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ABSTRACT
A challenge systems engineers and designers face when ap-

plying system failure risk assessment methods such as Proba-
bilistic Risk Assessment (PRA) during conceptual design is their
reliance on historical data and behavioral models. This paper
presents a framework for exploring a space of functional mod-
els using graph rewriting rules and a qualitative failure simula-
tion framework that presents information in an intuitive manner
for human-in-the-loop decision-making and human-guided de-
sign. An example is presented wherein a functional model of
an electrical power system is iteratively perturbed to generate al-
ternatives. The alternative functional models suggest different
approaches to mitigating an emergent system failure vulnerabil-
ity in the electrical power system’s the heat extraction capability.
A preferred functional model configuration that has a desirable
failure flow distribution can then be identified. The method pre-
sented here helps systems designers to better understand where
failures propagate through systems and guides modification of
systems functional models to adjust the way in which systems
fail to have more desirable characteristics.

INTRODUCTION
The design, manufacture, and deployment of complex sys-

tems requires extensive investment of personnel, resources, time,
and money to produce systems that meet requirements [1, 2].

∗Address all correspondence to this author.

Schedule and cost overruns are common on large systems such
as aircraft, spacecraft, power plants, ships, and other systems [3].
A significant percentage of schedule and cost overruns, and re-
duced systems capabilities as compared to original requirement
documents can be traced back to architectural decisions made
during the conceptual phase of system design [4]. Architectural
decisions that are made with incorrect or missing information, or
that are made with high degrees of uncertainty in the data can
lead to incorrect decisions being made that then leads to cost in-
creases and schedule slips [5]. As a result, it is important that ar-
chitectural decisions are made with good, complete information
to increase the likelihood of systems being delivered on time, on
budget, and meeting requirements.

Of particular interest to this research is how potential sys-
tem failures are assessed and acted upon during the conceptual
phase of system design. Common techniques of identifying fail-
ure risks and then mitigating them such as Failure Mode and Ef-
fects Analysis (FMEA) [6] and Probabilistic Risk Assessment
(PRA) [7, 8] can miss emergent system behaviors and, while
some information is provided to designers to aid in decision-
making, little guidance is given on specific flow impacts due to
failure events. Extensive work has been done to understand fail-
ure paths from a component and/or functional basis [9–15] but
comparatively little effort has been expended in looking at flows
of material, energy, and data through systems, and how their dis-
ruption or failure can impact overall system failure.
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Specific Contributions
This paper contributes a method to identify functional mod-

els that have a desirable distribution of flow failure events across
a large space of failure scenarios. The method identifies flows
that are most often associated with failure events, and automat-
ically explores a variety of potential alternative functional mod-
els to identify models that have lower flow failure concentra-
tions. Visualizations of these alternatives are presented to the
user, allowing quick iteration of functional architectures in the
context of limited embodiment information. This contribution
arises from the combination of a generative approach for building
functional models and an evaluation approach that qualitatively
simulates the failure performance of each functional model.

RELATED WORK
Large, complex systems such as power plants, mass tran-

sit systems, aircraft, and ships are designed, manufactured, and
deployed using a design process that begins with early ideation
and conceptual design studies, progresses through subsystem and
component design, verification and validation, manufacturing,
and finally into deployment and maintenance [1, 16]. System ar-
chitecture decisions made in the conceptual phase of the design
process have a significant impact on all other activities that fol-
low [2]. An incorrect architecture decision can cause significant
cost and schedule overruns, or may lead to a system that does not
meet all performance requirements [17]. Therefore it is impor-
tant to make correct and timely architecture and design decisions
during the conceptual phase of design.

