
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2017-12-24

On optimal parameter of Laguerres family of
zero-finding methods

Petkovi, L.D.; Petkovi, M.S.; Neta, B.
Taylor & Francis

L.D. Petkovi, M.S. Petkovi and B. Neta "On optimal parameter of Laguerres family of
zero-finding methods,"  International Journal of Computer Mathematics, pages 1-16,
Received 25 Apr 2017, Accepted 24 Dec 2017, Accepted author version posted
online: 19 Jan 2018 Published online: 04 February 2018.
http://hdl.handle.net/10945/57057

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018
https://doi.org/10.1080/00207160.2018.1429598

ARTICLE

On optimal parameter of Laguerre’s family of zero-finding
methods

L. D. Petkovića, M. S. Petkovićb and B. Netac

aFaculty of Mechanical Engineering, University of Niš, Niš, Serbia; bFaculty of Electronic Engineering, University of
Niš, Niš, Serbia; cNaval Postgraduate School, Department of Applied Mathematics, Monterey, CA, USA

ABSTRACT
A one parameter Laguerre’s family of iterative methods for solving nonlin-
ear equations is considered. This family includes the Halley, Ostrowski and
Euler methods, most frequently used one-point third-order methods for
finding zeros. Investigation of convergence quality of these methods and
their ranking is reduced to searching optimal parameter of Laguerre’s fam-
ily, which is themain goal of this paper. Althoughmethods from Laguerre’s
family have been extensively studied in the literature for more decades,
their proper rankingwas primarily discussed according to numerical exper-
iments. Regarding that such ranking is not trustworthy even for algebraic
polynomials, more reliable comparison study is presented by combining
the comparison by numerical examples and the comparison using dynamic
study of methods by basins of attraction that enable their graphic visu-
alization. This combined approach has shown that Ostrowski’s method
possesses the best convergence behaviour for most polynomial equations.
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1. Introduction

Solving nonlinear equations, a part of Numerical analysis, is of great importance in the theory and
practice, e.g. in applied mathematics, engineering sciences, physics, the theory of control systems,
digital processing, finance and economy, stability of dynamical systems, and other branches. During
the last three centuries,many zero-findingmethodswere developed and published in a vast number of
papers and books, see references in the books [13,14]. Although several efficient and robust methods
were constructed, even they have certain disadvantagesmanifested in solving some specific problems.
For this reason, no one could assert that the best zero-finding algorithm was finally stated, capable to
solve every equation.

A one parameter Laguerre’s family of iterative methods [11] for solving a single equation f (x) = 0
certainly belongs to the above-mentioned class of powerfulmethods, especially in the case of algebraic
polynomials, see, e.g. [6–8,17,22]. A number of numerical experiments have shown that conver-
gence breakdown is extremely rare solving polynomial equations, making this method very close
to being globally convergent. Extensive studies of Laguerre’s method can be found in [9,13,16] (see,
also, [4,8,12,17,18,20]).

Let f be a function of x with a simple zero α and let

u(x) = f (x)
f ′(x)

, A2(x) = f ′′(x)
2f ′(x)

.
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2 L. D. PETKOVIĆ ET AL.

Laguerre’s iteration function is defined by the iterative formula

L(x; λ) := x − λu(x)
1 + sgn (λ− 1)

√
(λ− 1)2 − 2λ(λ− 1)A2(x)u(x)

(λ �= 0, 1), (1)

where λ is a fixed real parameter.
The choice of the sign in front of the square root in Equation (1) is equivalent to Henrici’s criterion

[9, p.532] that reads: the argument of the root is to be chosen to differ by less thanπ/2 from the argument
of (λ− 1)f ′(x). This approach provides the largest magnitude for the denominator of (1).

Later we will see that for λ = 0 Laguerre’s method (1) gives in the limit process Halley’s method,
given by the iteration function (3) (see Section 2). The choice λ = 1 also leads to the limit process
giving quadratically convergent Newton’s method

N(x) = x − f (x)
f ′(x)

. (2)

The subject of this paper is to bring more light into the choice of optimal parameter λ appearing in
Equation (1). Although there is a lot of papers concerned with the family (1), this theme was rarely
considered in the literature. We primarily consider algebraic polynomials since the structure of func-
tions which are combinations of algebraic and transcendental functions is too complicated to provide
reliable conclusions, as numerical examples from Section 7 have shown.

Our main goal is to compare convergence characteristics of the methods which are obtained from
the Laguerre family (1) choosing different values of the parameter λ. More precisely, we search for
the optimal parameter λ that could give approximately the ‘best’ method, at least for some classes of
functions. In our investigation, we vary the parameter λ and study results obtained by methodologies
described in short in Section 3 and implemented in Sections 4–7.

