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A set of n boxes, located on the vertices of a hypergraph G , contain known but different 
rewards. A Searcher opens all the boxes in some hyperedge of G with the objective of 
collecting the maximum possible total reward. Some of the boxes, however, are booby 
trapped. If the Searcher opens a booby trapped box, the search ends and she loses all her 
collected rewards. We assume the number k of booby traps is known, and we model the 
problem as a zero-sum game between the maximizing Searcher and a minimizing Hider, 
where the Hider chooses k boxes to booby trap and the Searcher opens all the boxes in 
some hyperedge. The payoff is the total reward collected by the Searcher. This model could 
reflect a military operation in which a drone gathers intelligence from guarded locations, 
and a booby trapped box being opened corresponds to the drone being destroyed or 
incapacitated. It could also model a machine scheduling problem, in which rewards are 
obtained from successfully processing jobs but the machine may crash. We solve the game 
when G is a 1-uniform hypergraph (the hyperedges are all singletons), so the Searcher can 
open just 1 box. When G is the complete hypergraph (containing all possible hyperedges), 
we solve the game in a few cases: (1) same reward in each box, (2) k = 1, and (3) n = 4
and k = 2. The solutions to these few cases indicate that a general simple, closed form 
solution to the game appears unlikely.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following game between a Hider and a Searcher. There is a set [n] ≡ {1, . . . , n} of boxes, with box i
containing a reward of ri ≥ 0, for i ∈ [n]. We also make a standing assumption that, without loss of generality, r1 ≥ · · · ≥ rn . 
The boxes are identified with the vertices of a hypergraph G . The Hider sets booby traps in k of the boxes, where 1 ≤ k ≤
n − 1, so his strategy set is [n](k) ≡ {H ⊂ [n] : |H | = k}. The Searcher chooses a subset S ⊂ [n] of boxes to search, where S is 
the hyperedge of a hypergraph G with vertices V and hyperedges E ⊂ 2V .

If the Hider plays H and the Searcher plays S , the payoff R(S, H) is given by

R(S, H) =
{

r(S), if H ∩ S = ∅,

0, otherwise,

where r(S) ≡ ∑
i∈S ri is the sum of the rewards in S . In other words, the Searcher keeps the sum of all the rewards in the 

boxes she opens unless one or more of them is booby trapped, in which case, she gets nothing. If the Searcher uses a mixed 
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strategy p (that is, a probability distribution over subsets S ⊂ [n]) and the Hider uses a mixed strategy q (a probability 
distribution over subsets H ∈ [n](k)), we write the expected payoff as R(p, q). We also write R(p, H) and R(S, q) if one 
player uses a pure strategy while the other player uses a mixed strategy.

This game could be an appropriate model for a military scenario in which a drone is used to gather intelligence at 
several locations, and ri is the expected value of the intelligence gathered at location i. A known number k of the locations 
are guarded, and flying the drone near these locations would result in its incapacitation. Alternatively, the Searcher may 
be collecting rewards in the form of stolen weapons or drugs from locations at which capture is possible, or the Searcher 
could be a burglar stealing valuable possessions from houses in a neighborhood, some of which are monitored by security 
cameras. The graph structure could correspond to geographical constraints. The case of the complete hypergraph, where 
E = 2V , corresponds to no constraints on the Searcher’s choice of subset. The case where E is 1-uniform, so that every 
hyperedge consists of a single vertex, corresponds to the Searcher being limited to searching only one location. If E is 
2-uniform, so that G is a graph, the Searcher must choose locations corresponding to the endpoints of an edge of the graph.

The game could also model a scheduling problem in which there are n jobs with utilities ri which are obtained from 
a successful execution of job i. For example, jobs may correspond to computer programs. A total of k of the programs are 
bugged, and each bug will crash the machine so that all data is lost. The objective is to find a subset of jobs to run that 
maximizes the worst-case expected utility, assuming Nature chooses which k jobs are bugged.

This work lies in the field of search games, as discussed in [2], [3], and [5]. Search games involving objects hidden in 
boxes have previously been considered in [7] and [8]. In these works, the objective of the Searcher is to minimize a total 
cost of finding a given number of hidden objects. [1] consider a machine scheduling problem in which rewards are collected 
from processing jobs and the machine may crash, similarly to our problem. But in their setting, each job will independently 
cause the machine to fail with a given probability.

Since this is a zero-sum game, it could be solved by standard linear programming methods, but this approach would be 
inefficient for large k, or if the hypergraph has a large number of hyperedges. In this work, we concentrate on two special 
cases of the game, with the aim of finding concise, closed-form solutions. We first solve the case where G is a 1-uniform 
hypergraph in Section 2. In Section 3, we consider the complete hypergraph, and solve the game for three special cases: (1) 
same reward in each box, (2) k = 1, and (3) n = 4, k = 2. We also give some general bounds, and make a conjecture on the 
form of the optimal solution. Finally, we offer concluding remarks in Section 4.

2. The game on a 1-uniform hypergraph

We begin with the special case that G is a 1-uniform hypergraph, so that every hyperedge is a singleton (though every 
singleton may not be a hyperedge). In other words, the Searcher can open only 1 box, and her strategy set is simply some 
subset A of the set [n] of vertices. If the Searcher is restricted to boxes in A, then any Hider strategy that does not hide all 
k booby traps in A is (weakly) dominated by another Hider strategy that does. Hence, without loss of generality, we may 
assume that G is the complete 1-uniform hypergraph whose hyperedges are all the singletons. A mixed strategy for the 
Searcher is a probability vector x ∈Rn with 

∑n
j=1 x j = 1, x j ≥ 0 for all j.

We first obtain a class of lower bounds on the value of the game, by defining a Searcher strategy for every subset of 
boxes.

Lemma 1. For a subset A ⊆ [n] of boxes with |A| ≥ k, let the Searcher strategy x ≡ xA be given by

xA
j =

{
λ(A)/r j, if j ∈ A,

0, otherwise,

where λ(A) = (∑
i∈A 1/ri

)−1
. The strategy xA guarantees an expected payoff of at least (|A| − k)λ(A).

