
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2020

COMPUTATIONALLY EFFICIENT ALGORITHMS
FOR OPTIMAL MOTION PLANNING AGAINST
MULTI-DOMAIN SUPER SWARMS

Tsatsanifos, Theodoros
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/65456

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

COMPUTATIONALLY EFFICIENT ALGORITHMS
FOR OPTIMAL MOTION PLANNING AGAINST

MULTI-DOMAIN SUPER SWARMS

by

Theodoros Tsatsanifos

June 2020

Thesis Advisor: Isaac I. Kaminer
Co-Advisor: Abram H. Clark IV

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 June 2020 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
COMPUTATIONALLY EFFICIENT ALGORITHMS FOR OPTIMAL
MOTION PLANNING AGAINST MULTI-DOMAIN SUPER SWARMS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Theodoros Tsatsanifos

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 This thesis develops robust tactics for countering multi-domain super swarms. Previous research has
provided tools for assessing adversarial swarms’ internal cooperating strategies, quantifying risk based on
swarm and weapons models, and generating optimal defender trajectories. In this research, we develop a
simulation-based testbed for experimental validation of these strategies and a database of adversarial
swarming models against which to test.
 In this research, the aforementioned simulation-based testbed is examined from the perspective of
computational efficiency. A significant computational advantage is obtained by replacing the Runge Kutta
with the Verlet integration scheme frequently used in the molecular dynamics community. This almost
equally numerically stable framework offers an impressive performance advantage.
 Additionally, this research seeks to find the ideal balance between the deterministic nature of the
dynamics of adversarial swarms and the requirement for a probabilistic approach in order to model the
mutual attrition between opposing agents during combat situations. To achieve this end, several models of
dynamics and attrition are introduced for optimal motion planning. Their outcomes are compared with a
Monte Carlo simulation model, in which survivability is partially influenced by random number generation
that aims to simulate the unpredictability exhibited in the real world.

 14. SUBJECT TERMS
xSwarm, optimal motion planning, swarm internal cooperation strategy 15. NUMBER OF

PAGES
 113
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

COMPUTATIONALLY EFFICIENT ALGORITHMS FOR OPTIMAL MOTION
PLANNING AGAINST MULTI-DOMAIN SUPER SWARMS

Theodoros Tsatsanifos
Lieutenant, Hellenic Navy

BAS, Hellenic Naval Academy, 2008

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN APPLIED PHYSICS

and

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2020

Approved by: Isaac I. Kaminer
 Advisor

 Abram H. Clark IV
 Co-Advisor

 Kevin B. Smith
 Chair, Department of Physics

 Garth V. Hobson
 Chair, Department of Mechanical and Aerospace Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 This thesis develops robust tactics for countering multi-domain super swarms.

Previous research has provided tools for assessing adversarial swarms’ internal

cooperating strategies, quantifying risk based on swarm and weapons models, and

generating optimal defender trajectories. In this research, we develop a simulation-based

testbed for experimental validation of these strategies and a database of adversarial

swarming models against which to test.

 In this research, the aforementioned simulation-based testbed is examined from

the perspective of computational efficiency. A significant computational advantage is

obtained by replacing the Runge Kutta with the Verlet integration scheme frequently used

in the molecular dynamics community. This almost equally numerically stable

framework offers an impressive performance advantage.

 Additionally, this research seeks to find the ideal balance between the

deterministic nature of the dynamics of adversarial swarms and the requirement for a

probabilistic approach in order to model the mutual attrition between opposing agents

during combat situations. To achieve this end, several models of dynamics and attrition

are introduced for optimal motion planning. Their outcomes are compared with a Monte

Carlo simulation model, in which survivability is partially influenced by random number

generation that aims to simulate the unpredictability exhibited in the real world.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCING THE OPTIMAL MOTION PLANNING PROBLEM
FOR COUNTER - SWARMING ...1
A. AUTONOMY IN THE WARFARE OF TODAY AND

TOMORROW ..1
B. INTRODUCING THE COUNTER-SWARMING PROBLEM2

1. High Value Unit Protection ...3
2. Air Superiority Operations ...4

C. INTRODUCING THE TRAJECTORY GENERATION
PROCEDURE USING BERNSTEIN POLYNOMIALS AND
BEZIER CURVES ...4

II. MODELING THE DYNAMICS AND MUTUAL ATTRITION
FUNCTIONS OF A LARGE SCALE SWARM OF AUTONOMOUS
SYSTEMS ...11
A. ATTACKING SWARM DYNAMICS MODEL11