This paper is organized as follows: In Section 2 we present some facts on Laguerre’s family (1)
and list iterative methods that follow for different values of λ. The used comparison method-
ologies are described in Section 3. In Section 4 we study the dependence of the approximation
error |x − α| on the parameter λ in the close neighbourhood of the zero α of f. The compari-
son of the accuracy of approximations produced by methods from Laguerre’s family on the set of
six tested algebraic polynomials is given in Section 5. The dynamic study of the same methods is
the subject of Section 6. Section 7 is devoted to the comparison of the accuracy of approxima-
tions in the case of non-polynomial functions. According to the results exposed in Sections 4–7,
in Section 8 we give a short conclusion on the quality of the considered methods of Laguerre’s
family.

2. Laguerre’s family of iterative methods

Theoretical and empirical evidences have shown that the choice of a complex value of the parameter
λ in the iteration function (1) does not bring any advantage so that we will deal with real value of λ
in this paper. Starting from a suitable initial value x = x0, the iterative process is defined in the form
xk+1 = L(xk; λ) (k = 0, 1, . . .) given by Equation (1). For simplicity, we omit the iteration index k and
denote the new approximation with x̂. Note that in most papers Laguerre’s formula (1) was derived
taking f to be an algebraic polynomial. An interesting derivation of Equation (1) is given in [8].

Starting fromLaguerre’s formula (1) we can obtain various cubically convergentmethods choosing
different values of the parameter λ, among them the following ones:

Halley’s method [8, 24, p. 91, 1], λ = 0, limit case:

H(x) = x − u(x)
1 − A2(x)u(x)

. (3)
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Euler’s method [8, 24, p. 94], λ = 2:

E(x) = x − 2u(x)
1 + √

1 − 4A2(x)u(x)
. (4)

Ostrowski’s method [8,16], λ → ±∞, limit case:

O(x) = x − u(x)√
1 − 2A2(x)u(x)

. (5)

In this paper we will also often consider two other special cases of Laguerre’s family obtained for
λ = −2

L(x;−2) = x − 2u(x)

3
√
1 − 4

3A2(x)u(x)− 1
(6)

and for λ = 0.9

L(x; 0.9) = x − 9u(x)
10 − √

1 + 18A2(x)u(x)
. (7)

We consider the iterative method (7) to study methods from Laguerre’s family with the convergence
behaviour similar to quadratically convergent Newton’s method (2) (λ = 1) having in mind that 0.9
is close to 1.

Remark 2.1: It is interesting to note that Laguerre’s family can be derived fromHalley’smethod (3) by
irrationalizing the rational denominator using a simple approximation. Applying Halley’s method (3)
to the function λf , where λ is a parameter (λ �= 0, 1), we obtain

x̂ = x − λf (x)

λf ′(x)− λ
f (x)f ′′(x)
2f ′(x)

= x − λf (x)

f ′(x)+ (λ− 1)f ′(x)− λ
f (x)f ′′(x)
2f ′(x)

. (8)

Assume that x is a reasonably good approximation to the zero α so that the quantity
∣∣∣∣
λ

λ− 1
f (x)f ′′(x)
f ′(x)2

∣∣∣∣

is sufficiently small. Then, by using the approximation
√
1 − t ≈ 1 − t/2, for small |t|, and applying

it to the appropriate part of the denominator of (1), we obtain

x̂ = x − λf (x)

f ′(x)+ (λ− 1)f ′(x)
[
1 − 1

2
λ
λ−1

f (x)f ′′(x)
f ′(x)2

]

= x − λu(x)
1 + sgn(λ− 1)

√
(λ− 1)2 − 2λ(λ− 1)A2(x)u(x)

= L(x; λ).

Remark 2.2: Using an original approach, Hansen and Patrick have derived in [8] the following
iterative formula

x̂ = x − (ν + 1)f (x)
νf ′(x)+ sgn(ν)

√
f ′(x)2 − (ν + 1)f (x)f ′′(x)

. (9)

The above formula follows from Equation (1) by letting λ = 1/ν + 1, which means that
Hansen–Patrickmethod (9) can be obtained fromLaguerre’s family (1). In fact, the families (1) and (9)
are equivalent. Although many authors treat (9) as the original method, it is fair and reasonable to
give the priority to Laguerre who derived family (1) a century before Hansen and Patrick, see the
references [8,11]. The family (9) can be regarded as the rediscovered Laguerre family.
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3. Comparisonmethodologies

What is a good way to compare zero-finding methods from Laguerre’s family using methodologies
available at present time? Obviously, a satisfactory answer is to determine the optimal parameter λ in
Laguerre’s iteration function L(x; λ), at least for some classes of functions.

Prior to the beginning of the twenty-first century, when computer graphics have not been sophis-
ticated enough and computer algebra systems (shorter CAS) (such as Maple, Mathematica, Saga,
Maxima, etc.) have not been sufficiently developed, the quality of zero-finding methods has been
estimated by using only numerical experiments on a given set of tested functions and by analysing
computational efficiency based on convergence order and computational costs. Such analysis has had
a serious drawback since the mentioned convergence characteristics strongly depend on the choice
of initial approximation x0, the shape of considered functions, and location of zeros. For this reason,
a proper ranking of compared methods performed only by the described approach is not reliable and
it can differ for different starting points. In many papers authors neglect this fact assuming a priori
that the initial approximation x0 is close enough to the sought zero of a given function so that tested
methods are always convergent.