Within the conceptual phase of design, there are several dis-
tinct steps including 1) ideation, 2) early system architecture
studies, 3) and system modeling and trade studies [18]. Dur-
ing the last step of conceptual design, high level and black box
models produced in the previous step are refined into subsystem,
functional, and component models [19]. A variety of modeling
techniques and methods are commonly used to help make in-
formed decisions based on trade studies such as functional mod-
els; risk, reliability, failure, availability, and robustness models;
and other related modeling and assessment methods [6, 20–26].
These design decisions directly impact later subsystem and com-
ponent design, and if made incorrectly due to a lack of infor-
mation or a misunderstanding of the fundamental nature of the
system’s design, significant rework and redesign costs can be in-
curred [27, 28]. Timely information on which to base design de-
cisions is critical for the delivery of an on-time and on-budget
system that performs as intended [21, 26].

A number of modeling paradigms exist to model systems
during conceptual design [16,29]. Of particular interest to this re-
search, functional and flow methods of modeling systems during
the conceptual phase of design can be used to help free engineers
from component considerations and allows more creativity with
finding new system design solutions [19]. While there are many

different functional and flow taxonomies and grammars [30–60],
this research uses the Functional Basis for Engineering Design
taxonomy [19] (herein referred to as FB) to represent functions
and flows within systems. The FB taxonomy abstracts functions
and flows from the physical components and transported mate-
rial, energy, or data that they represent. Of particular value is the
potential for simulating abstract models constructed using FB,
which is possible so long as that model has (1) topological con-
sistency and (2) conservation of material and energy [61].

Grammar rules have been developed to aid designers and
automated design tools in identifying conceptual design config-
urations that are likely to be realizable in physical component
design [62–64]. Helms et. al. [65] prescribe a general approach
for synthesis of product architectures using the Function Behav-
ior Structure framework [66]. This model supports synthesis of
component architectures from a functional model, and makes ex-
plicit the need for simulation and evaluation to close the synthe-
sis loop. Similarly, Kurtoglu and Campbell developed grammar
rules to convert functional models into component-level config-
uration flow graphs [62]. More specific to the domain of func-
tional architectures, Sridharan and Campbell [63] generated 69
grammar rules from 30 products located in the Design Reposi-
tory [67] to create a framework for generating functional models.

It should be noted that there is significant heterogeneity of
modeling languages in which grammars are implemented. For
this research, the selection of the FB modeling taxonomy was
intentional. Not only is FB is a functional description with
high generality, but there exist several computational tools for
evaluating FB models which is required to close the computa-
tional design synthesis loop. The recent development of several
simulation approaches to evaluating failures in functional mod-
els [9,10,68] enables a new generative design loop for examining
reliability of functional architectures.

Evaluation methods and decision support tools have been
developed to aid systems designers to make conceptual architec-
tural decisions. These methods and tools can be broadly cate-
gorized as: simulation-function, simulation-component, expert
knowledge and experience, and historical function/component.
A high-level review of tools useful for failure analysis and re-
lated analysis techniques that fall within the four categories listed
above is provided below.

Within the simulation-function category, the Function Fail-
ure Identification and Propagation (FFIP) method and related
Flow State Logic method identify potential failure flow pathways
through a functional model [9, 10]. The Inherent Behavioral in
Functional Models (IBFM) framework extends FFIP to include
the ability to generate multiple functional models to drive toward
a solution that can balance the cost and risk of a system, and a
pseudo time step [15, 68, 69]. A number of other risk and fail-
ure analysis tools have been developed from FFIP including the
Uncoupled Failure Flow State Reasoner [11, 70], a method of
building prognostic systems in response to failure modeling [12],
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and other related methods and tools [13, 14, 71–73]. Several
tools for ontology-driven metamodeling and early conceptual de-
sign down-selection were produced as part of the Defense Ad-
vanced Research Program Agency (DARPA) Adaptive Vehicle
Make project [74–76]. While these methods are useful for iden-
tifying and understanding failure sources within a system, they
generally lack the ability to identify specific flow paths that are
more often implicated in potential system failure events.