Proof. The expected payoff of the Searcher strategy xA against the Hider’s strategy H is

R(xA, H) =
∑

j∈A−H

xA
j r j = |A − H|λ(A) ≥ (|A| − |H|)λ(A) = (|A| − k)λ(A),

where the lower bound is obtained when H ⊆ A. �
Recall that r1 ≥ r2 ≥ · · · ≥ rn . If the Searcher is restricted to choosing a strategy of the form described in Lemma 1, for 

some |A| = t ≥ k, then it is clear that the subset maximizing (|A| − k) λ(A) is [t] = {1, 2, . . . , t}. For t = k, k + 1, . . . , n, define

V (t) ≡ (t − k)λ([t]), (1)

which is the expected payoff guaranteed by choosing A = [t] in Lemma 1. Our main result is that, when G is the complete 1-
uniform hypergraph, the value of the game is maxt=k,...,n V (t). For example, if n = 3 and k = 1 with (r1, r2, r3) = (10, 10, 1), 
then V (1) = 0, V (2) = 5, and V (3) = 5/3, so the value of the game is V (2) = 5 and the Searcher opens either box 1 or box 
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2 each with probability 0.5. Intuitively, if the rewards in different boxes are lopsided, then it is better for the Searcher to 
avoid those boxes with the lowest rewards altogether. We need a lemma before presenting the theorem.

Lemma 2. For t ≥ k + 1, the two inequalities V (t) ≥ V (t − 1) and rt ≥ V (t) are equivalent, where V (t) is defined in (1).

Proof. The first inequality is equivalent to

t − k
1
r1

+ · · · + 1
rt

≥ t − 1 − k
1
r1

+ · · · + 1
rt−1

Multiplying both denominators on both sides and canceling common terms yields

1

r1
+ · · · + 1

rt
≥ (t − k)

1

rt
,

which is equivalent to rt ≥ V (t), thus completing the proof. �
Theorem 3. Consider the search game with n boxes and k booby traps played on the complete 1-uniform hypergraph. Define

t∗ ≡ arg max
t=k,...,n

V (t),

where V (t) is defined in (1). The strategy x[t∗] described in Lemma 1 is optimal for the Searcher. For the Hider, any strategy that 
distributes the k booby traps among the boxes in [t∗] in such a way that box j ∈ [t∗] contains a booby trap with probability

y j ≡ 1 − V (t∗)
r j

is optimal. The value of the game is V (t∗).

Proof. By Lemma 1, the Searcher guarantees an expected payoff at least V (t∗) by using the strategy x[t∗] , so V (t∗) is a 
lower bound for the value of the game.

To show that V (t∗) is also an upper bound for the value of the game, first note that t∗ ≥ k +1, since V (k) = 0 < V (k +1). 
In addition, by definition of t∗ , we have that V (t∗ −1) ≤ V (t∗), which is equivalent to V (t∗) ≤ rt∗ by Lemma 2, so y j ∈ [0, 1]
for j ∈ [t∗]. One can also verify that 

∑t∗
j=1 y j = k.

If the Hider’s strategy has the property described in the theorem, then the expected payoff against any Searcher strategy 
j ∈ [t∗] is r j(1 − y j) = V (t∗) and the expected payoff against any Searcher strategy j /∈ [t∗] is r j . By definition of t∗ , we have 
that V (t∗) ≥ V (t∗ + 1), which is equivalent to V (t∗ + 1) ≥ rt∗+1 from the proof in Lemma 2. Combining two inequalities 
yields that V (t∗) ≥ V (t∗ + 1) ≥ rt∗+1. In other words, opening box j /∈ [t∗] results in payoff r j ≤ rt∗+1 ≤ V (t∗). Consequently, 
V (t∗) is an upper bound for the value of the game, which completes the proof. �

There are many Hider strategies that will give rise to the property required in Theorem 3; that is, the Hider distributes k
booby traps in t∗ boxes in such a way that box j ∈ [t∗] contains a booby trap with probability y j ∈ [0, 1], where 

∑t∗
j=1 y j =

k. One way to implement such a Hider strategy can be found in Definition 2.1 in [4]. Partition the interval [0, k] into 
subintervals of lengths y1, . . . , yt∗ . Generate θ from the uniform distribution in [0, 1] and select the k boxes corresponding 
to the k subintervals containing the points θ, θ + 1, . . . , θ + (k − 1). By construction, the Hider will choose exactly k boxes 
to put booby traps, and box i will contain a booby trap with probability yi , for i ∈ [t∗].

In the special case where all the rewards are equal, we have V (t) = (t − k)/t , which is maximized at V (n) = (n − k)/n. 
The Searcher’s optimal strategy is to open each box with probability 1/n, and any Hider strategy that puts a booby trap in 
each box with the same probability k/n is optimal—such as choosing every subset of k boxes with probability 1/

(n
k

)
.

In another special case when k = n − 1, we have V (n − 1) = 0, so the value of the game is V (n) = (n − (n − 1))λ([n]) =
(
∑n

j=1 1/r j)
−1. The Searcher’s optimal strategy is to open box j with probability λ([n])/r j , for j ∈ [n]. The Hider’s optimal 

strategy needs to put a booby trap in box j with probability 1 − (n − (n − 1))λ([n])/r j . Because the Hider has n − 1 booby 
traps, the only strategy that meets this requirement is for the Hider to leave box j free of booby trap with probability 
λ([n])/r j , for j ∈ [n].
3. The game on the complete hypergraph

This section concerns the extreme case where G is the complete (non-uniform) hypergraph, so that a Searcher strategy 
is any S ⊂ [n]. Note that if k = n − 1, the Searcher should open only 1 box, so the structure of the hypergraph becomes 
irrelevant; the solution presented in Section 2 is also optimal.

For the case of complete hypergraph, we present the solution to the three special cases: (1) equal rewards in each box; 
(2) k = 1, and (3) n = 4, k = 2. We then give some general bounds on the value of the game, and make a conjecture on the 
optimal solution based on our findings.
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3.1. The case with equal rewards

We begin our analysis with the special case where all the rewards are equal, which we set to 1 without loss of generality.

Theorem 4. Consider the search game on the complete hypergraph with r j = 1 for j ∈ [n], so this game is characterized by only the 
number of boxes n and the number of booby traps k. The Hider’s optimal strategy is to choose some H ∈ [n](k) uniformly at random. 
The Searcher’s optimal strategy is to open m∗ = � n−k

k+1 � boxes at random. In particular, m∗ = 1 if k ≥ n−1
2 . The value of the game is 

given by

U (n,k) ≡
(n−m∗

k

)
m∗(n

k

) .