Recall that computational efficiency of an iterativemethod IM (introduced byOstrowski [16, p. 20])
is defined by the so-called efficiency index

E(IM) = r1/d, (10)

where r is the order of convergence of IM and d is the number of function evaluations. Accord-
ing to Traub [24, Theorem 5–3], any one-point method of order r must depend explicitly on f and
the first r−1 derivatives of f. Thus, the best case of Equation (10) appears if E(IM) = r1/r . It is easy
to find that the function ψ(r) = r1/r (= E(IM)) attains its maximum for r= e (the base of natural
logarithm). Since e ≈ 2.718, it is clear that one-point methods of third-order possess the maximal
computational efficiency. Hence, there follows the interest for that class of one-point zero-finding
methods. On the other hand, methods of Laguerre’s type, presented above, have the same efficiency
index E = 31/3 ≈ 1.442 in the class of one-point third-ordermethods, whichmeans that thismeasure
is irrelevant for comparison procedure. Therefore, the comparison of accuracy of approximations pro-
duced by tested methods on the set of the same numerical examples is not sufficient for their proper
ranking although this methodology is certainly useful for crude estimation of the quality of their con-
vergence characteristics. For this reason, in finding the optimal parameter λ in Equation (1) we apply
the following methodologies:

(i) the dependence of the approximation error |x − α| on the parameter λ in a close neighbour-
hood of α,

(ii) the comparison by numerical examples and
(iii) the comparison by dynamic study that enables graphic visualization.

We emphasize that the application of the dynamic study (methodology (iii)) provides not only a
visualization of convergencebehaviour of compared iterative methods but also gives additional infor-
mation on iterations such as the total CPU time for the whole basin of attraction and average number
of iterations for each tested method regarding all starting points. It also detects whether the method
converges to the closest zero. Obviously, the determination of optimal or almost optimal parameter
λ is helpful for the user.

4. Approximation error as a function of the parameter λ

In this section we will consider the dependence of error ε(λ) = |L(x; λ)− α| of the new approxi-
mation L(x; λ) as a function of the parameter λ in Equation (1) in a close neighbourhood of the
zero α of a polynomial p. We define the close neighbourhood choosing the current approximation
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Table 1. Tested functions.

p(x) α

p1(x) = (x4 − 16)(x4 + 16)(x10 + x9 + 1) 2
p2(x) = (x3 − 1)(x3 − 2)(x3 − 3)(x3 − 4)(x3 − 5)(x3 − 6) 1
p3(x) = (x − 8)(x − 0.9)(x − 1)(x − 1.1)(x − 1.2)(x − 1.3)(x − 1.4)(x − 1.5) 1
p4(x) = x17 − 1 1

x = α ± 10−m, wherem ≥ 2. A number of numerical experiments shown that the choice of the sign
and the choice m> 2 in x = α ± 10−m slightly affect the error ε(λ) = |L(x; λ)− α| considered as a
function of λ in most examples. For this reason, in our study we take the sign ‘+’ andm = 2, that is,
we deal with the fixed approximation x = α + 10−2. For demonstration, we present results obtained
for algebraic polynomials displayed in Table 1.

The dependence of the function ε(λ) = |L(x; λ)− α| of the parameter/argument λ is presented
in Figure 1 for the listed polynomials p1 − p4 (Table 1). First of all, we observe that the error ε(λ)
is considerably large for λ = 1. This is clear since for λ = 1 Laguerre’s method (1) reduces to only
quadratically convergent Newton’s method (2). Furthermore, ε(λ) is monotonically decreasing for
λ < 1 for all tested polynomials, which means that the choice of λ in the region (−∞, γ ) (γ < 1)
is recommendable. This is in accordance with the fact that letting λ → −∞ we obtain Ostrowski’s
method (5), which shows good convergence behaviour for polynomials, see Sections 5 and 6.

Considering the graphs in Figure 1 for λ > 1 we observe that the behaviour of the error ε(λ)
is not monotone, but this error is acceptably small, especially for the polynomials p1, p2 and p4.
The error ε(λ) increases very slowly in the case of p3 not exceeding 1.4 × 10−4 for any λ > 2. For
λ = 2, thus for Euler’s method (4), ε(2) attains the minimum≈ 1.5 × 10−7 (which is hard to observe
from the figure). Since p3 has the set of close zeros (0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5), Hence, the hypothesis
that Euler’s method shows better convergence behaviour related to other methods from Laguerre’s
family (1) in the case of cluster of zeros might be stated. This question is discussed in Section 6 by
analysing the dynamics of considered methods from the family (1) (Figures 2–6).

In overall, although the described approach gives only a crude estimation, it could be concluded
that Laguerre’smethod shows a good convergence characteristics for a very wide range of values of the
parameter λ. However, this approach does not lead to the optimal value of λ. The methodologies (ii)
and (iii), considered in the next sections, give more precise answer in the search of optimal parameter
λ. It is certain that the choice of λ in the interval [1 − δ, 1 + δ] for 0 < δ 	 1 should be avoided since

Figure 1. Errors of approximations as a function of λ.
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Figure 2. Basins for the polynomial q1(x) = x(x4 − 16).

