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Teaching the applications of optimisation in game 
theory's zero sum and non-zero sum games 
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Monterey, CA 93943 USA 
Fax: 831-656-2649 E-mail: wpfox@nps.edu 

Abslruct: We apply hnear and non-linear programming to find the solutions 
for Nash equilibriums and Nash arbitration in game theory problems. Linear 
programming was shown as a viable method for solving mixed strategy 
zero-sum games . We review this methodology and suggest a class of zero-sum 
game theory problems that arc well suited for linear programming. We app lied 
this theory of linear programming to non-zero sum games . We suggest and 
apply a separate formulation for a maximising linear programming problem for 
each player. We move on the Nash arbitration method and remodel this 
problem as a non-hnear optimisation problem. We take the game's payoff 
matrix and we form a convex polygon . Having found the status quo point 
(x•, y•), \\e maximise the product {x :r•)(y y •) m·er the convex polygon 
using KTC non-linear optimisation techniques The results give additional 
insights into game theory analysis . 

Keywords: non-linear optimisation, game theory, linear programming; Nash 
equilibrium; Nash arbitration . 
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1 Introduction 

Game theory is a branch of applied mathematics that is used in the social sciences (most 
notably economics), biology, decision sciences, engineering, political science, 
international relations, operations research, computer science and philosophy. Game 
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theory attempts to mathematically capture behaviour in strategic situations, in which an 
individual's success in making choices depends on the choices of others. While initially 
developed to analyse competitions in which one individual docs better at another's 
expense (zero sum games), it has been expanded to treat a wide class of interactions that 
arc classified according to several criteria. Today, "game theory is a sort of umbrella or 
'unified field' theory for the rational side of social science, where 'social' is interpreted 
broadly, to include human as well as non-human players" (Aumann, 1987). 

Let us consider zero-sum games initially . For two-player finite zero-sum games, the 
different game theoretic solution concepts of Nash equilibrium, minimax and maximin all 
give the same solution. In zero sum games, many basic solution techniques exist and arc 
taught to be used in a hierarchical approach. We look for dominance first and the 
movement diagram is a useful technique. We will point out now that linear programming 
works well with mixed strategy solutions and pure strategy solutions. 

Traditional applications of game theory provide techniques to find an equilibrium 
value in zero-sum games. John F. Nash Jr. proved that every game has Nash ( 1951) 
equilibrium. At equilibrium, each player has adopted a strategy that they arc unlikely to 
change and is called the Nash equilibrium. This methodology is not without criticism, 
and debates continue over the appropriateness of particular equilibrium concepts, the 
appropriateness of equilibrium altogether, and the usefulness of mathematical models. 
However, it is still widely used. 

Many authors such as Straffin (2004) and Winston (1995) spend a great deal of effort 
to present traditional techniques of the zero-sum games and the Nash equilibrium. The 
minimax and maximin methods arc presented as procedures to solve these game theory 
problems. Winston (1995) provides an example or two on applying linear programming 
to the zero-sum game for solving only mixed strategy games. Straffin (2004, p.19) 
commented about linear programming but provides no examples. In his art icle on linear 
programming, Danzig (2002) discussed the historical foundations of linear programming 
as well as a meeting with Von Neumann where the latter felt that linear programming 
was an analogue to the theory of games. 

Ville (2009) presents a good discussion on the application of linear programming to 
the zero-sum game in tcnns of the primal and dual problem as well as their fonnulations . 
In game theory, the minimax theorem for a two player zero sum game relics on the fact 
that the two players strategics arc always opposite, known as duals. He states that the 
strntcgy for one player is self-dual. Furthennore, Ville states that for more than two 
players or in non-zero sum games the indctcnninacy should be removed by ethical rules, 
convention that exclude certain coalit ions of types of coalitions. However, he docs not 
provide examples of applications in these larger or non-zero sum games. 

In the Classics of Scientific Literature, Klarrich (2009) provided a review of early 
game theory in which she states as Von Neumann was working on non-zero sum 
games ... "He found his approach gave rise to complicated mathematics and intrnctablc 
mathematics". This is where Nash came up with his proof concerning equilibrium for a 
specific set of strategics, one for each player, such that no player would benefit from 
unilaterally changing his strategy while the other players stick to their equilibrium 
strategies . 

Although some developments occurred before it, the field of game theory came into 
being with the 1944 book Theory of Games and Eco11omic Behavio11r by John von 
Neumann and Oskar Morgenstern. This theory was developed extensively in the l 950s 
by many scholars. Game theory was later explicitly applied to biology in the 1970s, 
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although similar developments go back at least as far as the 1930s. Game theory has been 
widely rcco1,rnised as an important tool in many fields. Eight game theorists have won 
Nobel prizes in economics, and John Maynard Smith was awarded the Crnfoord Prize for 
his application of game theory to biology. 

In a monograph edited by Koopman ( I 951 ), several important theoretical discussions 
arc presented concerning game theory and linear programming. Gale ct al. (1951) 
presented and established theorem of duality and existence for 'general' linear 
programming problems and related these general problems to the theory of zero-sum 
two-person games. In his chapter, Danzig ( 1951) presented the maximisation of a linear 
function of variables subject to linear inequalities where he presented the replacement of 
a linear with a linear equality in non-negative variables. Dorfman ( 1951) then applied the 
simplex method of Danzig's to a game theory problem. He showed that in solving 
zero-sum games with two opponents that optimal strategics could be found in accordance 
with the principles of game theory. In his published example, he had two players with six 
strategies and five strategics, respectively. These papers were the foundation of linear 
programming being applied to game theory. This conference and its proceedings were 
instrumental in linking linear programming to game theory. 

Crawford ( 1974) discussed an optimal strategy for zero-sum games. He stated by 
referring to the work done by Gale ct al. (1951) that economists have known for a long 
time that finding optimal strategics in a zero-sum game is equivalent to finding a solution 
to an appropriately defined linear programme. 