Proof. By symmetry, it is optimal for the Hider to choose uniformly at random between all his pure strategies.
Because each box contains the same reward, the Searcher’s decision reduces to the number of boxes she opens. Write 

F (m) for the expected reward when the Searcher opens m boxes at random, and the booby trap is located in some arbitrary 
set of k boxes. We calculate F (m) by considering the Searcher’s m boxes to be fixed and supposing that a randomly chosen 
set of k boxes are booby trapped. The Searcher gets a reward of m if none of the boxes she has chosen are booby trapped; 
otherwise she gets nothing. Hence,

F (m) =
(n−m

k

)
m(n

k

) . (2)

The ratio F (m + 1)/F (m) is given by

F (m + 1)

F (m)
= (n − k − m)(m + 1)

(n − m)m
.

Therefore, F (m + 1) ≤ F (m) if and only if

m ≥ n − k

k + 1
.

It follows that F (m) is maximized at m∗ = �(n − k)/(k + 1)�. The value of the game is F (m∗), as given in the statement of 
the theorem. �

Note that if θ ≡ k/n ≤ 1/2 is held constant, and n and k tend to ∞, then the optimal search strategy in the limit is to 
open m∗ = �(1 − θ)/θ� boxes, which is independent of n. The same result is obtained independently in Example 2.1c in [9]
with a dynamic programming formulation. Writing F (m) as

F (m) =
(

n − k

n

)(
n − k − 1

n − 1

)
· · ·

(
n − k − m + 1

n − m + 1

)
m,

we can verify that the value of the game in the limit is

lim
n→∞ F (m∗) = m∗(1 − θ)m∗

.

One can interpret (1 − θ)m∗
as the probability that none of the m∗ boxes opened by the Hider contains a booby trap in the 

limit as n → ∞.
Suppose now that k is held constant and let n → ∞. In the limit, the optimal number of boxes to open tends to infinity, 

and so does the value of the game. To calculate the proportion of the total reward n the Searcher can obtain, we write out 
the probability 

(n−m∗
k

)
/
(n

k

)
from (2) that none of the Searcher’s boxes are booby trapped as

k−1∏
i=0

(
1 − m∗

n − i

)
, (3)

where m∗ = �(n − k)/(k + 1)�. Because

n − k

k + 1
≤ m∗ <

n − k

k + 1
+ 1 = n + 1

k + 1
,

the probability in (3) satisfies the bounds
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k−1∏
i=0

(
1 −

n+1
n−i

k + 1

)
<

k−1∏
i=0

(
1 − m∗

n − i

)
≤

k−1∏
i=0

(
1 −

n−k
n−i

k + 1

)
.

Since the upper bound and the lower bound approach to the same limit as n → ∞, we can conclude that

lim
n→∞

k−1∏
i=0

(
1 − m∗

n − i

)
=

(
1 − 1

k + 1

)k

.

Hence, in the limit as n → ∞, the ratio of the value of the game to the total reward n is

lim
n→∞

U (n,k)

n
= 1

k + 1

(
1 − 1

k + 1

)k

. (4)

3.2. The case with k = 1 booby trap

We now consider the special case in which the Hider has only k = 1 booby trap. Recall that a Searcher’s pure strategy 
is S ⊂ [n]. In order to present an optimal strategy for the Searcher, define S∗ ⊂ [n] to be a subset of boxes that minimizes 
|r(S) − r( S̄)|, where S̄ denotes the complement of S .

We state and prove optimal strategies for the game in the case k = 1. Let R0 = ∑n
i=1 ri .

Theorem 5. Consider the search game on the complete hypergraph with k = 1. Let S∗ ⊂ [n] be a subset of boxes that minimizes 
|r(S) − r( S̄)|. It is optimal for the Searcher to choose S∗ with probability

p(S∗) = r( S̄∗)
R0

;
otherwise choose S̄∗. It is optimal for the Hider to put the booby trap in box i with probability qi = ri/R0 , for i ∈ [n]. The value V of 
the game is

V = r(S∗) r( S̄∗)
R0

.

Proof. Suppose the Searcher uses the strategy p and that the booby trap is in some box j. If j ∈ S∗ , the expected payoff is

p( S̄∗) r( S̄∗) = r(S∗) r( S̄∗)
R0

.

Similarly, if j ∈ S̄∗ , the expected payoff is the same. Therefore, V ≥ r(S∗)r( S̄∗)/R0.
On the other hand, suppose the Hider uses the strategy q. If the Searcher opens some subset S of boxes, then the 

expected payoff is

r(S)
∑
i∈ S̄

qi = r( S̄) r(S)

R0
.

The numerator in the preceding is equal to

r(S) r( S̄) = r(S)(R0 − r(S)) = −
(

r(S) − R0

2

)2

+ R2
0

4
= − (r(S) − r( S̄))2

4
+ R2

0

4
,

which is maximized by taking S = S∗ by definition of S∗ . In other words, the Hider’s strategy q guarantees that the expected 
payoff (for the Searcher) is at most r(S∗)r( S̄∗)/R0, so V ≤ r(S∗)r( S̄∗)/R0. The result follows. �

In the case that the rewards are integers, the problem of finding such a subset S∗ to minimize |r(S) − r( S̄)| is the 
optimization version of the number partitioning problem, which is the problem of deciding whether a multiset of positive 
integers can be partitioned into two sets such that the sum of the integers in each set is equal. This problem is NP-hard, so 
that finding the value of the search game with k = 1 is also NP-hard. There are, however, efficient algorithms to solve the 
problem in practice [6].

