det(A)Ik.

Now, multiplying throughout by An+1−k, we easily obtain the next (obviously, known) result.

Lemma 2.1. The entries a
(n)
ij of An all satisfy the recurrence

xn+1 = ck−1xn + · · ·+ c1xn−k+2 + (−1)k−1det(A)xn−k+1.

For easy writing, let A =

a b c
d e f
g h j

 and write its powers as An =

an bn cn
dn en fn
gn hn jn

, n ≥ 1.

Further, we set T1 := Tr(A), T2 := Tr(A2)−Tr(A)2
2 , D := det(A).
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Theorem 2.2. The entries an, bn, . . . , of An all satisfy the following recurrence

xn+1 = T1xn + T2 xn−1 +Dxn−2, n ≥ 3. (2.1)

Further, let β = T1/3, α = 1
3

√
T 2
1 + 3T2 =

√
Tr((A− βI3)2/6). The nth powers of A are

An =


U(−α+ β)n + (V +Wn)

(
α
2 + β

)n
if the eigenvalues of A are −α, α2 + β, α2 + β

U + (V +Wn)
(
−1

2

)n
if the eigenvalues of A are α+ β,−α

2 + β,−α
2 + β

(U + V n+Wn2) 3
√
D if the eigenvalues of A are all 3

√
D

Uλn0 + V λn1 +Wλn2 if the eigenvalues of A are distinct,

for some matrices U, V,W determined by the initial conditions An, for n = 0, 1, 2.

Proof. From Lemma 2.1 we obtain (2.1). Next, we need to solve the equation

x3 − T1x2 + T2x−D = 0, (2.2)

which will give the eigenvalues of the matrix A. We can certainly use Cardano-Tartaglia
formulas for the roots, namely,

x1 =
3

√
r +

√
r2 − q3 +

3

√
r −

√
r2 − q3 +

T1
3

x2 = −
3

√
r +

√
r2 − q3 + 3

√
r −

√
r2 − q3

2
− T1

3
+
ı
√

3( 3

√
r +

√
r2 − q3 − 3

√
r −

√
r2 − q3)

2

x3 = −
3

√
r +

√
r2 − q3 + 3

√
r −

√
r2 − q3

2
− T1

3
−
ı
√

3( 3

√
r +

√
r2 − q3 − 3

√
r −

√
r2 − q3)

2
,

where r =
9T1T2+27D+2T 3

1
54 , q =

3T2+T 2
1

9 . However, we will review here a seemingly not so
well known method that displays a better form for these roots (albeit, if the coefficients are
complex, there are a few subtle issues, which we will point out later). The method is scattered
in several places (see, for instance [4], for a particular case), but we have not been able to find
a suitable reference for it.

We attempt to find an affine transformation on the variable x, say x = αy+β such that (2.2)
transforms into an equation of the form

y3 − 3y − γ = 0, (2.3)

and it turns out that we can take γ = det(B), where B := A−βI3
α . The above equation is

reminiscent of the trigonometric identity cos(3θ) = 4 cos3 θ − 3 cos θ. The advantage is that
the eigenvalues of B will render (via the affine transformation) the eigenvalues of A (a result
well known in Linear Algebra).

We first assume that T 2
1 + 3T2 6= 0 (it will be quite apparent later on why we impose this

condition). Replacing x = αy + β in (2.2) and multiplying by α−3, we obtain

x3 +
3β − T1

α
x2 +

3β2 − 2βT1 − T2
α2

x+
β3 −D − β2T1 − βT2

α3
= 0.

Imposing the mentioned conditions, we get the system

3β − T1 = 0

3β2 − 2βT1 − T2 = −3α2,
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from which we get the solutions β = T1/3, α = 1
3

√
T 2
1 + 3T2 =

√
Tr((A− βI3)2/6) (we do not

take both values of α, rather one will suffice). Now, we can set y = 2 cos θ in equation (2.3),
which implies cos(3θ) = det(B)/2 and consequently we obtain the eigenvalues

yj = 2 cos

(
1

3
cos−1 (det(B)/2) +

2 j π

3

)
, 0 ≤ j ≤ 2,

and so, for our original equation, we get the eigenvalues of A

λj = 2α cos

(
1

3
cos−1 (det(B)/2) +

2 j π

3

)
+ β, 0 ≤ j ≤ 2. (2.4)

If the argument of the inverse cosine is complex, the inverse cosine is a multivalued function,
requiring a branch cut (recall that, by definition, cos−1 z = π

2 + i ln(
√

1− z2 + i z)), so, for all
values j we should use the same branch.