Several simulation-component methods exist including the
Reliability Block Diagram method [77] widely used in industry
and a method developed by O’Halloran et. al. that simulates
component performance at varying levels of fidelity based on
model fidelity [78]. While these types of methods are useful for
understanding reliability of a system and O’Halloran’s method
is useful for simulating expected system performance, both rely
upon historical data. This limits the ability of this class of method
to identify emergent system behaviors. Further, little guidance is
provided by the results of these methods to identify specific flows
within the system that are at higher risk of failure.

Expert knowledge and experience plays a large role in sev-
eral methods that are important to industry. Failure Mode and
Effects Analysis (FMEA) [6] and the related Failure Modes, Ef-
fects, and Criticality Analysis (FMECA) [79] use expert knowl-
edge and system experience to identify and understand poten-
tial failure scenarios within a proposed system. Expert elicita-
tion is often used in producing fever charts and other graphical
representations of risk within a system [80]. Expert knowledge
and experience methods in general do not adequately capture po-
tential emergent system behaviors – especially complex failure
events.

Several methods have examined the link between historical
performance of functions and components, and their expected
behavior in new systems. The Function Failure Design Method
[81] provides a matrix-based approach to linking a function to
potential component solution failure modes. The Risk in Early
Design method [82] connects historical risk information to on-
going design efforts and provides a fever chart view for ease of
understanding by novice risk analysts. While these methods do
well at identifying historical failure information on a functional
level, they do not adequately uncover emergent system behav-
iors.

Many other methods of failure and risk analysis exist that
can help system designers to make risk and failure-informed
architectural decisions during conceptual design. Probabilistic
Risk Assessment (PRA) combines fault tree analysis and event
tree analysis [7, 8] with an analysis of potential initiating events
that can lead to failure [83]. The nuclear industry heavily uses
PRA to identify potential emergent system behaviors and en-
sure safety of nuclear power plants [84]. A popular method of
identifying potential failures uses Markov chains that are built to
model state transitions in a system where probabilities of state
transitions are known or can be assumed. The Markov chains are

then randomly walked using Monte Carlo sampling to determine
the probability of being in each state [85–88]. The Markov chain
Monte Carlo sampling approach is especially applicable in the
PRA context (e.g., [89]) because of its relative efficiency of ap-
proximating Bayesian posteriors. The method presented in this
paper differs in that the failure simulation is deterministic for a
large set of different state spaces. Repetition of this simulation on
single functional model occurs only by sampling from different
combinations of initiating failure events.

Given that the method presented in this paper is intended to
facilitate exploration over a population of graphs, some heuristics
are necessary to combat combinatorial explosion. Subsampling
a representative space achieves this goal, but requires a method
to calculate graph similarity prior to evaluation. Graph similarity
algorithms can be classified as edit distance, feature extraction,
and iterative [90]. Feature extraction is selected here due to sim-
plicity of implementation, speed of evaluation, and existing evi-
dence for a correlation between graph-level features (e.g., diam-
eter and node degree) and system-level reliability (e.g., [91,92]).
Additionally, the bag-of-functions feature approach has been
successfully used to measure similarity between functional mod-
els [93, 94].

In the area of software debugging with model checking, one
common strategy is to validate an abstraction of values, states,
and transitions [95]. This type of model checking is in many
ways analogous to the approach presented in this paper. While
both execute abstractions of the system to search for issues, the
method presented in this paper combines a formalism for ab-
stracting and simulating complex systems with a means to search
the design space.

In summary, the conceptual phase of the systems engineer-
ing design process provides systems designers with an opportu-
nity to make significant architectural decisions that can drasti-
cally impact the outcome of the design process and the perfor-
mance of the system. A variety of tools and methods are avail-
able to help support engineers in making informed decisions dur-
ing the conceptual phase. Many such tools and methods rely on
functional modeling techniques and a number of methods exist
to analyze failure within this context. However, none of the ex-
isting methods surveyed is able to directly assess failures from
a flow perspective over a space of related functional models and
use that information to help make architectural decisions.