In summary, the current methods to find the Nash equilibrium include dominance, 
minimax, maximin, equalising strategics, William's method ( 1986) and these are found in 
many modem game theory textbooks such as Straffin (2004) . Again, Straffin (2004, p.19) 
commented about linear programming but does not use linear programming as one of his 
techniques . 

Through contacting Harold Kuhn about this work, we found the work of Daskalakis 
ct al. (2008) who were concerned with the time until economic agents converge to Nash 
equilibrium . They applied the Brouwer function in order to find the approximate Nash 
equilibrium in the complex case PPAD and show that it will converge. They showed their 
method was in fact PPAD-complcte. The importance here is the continued use of the 
Nash equilibrium to solve game theory problems. 

2 Linear programming and the zero-sum game 

Consider a constant -sum two person game where X, the maxtm1smg player has nr 
strategics and Y, the minimising player has II strategics . The entry ay from the ith row 
and }th column of the payoff matrix represents the value of the game. Without loss of 
generality, it can be assumed that every clement of the matrix is greater than or equal to 
zero. If this is not true, then a constant can be added to every clement in the payoff matrix 
to make all the entries positive . Suppose that player X plays a weighted mixed strategy 
defined by assigning a weight x; to the ith strategy where r x; .. l. Then, according to 
Dorfman ( 1951) and Danzig ( 1951) the value of the game will be: 

n 

v= LY1(a1 X1 +a2X2 + ... +amxm) 
jal 
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where J'J is the jth strategy for player Y. They used this concept to construct the linear 
programming equivalent. 

The Nash equilibrium for a two-player, zero-sum game can be found by solving a 
linear programming problem. Suppose a zero-sum game has a payoff matrix M where 
clement Mij is the payoff obtained when the minimising player chooses pure strategy i 
and the maximising player chooses pure strategy j (i.e., the player trying to minimise the 
payoff chooses the row and the player trying to maximise the payoff chooses the 
column). In their work, Danzig ( 195 I) and Dorman ( 195 I) assume every clement of Mis 
positive. A general payoff matrix would be: 

M1.1 

M2,1 

M= 

M,.,,1 

M1,2 

M2,2 

Mm,2 

M1,n 

M2,,, 

The game will have at least one Nash equilibrium. The Nash equilibrium can be found by 
solving the following linear programme to find a vector II as shown by Dorfman ( 1951) 
to solve for the solution to the column player's game: 

Minimise 111 + 112 + 113 + ••. + 11n 

Subject to: 

111 +112 +113 + ... +1111 <!O 

M1,il11 + M1.?112 + ·•· + M1,1111n <! I 

.M2.1111 +J\12,2 112 + •.• +M2,.,r,., <! 1 (I) 

The first constraint says each clement of the II vector must be non-negative, and the 
second constraint says each clement of the Mu vector must be at least one. for the 
resulting II vector, the inverse of the sum of its clements is the value of the game. 
Multiplying II by that value gives a probability vector, giving the probability that the 
maximising player will choose each of the possible pure strategics. 

An important concept in linear programming is non-negativity. If the game matrix 
does not have all positive clements, simply add a constant to every clemen t that is large 
enough to make them all positive . That will increase the value of the game by that 
constant, and will have no effect on the equilib rium mixed strategies for the equilibrium. 

The equilibrium mixed strategy for the minimising player can be found by solving the 
dual of the given linear programme. Or, it can be found by using the above procedure to 
solve a modified payoff matrix which is the transpose and negation of M (adding a 
constant so it is positive), then solving the resulting game. 



262 W.P. Fox 

If all the solutions to the linear programme arc found, they will constitute all the 
Nash equilibrium for the game. Conversely, any linear programme can be converted 
into a two-player, zero-sum game by using a change of variables that puts it in the 
fonn of the above equations. So such games arc equivalent to linear programmes, in 
general. 

We can also consider the following fonnulation for the maximising player that 
provides results for the value of the game and the probabilities x, as illustrated by 
Winston (1995, p.636). This fonnulation is a simpler modification to equation (I) and 
precludes any mathematics being used after the solution is found. 

Again, we use the same fonnat for the clements of the payoff matrix M but we no 
longer restrict the clcmcnls to be positive. 

Maximise V 

Subject to: 

M1,1.l' 1 + M1,2x ? + ... + M 1JJ:r:,. -V::?: 0 

M21:r:1 + M2,2:r:2 + ... + M2,.x,. -V::?: 0 

M m,1,'t'1 + Al m,2X2 + ... + ,\,/ m,,.x,. -V::?: 0 

·"1 +.tz + ... +x,, = 1 
V,x1 ::?:0 

(2) 

where V is the value of the game, Mnr.n arc payoff matrix entries, and x 's arc the weights 
(probabilities lo play the strategics). 

For the zero-sum games only, we can take advantage of the fact the Rose is 
maximising and Colin ins minimising by using the primal (maximising linear 
programme) and the dual (minimising linear programme). If we solve for Rose's 
maximising solution in our primal linear programme, we find Colin's solution in the 
dual. 

If we let our primal linear programme for Rose be equation (2), then the dual linear 
programme for Colin would be: 

Minimise V (the dual model) 

Subject to: 

M1,1J'1 + M2,1J'2 + ... + Mn,1Yn -VS 0 

M1,2Y1 +M2.2Y2 + ... +Mn,2Yn -VS 0 

M1.nY1 +M2,.Y2 + ... +Mn,nYn-V S 0 

J'1+.rz+ ... +y. =I 

V,Y1 ::?:0 
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This fonnulation yields a solution to the probabilitiesyi, y 2 ... y111 and V. We may read the 
dual solution directly from the primal output. Each dual variable y; = coefficient of the 
slack variable (shown as dual prices in the software, LINDO). 

In this paper, we will provide examples of using linear programming for the zero-sum 
game using equation (2) and we conclude that often the linear programming model is best 
when games arc lager than 2 x 2. We illustrate this with a 3 x 3 example. 