Certainly, it may happen that α = 0 so, T 2
1 + 3T2 = 0, which is equivalent to

a2 + bd+ ae+ e2 + f2 + cg + aj + ej + j2 = 0.

Under these conditions, we use Cardano formulas and get the eigenvalues

λ0 =
T1
3
− 1

3
3

√
T 3
1 − 27D

λ1 =
T1
3

+
1

6

(
1− ı

√
3
)

(2.5)

λ2 =
T1
3

+
1

6

(
1 + ı

√
3
)

3

√
T 3
1 − 27D.

We consider several cases.
Case 1. λ0 6= λ1 6= λ2 6= λ0. In this case, regardless of whether the eigenvalues are given
by (2.4) or (2.5), the powers of A are

An = Uλn0 + V λn1 +Wλn2 ,

for some matrices U, V,W determined by the initial conditions, for n = 1, 2, 3.
Case 2. λ0 6= λ1 = λ2. It is easy to see that α = 0 cannot occur in this case. If α 6= 0, then
we can only have λ0 = λ2, or λ1 = λ2. In the first case we get det(B) = −2 and consequently,
the eigenvalues are α

2 + β,−α+ β, α2 + β. Then

An = U(−α+ β)n + (V +Wn)
(α

2
+ β

)n
,

for some matrices U, V,W . In the second case, det(B) = 2 and the eigenvalues are 1,−α
2 +

β,−α
2 + β, and consequently,

An = U(α+ β)n + (V +Wn)
(
−α

2
+ β

)n
,

for some matrices U, V,W .
Case 3. λ0 = λ1 = λ2(=: λ).
In this case, if α 6= 0, one can easily show by attempting to solve the corresponding system
that there are no values of det(B) for this to happen. If α = 0, then we must have T1 = 3 3

√
D,

and the eigenvalues will become λ0 = λ1 = λ2 = 3
√
D. Thus, we must have

An = (U + V n+Wn2)
3
√
D,

for some matrices U, V,W .
The theorem is shown. �
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Remark 2.3. To further explain the statement of Theorem 2.2, we assume that we are in
the third case, say (that is, the eigenvalues of A are all equal to 3

√
D). We can find easily the

matrices U, V,W by solving the matrix system

U
3
√
D = A0 = I

(U + V +W )
3
√
D = A

(U + 2V + 4W 2)
3
√
D = A2,

from which we derive

U =
1

3
√
D
I,

V = − 1

2 3
√
D

(
A2 − 4A+ 3I

)
,

W =
1

2 3
√
D

(
A2 − 2A+ I

)
.

For the next result only, we let

α : = abd− a2e− bde+ ae2 − acg + efh+ a2j − e2j + cgj − fhj − aj2 + ej2;

β : = −b2d+ abe+ bcg + ceh− abj − bej − chj + bj2;

γ : = −b2d+ abe+ ach+ bfh− abj − bej − chj + bj2;

δ : = bcd− ace+ ce2 − bef − c2g + acj − cej + bfj;

ε : = −ace+ ce2 + abf − bef − c2g + cfh+ acj − cej;
ζ : = bd2 − ade− cdg − efg + adj + dej + fgj − dj2;
η : = −bd2 + ade+ afg + dfh− adj − dej − fgj + dj2;

θ : = acd− a2f − bdf + aef + f2h− cdj + afj − efj;
ρ : = acd− cde− a2f + aef − cfg + f2h+ afj − efj;
σ : = bdg − aeg + e2g − cg2 − deh+ agj − egj + dhj;

τ : = −aeg + e2g − cg2 + adh− deh+ fgh+ agj − egj;
υ : = abg − beg − a2h+ aeh− cgh+ fh2 + ahj − ehj;
ω : = abg − a2h− bdh+ aeh+ fh2 − bgj + ahj − ehj.

Theorem 2.4. The entries of the power matrix An satisfy the recurrences

αbn = −βan + γen + (β − γ)jn,

αcn = −δan + (ε− δ)en − εjn,
αdn = ζan + ηen − (ζ + η)jn,

αfn = (ρ− θ)an + θen − ρjn,
αgn = σan + (τ − σ)en − τjn,
αhn = (υ − ω)an + ωen − υjn.