METHODOLOGY
The method presented below is specifically intended for use

during the conceptual phase of design when architectural de-
cisions are being made and the design has not been finalized.
The method’s inputs include a single functional model from the
user, a library of IBFM simulation components, and (optionally)
a specification of each IBFM state’s probability to serve as an
initiating failure event. The method’s output is a visualization
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of several alternative functional models and the vulnerability of
each flow therein to failures.

Develop Functional Model
The first step is for the designer to create a functional model

for the system of interest. This model will be used as a seed to
begin the process of analyzing failure flows.

Develop IBFM Simulation
Given a seed model, an IBFM simulation is prepared [15].

This simulation must capture the designer’s abstract knowledge
about the system. This includes the following:

1. Functions, including the operational modes and mode tran-
sition conditions applicable to each

2. Flows
3. Modes and the associated flow behaviors associated with

each
4. Conditions and the flow state behavior associated with trig-

gering them

Given these elements, IBFM enables qualitative simulation of the
functional model. More details about IBFM can be found in [15].

Specify Probabilities
The method presented in this paper can be performed with

either internal initiating events caused by failed modes of func-
tions within the system or by external events that occur outside
of the system boundary and propagate into the system as failure
flows. The case study below uses internal initiating events as a
demonstration.

For internal initiating events, each failed mode of each func-
tion is treated as equally likely to occur as the default approach.
However, if a probability of occurrence is known for an internal
initiating event, then that probability is used instead. With ex-
ternal initiating events, the authors recommend only using prob-
abilities that are grounded in reality and are realistic. When not
using probabilities specific to a function’s failed state, the fre-
quency of occurrence of failure flows associated with each flow
can be ascertained on a normalized basis. With specific proba-
bilities available, these frequencies can be weighted according to
their expected likelihood.

Automatically Generate Similar Functional Models
Using the designer’s functional model as a seed, automat-

ically generate locally similar functional models according to
a limited set of graph grammar rules (e.g., Table 1). These
grammars perturb the model by removing functions and by re-
inserting functions that are already present – new functionality
is not added. The result is a means to generate different func-
tional architectures while preserving the gist of the design intent.

These grammars must be capable of both adding and removing
elements, and must conform to topological consistency and con-
servation rules for FB.

Validate Automatically Generated Functional Models
For a functional model to be simulatable, two main require-

ments must be met: (1) conservation of mass and energy, and
(2) each function’s inputs and outputs must be consistent with
established semantics [61]. This can be done at generation time
through careful construction of grammars, or naively by itera-
tively discarding non-compliant models and then generating re-
placements. Active model checking requires software that cap-
tures the two requirements – like that developed in [61].

Run Simulation on Each Functional Model
Next, each model in the population is simulated using IBFM.

By default, an IBFM experiment runs simulations using every
possible failure state as an initiating event. Scenarios are then run
for all paired combinations of simultaneous initiating events, and
the number of simultaneous events increases until a prescribed
cutoff. The failure rate of each flow in the model is captured as
described in Algorithm 1.

Algorithm 1 Functional Model Population Simulation Process
1: for each model M in the population do
2: Initialize a zero vector of failure counts F to capture the

failure frequencies of all flow edges in the model
3: Generate a list of scenarios S containing initiating events

and their corresponding nodes
4: for each specified scenario S do
5: Simulate M under conditions of S until the model

reaches steady state
6: for each failed edge in the resulting M do
7: Increment its total failure count in F , normalized by

the probability of the initiating event
8: end for
9: end for

10: Take max(F) to describe this model’s resiliency
11: end for

Depending on the available computing power, this simula-
tion can be repeated with valid combinations of multiple initiat-
ing events. While here it is recommended to characterize each
model according to its most vulnerable edge max(F), other per-
formance measures can be used (e.g., the mean and variance of
the edge failure frequency distribution).
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Iterate Best Performing Models
Iteration consists of two steps, (1) selecting a parent popula-