1. Virtual Body Artificial Potential ..11
2. Reynolds’ Rule-Based Model ..15

B. MUTUAL ATTRITION MODEL ..17
1. Weighted Attrition Model ...20
2. Attrition Model with Thresholds on Survival

Probabilities ..22
C. EVALUATING THE PERFORMANCE OF THE

TRAJECTORY OPTIMIZATION ALGORITHM COMPARED
WITH INTUITION CONCERNING THE STATIONING OF
THE DEFENDING VEHICLES ..22

D. CONTRIBUTION OF MOLECULAR DYNAMICS
ALGORITHMS TO THE COMPUTATIONAL
EFFECTIVENESS OF OUR FRAMEWORK26

III. THE GHOST-HERDING PROBLEM AND THE PROPOSED
INTERACTION AND ATTRITION MODELS ...31
A. THE GHOST-HERDING PROBLEM — GENERATION OF

NON-PHYSICAL SOLUTIONS ..31
B. PROPOSED INTERACTION AND ATTRITION MODELS

FOR OPTIMIZATION ...36
1. Dynamics and Attrition Model “Weighted” with Survival

Probabilities ..37
2. Dynamics and Attrition Models Correlated with a

Survival Probability Cutoff “Threshold”38

viii

C. MONTE CARLO SIMULATION MODEL FOR ANALYSIS40

IV. OPTIMIZATION RESULTS AND ANALYSIS WITH MISSION
OBJECTIVE TO MINIMIZE HVU DESTRUCTION PROBABILITY43
A. LOCAL AND GLOBAL MINIMUM SOLUTIONS FOR

OPTIMIZATION PROBLEMS SPANNING A
CONFIGURATION SPACE OF INFINITE DIMENSIONS43

B. ELIMINATING THE GHOST-HERDING PROBLEM WITH
OUR PROPOSED MODELS ...44

C. COMPARING THE PERFORMANCE OF THE PROPOSED
MODELS BY COMPUTING THE NUMBER OF DEFENDERS
REQUIRED TO DEFEND THE HVU FROM A SWARM
ATTACK ..49

D. ANALYSIS OF THE OPTIMIZATION RESULTS51
1. Checkpoints A1–B1: Not Enough Defenders for HVU

Protection ..51
2. Checkpoints A2–B2: Differentiation between Weighted

and Threshold Models ...53
3. Checkpoints A3–B3: Sufficient ...54

E. PERIPHERAL THREAT AXIS ...55

V. OPTIMIZATION RESULTS WITH RESPECT TO THE MISSION
OBJECTIVE OF AIR SUPERIORITY ...59
A. COMPARING OPTIMIZATION RESULTS FOR A

CONFRONTATION WITH THE SAME CONDITIONS BUT
DIFFERENT COST FUNCTIONS (HVU PROTECTION —
AIR SUPERIORITY) ..59

B. COMPARING THE PERFORMANCE OF THE PROPOSED
MODELS BY COMPUTING THE NUMBER OF DEFENDERS
REQUIRED TO OBTAIN AIR — SUPERIORITY63

C. ANALYSIS OF THE OPTIMIZATION RESULTS65
1. Checkpoints A1–B1: Models’ Converging Region....................66
2. Checkpoints A2–B2: Ghost-Herding Problem Region67

VI. CONCLUSION ..69

APPENDIX. MATLAB FILES ...71
A. COMPUTATIONALLY IMPROVED DYNAMICS /

ATTRITION MODELS ..71
1. Monte Carlo Dynamics and Attrition Model71
2. Weighted Dynamics and Attrition Model77
3. Threshold Dynamics and Attrition Models84

ix

B. COST FUNCTIONS ..86
1. HVU Protection ..86
2. Air Superiority ...87

LIST OF REFERENCES ..89

INITIAL DISTRIBUTION LIST ...91

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. DOD unmanned systems, present and future roles. Source: [2].2

Figure 2. Discretization and interpolation of the non-linear optimal control
problem. Source: [4]. ...5

Figure 3. A Bernstein polynomial is contained within the convex hull defined
by its Bernstein coefficients. Source: [6]. ..7

Figure 4. Flow diagram of the discretization of the original OCP in order to be
solvable from our numerical tools. Source: [7]. ..8

Figure 5. Model framework: Solid circles are vehicles and shaded circles are
virtual leaders. Source: [9]. ..12