Proof. We will use the simple observation that An ·A = A ·An. This will render the system −dbn − gcn + bdn + cgn −ban + (a − e)bn − hcn + ben + chn −can − fbn + (a − j)cn + bfn + cjn
dan − (a − e)dn − den − gfn + fgn dbn − bdn − hfn + fhn dcn − cdn − fen + (e − j)fn + fjn
gan + hdn − (a − j)gn − dhn − gjn gbn + hen − bgn − (e − j)hn − hjn gcn + hfn − cgn − fhn
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=

0 0 0
0 0 0
0 0 0

 ,

which, by solving it diligently, we get our claim (we can also express any entry of the nth
power An in terms of an, bn, cn, obtaining other relationships among the entries of An, but we
preferred, for symmetry purposes, to express the solutions of the previous system in terms of
an, en, jn). �

Certainly, these results will render Larcombe’s result [2], since we can pad a 2 × 2 matrix
with zeroes in the last row and column, regarding it as a 3× 3 matrix.

Corollary 2.5. For a 2 × 2 matrix A =

(
a b
d e

)
with powers An =

(
an bn
dn en

)
, we have

bn/dn = b/d.

Proof. From Theorem 2.4, by taking c = f = g = h = j = 0 and simplifying the quotient
bn/dn, we obtain the invariance result. �

When A is real and symmetric, the previous theorem will take a simpler form. Let

α : = −ab2 + ac2 + a2e+ b2e− ae2 − ef2 − a2j − c2j + e2j + f2j + aj2 − ej2;
β : = b3 − abe− acf − bf2 + abj + bej + cfj − bj2;
γ : = −b3 + bc2 + abe+ cef − abj − bej − cfj + bj2;

δ : = −b2c+ c3 + ace− ce2 + bef − acj + cej − bfj;
ρ : = −c3 − ace+ ce2 + abf − bef + cf2 + acj − cej;
σ : = −abc+ a2f + b2f − aef − f3 + bcj − afj + efj;

τ : = abc− bce− a2f − c2f + aef + f3 + afj − efj.

Further, let m = 1
3Tr(A) and q = 1

2det(A − mI), 6p = (a − m)2 + (e − m)2 + (j − m)2 +

b2 + c2 + d2 + f2 + g2 + h2 is the sum of the squares of the elements of A − mI, and φ =
1
3 tan−1

√
p3−q2
q , 0 ≤ φ ≤ π.

Theorem 2.6. The entries of powers of the (real and) symmetric matrix An satisfy the re-
currences

αbn = γan + βen − (β + γ)jn,

αcn = δan − (δ + ρ)en + ρjn,

αfn = −(σ + τ)an + σen + τjn.

More precisely,

An =


mnI3 if p = q = 0, that is, A is diagonal

(U + V n)(m−√p)n +W (m+ 2
√
p)n if φ = 0, 2π/3

(U + V n)(m+
√
p)n +W (m− 2

√
p)n if φ = π/3, π

Uλn0 + V λn1 +Wλn2 if φ 6= 0, π/3, 2π/3, π,

for some matrices U, V,W obtained using the initial conditions An, for n = 0, 1, 2 (see (2.6)
below for the definition of φ).
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Proof. To show the first claim, we proceed as we did in the proof of Theorem 2.4 (or take the
particular case b = d, c = g, f = h in Theorem 2.4, although in this instance our definitions
for α, β, . . . will change).

To show the second claim, we use Smith’s simplification (see [4]) of the eigenvalues of the
3× 3 real symmetric matrix, namely

λ0 = m+ 2
√
p cosφ

λ1 = m−√p (cosφ+
√

3 sinφ) (2.6)

λ2 = m−√p (cosφ−
√

3 sinφ),

where m = 1
3Tr(A) and q = 1

2det(A−mI), 6p = (a−m)2+(e−m)2+(j−m)2+b2+c2+d2+f2+

g2+h2 is the sum of the squares of the elements of A−mI, and φ = 1
3 tan−1

√
p3−q2
q , 0 ≤ φ ≤ π.

Certainly, since A is symmetric, hence Hermitian, all eigenvalues must be real, so p3 ≥ q2.
Thus, if p = 0, then q must be zero. We distinguish two cases. If p = q = 0, then A is
diagonal (in the definition of φ, the argument of the inverse tangent is indeterminate, but the
eigenvalues are all m, regardless of the value of φ).

We now assume that p 6= 0 (that is, A is not diagonal). Next, assume that we have an
eigenvalue of multiplicity 2. If λ0 = λ1, then φ = 2π/3, and the eigenvalues of A are m−√p,
m−√p, m+2

√
p. If λ0 = λ2, then φ = π/3, and the eigenvalues are m+

√
p, m−2

√
p, m+

√
p.