We then extend the optimisation illustrations to finding Nash equilibrium and Nash 
arbitration solutions to the non-zero sum games. The Nash equilibrium is found using 
linear programming fonnulations but now all players arc maximising. A separate linear 
programming fonnulation is required for each player, which often is easier for solving for 
the Nash equilibrium than the alternative methods suggested in the literature. The 
reduced costs will be conjectured. The Nash arbitration is an example of constrained 
non-linear optimisation and will be illustrated as such. 

We illustrate several examples of the applications of linear programming to zero-sum 
games in order to establish a working procedure. In the zero-sum games, because we only 
have Rose's game presented, the solution to Colin is found in the solution to the linear 
programming known as the dual problem. We use equation (2) to illustrate the procedure. 
We start by showing both fonnulations in the following simple example. 

Example I: baseba/1 's the hitter-pitcher duel 

Roger Clemons is facing Big Poppy. Roger is known for his fierce fast ball and his 
devastating split-finger. Big Poppy is a tremendous competitor and a great fast ball hitter . 
We have the following historical statistics on these players. 

Roger Clemons 

His guess/ Fast ball Split-finger 
His pitch 

Big Poppy Fast ball 0.475 0.100 
Split-finger 0.125 0.250 

Big Poppy wants to maximise our battling average by doing a better job at guessing the 
pitch. Roger Clemons wants Big Poppy to have his minimal batting average as he throws 
the unexpected pitch. We define the decision variables as follows: 

BA = the batting average of Big Poppy 

x1 = the percentage of time to be looking for the fast ball and we let (I x 1) be the 
percentage of time we arc guessing the split-finger 

We set up the linear programming problem for Big Poppy using equation (2). 

Maximise BA 

Subject to : 

0.475 x1 +0.125 .'l'2 - BA 2: 0 

0. I x1 + 0.250 .'l'2 - BA 2: 0 

x1,x 2,V > 0 (non-negativity) 

The solution via LINDO is as follows: 
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LP OPTIMUM FOUND AT STEP 2 

OBJECTIVE FUNCTION VALUE 

I) O. 2125000 

VARIABLE VA.LUE 

BA 0.212500 

Xl 0 . 250000 

X2 0.750000 

ROW SLACK OR SURPLUS 

2) 0.000000 

3) 0.000000 

4) 0.000000 

NO. ITERATIONS• 2 

REDUCED COST 

0 .00000 0 

0. 00000 

0 .00000 

DUAL PRICES 

- 0 .300000 

-0 .700000 

0 .212500 

As an illustration we show the use of equation (I) and its procedure in the following 
steps. 

Minimise 111 +112 

Subject to: 

"• +112 2: 0 
0.475 111 + 0.1 112 2: I 

0.125 111 + 0.25 112 2: I 

The solution is found using LINDO as: 

LP OPTIMUM FOUND AT STEP 

OBJECTIVE FUNCTION 

1) 4.705883 

VARIABLE VALUE 

Ul 1.411765 

U2 3 . 294118 

ROW SLACK OR SURPLUS 

2 ) 4.705883 

3) 0.000000 

4) 0.000000 

NO. ITERATIONS= 2 

2 

VALUE 

REDUCED COST 

0.000000 

0.00000 

DUAL PRICE S 

0.0000 00 

-1.1764 71 

-3.5294 12 
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Recall that we mentioned that using formulation (I) requires additional calculations. We 
set S = 111 + 112 = 4. 705883. We find x 1 • 111/S • 0.30000 and x 2 = 112/S = 0. 70000 for the 
pitch selection from Clemons and the dual solution y 1 .. 1.1764 71/4. 705883 = 0.2500 and 
y 2 = 3.529412/4.705883 0.750000 to indicate Big Poppy should look for the fast ball 
25% of the time and for the split-finger 75% of the time. The value of the game is the 
inverse of S, S-1 = 1.4705883 "" 0.2125, which is the batting average. Obviously, the 
procedures involved in using equation (I) is not straight forward as we introduced a new 
variable and is more work. 

Example 2: Dmfman 's original example (1951) 

Player A 

Strategy 

2 3 4 5 

5.31 8.52 12.05 16 20.00 

Player B 2 2.70 3.77 6.30 9.7 13.40 

Strategy 3 3.64 2.70 3.60 5.91 8.99 

4 5 91 3.60 2.70 3.64 6.02 

5 9.70 630 3.77 2.70 4.04 

6 16 12.05 8.52 5.31 2.70 

Dorfman used formulation (I) and found the solution of .r:; from 111 and S using the 
x1 = u/S. He found S = 0.166 and 111 = 0.057 and 115 = 0.109 in the optimal solution. This 
lead to x 1 = 0.343 and .r:5 = 0.657. The value or the game is v = 5.982 using: 

" 
v= LY;(a 1x1 +a2x2 + ... +a,,.x,,.) 

Jal 

Using equation (2), we set up to obtain the following linear programme and solve . 

Maximise V 

Subject to: 

5.31.t"1 +8.52.r:2 +12.05.r:3 +16.r:4 +20x 5 -V ~ 0 

2.7.r:1 +3.77x 2 + 6.3x3 +9.7x 4 + 13.4x5 -V ~ 0 

3.64x 1 +2.7x 2 +3.6x 3 +5.91.r:4 +8.99x5 -V .!'. 0 

5.91.t"1 +3.6x 2 +2.7x 3 +3.64.r:4 + 6.02x5 -V ;!; 0 

9.7.r:1 +6.3x2 +3.77x 3 + 2.7.r:4 +4.04x5 -V .!'. 0 

16.r:1 + l2.05x 2 +8.52.r:3 +5.3 lx4 +2.7x5 -V ;!; 0 

.r:1 +x2 +x 3 +x 4 +x5 = I 

V,x; ~ 0 

The solution is directly found directly as V = 5.982253 when x 1 = 0.343154, x2 = x3 • 

x,1 = 0 and x5 = 0.656846. The dual solution (for the minimising player) is V = 5.982253, 
y,. = 0.980936 and Ys = 0.019064. 
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£'\:ample 3: the 2 x 3 games 

Consider the following example, which in the literature is used to show a short-cut 
graphical method introduced by Williams ( 1986) to reduce the 2 x 3 game to a 2 x 2 
game. Rather than use his short cut method, we can use linear programming directly to 

obtain the solution. 