tion and (2) generating a child population.
A diverse parent population of models is sampled from this

local space using roulette wheel selection (with replacement) and
a performance measure that linearly combines resiliency R (de-
fined as the ability of the system to continue to function in spite
of failure events occurring) and uniqueness U (as proposed in
Equation 1). A model’s resiliency R is normalized to the max-
imum resiliency in the population Rpopulation max. A model’s
uniqueness U can be quantified by applying a clustering algo-
rithm such as DBSCAN [96], and then taking the inverse of the
number of total models in that model’s cluster. A full pairwise
distance matrix between models is needed to support this cluster-
ing, and can be generated from the graph feature representation
using cosine distance. A weighting factor k between 0 and 1
captures preference for resiliency versus uniqueness.

pselection = k
R

Rpopulation max
+(1− k)U (1)

Next, a child population is generated by applying one ran-
domly selected grammar rule to each parent in a randomly se-
lected location. If a branching factor greater than 1 is applied, the
process closely resembles breadth first tree search. If so, pruning
the child population back to the initial population size after sim-
ulation mitigates combinatorial explosion of IBFM simulations.
This process is visualized in Figure 2.

Stop Iteration After Performance Metrics Have Been
Met

The steps of generating models, simulating their perfor-
mance, and iterating are repeated until stopping criteria are met.

Two parameters capture the stopping criteria: The first dic-
tates an acceptable level of uniqueness U specified by the user.
The second dictates a performance threshold (in this case model
resiliency R is quantified by the model’s most vulnerable edge).
When there exists a set of N models (where N is user-specified)
in the most recent generation where all N models exceed the
performance threshold and the uniqueness threshold, the process
stops. Given that the population size is held constant, it is fea-
sible to quantify the uniqueness of each model via clustering on
the full pairwise comparison matrix using vector space similarity
measures (e.g., cosine similarity) and the child’s lineage. An al-
ternative approach for large populations of constant size halts the
search when the explained variance ratio of the principal compo-
nent analysis of the data set’s feature representation dips below a
given threshold.

Assess Final Population of Functional Models
After the stopping criteria are met, a subset of models is se-

lected from the full history of generated models. These models
are selected to possess (1) high or low resiliency as desired and
(2) high uniqueness with respect to each other. The rates at which
flows on these models failed are indicated by both thickness
and color of the line segments. The functionality to show both
good and bad examples is motivated by conceptual design explo-
ration tools like MEMIC [97], which provides creative stimulus
by showing both highly common and highly uncommon compo-
nent configurations to match a given functional model. Given
this stimulus, the designer can assesses which topology to pur-
sue and iterate upon, or draw inspiration to make tweaks to the
functional model.

Any number of methods can be used for determining unique-
ness U , though all but the most naive will rely on some means
of clustering the final population. This may include straightfor-
ward clustering (e.g., k-means), projection of the bag-of-features
representation into lower dimensions (e.g., Principle Component
Analysis), or sampling from far-apart sections of the search tree
according to each model’s lineage.

CASE STUDY
This section contains an illustrative case study to demon-

strate the workings of the method presented above. It should be
noted that the example, while similar to a real, physically em-
bodied system, has been intentionally fictionalized. The results
of the case study are illustrative of the method’s capabilities but
cannot be taken as evidence of how to design the specific system
presented below. No real world design decisions should be made
based upon this case study.

The following case study demonstrates the mechanism of
the method on a simplified functional model of the ADAPT elec-
trical power system testbed [98]. Various model descriptions of
this system have been used in prior work to demonstrate failure
simulation in conceptual design for FFIP [9] and IBFM [15]. In
general, the model consists of a battery, an inverter, and three
loads – a fan, a pump, and an indicator light. The model also
contains a switch and several breakers. The functionality of this
system – which is used as a the seed model – is captured in Fig-
ure 1. The remainder of this section will address the question,
“in what ways might we redesign the functional architecture of
this system to improve system reliability?”