If λ1 = λ2, then φ = 0, π, and the eigenvalues are m + 2
√
p, m − √p, m − √p, respectively,

m − 2
√
p, m +

√
p, m +

√
p. (Observe that in some of these cases we have p3 = q2.) The

theorem follows. �

Remark 2.7. To further explain the statement of the previous theorem, let us assume that
we are in the second case and so, φ = 0, or 2π/3. We can find easily the matrices U, V,W by
solving the matrix system

U +W = A0 = I

(U + V )(m−√p) +W (m+ 2
√
p) = A

(U + 2V )(m−√p)2 +W (m+ 2
√
p)2 = A2,

from which we derive

U = − 1

9p

(
A2 − 2(m−√p)A+ (m2 − 2m

√
p− 8p)I

)
,

V = − 1

3m
√
p− 3p

(
A2 − (2m+

√
p)A+ (m2 +m

√
p− 2p)I

)
,

W =
1

9p

(
A2 − 2(m−√p)A+ (m−√p)2I

)
.

3. Block matrices

In this section, we will display yet another generalization approach to Larcombe’s obser-

vation. We consider an (n + t) × (k + m) matrix M =

(
A B
C D

)
, where the components

are A ∈ Rn×m, B ∈ Rn×k, C ∈ Rt×m, D ∈ Rt×k. Such a matrix M is called a block ma-
trix. It should be well known, but regardless, it is also rather straightforward to show that if
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N =

(
A′ B′

C ′ D′

)
, with A′ ∈ Rm×`, B′ ∈ Rm×s, C ′ ∈ Rk×`, D′ ∈ Rk×s, then(

A B
C D

)(
A′ B′

C ′ D′

)
=

(
AA′ +BC ′ AB′ +BD′

CA′ +DC ′ CB′ +DD′

)
.

Let O be the identically zero matrix. While we can show the result in more generality, for
simplicity we preferred to let m = k = t = n. By taking m = k = t = n = 1, we recover
Larcombe’s observation.

Theorem 3.1. Let A,B,C,D be n × n matrices, let the Mn be the nth power of the matrix

M , with block entries Mn =

(
An Bn
Cn Dn

)
. The following hold:

(1) If A,B,C,D commute with each other, then we have the invariance BnC = CnB.
(2) If A = O or D = O, then we have the invariance BnC = CnB.

(3) If C = O, then Mn =

(
An B

∑n−1
i=0 A

iDn−1−i

0 Dn

)
.

(4) If B = O, then Mn =

(
An O

C
∑n−1

i=0 A
iDn−1−i Dn

)
.

Proof. We use the simple observation (as Larcombe [2] did for 2× 2 matrices) that M ·Mn =
Mn ·M . Thus,(

AAn +BCn ABn +BDn

CAn +DCn CBn +DDn

)
=

(
AnA+BnC AnB +BnD
CnA+DnC CnB +DnD

)
,

from which we get the system

AAn +BCn = AnA+BnC,

ABn +BDn = AnB +BnD,

CAn +DCn = CnA+DnC,

CBn +DDn = CnB +DnD.

If the matrices A,B,C,D commute with each other, then using AAn = AnA in the first
identity we get the first claim. If A = O, then we use the first equation, and if D = O, then
we use the last equation, thus obtaining the required identity of matrices, BnC = CnB (hence
of determinants, as well). The last two claims follow in the same manner and the proof is
done. �

Remark 3.2. We get for free from the above argument the following recurrences for the blocks
of the powers Mn, n ≥ 1,

An+1 = AAn +BCn,

Bn+1 = ABn +BDn,

Cn+1 = CAn +DCn,

Dn+1 = CBn +DDn.

4. Further comments

For 4 × 4 matrices we will only make some comments that shows that that case can be
handled, as well. The Cayley-Hamilton theorem renders that a 4× 4 matrix A will satisfy the
equation

A4 − T1A3 − T2A2 − T3A+DI4 = 0,
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where T1 := Tr(A), T2 := Tr(A2)−Tr(A)2
2 are as before and T3 := Tr(A)3−3Tr(A2)Tr(A)+2Tr(A3)

6 .
Certainly, using what is known [1] about the solutions of the quartic, we can express the
eigenvalues of the matrix A in terms of the parameters above, as well as the resolvent cubic’s
roots and consequently, the entries of any power of the matrix A can be found, albeit in a
more complicated form.
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