Colin 

C D E 

Rose 

A I - 1 3 

B - 2 I - 1 

We note that there are negative values in the payoff matrix as we illustrate this procedure 
is valid the any values in the payoff matrix, M. Our best option is to use the method 
suggested by Winston (1995, p.172- 178) to replace any variable that could take on 
negative values with the difference in two positive variables, .·9 x'1. We assume that the 
value of the game could be positive or negative. The other values we are looking for are 
probabilities that are always between zero and one. 

Maximise V = v1 - v2 

Subject to: 

Xi - X2 - Vi + v2 ~ 0 

-Xi + Xi - v1 + V2 ~ 0 

3X1 - Xi - VJ + Vi ~ 0 

Xi +xi =I 

V1, Vi, X; ~ 0 

Note: we needed to replace V with v1 v2 since the solution to V can be positive or 

negative. 
Solving this linear programme using LINDO, we find: 

V=v 1 -v 2 =-0.2 

x1 = 0.60, x2 = 0.40, v1 • 0.00, Vi = 0.20 and the dual variables arc 

Yi = 0.40,y 2 = 0.60,y3 • 0.00. 

Thus, for Rose she plays 60°0 A and 40°0 8 to get a value of the game of 0 .2 while 
Colin plays 40% C, 60% D and 0% E to obtain the value of 0.2. 

The interpretation of the solution to the game is found as Colin plays strategy C, 40% 
of the time, strategy E, 60°0 of the time, and never plays strategy F. Colin's game is 
worth 0.2, Rose plays strategy A 40% of the time, and plays strategy 8 60% of the time. 
The value of the game to Rose is -0.2. 

In the previous two games it might have been easier to use the mixed strategy 
methods to find the solutions. However, these exampl es arc nice as they provide a vehicle 
to set up and solve game as linear programming problems when we can obtain solutions 
via other methods. These examples show the direct application of linear programming to 

zero-sum games. 
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Example 4: a 3 x 3 game where equalising strategies does not work 

In this 3 )( 3 game we first checked the movement diagram and dominance, and then we 
attempted to employ equalling strategics. The method fails. Textbooks in game theory, 
such as Straffin's (2004) text, suggest trying every subgamc to find the solution. The 
literature is hazy on which subgame solution we want to use and also states these 
methods can be very 'tedious'. Straffin (2004, p.19) confesses that linear programming is 
the most efficient method to solve larger games and his text contains no examples of the 
use of linear programming. Linear programming is the better choice to find the solutions 
to large game theory problems where there is no dominate solution or solutions found 
through the movement diagrams. In Winston's (1995) text, he provides a three step 
method lo consider. 

• Step 1: Check for a saddle point. Ifthc game docs not have a saddle point, go to 
Step 2. 

• Step 2: Eliminate any of the row player's dominated strategies. Looking at the 
reduced payoff matrix, eliminate any column player's dominated strategies. Continue 
until all dominated strategics arc removed. Go to Step 3. 

• Step 3: Ifthc game has been reduced is greater than to 2 x 2 then solve by linear 
programming . 

We illustrate below. 

Payoff matrix 

A 

Rose B 

C 

For Rose, the decision variables arc: 

v • expected value of the game 

D 

9 

3 
s 
s 

;r = probability for playing strategy A 

y • probability for playing strategy 8 

z - probability for playing strategy C 

We formulate the problem as; 

Maximise V 

Subject to: 

9x+3 .1•+5z - v ~ 0 

2x +6y +3;-v ~ 0 

7.r+4 .1'+ ); - 11 ~ 0 

x+y+z ,,, J 

non-negativity r,y,:,11 <!: 0 

Colin 
E F 

2 7 X 

6 4 j 

3 I = 
II 
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Our solution is v = 4.8 when x = 0.03, y ... 0. 70, z 0.0 and the dual variables arc 0.40, 
0.60, 0.00 respectively. 

Colin will play his strategics with probabilities 0.40, 0.60, 0.0 with the game yielding 
the same results (Ve= -4.8). The use of linear programme is quick, concise, and direct. 

£wmple 5: a 3x 3 game with a saddle poim solution 

Consider the game with payoff matrix, Mand saddle point solution at pure strateh'Y CE 
with value of the game as five to Rose. 

Payoff matrix 

D 

A 4 

Rose B 2 

C 6 

Min{ColMax} 

Colin 

E 

4 

3 

5 

5 

F 

10 

I 

7 

Max{RowMin} 

5 

Saddle point 

Let us treat this as a linear programming problem. Our fonnulation would be : 

Maximise V 

Subject to: 

4x1 + 2x2 + 6x 1 - V > O 

4x 1 + 3x2 + 5x1 - V > 0 

1 Ox1 + x 2 + 7 x2 - V > 0 

X1+,T2+X3=l 

x,,v <!. 0 

Solving the linear programme yields x 1 x2 ., 0, x1 = 1 and V • 5 for Rose with a dual 
solution as y 1 = y1 = 0, y2 = I and V = 5 for Colin. 

Example 6: consider the game with multiple saddle point solutions at strategies 
AF, AH. BE and CF with value of two 

Colin 

E F G H 

Rose A 4 2 5 2 

8 2 I -20 

C 3 2 4 2 

D 16 0 16 

We fonnulate the problem as: 
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Maximise V 

Subject to; 

4:c1 + 2:c2 + 3:c3 - l 6x4 - V > 0 

2:c1 +:c2 +2x 3 -V > 0 

5.t 1 -x 2 +4:c3 +16x 4 -V > 0 

2x1 -20x 2 +2x 3 +:c4 -V > 0 

x1 +x 2 +x 3 +x4 = I 

x,,v ~ 0 

269 

Using our LP software, we find a solution of V .. 2 when :c1 • I and corresponding dual 
y4 • I. This is our solution for pure strategy AH at V • 2. The other solutions arc found 
by alternate optimal techniques in linear programming . We suggest understanding a solid 
discussion of this technique such as in Winston (1995, p.142 - 144). We will find all the 
alternate optimal solutions to this game theory problem by applying the techniques to 
find such solutions in the optimal tableau. 

