

Calhoun: The NPS Institutional Archive

DSpace Repository

Faculty and Researchers

Faculty and Researchers' Publications

2018-04

Generation of Real-Time Optimal Carrier Landing Trajectories

Kaminer, Isaac; Dobrokhodov, Vladimir

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/60525

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

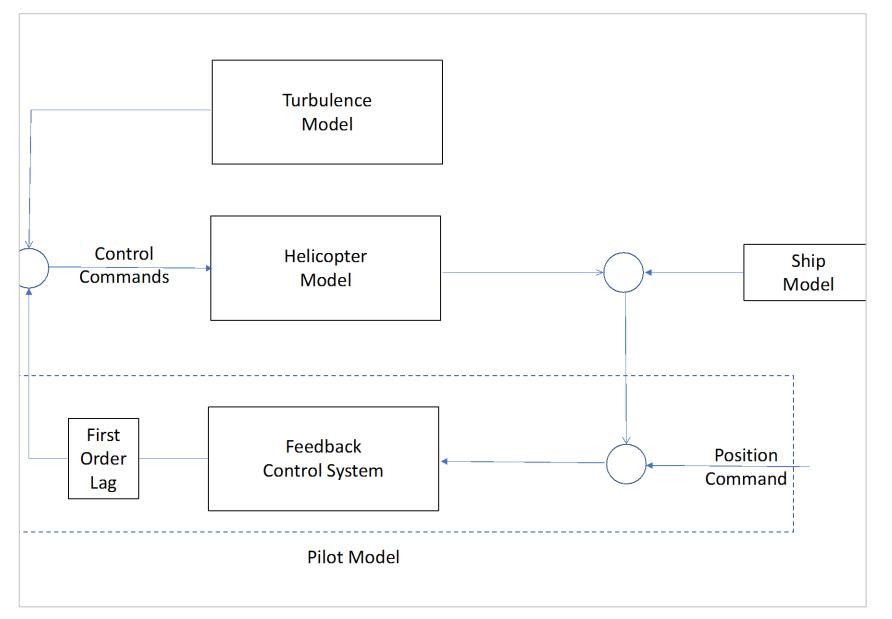
Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