Figure 6. Generated forces in a swarm of eight vehicles and three virtual
leaders, due to virtual forces hf and intra-swarm forces If . Source:
[9]. ..14

Figure 7. Set of solutions that minimize the total potential in a two
dimensional swarm of two vehicles. (a) With one virtual leader there
is a family of solutions (two are shown). (b) With two virtual leaders
the orientation of the group can be altered appropriately. Source:
[10]. ..15

Figure 8. Interaction rules for flocking behavior in Reynolds’ Model. Source:
[12]. ..16

Figure 9. Mutual attrition derived from the damage function. Source: [3].18

Figure 10. Damage functions: Poisson scan model (left), Resulting angularly
decaying function reflecting FOV limitations (right). Source: [3].19

Figure 11. Maximum range limit (Left). Smoothed using the Poisson scan
model (Right). Source: [3]. ..19

Figure 12. 25 defenders with unoptimized trajectories but with superior
weapons failing to protect the HVU from 100 attackers.23

Figure 13. 25 defenders with optimized trajectories and superior weapons
protect the HVU effectively from 100 attackers.24

Figure 14. Comparison of survival probabilities of the optimized and
unoptimized scenarios of the 100 attackers versus the 25 stronger
defenders. ...25

xii

Figure 15. Snapshots from the optimized scenario of the 100 attackers versus
the 25 stronger defenders. ..26

Figure 16. Molecular dynamics demonstration compares particle 1 to particles
2, 3, 4, and 5 to determine whether their inflicted interaction is
affecting its trajectory. Source: [13]. ...27

Figure 17. Computational superiority of Verlet versus Runge Kutta integration
framework and comparison with 2()O N logarithmic scaling.28

Figure 18. HVU survival probability during a 3000 time sample simulation.32

Figure 19. Total number of live defenders and attackers for the ghost-herding
scenario of an attacking swarm of 2066 agents versus a defending
force of 200 agents with the same kinetics and weapons capabilities.33

Figure 20. Mean survival probability for defenders, attackers, and HVU for the
ghost-herding scenario of 2066 attackers versus 200 defenders.34

Figure 21. Ratios of mean survival probabilities Def
Att

 and
Att
Def

 for the ghost-

herding scenario of 2066 attackers versus 200 defenders.34

Figure 22. Snapshots of the ghost-herding scenario of 2066 attackers (Guinness
world record) versus 200 defenders at time samples: 23, 210, 639
and 3000. ..35

Figure 23. Magnitude of the intra-swarm forces and collision avoidance forces,
due to defenders, with respect to the relative distance.36

Figure 24. HVU survival probability comparison between multiple models for
the scenario of 2066 attackers versus 200 defenders with superior
weapons..45

Figure 25. Number of live attackers for each time step for the different models
introduced for the scenario of 2066 attackers versus 200 defenders
with superior weapons. ..46

Figure 26. Number of live defenders for each time step for the different models
introduced for the scenario of 2066 attackers versus 200 defenders
with superior weapons. ..47

Figure 27. Mean survival probabilities for attackers, defenders, and HVU using
the ill-performed ghost-herding model. ...47

xiii

Figure 28. Number of live attackers and defenders for each time step, using the
ill-performed ghost-herding model. ...48

Figure 29. Snapshots for the scenario of 2066 attackers versus 200 defenders
with superior weapons, performed with the ghost-herding model.48

Figure 30. Number of defenders required to effectively protect an HVU from a
50-agent swarm attack with 10% longer weapons range than the
defenders. ...49

Figure 31. Number of defenders, with 10% longer weapons range than the
attackers, required to effectively protect an HVU from a 50-agent
swarm attack. ...50

Figure 32. Checkpoint A1 (stronger attackers) analysis: Weighted and
Threshold models align with the Monte Carlo estimation of HVU
destruction. ...52

Figure 33. Checkpoint B1 (stronger defenders) analysis: Weighted and
Threshold models align with the Monte Carlo estimation of HVU
destruction. ...52

Figure 34. Checkpoint A2 (stronger attackers) analysis: Threshold model fails
to predict HVU survival. ..53

Figure 35. Checkpoint B2 (stronger defenders) analysis: Threshold model fails
to predict HVU destruction. ...54

Figure 36. Checkpoint A3 (stronger attackers) analysis: Weighted and
Threshold models align with the Monte Carlo estimation of HVU
survival. ..55

Figure 37. Checkpoint B3 (stronger defenders) analysis: Weighted and
Threshold models align with the Monte Carlo estimation of HVU
survival. ..55