Note that the value of the game for k = 1 is R0/4, if and only if the boxes can be partitioned into two subsets of equal 
total reward. It is tempting to conjecture that in general, the value of the game is R0/(k + 1)2, if and only if the boxes 
can be partitioned into k + 1 subsets of equal total rewards. This conjecture, however, is not true, as can be seen from the 
simple example with n = 6 and k = 2 when all the rewards are equal to 1. By Theorem 4, the value of the game is 4/5, but 
R0/(k + 1)2 = 6/32. Nevertheless, the quantity R0/(k + 1)2 is a lower bound for the value of the game, because the Searcher 
can choose one of the k + 1 subsets uniformly at random, and receive an expected payoff of R0/(k + 1) with probability at 
least 1/(k + 1).
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3.3. The case with n = 4 boxes and k = 2 booby traps

This section presents the solution to the game with n = 4 boxes and k = 2 booby traps. The Hider chooses two boxes to 
place the booby traps, so he has 

(4
2

) = 6 pure strategies. The Searcher would want to open at most n − k = 4 − 2 = 2 boxes, 
so she has 10 viable pure strategies, including 

(4
1

) = 4 pure strategies that open just 1 box, and 
(4

2

) = 6 pure strategies that 
open 2 boxes. While one can compute the value V and optimal strategy of each player by a linear program, we will show 
that the optimal mixed strategy for the Searcher is one of the following three types:

1. Strategy A involves 4 active pure strategies: {1}, {2}, {3}, {4}. Specifically, the Searcher opens just 1 box, and chooses 
box i with probability

pi = 1/ri

1/r1 + 1/r2 + 1/r3 + 1/r4
, i = 1,2,3,4.

Regardless of which two boxes contain booby traps, strategy A produces the same expected payoff

V A ≡ 2
1
r1

+ 1
r2

+ 1
r3

+ 1
r4

. (5)

Intuitively, strategy A works well if r1, r2, r3, r4 are comparable.
2. Strategy B involves 3 active pure strategies: {1}, {2}, and {3, 4}. Specifically, the Searcher opens box i, for i = 1, 2, with 

probability

pi = 1/ri

1/r1 + 1/r2 + 1/(r3 + r4)
, i = 1,2,

or opens both boxes 3 and 4 with probability

p34 = 1/(r3 + r4)

1/r1 + 1/r2 + 1/(r3 + r4)
.

Regardless of which two boxes contain booby traps, strategy B guarantees an expected payoff at least

V B ≡ 1
1
r1

+ 1
r2

+ 1
r3+r4

. (6)

Intuitively, strategy B works well if r3 + r4 is comparable to r1 and r2.
3. Strategy C involves 6 pure strategies: {1}, {2}, {3}, {1, 4}, {2, 4}, {3, 4}. Specifically, the Searcher opens box i, for i =

1, 2, 3, with probability

pi = 1/ri
1
r1

+ 1
r2

+ 1
r3

+ 1
r1+r4

+ 1
r2+r4

+ 1
r3+r4

or opens both boxes i and 4, for i = 1, 2, 3, with probability

pi4 = 1/(ri + r4)
1
r1

+ 1
r2

+ 1
r3

+ 1
r1+r4

+ 1
r2+r4

+ 1
r3+r4

.

Regardless of which two boxes contain booty traps, strategy C produces the same expected payoff

V C ≡ 2
1
r1

+ 1
r2

+ 1
r3

+ 1
r1+r4

+ 1
r2+r4

+ 1
r3+r4

. (7)

Intuitively, strategy C works well if r4 is much smaller than the reward in each of the other three boxes.

The main result in this section is the following theorem.

Theorem 6. One of the three strategies A, B, C is optimal for the Searcher. The value of the game is

V = max{V A, V B , V C },
where V A , V B , and V C are defined in (5), (6), and (7), respectively.
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The proof of this theorem is lengthy, and we will present the three cases separately. Before doing so, we first offer some 
discussion to shed light on these three strategies. With some algebra, one can see that V A ≥ V B if and only if

1

r1
+ 1

r2
≥ 1

r3
+ 1

r4
− 2

r3 + r4
; (8)

and V A ≥ V C if and only if

1

r4
≤ 1

r1 + r4
+ 1

r2 + r4
+ 1

r3 + r4
; (9)

and V B ≥ V C if and only if

1

r1
+ 1

r2
+ 1

r3 + r4
≤ 1

r3
+ 1

r1 + r4
+ 1

r2 + r4
. (10)

Strategy A treats each box equally. For Strategy A to work well, r1 and r2 cannot be too large compared with r3 and r4
(seen in (8)), and r4 cannot be too small (seen in (9)). In other words, the four rewards need to be somewhat comparable. 
Strategy B combines the two boxes with smaller rewards together, and treats the problem as if there were only 3 boxes. 
For Strategy B to work well, r3 and r4 need to be substantially smaller than r1 and r2 (seen in (8)), and r3 needs to be 
somewhat closer to r4 rather than to r2 (seen in (10)). Strategy C treats box 4—the one with the smallest reward—as a small 
add-on to one of the other three boxes. For Strategy C to work well, r4 needs to be small enough (seen in (9)), and r1, r2, r3
need to be somewhat close together (seen in (10)).

We next present the proof of Theorem 6 in three sections, starting with the easiest case. The challenge in each of the 
three proofs is to show that the Hider has a mixed strategy to guarantee the payoff to be no more than the corresponding 
payoff guaranteed by the Searcher’s mixed strategy.

3.3.1. Optimality of Strategy C

Theorem 7. Strategy C is optimal for the Searcher and the value of the game is V C if and only if

1

r1 + r4
+ 1

r2 + r4
+ 1

r3 + r4
≤ 1

r4
, (11)

and

1

r1
+ 1

r2
+ 1

r3 + r4
≥ 1

r3
+ 1

r1 + r4
+ 1

r2 + r4
. (12)

Proof. If strategy C is optimal for the Searcher, then V C ≥ V A , which is equivalent to (11), and V C ≥ V B , which is equivalent 
to (12). Therefore, (11) and (12) are necessary conditions.

We next prove (11) and (12) are sufficient conditions. Since the Searcher can use strategy C to guarantee an expected 
payoff V C , it remains to show that the Hider has a mixed strategy to guarantee an expected payoff no more than V C . Let 
qij denote the probability that the Hider hides the 2 booby traps in boxes i and j, and let

q12 = V C

r3 + r4
, q13 = V C

r2 + r4
, q23 = V C

r1 + r4
,

q14 = 1 − V C

r2 + r4
− V C

r3 + r4
− V C

r1
,

q24 = 1 − V C

r1 + r4
− V C

r3 + r4
− V C

r2
,

q34 = 1 − V C

r1 + r4
− V C

r2 + r4
− V C

r3
.