So far in our examples and discussions, we have reviewed the concepts of applying 
linear programming to the zero-sum games. We showed that both pure strategy solutions 
as well as mixed strategy solutions can be found using linear programming. We make a 
strong recommendation that using linear programming more easily provides a solution to 
zero -sum game theory problems that arc larger than 2 x 2. We have shown that linear 
programming can be used for finding solutions to pure strategy games as well although 
we believe that the application of movement diagrams and dominance to find pure 
strategy solutions might be easier . Now, we present some new ground and introduce the 
concept in applying the use of linear programming in game theory to non-zero sum 
games . 

3 The non-zero sum game and optimisation 

The literature for non-cooperative game solutions that arc non-zero sum games is to find 
the Nash equilibrium. Recall, in a simple zero-sum game such as flipping and matching 
coins where if we match the Rose player loses SI and the Colin player wins SI and if we 
do not match the Rose player wins a dollar and the Colin player loses a dollar the total of 
the players entries always equally zero . 

Zero-sum game 

Colin 

Heads Tails 
Rose Heads ( I, I) (I, - I) 

Tails (I, I) ( I, I) 

Non-zero sum games arc games where if one player wins the other player docs not have 
to lose. Both players could win something or lose something. The following payoff 
matrix is a simple example of a non-zero game between two players. 
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Colin 

C D 

Rose A (I, I) (- 1,- 1) 

B ( I, I) (I, I) 

In a non-zero sum game solution methods include looking for dominance, movement 
diagrams and equalising strategics. Herc, we present an extension to the application of 
linear programming from the zero-sum game to the non-zero sum game. The primal-dual 
relationship from zero-sum games docs not hold for non-zero sum games since both 
players strategy is 10 maximise their game. However, the theory of Danzig ( 1951 ), Kuhn 
and Tucker (1951) that allowed for linear programming to be used in setting up a 
zero-sum game to maximise V subject to the constraints still holds for each individual 
player as we will show. Because of the nature of non-zero sum games, where both 
players arc trying to maximise their outcomes, we can model each player's strategics as 
their own maximising linear programme. The dual results (reduced costs) will only 
provide us insights into the value of utility for the players but do not give insights into the 
other player's decisions or solutions. Therefore, the theory accompanying the application 
to the maximising player in a zero-sum game holds for each player maximising in a 
non-zero sum game. The analysis and articles from 1951 by Danzig, Dorfman and Gale ct 
al. directly apply except for their discussions of duality. We treat each player as separate 
linear programming problems. 

Again, let us define the following payoff matrix that has components for both Rose 
and Colin: 

(M,N)= 

(M1.1,N1.1) (M1,2,N1.2) 

(Af 2,1, N2,1) (M2.2• N2,2) 

(Ml,n• Ni,n) 

(M2,11• N2,n) 

In non-cooperative non-zero sum games, we use similar concepts of pure strategics and 
equalising strategics (mixed strategy) to solve the game. We look for pure strategy 
solution using the movement diagram. 

For Rose, she would maximise payoffs, so she would prefer the highest payoff at each 
co/1111111. Arrows in columns but values arc Rose's. Similarly for Colin, he wants to 
maximise his payoffs, so he would prefer the high payoff at each row. We drnw an arrow 
to the highest payoff in that row. Arrows arc in rows but values arc Colin's. If all 
arrows point in from every direction, then that or those points will be pure Nash 
equilibrium. 

If all the arrows do not point at a value or values then we must use equalising 
strategics to find the weights (probabilities) for each player. Basically, we would proceed 
as follows: 
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• Rose's game: Rose maximising, Colin 'equalising' is a zero sum game which yields 
Colin's equalising strategy. 

• Colin's game: Colin maximising, Rose 'equalising' is a zero-sum game which yields 
Rose's equalising strategy. 

• Note; If either side plays their 'equalising strategy', the other side 'unilaterally' 
cannot improve their own situation (stymie the other player). 

This translates into two additional linear programming formulations, one for each 
maximising player. We create two more formulations in the form of equation (2) that we 
call equations (3) and (4) that when used provide the values of the game and the 
probabilities that the players should play their strategics in the equalising strategy concept 
above. 

Maximise V 

Subject to: 

N,.,x, +N2,1X2 + ... +Nm,lxn -V ~o 
N2,1."C1 +N2.2X2 + ... +Nm,2:r:n-V ~o 

Nm,IXI +Nm.2.'C2 + ... +NmnXn -V ~ 0 

.r1 +:r:2 + ... +:r:,, • I 

Non-negativity 

(3) 

where the weights r1 yield Rose strategy and the value of V is the value of the game to 
Colin. 

Maximise V 

Subject to: 

M, 1Y1 +M2,1Y2 + ... +Mm,1Y11 - v~O 

M2 ,1Y1 +M2.2Y2 + ... +Afnr2Y,, - V~O 

,'vi m,1Y1 + ,\I m,2Y2 +···+Ill,. nYn - V ~ 0 

Yi + Y2 + · .. + Y,, • I 
Non-negativity 

(4) 

where the weights y 1 yield Colin's strategy and the value of vis the value of the game to 
Rose. 