For this example, the IBFM simulation is specified as in
[15], and failure mode probabilities are assumed to be equal –
analogous to a non-informative prior.

After specifying the seed model to define the local search
space, alternatives are iteratively generated. To facilitate this ex-
ample, a simple set of grammar rules is shown in Table 1. A
much more comprehensive and data-driven graph rewriting lan-
guage for functional models of electromechanical products was
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presented in [63]. Figure 1 shows an application of the rule “Add
Parallel Subgraph” between two randomly selected edges, indi-
cated by the dashed lines. The backbone of the inserted subgraph
is shown via the same dashed lines. Additional nodes and edges
are added to this new subgraph until the resulting model adheres
to conservation of mass and energy. These additional compo-
nents are indicated with long dashed lines.

This process is repeated to generate a population of ran-
domly perturbed models in the local design space. Next, each
model in the population is simulated using IBFM, and a score is
calculated for the performance of each model. Snippets of two
failure heat maps for two generated concepts are shown in Figure
3 and Figure 4. These snippets capture the flows with the highest
failure rate in each model. While the model in Figure 3 would
be characterized by its highest flow failure rate of 50, the model
in Figure 4 would be quantified according to its (comparatively
better) worst-case flow failure rate of 35.

Next, candidates from the current population are selected for
iteration according to performance and uniqueness, as illustrated
in Figure 2. While Figure 3 has poor performance, it may still
have a high probability of selection if it is extremely different
from the rest of the current population. After selection, the next
generation is iteratively resampled and created until the stopping
criteria are met.

Ultimately, a series of varied heat maps as shown in Figure
3 and Figure 4 are presented to the user. Based on the model
in Figure 3, a user may realize that they need to pursue alterna-
tive functions for cooling the inverter function, while the model
in Figure 4 may persuade the user to investigate adding parallel
cooling functionality.

DISCUSSION
The method presented in this paper contains several benefits

for practitioners as well as a few open questions on the philos-
ophy of failure events. This section discusses the benefits and
open questions of the method.

A significant benefit of the method is the ability for systems
engineers to identify functional models that conform to desired
flow failure concentration levels. The systems engineer can drive
model iteration toward either a highly concentrated flow failure
paradigm or a distributed flow failure paradigm. While the case
study above demonstrates evolving a model toward a solution
that distributes failure flow concentrations across the model by
adding in redundancy, specific system design considerations may
warrant concentrating failed flows into a few specific flows. Con-
centrating failure flow into a few flows may be beneficial, for
instance, if systems engineers are including sacrificial subsys-
tems [72]. In other situations, it may be beneficial to spread out
failure flows across several redundant subsystems [99].

No other method that the authors are aware of provides prac-
titioners with the ability to easily understand what flow paths

failures preferentially follow as the model changes. As com-
pared to standard IBFM, this generative method provides in-
sights into how the distribution of emergent failures changes
with subtle shifts in functional architecture. Additionally, most
other function-and-flow-based methods of failure and risk anal-
ysis used during the conceptual phase of system design are fo-
cused on failure of functions. Examining the flows rather than
the functions can provide new insights into which flows are the
most likely to be implicated in failure events. This in turn can
lead to systematic design efforts to mitigate those specific failure
flows.

A benefit of the heat mapping of failure flow concentrations
is that emergent failure flow behaviors that otherwise would be
missed can be examined by systems engineers. This may provide
new insights on emergent system behavior that otherwise would
not be available. Emergent system behavior is a significant con-
cern in complex systems and has been implicated in several past
noteworthy failures [100–102].

It should be noted that this is a stochastic design space search
method with a loose definition of optimality. Because the goal of
this method is to facilitate human-in-the-loop exploration of sys-
tem concepts, Pareto optimality (as a function of performance
and uniqueness) is useful only as an approximation. Unique-
ness in particular depends on contextual factors including the
designer’s preferences and the other models in the population.
Further, designers should be aware of the limitations of Arrow’s
Theorem with respect to multi-variable optimization, especially
with human-guided preferences [103].