First, we show that the preceding is indeed a legitimate mixed strategy for the Hider. Using the definition in (7), one can 
verity that 

∑
1≤i< j≤4 qij = 1. In addition, 0 ≤ q23 ≤ q13 ≤ q12 ≤ 1 and q34 ≤ q24 ≤ q14 ≤ 1, because r1 ≥ r2 ≥ r3 ≥ r4. Finally, 

we see that q34 ≥ 0, due to (12).
Next, we show that the Hider guarantees an expected payoff no more than V C regardless of what the Searcher does. 

Consider 4 cases.

1. If the Searcher opens {1, 4}, then the expected payoff is

(r1 + r4)q23 = V C .

A similar argument leads to the same conclusion if the Searcher opens {2, 4} or {3, 4}.
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2. If the Searcher opens {1}, then the expected payoff is

r1(q23 + q24 + q34) = V C .

A similar argument leads to the same conclusion if the Searcher opens {2} or {3}.
3. If the Searcher opens {4}, then the expected payoff is

r4(q12 + q23 + q13) = r4

(
1

r1 + r4
+ 1

r2 + r4
+ 1

r3 + r4

)
V C ≤ V C ,

where the inequality follows from (11).
4. If the Searcher opens {1, 2}, then the expected payoff is

(r1 + r2)q34 = (r1 + r2)

(
1

r1
+ 1

r2
+ 1

r3 + r4
− 1

r3
− 1

r1 + r4
− 1

r2 + r4

)
V C

2

To show that the preceding is no more than V C , compute

(r1 + r2)

(
1

r1
+ 1

r2
+ 1

r3 + r4
− 1

r3
− 1

r1 + r4
− 1

r2 + r4

)

= (r1 + r2)

(
r4

r1(r1 + r4)
+ r4

r2(r2 + r4)
− r4

r3(r3 + r4)

)

= r4

r1 + r4
+ r4

r2 + r4
+

(
r1r4

r2(r2 + r4)
− r1r4

r3(r3 + r4)

)
+

(
r2r4

r1(r1 + r4)
− r2r4

r3(r3 + r4)

)

≤ r4

r1 + r4
+ r4

r2 + r4
+ r1r4

r1(r1 + r4)
+ r2r4

r2(r2 + r4)

= 2

(
r4

r1 + r4
+ r4

r2 + r4

)

≤ 2

(
1 − r4

r3 + r4

)
≤ 2,

where the first inequality follows from q14 ≥ 0 and q24 ≥ 0, and the second inequality follows from (11). A similar 
argument leads to the same conclusion if the Searcher opens {2, 3} or {1, 3}.

The proof is complete. �
3.3.2. Optimality of Strategy B

Theorem 8. Strategy B is optimal for the Searcher and the value of the game is V B if and only if

1

r1
+ 1

r2
≤ 1

r3
+ 1

r4
− 2

r3 + r4
(13)

and

1

r1
+ 1

r2
+ 1

r3 + r4
≤ 1

r3
+ 1

r1 + r4
+ 1

r2 + r4
. (14)

Proof. If strategy B is optimal for the Searcher, then V B ≥ V A , which is equivalent to (13), and V B ≥ V C , which is equivalent 
to (14). Therefore, (13) and (14) are necessary conditions.

We next prove (13) and (14) are sufficient conditions. Since the Searcher can use strategy B to guarantee an expected 
payoff at least V B , it remains to show that the Hider has a mixed strategy to guarantee an expected payoff no more than 
V B . Let qij denote the probability that the Hider hides the 2 booby traps in boxes i and j, and require

q12 = V B

r3 + r4
, (15)

q34 = 0, (16)

q23 + q24 + q34 = V B

r1
, (17)

q13 + q14 + q34 = V B

r2
. (18)
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These constraints ensure that 
∑

1≤i< j≤4 qij = 1, and guarantee an expected payoff no more than V B if the Searcher uses 
pure strategies {3, 4}, {1, 2}, {1}, and {2}.

The Hider also needs to ensure an expected payoff no more than V B if the Searcher uses either {3} or {4}, so we need 
to require

q12 + q14 + q24 ≤ V B

r3
, (19)

q12 + q13 + q23 ≤ V B

r4
; (20)

and if the Searcher uses {1, 3}, {2, 3}, {2, 4}, or {1, 4}, so we also need to require

q24 ≤ V B

r1 + r3
, (21)

q14 ≤ V B

r2 + r3
, (22)

q13 ≤ V B

r2 + r4
, (23)

q23 ≤ V B

r1 + r4
. (24)

To complete the proof, we need to show that there exists a feasible nonnegative solution to qij , 1 ≤ i < j ≤ 4 subject to the 
constraints in (15) through (24).

To proceed, write

q13

V B
= x,

q23

V B
= y, (25)

and use (16) in (17) and (18) to obtain

q24

V B
= 1

r1
− y,

q14

V B
= 1

r2
− x. (26)

To ensure q13, q23, q14, q24 ≥ 0, we need that

0 ≤ x ≤ 1

r2
, 0 ≤ y ≤ 1

r1
. (27)

Next, substitute (25) and (26) into (19)–(24) to rewrite the 6 inequalities constraints in terms of x and y. Constraints 
(19) and (20) together become

1

r1
+ 1

r2
− 1

r3
+ 1

r3 + r4
≤ x + y ≤ 1

r4
− 1

r3 + r4
. (28)

Constraints (22) and (23) together become

1

r2
− 1

r2 + r3
≤ x ≤ 1

r2 + r4
, (29)

and constraints (21) and (24) together become

1

r1
− 1

r1 + r3
≤ y ≤ 1

r1 + r4
. (30)

Because constraints (29) and (30) make constraint (27) redundant, it remains to show that there exists a feasible solution 
to x and y subject to constraints (28), (29), and (30).

First, note that in each of (28), (29), and (30), the unknown’s upper bound is greater than or equal to its lower bound. 
The feasibility of x + y in (28) follows directly from (13). The feasibility of x in (29) follows from r2 ≥ r3 ≥ r4, and the 
feasibility of (30) follows from r1 ≥ r3 ≥ r4.

To complete the proof, we need to show that the sum between the upper bound (lower bound, respectively) of x in (29)
and the upper bound (lower bound, respectively) of y in (30) is greater than or equal to the lower bound (upper bound, 
respectively) of x + y in (28).