We also point out that looking for dominance and the movement diagrams arc still critical 
as initial steps. If you find total dominance and pure strategy solutions by the movement 
dia!,rram, you have found a pure strategy Nash equilibrium. According to Gillman and 
Housman (2009, p.189) non-zero sum games with pure strategy equilibrium also have 
non-pure strategy equilibriums suing Nash's equalising strategy. Linear programming 
provides a solution methodology for these non-pure strategy equilibriums. 
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Emmple 7: consider the following parlia/ conflict mixed strategy game 

Rose A 

B 

Colin 

C 

(2, 4) 

(3, I) 

D 

(I, 0) 

(0,4) 

The linear programming fonnulations for each of our player's in order to find the Nash 
equilibrium values for Rose and Colin arc found as follows: 

(a) Maximise V, 
Subject to: 

4x1 + x2 - Ve 2: 0 

0x1 + 4x2 - Ve 2: 0 

Xi +X2 =I 

X;,Ve 2:0 

(b) Maximise V, 

Subject to: 

2yl + Y2 -V, 2: 0 

3y1-Vr2:0 

Y1 + J'2 = I 
Y1,V, 2: 0 

The solutions arc: 

a Ve• 2.285714286 when x 1 =-0.5714285714 or 4/7 and x1 0.4285714286 or 3 7 

b V, = 1.5000 when )'1 = 0.50000 and Y1 = 0.50000. 

This game results in the Colin playing 1/2 C, 1/2 D and insuring a value of the game of 
1.5000 for Rose while Rose plays 4/7 A, 3/7 B and yielding a value of the game of 
2.285714286 for Colin. The solution is ( 1.5000, 2.285714286). 

Example 8: consider the 11011-zero sum game with more than two strategier per 
player where there is no pure strategy eq11ilibrium 

Colin 

D E F 

Rose A (9, I) (2, 2) (7, 2) 

B (3, 2) (6, I) (4, 2) 

C (5, 2) (3, 2) (5, 0) 
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The movement arrows reveal no pure strategy so we turn to linear programming to find 
our solutions using the equalising strategics. 

Maximise V, 

Subject to: 

x1 + 2x2 + 2x3 - Ve 2:: 0 

2x1 +x2 +2x3 -Vc~0 

2x1 +2x 2 -Ve~ 0 

x1+x 2 +x 3 =1 

Vc,x; ~ 0 

Maximise V, 

Subject to: 

9y1 +2y 2 +7y 3 -Vr~0 

3y1 +6y 2 +4y 3 -Vr.::0 

5y 1 + 3y2 +5y3 -Vr ~ 0 

J'1 + J'2 + J'1 = I 
Vr,y; ~ 0 

Solving these two linear programming problems yield the following results: 
V, • 4.5, Ve = 1.6 when Rose plays 0.4A,0.4B,0.2C and Colin plays 0.0 D, 0.25 E, 

0.75 F. Thus the Nash equilibrium is (4.5, 1.6) and the probabilities to play strategics arc 
t 1 • 0.4,x i = 0.4,x3 = 0.2,y 1 = 0, y2 = 0.25 andy ; .. 0.75. 

We have extended the application of linear programming in zero-sum games to 
finding the Nash equilibrium by finding the equalising strategics in non-zero sum 
games. The theory for linear programming use holds as each player is maximising so 
we treat each problem as a 'primal' maximising problem. The dual solution (the 
reduced costs) only provides us information about the utilities as resources. For example, 
assume we have a reduced cost of 0.5. Then an increase in the utility value of one 
unit of that constraint mcrcascs the objective function value by approximately 0.5 utility 
units. 

Let us extend our optimisation applications to the Nash arbitration scheme as a 
non-linear programming problem using Kuhn-Tucker conditions (KT Cs) (Kuhn, 1951; 
Bazarra ct al., 1993 ). 

4 Nash arbitration and non-linear programming formulation 

We utilise the KTC to find the optimal solution to a non•lmcar optimisation problem as 
listed in equation (5): 
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Max (ormin)/(x 1,:c2 , .. . ,xn) 

Subject to: 

S1 (X1, Xz , ... ,:en) S bi 
K2(x,,X2, .. ,, .tn) S bi (5) 

Since we want to the Nash arbitration point, we desire the maximisation of the function. 
We want to find the values of (x1, x2, ... ,.tn) and multiplier (,li, ,h, ... ,A,,J that satisfy the 
following KTC conditions in equation (6): 

aJ(x) ~ A1 ag;( t) = 0 
--- ~ axj 

at/ /sl 

A1[b; - g1 (x)] = 0 

,l.1 ~O 

5 Nash arbitration as a non-linear programming problem 

(6) 

In the bargaining problem, Nash ( 1950) developed a scheme for producing a single fair 
outcome. The goals for the Nash arbitrations scheme are that the result will be at or above 
the stats quo point for each player and that the result must be 'fair'. 

Nash introduced the following tenninology : 

• Status quo poim: We will typically use the intersection of Rose's security level and 
Colin's security level; the Threat positions may also be used. 

• Negotiation set: those points in the Pareto optimal set that are at or above the 'status 
quo' of both players. 

We use Nash's four axioms that he believed that a reasonable arbitration scheme should 
satisfy rationality, linear invariance, symmetry and invariance . A good discussion of 
these axioms and can be found in Straffin (2004, p. I 04-105). Simply put, the Nash 
arbitration point is the point that follows all four axioms. This leads to Nash's theorem 
stated below: 

• Nash's theorem (1950): There is one and only one arbitration scheme which satisfies 
axioms I through 4. It is this: if the status quo SQ - x0, y0, then the arbitrated 
solution point N is the point (x, y) in the polygon with x ,::: x0 and _v ~ J'o which 
maximises the product: (x .to) (y Jo), 

Let us examine this geometrically first as it will provide insights into using non-linear 
optimisation methods. We produce the contour plot of our non-linear function: 
(x x0) (y y0) when our status quo point is assumed to be (0, 0). It is obvious that the 
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NE comer of quadrant I is where this function is ma'C1miscd. This is illustmtcd in 
Figure I. 

In his theory for the arbitration and cooperative solutions , Nash ( 1950) stated the 
'reasonable' solution should be Pareto optimal and will be 111 or above the security level. 
The set of outcomes that satisfy these I\\ o conditions is called the negotiation set. The 
line segments that join the negotiation set must fonn a com ex region as shown in Nash's 
proof. Methodologies for soh ing for this point use basic calculus, algebra and geometry. 

Figure 1 Contour plot for (x'"l·) (sec oniinc \Crsion for colours) 

Note We note that the d1rcc11on of maximum increase is NE as indicated by the arrow. 