Figure 3. Basins for polynomial q2(x) = (x2 − 0.25)(x2 + 1).
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Figure 4. Basins for the polynomial q3(x) = (x − 2)(x2 + 4x + 5).

Figure 5. Basins for the polynomial q4(x) = x(x2 − 1)(x2 − 4).
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Figure 6. Basins for the polynomial q5(x) = (x + 3)(x − 0.8)(x − 0.9)(x − 1)(x − 1.1).

this range of λ defines methods whose convergence behaviour is similar to the second-order Newton
method (λ = 1). In Sections 5 and 6 the value λ = 0.9 is used to demonstrate this fact.

5. Methodology (ii): comparison by numerical examples

The iterative methods (3)–(7) have been tested on 6 algebraic polynomials starting with a suitably
chosen initial approximation x0. The tested polynomials are displayed in Table 2, together with the
initial approximation x0 and the sought zero α of fk. For all examples we have applied multi-precision
arithmetic in CASMathematica.

In Table 3 we have presented the errors of approximations εk = |xk − α| (k = 1, 2, 3, 4) produced
by the third-order methods (3)–(7). The minimal errors are marked in bold. Since the convergence
behaviour of iterative methods in practice depends on many factors, some of them are commented
below, to check the theoretical order of convergence we have displayed in Table 3 the so-called
computational order of convergence rc (COC, for brevity) using the approximate formula [10]

rc = log |f (xk+1)/f (xk)|
log |f (xk)/f (xk−1)|

. (11)

Table 2. Tested functions.

f (x) x0 α

f1(x) = (x8 − 256)(x7 + x5 + x3 + 1) 2.2+0.2i 2
f2(x) = (x3 − 1)(x3 + 1)(x10 + x5 + 1) 1.2 1
f3(x) = (x10 + 1)(x6 − i) −1.2i −i
f4(x) = (x − 4)(x + 1)(x4 − 16)(x2 + 9)(x2 + 2x + 5)

×(x2 + 2x + 2)(x2 − 2x + 2)(x2 − 4x + 5) 0.2+3.2i 3i
f5(x) = ∏20

k=1(x − k) 13.5 13
f6(x) = x17 − 1 1.2 1
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Table 3. Errors of approximations produced by the methods (3)–(7).

f Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| rc by (11)

Halley’s IM (3) 9.68(−2) 1.12(−2) 1.84(−5) 7.88(−14) 3.019
Euler’s IM (4) 0.115 2.37(−2) 1.68(−4) 5.66(−11) 2.966

f1 Ostrowski’s IM (5) 1.03(−2) 4.31(−7) 3.21(−20) 1.33(−59) 3.000
Laguerre’s IM (6), λ = −2 6.20(−2) 1.12(−3) 6.26(−9) 1.10(−24) 2.999
Laguerre’s IM (7), λ = 0.9 0.146 5.79(−2) 1.48(−2) 2.63(−4) 3.599∗

Halley’s IM (3) 7.13(−2) 6.20(−3) 5.17(−6) 3.05(−15) 2.978
Euler’s IM (4) 0.138 5.86(−2) 2.40(−2) 4.17(−4) 2.781

f2 Ostrowski’s IM (5) 1.03(−2) 6.75(−6) 1.86(−15) 3.87(−44) 2.999
Laguerre’s IM (6), λ = −2 4.44(−2) 4.40(−4) 2.85(−10) 7.69(−29) 2.999
Laguerre’s IM (7), λ = 0.9 0.108 3.77(−2) 4.29(−3) 1.68(−5) 2.293

Halley’s IM (3) 7.86(−2) 1.08(−2) 3.72(−5) 1.44(−12) 3.002
Euler’s IM (4) 0.150 6.68(−2) 1.63(−2) 1.90(−4) 2.556

f3 Ostrowski’s IM (5) 3.02(−2) 3.17(−4) 2.90(−10) 2.33(−28) 3.000
Laguerre’s IM (6), λ = −2 5.48(−2) 1.99(−3) 7.24(−8) 3.47(−21) 3.001
Laguerre’s IM (7), λ = 0.9 0.112 4.50(−2) 7.85(−3) 1.29(−3) 2.024

Halley’s IM (3) 8.22(−2) 5.66(−3) 1.98(−6) 8.24(−17) 3.007
Euler’s IM (4) 0.102 1.64(−2) 4.06(−5) 6.13(−13) 2.997

f4 Ostrowski’s IM (5) 1.36(−2) 1.95(−6) 5.74(−18) 1.46(−52) 2.999
Laguerre’s IM (6), λ = −2 5.19(−2) 5.80(−4) 7.96(−10) 2.05(−27) 2.999
Laguerre’s IM (7), λ = 0.9 0.131 4.11(−2) 5.61(−3) 1.46(−5) 3.241∗