The first claim follows directly from (14). The second claim states that

1 − 1 + 1 − 1 ≤ 1 − 1
.

r2 r2 + r3 r1 r1 + r3 r4 r3 + r4
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To prove it, start with the left-hand side to obtain

r3

(
1

r2(r2 + r3)
+ 1

r1(r1 + r3)

)
≤ r3

(
1

r2(r2 + r4)
+ 1

r1(r1 + r4)

)

≤ r3

(
1

r3(r3 + r4)

)

≤ r3

(
1

r4(r3 + r4)

)

= 1

r4
− 1

r3 + r4
,

where the first and third inequalities are due to r3 ≥ r4, and the second inequality is due to (14). Consequently, we have 
proved that there exists a feasible solution to x and y that satisfy constraints (28), (29), and (30). In other words, we have 
proved that there exists a feasible solution to q13, q14, q23, q24 that satisfy the constraints in (17) through (24). Therefore, we 
have shown that the Hider has a mixed strategy that guarantees the Searcher no more V B , which completes the proof. �
3.3.3. Optimality of Strategy A

We begin with two lemmas.

Lemma 9. If r1 ≥ r2 ≥ r3 ≥ r4 ≥ 0, and (8) holds, then

1

ri
+ 1

r j
≥ 1

rk
+ 1

rl
− 2

rk + rl
,

where i, j, k, l is any permutation of {1, 2, 3, 4}.

Proof. Rewriting (8) as(
1

r1
+ 1

r2
+ 1

r3 + r4

)
≥

(
1

r3
+ 1

r4
− 1

r3 + r4

)
.

Because r1 ≥ r2 ≥ r3 ≥ r4 ≥ 0, with some algebra one can verify that any other permutation will make the left-hand side of 
the preceding larger and the right-hand side of the preceding smaller, so the inequality still holds. �
Lemma 10. If r1 ≥ r2 ≥ r3 ≥ r4 ≥ 0, and (9) holds, then

1

rl
≤ 1

ri + rl
+ 1

r j + rl
+ 1

rk + rl
,

where i, j, k, l is any permutation of {1, 2, 3, 4}.

Proof. Multiplying by r4(r1 + r4)(r2 + r4)(r3 + r4) on both sides of (9) and canceling out common terms, we obtain

r1r2r3 ≤ ((r1 + r2 + r3 + r4) + r4) r2
4.

Because r4 is the smallest, it is clear that any other permutation will make the left-hand side of the preceding smaller and 
the right-hand side of the preceding larger, so the inequality still holds. �

We are now ready for the main result in this subsection.

Theorem 11. Strategy A is optimal for the Searcher and the value of the game is V A if and only if

1

r1
+ 1

r2
≥ 1

r3
+ 1

r4
− 2

r3 + r4
, (31)

and

1 ≤ 1 + 1 + 1
, (32)
r4 r1 + r4 r2 + r4 r3 + r4
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Proof. If strategy A is optimal for the Searcher, then V A ≥ V B , which is equivalent to (31), and V A ≥ V C , which is equivalent 
to (32). Therefore, (31) and (32) are necessary conditions.

We next prove (31) and (32) are sufficient conditions. Since the Searcher can use strategy A to guarantee an expected 
payoff at least V A , it remains to show that the Hider has a mixed strategy to guarantee an expected payoff no more than 
V A . Let qij denote the probability that the Hider hides the 2 booby traps in boxes i and j, with probability qij ≥ 0 and ∑

1≤i< j≤4 qij = 1. In particular, we will show that the Hider has a feasible mixed strategy to achieve an expected payoff 
exactly V A if the Searcher opens any one box, and guarantees an expected payoff no more than V A if the Searcher opens 
any two boxes. In other words, we claim that there exists a feasible solution to∑

1≤i< j≤4

qij = 1, qij ≥ 0, for 1 ≤ i < j ≤ 4

(q23 + q24 + q34)r1 = V A, q12(r3 + r4) ≤ V A,

(q13 + q14 + q34)r2 = V A, q13(r2 + r4) ≤ V A,

(q12 + q14 + q24)r3 = V A, q14(r2 + r3) ≤ V A,

(q12 + q13 + q23)r4 = V A, q23(r1 + r4) ≤ V A,

q24(r1 + r3) ≤ V A,

q34(r1 + r2) ≤ V A .

To proceed, write x = q34/V A and y = q24/V A , and use the first 5 equality constraints (in the left column) to solve 
qij/V A in terms of x and y for 1 ≤ i < j ≤ 4. Use qij ≥ 0 to obtain lower bounds for qij/V A , for 1 ≤ i < j ≤ 4, and the last 6 
inequality constraints (in the right column) to obtain their upper bounds. The results are summarized below.

1

(r3 + r4)
≥ q12

V A
= x + 1

2

(
− 1

r1
− 1

r2
+ 1

r3
+ 1

r4

)
≥ 0,

1

(r2 + r4)
≥ q13

V A
= y + 1

2

(
− 1

r1
+ 1

r2
− 1

r3
+ 1

r4

)
≥ 0,

1

(r2 + r3)
≥ q14

V A
= 1

2

(
1

r1
+ 1

r2
+ 1

r3
− 1

r4

)
− x − y ≥ 0,

1

(r1 + r4)
≥ q23

V A
= 1

r1
− x − y ≥ 0,

1

(r1 + r3)
≥ q24

V A
= y ≥ 0,

1

(r1 + r2)
≥ q34

V A
= x ≥ 0.

Rewrite the preceding in terms of x, y, and x + y, to get the following.

0 ≤ x ≤ 1

r1 + r2
, (33)

−1

2

(
− 1

r1
− 1

r2
+ 1

r3
+ 1

r4

)
≤ x ≤ 1

r3 + r4
− 1

2

(
− 1

r1
− 1

r2
+ 1

r3
+ 1

r4

)
, (34)

0 ≤ y ≤ 1

r1 + r3
, (35)

−1

2

(
− 1

r1
+ 1

r2
− 1

r3
+ 1

r4

)
≤ y ≤ 1

r2 + r4
− 1

2

(
− 1

r1
+ 1

r2
− 1

r3
+ 1

r4

)
, (36)

1

r1
− 1

r1 + r4
≤ x + y ≤ 1

r1
, (37)

1

2

(
1

r1
+ 1

r2
+ 1

r3
− 1

r4

)
− 1

r2 + r3
≤ x + y ≤ 1

2

(
1

r1
+ 1

r2
+ 1

r3
− 1

r4

)
. (38)

It then remains to show that there exists a feasible solution to x and y that satisfies these six linear constraints.
First, we claim there exists a feasible solution to x that satisfies the two constraints (33) and (34). The larger lower 

bound for x is clearly 0, since r1 ≥ r2 ≥ r3 ≥ r4. While it is not clear which of the two upper bounds for x is smaller, one 
can verify that both are nonnegative, due to (31). With a similar argument, there exists a feasible solution to y that satisfies 
(35) and (36), due to (31) and Lemma 9.
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Second, there exists a feasible solution to x + y that satisfies (37) and (38), because each of the two upper bounds is 
greater than or equal to each of the two lower bounds, due to (31) and Lemma 9.