Figure 38. 500 attackers approaching from peripheral directions to destroy the
HVU protected by 50 defenders with much superior weapons
(double range and fire rate). ...56

Figure 39. Mean survival probabilities for the scenario of the peripheral threat
of 500 attackers facing 50 much stronger defenders.57

Figure 40. Mean number of live attackers and defenders for the scenario of the
peripheral threat of 500 attackers facing 50 much stronger defenders.57

xiv

Figure 41. Comparison analysis of the four models for the confrontation
between the 500 attackers approaching peripherally and the 50 much
stronger defenders. ...58

Figure 42. 100 attackers versus 25 defenders with superior weapons — HVU
protection objective. ...60

Figure 43. 100 attackers versus 25 defenders with superior weapons — Air
superiority objective. ..61

Figure 44. Mean survival probabilities comparison between the two different
mission objectives for the scenarios with 100 attackers and 25
defenders with superior weapons. ..62

Figure 45. Mean survivability comparison between the two different mission
objectives for the scenarios with 100 attackers and 25 defenders with
superior weapons. ..63

Figure 46. Number of defenders with 10% more extended weapons range than
the attackers. Defenders must challenge a 50-agent swarm and obtain
air superiority. ..64

Figure 47. Number of defenders with 10% shorter weapons range than the
attackers. Defenders must challenge a 50-agent swarm and obtain air
superiority. ...65

Figure 48. Checkpoint A1 (20 stronger defenders) analysis: Ghost-herding
model converges to the other models...66

Figure 49. Checkpoint B1 (20 weaker defenders) analysis: Ghost-herding
model converges to the other models...67

Figure 50. Checkpoint A2 (40 stronger defenders) analysis: Ghost-herding
model differs with respect to the other models. ...67

Figure 51. Checkpoint B2 (100 weaker defenders) analysis: Ghost-herding
model differs with respect to the other models. ...68

xv

LIST OF TABLES

Table 1. Computational effectiveness comparison of the Virtual Body
Artificial Potential dynamics model with Verlet integration versus
original model with Runge Kutta integration. ...29

Table 2. Computational effectiveness comparison of the Reynolds dynamics
model with Verlet integration versus original model with Runge
Kutta integration. ...30

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

LIST OF ACRONYMS AND ABBREVIATIONS

FOV Field of View
HVU high value unit
MD molecular dynamics
MD Molecular Dynamics
NLP non-linear problem
OCP optimal control problem
ODE Ordinary Differential Equations
UAV Unmanned Autonomous Vehicle
VLAP Virtual Leaders and Artificial Potentials

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

ACKNOWLEDGMENTS

First of all, I would like to express the deepest appreciation to my thesis advisors,

Dr. Isaac Kaminer and Dr. Abe Clark, for their guidance and continuous support. They

were always there for me whenever I asked them for help and always eager to support me

with their expertise.

In addition, I feel very grateful for the collaboration that I had with Dr. Claire

Walton, who provided me with valuable assistance and comments for this thesis.

Last but not least, I would like to express my very profound gratitude to my

beloved wife, Eleni, who is currently carrying my upcoming daughter, Maria, for being

my amazing companion and assistant during the fascinating journey of my studies. Thank

you so much.

xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCING THE OPTIMAL MOTION PLANNING
PROBLEM FOR COUNTER - SWARMING

A. AUTONOMY IN THE WARFARE OF TODAY AND TOMORROW

In 1954, the American mathematician Norbert Wiener, father of Cybernetics, in

his article “Men, Machines and the World About” [1] argued that a machine is more

likely to use better judgment in an emergency than a human would. A human who is not

trained to deal with a specific emergency situation will almost certainly make the wrong

decision when such an event arises.

In [1] Wiener wrote that the first industrial revolution, which changed our lives in

all possible aspects, enabled us to replace human and animal power with the much

superior strength and endurance of the machine. But he added, in 1954, a new industrial

revolution was taking place that would replace less complex human judgment with the

discrimination of the machine. This fact cannot be avoided; rather, it could used by

humans to their advantage.

According to the U.S. Department of Defense (DOD) document, Unmanned

Systems Roadmap (2007–2032) [2], the use of autonomous systems in the military

domain is already established and going to increase continuously with the integration in

operations of systems that have augmented capabilities made possible by the

technological advancements of our time. That development is desirable because

autonomous systems represent a relatively inexpensive way to project power with the

minimum loss of human life. Moreover, as we may see in Figure 1, today autonomous

systems are widely employed in every branch of the military and in every type of

operation. Furthermore, the use of such systems is going to continue to grow in the near

future.