Halley’s IM (3) 0.377 0.124 2.90(−3) 4.06(−8) 2.945
Euler’s IM (4) 9.74(−2) 1.42(−3) 4.02(−9) 9.15(−26) 3.000

f5 Ostrowski’s IM (5) 0.178 8.62(−3) 9.87(−7) 1.48(−18) 2.998
Laguerre’s IM (6), λ = −2 0.217 1.59(−2) 6.36(−6) 4.06(−16) 2.996
Laguerre’s IM (7), λ = 0.9 0.677 0.271 2.87(−2) 9.49(−5) 2.422

Halley’s IM (3) 7.76(−2) 8.87(−3) 1.54(−5) 8.74(−14) 2.965
Euler’s IM (4) 0.142 6.68(−2) 3.21(−2) 1.20(−3) 2.535

f6 Ostrowski’s IM (5) 1.18(−2) 1.38(−5) 2.12(−14) 7.61(−41) 2.999
Laguerre’s IM (6), λ = −2 5.01(−2) 6.81(−4) 8.57(−10) 1.68(−27) 2.999
Laguerre’s IM (7), λ = 0.9 0.113 4.41(−2) 6.66(−3) 6.27(−5) 2.141

From the last column of Table 3 we can conclude that the computational order of convergence
rc, given by Equation (11), mainly matches well the theoretical order, except in the case of equations
f1(x) = 0 and f4(x) = 0 for which rc of the method L(x; 0.9) (marked by ∗) exceeds 3 in spite of
bad approximations. This is accidental outcome appearing sometimes due to the fact that (11) is an
approximate formula which is perfect only for good approximations xk. The line above the entries of
rc for f1, f3, f5 points that rc is very close to 3 but not exactly equal to 3. The same is valid for entries
rc in Table 8.

From Table 3 we observe that Ostrowski’s method (5) produces the most accurate approximations
to the zeros for 5 of 6 tested polynomials. Similar results have been obtained for another 20 tested
polynomials (not listed here to save the space) of different degree, including polynomials with com-
plex coefficients. This means that Ostrowski’s method (5) is the most serious candidate for the best
method from Laguerre’s family (1) in the case of algebraic polynomials.

Remark 5.1: Experimenting with the parameter λ of large magnitude we found that there are some
values of λ that give better results than Ostrowski’s method. For example, determining approxima-
tions to the zero α = 2 of the function f1 Ostrowski’s method produced |x4 − α| ≈ 1.33 × 10−59 (see
Table 3), while the method L(x;−60) (for λ = −60) gave smaller error |x4 − α| ≈ 3.08 × 10−66. But
in the cases similar to the previous one, wemeet not only more complicated iterative formula but also
the difficult problem how to choose a proper λ which guarantees better results than Ostrowski’s method.

We end this section with an important comment. Numerical examples rarely can confirm that a
concrete method (from the considered class of methods) is always the best, they rather offer empiri-
cal evidence, often very useful but not absolutely reliable. Convergence behaviour differs for various
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methods and strictly depends on the choice of starting point but also on the structure of a tested func-
tion and the location of its zeros. Ostrowski’s method produced the most accurate approximations in
the considered numerical experiments for most tested polynomials, but one cannot expect that it is
the best for all polynomials. Most likely, one or more exceptions can appear, which is the case for
the polynomial f5 where Euler’s method (4) has produced the best approximation. For this reason,
additional comparison methods are necessary, among which one of the most powerful is presented
in Section 6.

6. Methodology (iii): dynamic study

Asmentioned above, the rapid growth of computer graphics about the beginning of the third millen-
nium provided a new approach for visual study of convergence behaviour of zero-finding methods –
dynamic study. This newmethodology, relies on basins of attractions, presents not only visualization
of iterative processes but also gives very useful information on convergence characteristics of these
processes such as the total CPU time and average number of iterations for all starting points.

Definition 6.1: Let f be a given sufficiently many times differentiable function in some complex
domainQ ⊆ C with simple or multiple zeros α1,α2, . . . ,αm ∈ Q, and let a (convergent) zero-finding
iteration be defined by

xk+1 = ϕ(f ; xk).

The basin of attraction for the zero αi of f is defined as follows:

Bf ,ϕ(αi) = {ξ ∈ Q | the iteration xk+1 = ϕ(f ; xk) with x0 = ξ converges to αi}.

Note that the notion of basin of attraction is known for a century, but only recently has been applied
for visual study of zero-finding methods, see, e.g. [2,3,5,15,19,21,23,25,26]. We have performed the
dynamic study of themethods (3)–(7) on PCwith Intel processor i7-2600 working on 3.4GHz. These
methods have been tested for the 640,000 equally spaced points of the square Q = {−5, 5} × {−5, 5}
centred at the origin. Basins of attraction have been plotted for five algebraic polynomials q1–q5 listed
in Table 4 together with their zeros.

Observe that the region Q can be always chosen in such a way that contains all zeros of a tested
polynomial using the following Henrici’s result [9, p. 457]:

All (simple or multiple) zeros α1, . . . ,αm of a polynomial

Pn(x) = cnxn + cn−1xn−1 + · · · + c1x + c0 (cn �= 0)

of degree n (≥ m) are contained in the disk D = {x | |x| ≤ R} centred in the origin and having the
radius R, where

R = 2 max
1≤j≤n

|cn−j/cn|1/j.