OPTIMAL TRAJECTORIES FOR CARRIER LANDING: COMPUTATION OF LRES

POSTGRADUATE School

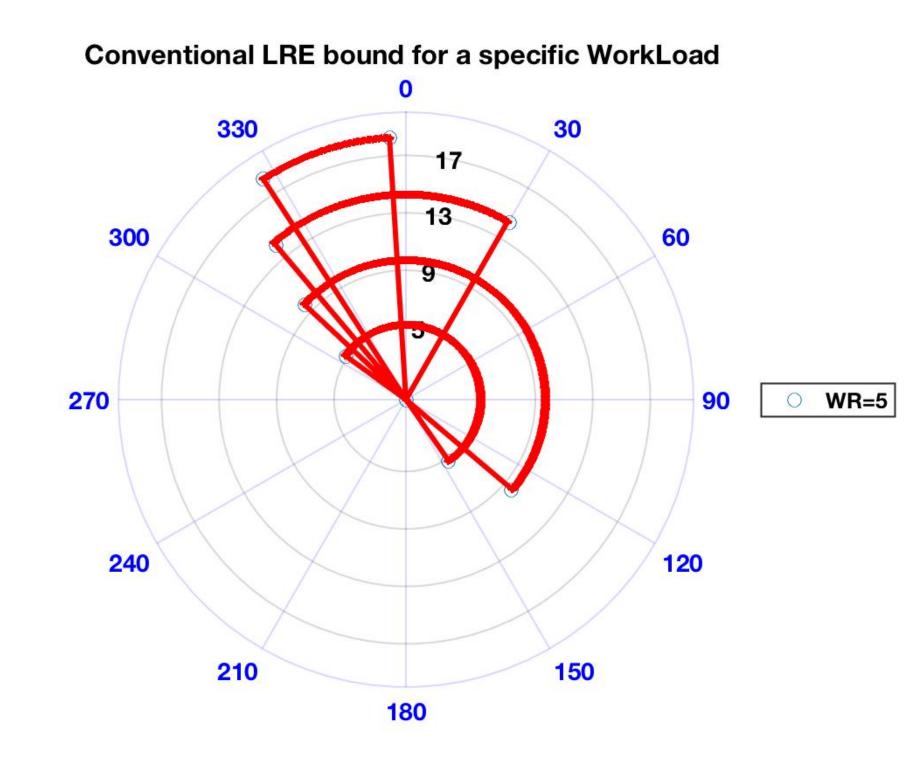

NAVAL

CHALLENGES & OBJECTIVES

- Today US Navy invests millions of dollars to generate Launch and Recovery Envelopes (LREs) for carrier landing of helicopters
- The process for computing LREs requires computationally expensive modelling and lengthy at-sea validation and verification
- Develop a methodology for efficient computation of preliminary LREs for use by operators and engineers
- Develop a computationally efficient tool for rapid prototyping of LRE envelops in various landing configurations

Ship Class	H-53	V-22
CG 47	Not Certified	Not Certified
CVN 68	Minimal Expansion	Spot 6,9 Expanded
CVN 78	No DI Planned	FY 16
DDG 51	Not Certified	Not Certified
DDG 79	Not Certified	Not Certified
FFG 7	Not Certified	Not Certified
LCC 19	H-53D ONLY Generic	Not Certified
LCS 1	Not Certified	Not Certified
LCS 2	Not Certified	Not Certified
LHD 1/LHA 6	Spots 1,2,3,4,8 Minimal Expansion	Spots 1,3,8 Generic
	Spots 5,6,7,9 Expanded	Spots 2,4,5,6,7,9 Expanded
LPD 17	Minimal Expansion	Spots 1,2 Minimal Expansion
		Spots 3,4,5,6 Generic
LSD 41/49	Expanded	Generic
T-AH 19	Not Certified	Not Certified
T-AK 3005	Generic	Not Certified
T-AK 3008	Generic	Not Certified
T-AK 3015	Generic	Not Certified
T-AK 3016	Generic	Not Certified
T-AK 3017	Generic	Not Certified
T-AKE 1	Generic	Minimal Expansion
T-AKR 300	Generic	Not Certified
T-AKR 312	Generic	Not Certified
T-AO 187	Expanded	Not Certified
T-AOE 6	Generic	Not Certified
T-AVB 3	Generic	Not Certified
T-EPF 1 (JHSV)	Minimal Expansion	Not Certified
T-ESB 3 (MLP AFSB)	FY16	No DI Planned

Record of Existing Fleet LREs


Block Diagram of the Computational Methodology Developed

METHODOLGY

- Leverage existing **generic** models of
 - Ship/Helicopter Dynamics
 - Equivalent pilot control model
 - Pilot Workload Model
- to
 - Develop computationally efficient method for rapid design of preliminary LREs

FINDINGS AND CONCLUSIONS

- Developed a Matlab based tool for computation of preliminary helicopter landing LRE
- The tool produces an LRE within a few seconds first complete integration of all the models
- The resulting LRE can be used by operators and mission planners to determine operational range and safety bounds required for at-sea testing

• Expected to save the fleet millions of \$\$\$\$ and lives of personnel

FUTURE WORK

- Utilize fleet specific
 - Ship models
 - Helicopter models
 - Pilot rating models

Preliminary LRE obtained by our tool

- Utilize better pilot workload models using
 - regression
 - machine learning and AI

Research Team: Dr. Isaac Kaminer and Dr. Vladimir Dobrokhodov Graduate School of Engineering and Applied Sciences **Topic Sponsor:** N9 – Warfare Systems

NRP Project ID: NPS-17-N368-A