We present another methodology . Since we have used linear programmmg to solve for 
the Nash equiltbrium valuei. earlier, we show that we can use non-lmear progrJmming to 
sol\ c for the arbitration point. It 1s non-It near because of the choice of the Nash function, 
{t x•) (1 y*) that we want to maximise . The constraints arc linear and must form a 
COO\C'C set 

For any game theory problem, we next overlay the eomcx polygon onto our contour 
plot (Figure I). The most NE pomt in the feasible region is our optimal po int and the 
Nash arb1trJ1Jon point This will be where the feasible region is tangent to the hyperbola . 
Without generalisation , max1mii.ing a non-linear concave function O\Cr J linear com ex 
region produce s a maximum directly from the KTCs (Bazarrn ct al., 1993). 

In our examples , \\C will use the security value as the status quo point to ui.c m the 
Nash arb1tmt1on procedure . We additionall y define the procedure to find the security 
\alue as followi.: 

In a non-Lero-sum game. Rose ' s optimal st,Jtcgy in Rose 's game is called Rose 's 
p111d1mtial strategy und the \aluc 1s called Rose's sec11riw level. Cohn' s opt imal strategy 
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in Colin's game is called Colin's security level. We will illustrate this during the solution 
to find the Nash arbitration point in example 9. 

Example 9: Nash arbitralion example jiwn a non-zero sum game 

Colin 

C D 

Rose A (2, 6) (/0, 5) 

B {-I, 8) (0, 0) 

To find the security level (status quo point) we look at the following two separate games 
extracted from the original game and use movement diagrams, dominance, or our linear 
programming method to solve each game for those players' values. 

In a prudential strategy, we allow a player to find their optimal strategy in their own 
game. For Rose, she would need lo find her optimal solution in her own game. Rose's 
game below has a mixed strategy solution; V = I 0/3. 

Rose A 

8 

Cohn 

C 

2 

4 

D 

JO 

0 

For Colin, he would need to find his optimal solution in his own game. Colin's game 
below has a pure strategy solution, V = 6. 

Rose A 

B 

Colin 

C 

6 

8 

D 

5 

(} 

The status quo point or security level from the prudential strategy is found to be ( I 0/3, 6) 
We will use this point in the formulation of the non-linear progr.1mmc. 

We set up the convex polygon (constraints) for the function that we want to 
maximise, which is (x J¥1 (y 6). The convex polygon is the convex set from the values 
in the pay-off matrix. Its boundary and interior points represent all possible combinations 
of strategics. Comer points represent pure strategics. All other points arc mixed 
strategics. Occasionally, a pure str.itcgy is an interior point. Thus, we start by plotting the 
strategics from our payoff matrix set of values {(2, 6), (4, 8), (10, 5), (0, O)}, sec 
Figure 2. 

We note that our convex region has four sides whose coordinates are our pure 
strategics. We use the point-slope formula to find the equations of the line and then test 
points to transform the equations to inequalities. For example, the line form (4, 8) to (10, 
5) is J' = 0.5x + 10. We rewrite as y + 0.5x 10. Our test point (0, 0) show that arc 
inequality is 0.5x + y ~ IO. We use this technique to find all boundary lines as well as add 
our security levels as lines that we need to be above. 
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Figure 2 PayofTpolygon, example 9 (sec onhne version for colours) 

--~ ~ 
•.------------------------,-, (4.8) 

(0,0) ~---------
The convex polygon is bounded by the following in equalities: 

.Sx+ y ~ 10 

- 3x+ y SO 

0.St-y s 0 

- x+ y S 4 

x ~ t• 

.I' ;> y• 

where x• and y• arc the security levels ( I 013,6). 

0 

[!.s.-"' ·' 
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The NLP fonnulation to find the Nash arbitration value following the fonnat of 
equation (5) is as follows: 

MaximiscZ 

Subject to: 

O.Sx+ y s 10 

- 3t +y S0 

O.Sx-y SO 

- x+ yS4 

> 10 x _-
3 

y~6 

10 
(x -- )•(y - 6) 

3 

{7) 

We use MAPLE, as our software. to both provide the graphs and the solution outputs 
usmg programmes previously written (Fox, 2000). We display the feasible region 
graphically in Figure 2. The feasible region is the solid region. From the figure we can 
approximate the soluuon as the pomt of tangency between the feasible region and the 
hyperbolic contours in the NE region. 



278 JJ:P. Fox 

We use the conditions of equation (6) to sol\'c our NLP as shown in equation (7) to 
find the point indicated by the arrow in Figure 3. 

Figure 3 Com·cx polygon and function contour plot (sec online version for colours) 

Optimal 
solution is the 

point of 
tangency 

Figure 4 The graphical NLP problem for the manugcmcnt-labour arbitration (sec onlinc version 
for colours) 
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Our optimal solution, the Nash arbitration point is found to be x = 5.667 and 
y = 7 .167 and the value of the objective function is 2. 72 with shadow prices: J.2 = 2.3333 
and all other J, = 0. 

The value is 2.72. The interpretation of the Lagrange multiplier, A-;, would be an 
increase in the utility associated with strategy AD of one unit would yield an increase in 
the value of the game solution of2.3333 units. 

We choose a more complicated example next, the labour management game from 
Straffin (2004). This game has two players and the Rose player has four strategics and the 
Colin player has four strategics. 

fa:ample J 0: management-labour arbilration (from Straffin, p.115 J/7) 

Labour 
concedes 

Nothing C A CA 

Nothing (0, 0) (4, I) (4, 2) (8, 3) 
Management 
concedes 

p ( 2, 2) (2, I) (2, 0) (6, - 1) 

R ( 3, 3) (I, 2) (I, I) (5, 0) 

PR ( 5, 5) (- 1, 4) (-1, 3) (3. 2) 

The convex polygon is graphed from the constraints below (sec the plots in Figure 3 and 
Figure 4): 

x+y2:0 

0.5.t+ y2:0 

0.25.t+ y 2: - 1 

x+y2:5 

0.5.t+ y !:. 3.5 

15 
0.25x+y$ 4 

The status quo point (our security level) 1s (0, 0), making the function to maximise 
simplyx• y. 