According to Henrici’s results, we take for the region Q the tangent square to the disk D with sides
parallel to the coordinate axes. In the case of the listed polynomials q1 − q5 the value of R is given

Table 4. Tested polynomials and their zeros.

q(x) Zeros R

q1(x) = x(x4 − 16) 0, ±2, ±2i 4
q2(x) = (x2 − 0.25)(x2 + 1) ±0.5, ±i 2
q3(x) = (x − 2)(x2 + 4x + 5) 2, −2 ± i 4.31
q4(x) = x(x2 − 1)(x2 − 4) 0, ±1, ±2 4.46
q5(x) = (x + 3)(x − 0.8)(x − 0.9)(x − 1)(x − 1.1) −3, 0.8, 0.9, 1, 1.1 4.92
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in the last column of Table 4, wherefrom we see that the square Q = {−5, 5} × {−5, 5} contains all
zeros of the polynomials q1 − q5.

Basins of attraction are given in Figures 2–6 in the following scheme

For comparison, dynamic study of the considered methods from Laguerre’s family has been per-
formed using algebra computer systems Maple and Mathematica. As expected, the obtained basins
of attraction are the same, except a negligible number of black points for some methods, see Table 6.
This is a consequence of different computational techniques and numerical algorithms for the exe-
cution of arithmetic operations of the applied programming languages, the subjects that are out of
the scope of this paper. The same causes lead to different CPU times in plotting basins; in general,
different CAS consume different CPU times, which is a characteristic of the applied CAS rather than
an indicator of the quality of tested methods. In addition, the CPU time is heavily influenced by the
characteristics of the micro-processor embedded in digital computer. For the mentioned reasons we
have omitted absolute vales of CPU times (expressed in seconds) in Table 5. However, representation
of normalized CPU times compared to a fixed method has a sense in comparing tested methods. In
our case, we have chosen Ostrowski’s method as a reference method, see Table 6. The normalization
of CPU times is carried out in the following way:

Let L1, L2, L3, L4, L5 denote the methods (3), (4), (5), (6), (7), respectively, and let t(k)Lm be the mea-
sured CPU time expressed in seconds, where k ∈ {1, 2, 3, 4, 5} is the index of the example, see Table 5.
Taking Ostrowski’s method L3 for the reference method, the normalized CPU time for the method
m ∈ {1, 2, 3, 4, 5} is calculated as

Tm =
∑5

k=1 t
(k)
Lm∑5

k=1 t
(k)
L3

(m = 1, 2, 3, 4, 5).

It is clear that T3 = 1 (normalized value).
Each basin of attraction of a zero is coloured in the following manner: the basin is painted by

one of five different colours and shaded by lighter (darker) colour as the number of iterations Nit is
smaller (larger). To satisfy the required accuracy of approximation to the zero, the program executes
not more than Nit = 30 iterations for every starting point after which proclaims that the point is
convergent; otherwise, ifNit > 30, such point is treated as divergent one and painted in black. Clearly,
it is desirable that the number of black points is as small as possible (the best case is 0 divergent
points) for any method. For each basin we record data concerning the total CPU time (in seconds)
for all 640,000 points, average number of iterations (for all starting points of the squareQ) necessary
to satisfy the termination criterion |xk − α| < 10−7 and the number of divergent (‘black’) points for
each of the methods (3)–(7) (see Table 5).
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Table 5. Iteration data for the polynomials q1 − q5 and the methods (3)–(7).

Maple 18, Mathematica 10
Maple 18

Examples Methods B C (%)

Halley’s IM (3) 5.36 0
Example 1 Euler’s IM (4) 5.11 0
q1(x) Ostrowski’s IM (5) 3.98 0

Laguerre’s IM (6), λ = −2 4.81 0
Laguerre’s IM (7), λ = 0.9 6.41 16 (0.0025%)

Halley’s IM (3) 6.39 0
Example 2 Euler’s IM (4) 6.43 0
q2(x) Ostrowski’s IM (5) 4.74 0

Laguerre’s IM (6), λ = −2 5.48 0
Laguerre’s IM (7), λ = 0.9 8.99 141 (0.022%)

Halley’s IM (3) 4.29 45 (0.007%)
Example 3 Euler’s IM (4) 3.68 0
q3(x) Ostrowski’s IM (5) 3.57 0

Laguerre’s IM (6), λ = −2 3.86 0
Laguerre’s IM (7), λ = 0.9 5.60 12 (0.018%)

Halley’s IM (3) 6.13 0
Example 4 Euler’s IM (4) 6.18 0
q4(x) Ostrowski’s IM (5) 5.01 0

Laguerre’s IM (6), λ = −2 5.48 0
Laguerre’s IM (7), λ = 0.9 7.72 0

Halley’s IM (3) 9.56 0
Example 5 Euler’s IM (4) 9.91 0
q5(x) Ostrowski’s IM (5) 7.33 0

Laguerre’s IM (6), λ = −2 8.39 0
Laguerre’s IM (7), λ = 0.9 12.54 18 (0.0028)

Notes: B – Average number of iterations for all starting points; C – Number of
‘black’ points, expressed also as a percentage (in parenthesis).