To complete the proof, we need to show that the sum between the upper bound (lower bound, respectively) of x implied 
by (33) and (34) and the upper bound (lower bound, respectively) of y implied by (35) and (36) is greater than or equal to 
the lower bound (upper bound, respectively) of x + y implied by (37) and (38).

From (33), (34), (35), and (36), the lower bound is 0 for x and y, so we need to check the right-hand sides of (37) and 
(38) are both nonnegative. The part concerning (37) is trivial, and the part concerning (38) follows because

1

r1
+ 1

r2
+ 1

r3
≥ 1

r1 + r4
+ 1

r2 + r4
+ 1

r3 + r4
≥ 1

r4
,

where the second inequality follows from (32).
Finally, we need to show that the sum between the upper bound of x implied by (33) and (34) and the upper bound 

of y implied by (35) and (36) is greater than or equal to the lower bound of x + y implied by (37) and (38). We do so by 
showing that the sum of either upper bound of x in (33) or (34), and either upper bound of y in (35) or (36), is greater 
than or equal to either lower bound of x + y in (37) or (38). There are thus 8 inequalities to verify. For example, from (33), 
(35), (37), we need to show that

1

r1 + r2
+ 1

r1 + r3
≥ 1

r1
− 1

r1 + r4
,

which follows from (32) and Lemma 10. Using (32) and Lemma 10, we can also verify the corresponding inequality involving 
(33), (36), (38), and that involving (34), (36), (38), and that involving (34), (35), (37).

We next verify the corresponding inequality involving (33), (35), (38), which requires

1

r1 + r2
+ 1

r1 + r3
≥ 1

2

(
1

r1
+ 1

r2
+ 1

r3
− 1

r4

)
− 1

r2 + r3
,

which is equivalent to

2

r1 + r2
+ 2

r1 + r3
≥

(
1

r1
+ 1

r2
+ 1

r3
− 1

r4

)
− 2

r2 + r3
. (39)

Starting from the right-hand side to get(
1

r2
+ 1

r3
− 2

r2 + r3

)
+ 1

r1
− 1

r4
≤

(
1

r1
+ 1

r4

)
+ 1

r1
− 1

r4

= 2

r1 + r1
+ 2

r1 + r1

≤ 2

r1 + r2
+ 2

r1 + r3
,

where the first inequality follows from (31) and Lemma 9, and the last inequality follows from r1 ≥ r2 and r1 ≥ r3.
We can go through the same procedure to verify the corresponding inequality involving (33), (36), (37), and that involv-

ing (34), (35), (37), and that involving (34), (36), (38). Each of these three inequalities has the same form as in (39), with 
the bracket on the right-hand side having three positive terms and 1 negative term. The key to establish the inequality is 
to apply Lemma 9 to the two positive terms with the largest indices among the three positive terms; for example, to prove 
(39) we pick r2 and r3 to apply Lemma 9.

Because there exists feasible solution to x and y that satisfies constraints (33)–(38), we have shown that the Hider has a 
mixed strategy that guarantees an expected payoff no more than V A , which completes the proof. �
3.4. General bounds

Here we give some general bounds on the value of the game, starting with an upper bound and a lower bound that are 
close to each other when n is large and the rewards are small.

Proposition 12. (Upper bound) The value V of the game on the complete hypergraph satisfies

V ≤ R0

k + 1

(
1 − 1

k + 1

)k

, (40)

where R0 = ∑n
i=1 ri .
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Proof. First assume all the rewards are integers. If we define a new game by replacing a box of reward r with two boxes 
of reward r1 and r2 with r1 + r2 = r, then the value of the game can only increase, because any Searcher strategy in the 
original game can also be used in the new game. With a similar argument, we can replace each box i with ri boxes each 
containing a reward of 1, resulting in a new game with equal rewards of 1, whose value is at least as great as the original 
game. The value of the new game is equal to U (R0, k), as defined in Theorem 4. Observe that by further replacing each box 
with t new boxes each containing a reward of 1/t , we obtain a game whose value U (t R0, k)/t is no smaller than that of the 
original game. Therefore, the value of the original game is bounded above by

lim
t→∞

U (t R0,k)

t
= R0 lim

t→∞
U (t R0,k)

t R0
= R0

k + 1

(
1 − 1

k + 1

)k

,

where the last equality follows from (4).
If the rewards are all rational numbers, then we can obtain an equivalent game with integer rewards by multiplying 

them all by a common denominator d. All the payoffs in the resulting game will be larger by a factor of d, and therefore so 
will the value of the game and the parameter R0. As a consequence, the left- and right-hand sides of (40) will both be larger 
by a factor of d, so the inequality still holds. If the rewards are real numbers, then they can be approximated arbitrarily 
closely to rational numbers, so that the left- and right-hand sides of (40) are also approximated arbitrarily closely, and the 
bound still holds. �
Proposition 13. (Lower bound) The value V of the game on the complete hypergraph satisfies

V ≥ R0

k + 1

(
1 − 1

k + 1

)k (
1 − r([k])

R0

)
, (41)

where R0 = ∑n
i=1 ri and r([k]) = ∑k

i=1 ri .

Proof. Consider a Searcher strategy with which each box is independently opened with probability 1/(k + 1). For a given 
Hider strategy H ∈ [n](k) , the probability that none of the boxes in H is opened is (1 − 1/(k + 1))k . If the Searcher does not 
open any box in H , her expected payoff is r(H̄)/(k + 1); if she opens any boxes in H , her payoff is zero. Therefore, with 
such strategy the Searcher’s expected payoff is(

1 − 1

k + 1

)k (
r(H̄)

k + 1

)
.