One open area of research on the method presented above is
what happens in the case where two models are simulated where
one has no redundancies and the other has many parallel redun-
dancies. IBFM currently does not heavily penalize the cost of
adding new nodes. It may be desirable to adjust the penalty func-
tion parameters for adding redundancies to a system model to
assist in the trade-off between the costs associated with adding
redundancy and the benefits of added redundancy to mitigate po-
tential failures. However, systems engineers must consider if
parallel flow redundancy provides true benefit in stopping a fail-
ure flow before the flow leads to system failure, or if redundant
flows merely provide alternative pathways to system failure as in
the case of a drop in electrical voltage propagating through re-
dundant power feeds in a data center. In the data center’s case,
had the energy flows been truly independent and redundant, a
failure flow caused by a voltage drop on one of the power lines
coming into the facility likely would not have impacted the other
redundant power lines and electrical distribution systems in the
facility.

An area of future work is to combine the concept of “cut
sets” derived from PRA and used in some FFIP-based methods
with the vulnerability of each type of flow, redundant subsys-
tems, and comparing different models with global metrics (e.g.:
ratio of failed flows per model). Further refining the IBFM’s
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TABLE 1. Naive Generative Grammar Language

Rule Recognize Apply

Add Parallel
Path

Any two edges on the graph
with a valid connecting path

Add a parallel copy of the shortest path between those edges

Add Parallel
Subgraph

Any two edges on the graph
with a valid connecting path

Perform “Add Parallel Path” for all paths in between those edges. Propagate
copy forward and backward to satisfy conservation of mass and energy.

Add Series Any function Insert a copy of function in series connected by function’s own flow type

Remove Node Any function Remove that function and connected flows. Repeat on nodes that fail a
validation check until model is valid or empty.

FIGURE 2. Visualization of roulette wheel sampling with branching
factor of 1. Generated models expand outward into the search space
toward local regions that are potentially interesting (as opposed to opti-
mal). Higher fitness is represented as light, lower fitness is dark. When
the search concludes, results are selected for presentation to the user
with respect to performance and global uniqueness.

method of optimization within the context of the method pre-
sented in this paper is expected to be a useful area of further
research.

While many PRA methods are by definition concerned with
both the likelihood and consequence of failures, the approach in
the paper addresses only likelihood. Because of the high level
of abstraction of functional models, and the necessity of using
contextual information to assess the consequences of a failure,
evaluating failure severity is purposely left to the user. The chal-

FIGURE 3. A snippet heat map of a model with poor performance.
The fan module fails in many scenarios, indicated as a high failure rate
in the flows related to cooling the inverter. In some cases the failure
propagates to the flows related to the inverter, which increases the failure
rate of those flows.
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FIGURE 4. A snippet heat map of a model with medium performance. In this case grammar rules have added an additional subgraph for exporting
material, which led to a reduced rate of failure in the associated flows.

lenge of capturing context and failure consequences is deferred
to future work.

CONCLUSION
The framework presented in this paper represents a way to

generatively explore a space of functional models, assess their
vulnerability to failure, and present a designer with a variety of
alternative options. The approach is human-in-the-loop; the de-
signer must interpret the results according to the specific con-
text of the problem. Given a library of IBFM models and
a graph rewriting language for perturbing functional models,
this approach enables a designer to make quick risk-of-failure-
informed-decisions about functional architectures. These deci-
sions are founded not on only experience or historical data, but
on (1) qualitative simulation of potential failure propagation and
(2) a set of solutions automatically generated to mitigate those
failures. This allows systems designers to make large system ar-
chitectural decisions very early in the conceptual design process
where the cost of making decisions and significantly changing
the design is relatively inexpensive both in cost and in schedule
time.
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