Table 6. Iteration data for the polynomials q1 − q5 and the methods (3)–(7).

Maple 18

Methods A B C (%)
Halley’s IM (3) 0.982 6.35 9 (0.0014%)

Average data Euler’s IM (4) 1.258 6.26 0
over all Ostrowski’s IM (5) 1 5.07 0
examples Laguerre’s IM (6), λ = −2 1.151 5.60 0

Laguerre’s IM (7), λ = 0.9 1.651 8.25 37.4 (0.006%)

Mathematica 10
Halley’s IM (3) 1.276 6.35 0

Average data Euler’s IM (4) 1.304 6.26 0
over all Ostrowski’s IM (5) 1 5.07 0
examples Laguerre’s IM (6), λ = −2 1.144 5.60 0.768 (0.00012%)

Laguerre’s IM (7), λ = 0.9 1.856 8.25 14.336 (0.00224%)

Notes: A – Normalized CPU time compared to Ostrowski’s method (= 1); B – Average number of
iterations for all starting points; C – Number of ‘black’ points, expressed also as a percentage (in
parenthesis).

Obviously, it is desirable that the basin of attraction for each zero has an area which is (a) unvar-
ied, (b) as large as possible, and (c) without (or with a few) divergent points. Besides, it is preferable
that (d) the number of blobs and fractals on the boundary of basin is as small as possible. Although
very complicated dependence of convergence behaviour of applied zero-finding methods on starting
points causes that basins of attraction often have a complex and intricate structure, according to the
size, hue and shape of basins of attraction, it is possible in most cases to draw a proper conclusion
about the quality of considered methods and their reliable ranking.
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According to Figures 2–6 we can draw the following conclusions. It is evident that the basins
of attraction of Euler’s method (4) (the middle picture in the first row of Figures 2–6) have varied
area to a minimal extent and less blobs and fractals (the characteristics (a) and (d)) compared to the
basins of attraction of the remaining four methods for the polynomials q1 − q4. There are no diver-
gent points for this method for all tested polynomials, which also holds for Halley’s method (3) and
Ostrowski’s method (5). At first sight, this fact supports the hypothesis mentioned in Section 4 about
the advantage of Euler’s method in the case of clusters of zeros. However, its basin of attraction for the
polynomial q5, that has the cluster of zeros (0.8, 0.9, 1, 1, 1), has shortcomings. The basin for Euler’s
method has very small regions of convergence for the zeros 0.9 and 1, which is not the case for the
remaining four methods, see Figure 6. Similar exceptions have appeared for other sets of polyno-
mials. Therefore, the cluster-hypothesis for Euler’s method is not sufficiently supported. Ostrowski’s
method (5), with slightly more complicated structure and more blobs of its basins of attractions than
Euler’s method, is a competitive follower of Euler’s method, sometimes with better characteristics
(a)–(d) than Euler’s method. Therefore, it is impossible to determine which method from Laguerre’s
family (1) is absolutely the best considering only basins of attraction.

On the other hand, the values of normalized CPU times and the average number of iterations,
given in Table 6, provide better and more reliable insight into the quality of the methods (3)–(7).
Ostrowski’s method (5) requires:

(1) the smallest average number of iterations considering all starting points for all tested polyno-
mials q1 − q5 and the shortest CPU time when CAS Mathematica is employed and shares

(2) the shortest CPU time together with Halley’s method (3) running Maple.
At the same time, this method, together with Euler’s method,
(3) converges for all points from the square Q.
Thementionedminimal values aremarked bold in Table 6.Having inmind the advantages (1)–(3),

convergence behaviour of Ostrowski’s method (5) is significantly better compared to the meth-
ods (3), (4), (6) and (7). Taking into account the results of Sections 4–6, we conclude that, among the
considered methods from Laguerre’s family (1), Ostrowski’s method (5) shows the best convergence
characteristics for most algebraic polynomials.

7. Non-algebraic functions

In previous sections we have seen that iterative methods from Laguerre’s family behave very well
in solving polynomial equations for almost every parameter λ, except in the neighbourhood of λ =
1, the value that defines quadratically convergent Newton’s method. For this reason, the methods
given by (1) with λ close to 1 usually cannot reach cubical convergence. Also, by the help of the
methodologies (i)–(iii) presented in Sections 4–6, we have concluded thatOstrowskimethod (5) gives
the best results for most algebraic polynomials.