The preceding in minimized when r(H) is maximized; that is, for H = [k]. In this case, the expected payoff is the right-hand 
side of (41). �

It is worth pointing out that, among all the Searcher strategies that open each box independently at random with some 
given probability p, the one that guarantees the greatest expected payoff is given by p = 1/(k + 1), namely the strategy of 
Proposition 13. This claim can be verified via elementary calculus. The bounds in (40) and (41) are close when r([k])/R0 is 
close to zero. In particular, the bounds are asymptotically equal for constant k, as n → ∞, if all the rewards are all o(n). In 
this case, the Searcher strategy that opens each box independently with probability 1/(k + 1) is asymptotically optimal.

Note that all the optimal Searcher strategies presented in this paper share the same form: the Searcher chooses each 
hyperedge S with probability 0, or with probability proportional to 1/r(S). This observation gives rise to a set of lower 
bounds on the value, generalizing the Searcher strategy from Lemma 1.

Proposition 14. Consider the search game played on an arbitrary hypergraph, and let S = {S1, . . . , St} be a set of hyperedges. Consider 
the Searcher strategy p that chooses S j with probability p(S j) = λ/r(S j), where

λ ≡ λ(S) ≡ 1∑t
j=1 1/r(S j)

.

This strategy guarantees an expected payoff of at least mλ, where

m ≡ m(S) ≡ min
H∈[n](k)

|{S j ∈ S : S j ∩ H = ∅}|

is the minimal—over all possible Hider strategies—number of hyperedges in S that contain no booby traps.

Proof. For a given Hider strategy H , let A = {S j ∈ S : S j ∩ H = ∅}| be the set of hyperedges in S that contain no booby 
traps. By definition of m, we have |A| ≥ m. Hence, the expected payoff against H is
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R(p, H) =
∑
S∈A

p(S)r(S) =
∑
S∈A

λ ≥ mλ,

which completes the proof. �
If S is a partition of [n], then the minimal number of hyperedges that contain no booby traps is m(S) = t − k, and 

Proposition 14 implies that the value is at least (t − k)λ(S).
Based on the solutions to special cases presented in this paper, we make a conjecture on the Searcher’s optimal strategy.

Conjecture 15. Consider the booby trap search game played on a hypergraph. There exists an optimal Searcher strategy with which 
each hyperedge will not be chosen at all, or will be chosen with probability inversely proportional to the sum of the rewards on that 
hyperedge. In other words, the Searcher can achieve optimality by choosing the best subset of hyperedges and using the mixed strategy 
described in Proposition 14.

4. Conclusion

This paper presents a new search game on a hypergraph between a Searcher and a Hider. The Searcher wants to collect 
maximum reward but has to avoid booby traps planted by the Hider. We present the solutions to a few special cases, based 
on which we make a conjecture about the form of the solution in general.

Two of the special cases presented in this paper involve the Searcher opening just one box, or opening any number of 
boxes. A relevant and practical situation may restrict the Searcher to opening a certain fixed number of boxes. If the booby 
trap only partially injures the Searcher but does not incapacitate her, then we can consider a model extension that allows 
the Searcher to keep going until she encounters a certain number of booby traps.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. IIS-1909446.

References

[1] A. Agnetis, P. Detti, M. Pranzo, M. Sodhi, Sequencing unreliable jobs on parallel machines, J. Sched. 12 (1) (2009) 45–54.
[2] S. Alpern, S. Gal, The Theory of Search Games and Rendezvous, Kluwer Academic Publishers, 2003.
[3] S. Gal, Search games, in: J. Cochran (Ed.), Wiley Encyclopedia of Operations Research and Management Science, Wiley, 2011.
[4] S. Gal, J. Casas, Succession of hide–seek and pursuit–evasion at heterogeneous locations, J. R. Soc. Interface 11 (94) (2014) 20140062.
[5] R. Hohzaki, Search games: literature and survey, J. Oper. Res. Soc. Jpn. 59 (1) (2016) 1–34.
[6] R. Korf, Multi-way number partitioning, in: 21st International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., 2009, 

pp. 538–543.
[7] T. Lidbetter, Search games with multiple hidden objects, SIAM J. Control Optim. 51 (4) (2013) 3056–3074.
[8] T. Lidbetter, K. Lin, Searching for multiple objects in multiple locations, Eur. J. Oper. Res. (revisions) (2019).
[9] S.M. Ross, Introduction to Stochastic Dynamic Programming, Academic Press, 1983.

http://refhub.elsevier.com/S0304-3975(20)30162-6/bib3AFBE677D37AD0B2F09E7E290BBB4F32s1
http://refhub.elsevier.com/S0304-3975(20)30162-6/bibF8131ABC23DCC439FBD0D816A33EF6FFs1
http://refhub.elsevier.com/S0304-3975(20)30162-6/bib09FEBD44AB7A0426FDC550F8245CAFAFs1
http://refhub.elsevier.com/S0304-3975(20)30162-6/bibA098367F96627539DE95C21524F03C71s1
http://refhub.elsevier.com/S0304-3975(20)30162-6/bibB07AFCCAB9673914387560C1183B2978s1
http://refhub.elsevier.com/S0304-3975(20)30162-6/bib38A41E4859C4176AD897FF5370769D28s1
http://refhub.elsevier.com/S0304-3975(20)30162-6/bib38A41E4859C4176AD897FF5370769D28s1
http://refhub.elsevier.com/S0304-3975(20)30162-6/bibD858FF0CEBE734463F88BEB47A9F1AA4s1
http://refhub.elsevier.com/S0304-3975(20)30162-6/bib7855774FD90B7A9D8043C8A46BC3BD1Bs1
http://refhub.elsevier.com/S0304-3975(20)30162-6/bibEDEEE8F93FDED5D72328F773125FB118s1

	A search game on a hypergraph with booby traps
	1 Introduction
	2 The game on a 1-uniform hypergraph
	3 The game on the complete hypergraph
	3.1 The case with equal rewards
	3.2 The case with k=1 booby trap
	3.3 The case with n=4 boxes and k=2 booby traps
	3.3.1 Optimality of Strategy C
	3.3.2 Optimality of Strategy B
	3.3.3 Optimality of Strategy A

	3.4 General bounds

	4 Conclusion
	Acknowledgements
	References