Our formulation is: 

Maximise x • y 

Subject to: 

x+y2:0 

0.5x+ y 2: 0 

0.25:c+ y ~ - I 

x+y2:5 

0.5x+y$3.5 

15 
0.25x+y$ 4 
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We use Maple to assist in finding the results . 

> sol:= NLPSofre (objective, c.o11str, maximise., true); 

S()[ ; -[5.999999999999999 I 2, [x - 3.00000000000000088, 

y- l .999999999999999 I 2]] 

The product is taken as xy "' 6.0 and the values arc taken as x • 3 and y - 2. 
With our function, we arc concerned with a point of the boundary of the constraint. 

The constraint region is the Pareto optimal region (the northeast boundary). 
In particular, we arc looking for: 

Figure 5 The Nash function's contours with status quo (0, 0) nnd the NE boundary line 
(sec onlinc version for colours) 

y 

The optimal point is the poinl on the line that is tangent to the contours in the direction of 
the NE increase. 

Example I I: the writer's guild strike (Fox, 1008) 

A pa yo IT matrix consisting of cardinal utilities is presented in Figure 6. 

Payoff matrix 

Wntcr's (Rose ) s 
,\S 

Management (Colin) 

SQ 

(0, S) 

(4, 10) 

/.V 

(6, 2) 

( 10, 0) 
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Using the movement diagram, we can easily find that (4, IO) is the pure Nash 
equilibrium. We also note that this result is not satisfying to the Writer's guild and that 
they would like to have a better outcome. Both (6, 2) and (JO, 0) provide a better outcome 
to the writers. We plot these coordinates from the payoff matrix to determine if any 
points are Pareto optimal, see Figure 6. 

The Nash equilibrium value (4, 10) lies along the Pareto optimal line segment. But 
the writers can do better by going on strike and forcing arbitration, which is what they 
did. 

Figure 6 Payoff polygon for writer's guild strike (see online version for colours) 

12 ,----------- -- ------ -- ---, 

10 

e Pareto optimal line segment 

6 

4 

2 

0"--------- -- --- - --- ;:::,,.-...40-0,- ~ 
0 

L_ 
2 • e 10 12 J 

The status quo point is the security le\·els of each side. We find these values using 
prudential strJtegics as (4, 5). The function for the Nash arbitration scheme is 
Maximise (:c 4) (y - 5). 

Our formulation is: 

Maximise (x - 4 )(y - 5) 

Subject to: 

5 50 
- x +v S-
3 . 3 

- 5 
- x + y :55 
4 
I 

- x + 1· :55 2 . 

We can find the convex polygon from the payoff values and plot in Figure 6. We graph 
the convex polygon in Figure 7 with the contours of our function, (x 4) (y 5). 

Using Maple, we find the desired solution to our NLP as: 

x - 5.5 

I' 7.5 

,. 1.5 
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lit= 0 

/12 = 2.09165 

/13 = 2.29128 

We have the x and y coordinate (5.5, 7.5) as our arbitrated solution. We also have obtain 
some infonnation about J 1• It's value of 1.5 means that an increase in utility of one unit 
for this constraint provides an increase in value of approximately 1.5 units. 

Figure 7 Convex polygon and Nash arbitration contours (see onlinc version for colours) 

100 

7S 

y 50 

25 

oo• ---~~...-.~ ...... ...-.~-...-.~ ...... 
00 25 50 7S 100 

6 Conclusions 

We have presented numerous ideas from optimisation into game theory. We provided an 
example to support Straffin's (2004, p.19) comment that linear programming is most 
efficient for solving large zero-sum games. We also show how linear programming can 
be used to find pure strategy solutions as \\ ell as alluded to finding mult iple solutions 
using alternate optimal solution analysis. Both Straffin and Winston recommend using a 
computer software package to use linear programming if you cannot solve the game in a 
reasonable time. We found that LINDO and Excel arc both good software packages to 
sohe the linear prog,.imming problems . We recommend using linear programming for 
zero-sum games that arc 3 x 3 and larger after checking and reducing the game in you 
have dominance. Furthennore, you do not need to be an expert in linear programming to 
formulate the game theory into a linear programme or to use the commercial software. 

We broke new ground and showed how and when linear programming can be used to 
obtain the Nash equilibrium (equalising st,.itcgics) in solving non-zero sum games. We 
apply that same theory to separate linear programmes for each player maximising their 
st,.itegy in a non-zero game where equalising strategics arc used. Again commercial 
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software is available to solve these formulated linear programmes. For large, non-zero 
sum games linear programmes are both efficient and a time saver. 

Having applied linear programming to both zero sum games and non-zero sum 
games, we illustrate how we can employ non-linear optimisation to find the Nash 
arbitration point. Again, for large games the non-linear programming methodology is fast 
and efficient. We also graphically illustrated the notion of non-linear optimisation 
through obtaining a graphical display of the result. 

In summary, we recommend using linear programming with equation (2) for any zero 
sum game that is larger than 2 x 2. We recommend using equations (3) and (4) for any 
non-zero sum game larger than 2 x 2 which requires equalising strategies to solve for the 
Nash equilibrium . We also recommend for larger games involving the Nash arbitration 
using non-linear optimisation methods using equations (5) and (6). 

The impetus for looking into the optimisation techniques in game theory followed a 
visit of John Nash to our university and to my game theory class (Nash, 2009). After 
working our preliminary findings to apply optimisation to various aspects of game theory 
these finding were sent to both John Nash and H. Kuhn, who both wished success in the 
endeavour but their new interests kept them from more involvement. 

In our own classes in mathem11tical modelling for decision making, we have antidotal 
evidence of the success of using linear programming techniques. Now that we have 
introduced the use of linear programming into the course, the student projects and current 
thesis work involving applied modelling and analysis include much larger games. 
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