The above conclusion is no longer valid for Ostrowski’s method (5) in finding zeros of tran-
scendental functions or combinations of transcendental and algebraic functions. Unfortunately, the
methodology (iii) – the dynamic study, most frequently cannot be applied in searching for optimal
parameter λ since it is very hard in most cases to find all zeros of non-algebraic functions in the
selected region of starting points. Besides, basins of attraction often have strange shape, as illustrated
by Figure 7 for Euler’s method (4) applied to the function f1(x) = (ex

2+6x−16 − 1) sin(x − 3) (see
Table 7) considering the argument x as a complex variable. In addition to the real zeros 2, 3, 3 − π

in the square Q = {−5, 5} × {−5, 5}, we can observe small basins for a pair of complex conju-
gate zeros 2.038723989 ± 0.6234897288 i and many very small basins of the zeros of the function
g(x) = sin(x − 3) inside Q. Therefore, we can apply only the methodology (ii) – the determination
of approximations to the zeros.

Many numerical examples have shown that somemethods from Laguerre’s family (1) are better for
certain classes of functions, other methods are better for other classes. For demonstration, we have
tested four functions given in Table 7. The produced results presented in Table 8 confirm the above
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Figure 7. Basins for the polynomial f1(x) = (ex
2+6x−16 − 1) sin(x − 3).

Table 7. Tested functions.

f (x) x0 α

f1(x) = (ex
2+6x−16 − 1) sin(t − 3) 2.2 2

f2(x) = x ex
2 − sin2 t + 3 cos t + 5 −0.9 −1.20764782713 . . .

f3(x) = 2 esin(x
2−1) − (x2 + 1) cos2(1 − t) 1.2 1

f4(x) = (x2 + 16) sin[x + 2 − i] −1.7 −2 + i

Table 8. Errors of approximations produced by the methods (3)–(7).

f Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| rc (11)

Halley’s IM 4.18(−2) 4.51(−4) 5.49(−10) 9.91(−28) 2.999
Ostrowski’s IM 3.42(−2) 1.57(−4) 1.52(−11) 1.38(−32) 2.999

f1 Euler’s IM 0.129 2.91(−2) 4.38(−4) 1.17(−9) 2.965
Laguerre’s IM (λ = −2) 1.35(−2) 1.21(−6) 1.14(−18) 9.55(−55) 3.000
Laguerre’s IM (λ = 0.9) 8.39(−2) 1.43(−2) 1.81(−4) 5.62(−10) 2.862

Halley’s IM 1.85(−3) 1.59(−9) 1.02(−27) 2.66(−82) 3.000
Ostrowski’s IM 1.67(−2) 4.19(−6) 6.43(−17) 2.33(−49) 3.000

f2 Euler’s IM 2.82(−2) 4.97(−5) 2.46(−13) 2.96(−38) 3.000
Laguerre’s IM (λ = −2) 1.17(−2) 7.98(−7) 2.53(−19) 8.04(−57) 3.000
Laguerre’s IM (λ = 0.9) 0.131 1.13(−2) 1.67(−5) 4.81(−14) 3.022

Halley’s IM 2.68(−2) 1.49(−4) 3.07(−11) 2.67(−31) 2.999
Ostrowski’s IM 1.97(−2) 2.29(−5) 3.77(−14) 1.68(−40) 2.999

f3 Euler’s IM 1.16(−3) 4.71(−9) 3.14(−25) 9.30(−74) 3.000
Laguerre’s IM (λ = −2) 2.26(−2) 5.45(−5) 8.35(−13) 3.01(−36) 2.999
Laguerre’s IM (λ = 0.9) 4.31(−2) 1.94(−3) 4.41(−7) 5.51(−18) 2.989

Halley’s IM 0.127 3.58(−4) 7.65(−12) 7.45(−35) 2.999
Ostrowski’s IM 0.138 3.86(−4) 8.16(−12) 7.68(−35) 3.000

f4 Euler’s IM 0.161 5.54(−4) 1.98(−11) 9.09(−34) 2.999
Laguerre’s IM (λ = −2) 0.129 3.26(−4) 5.19(−12) 2.09(−35) 3.000
Laguerre’s IM (λ = 0.9) 0.221 1.07(−2) 4.88(−7) 4.67(−20) 2.999

assumption: it is impossible to ploclaim approximately the best method in the case of non-algebraic
functions. It is interesting to note that in solving the equation f4(x) = 0 the first approximation x1 is
not accurate enough for all tested methods. The explanation is simple: we have taken a real number
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for initial approximation although the sought zero is complex. However, all methods show good
convergence behaviour in the subsequent iterations.

8. Conclusion

In this paper we have compared convergence characteristics of Laguerre’s family (1) of iterativemeth-
ods L(x; λ) for various values of the real parameter λ using three methodologies: the dependence of
the approximation error |x − α| on the parameter λ in the close neighbourhood of the zero α, the
comparison by numerical examples and the comparison by the dynamic study that provides graphic
visualization. We have found that methods L(x; λ∗) with λ∗ large in magnitude show the best con-
vergence characteristics for most algebraic polynomials. Among these methods it is preferable to
implementOstrowski’s method (5) since it is defined by the simplest formula and the fact discussed in
Remark 5.1. In the case of non-algebraic functions we have not found an optimal parameter λ which
generates the iterative method L(x; λ) providing the most accurate approximations to the zeros for
sufficiently wide classes of functions.
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