2

Figure 1. DOD unmanned systems, present and future roles. Source: [2].

B. INTRODUCING THE COUNTER-SWARMING PROBLEM

In this thesis research we are addressing the problem of defending against super

swarms, consisting of approximately 500 autonomous aerial assets. The proposed

solution utilizes a modeling framework from [3] that enables the efficient computation of

numerical solutions for the task of trajectory generation.

In our simulation model, multiple opposing agents with pairwise interaction

dynamics and a model of reciprocal attrition are combined with a cost function that

encompasses a broad class of mission objectives. Our model output is trajectories that

become the inputs in the high level controllers of the defending forces. These paths are

optimized for combat situations with rapid fire rate, and multiple attacking and defending

agents where the interaction forces matter for obstacle avoidance purposes, but have to be

correctly constrained in order to avoid unrealistic solutions. Computationally efficient

3

algorithms are implemented in order to project our results in situations with a high

number of agents inside the swarms.

In this thesis research report we are presenting the challenges of modeling the

interaction forces between opposing swarms inside the aforementioned framework, and

we are proposing revised interaction models that give more realistic solutions in our

counter-swarm problem. Two sets of results are presented in Chapters IV and V for the

following two different mission objectives:

1. High Value Unit Protection

The mission objective of High Value Unit (HVU) protection was initially

introduced by the authors C. Walton, P. Lambrianides, I. Kaminer, J. Royset, and

Q. Gong in 2016 in their journal article [3]. In this mission, an incoming attacking swarm

has to be intercepted effectively by the defender forces before any agent of the attacking

swarm can harm the HVU. In the results that we present in Chapter IV, the critical unit

that we have to protect is a fixed asset with no self- defense capabilities, whereas the

attackers are deemed dispensable swarm agents heading toward the HVU in a

“kamikaze” like attack.

Each attacker has deterministic dynamics but its starting point varies in every

scenario. In the first set of results they are approaching from a single threat direction. In

the second set of results we address a much more challenging problem, because the threat

directions are multiple. The attacking swarm has already encircled the HVU and the

defenders have to spread towards all the thread directions in order to effectively protect

the critical unit.

The goal of the scenario is to maximize the probability of HVU survival in the

event of a large-scale swarm attack. We have to maximize this probability given the

available defending forces’ control inputs and constraints. There are two ways that the

defenders can achieve a high survival probability for the HVU, and these approaches

have been discussed in detail in [3].

4

The first way is by exploiting their weapons capabilities, such as fire rate, range,

field of view, and dead sectors, which are included in the damage function.

Consequently, the aim is the neutralization of attacker capabilities, which in turn

decreases the destruction probability of the HVU.

The second way is through the defenders’ capability to repulse the attackers away

from the HVU. This herding technique exploits the collision avoidance algorithms that all

potential-based swarming methods use as reactive motion planning. Herding strategies

use this collision-avoidance path planning algorithm in order to protect the critical unit by

guiding the attacking swarm away from the asset.

2. Air Superiority Operations

In most military plans air superiority is desired or even required for at least a

specific window of time during the execution of military operations. Consequently, in

this second scenario, we are launching our autonomous vehicles in an area controlled and

patrolled by a large number of hostile drones and we are seeking the optimal trajectories

for our autonomous systems to maximize inflicted attrition on the opposing forces and

provide us the necessary conditions for air superiority.

Again, our mission objectives and constraints are captured in our cost function,

which is now related with the probability of destruction of the hostile swarm.

C. INTRODUCING THE TRAJECTORY GENERATION PROCEDURE
USING BERNSTEIN POLYNOMIALS AND BEZIER CURVES

The analytical form of the Optimal Control Problem (OCP) is used to determine

the state vector ()x t and the control vector ()u t that minimize the cost function,

expressed in Equation (1).

0

((0), ()) ((), ())
ft

fJ E x x t F x t u t dt= + ∫ (1)

5

where ((0), ())fE x x t is called the terminal cost and
0

((), ())
ft

F x t u t dt∫ is called the running

cost. In our problem formulation we have running cost that in the HVU protection

scenario corresponds to the probability of destruction of the HVU. In the case of the air

superiority scenario, we still have a scalar cost, which corresponds to the average

probability of survival of the opposing swarm. In other words, our gradient-based

constraint optimizer in Matlab (function fmincon) may find the case of local minimum

cost, and subsequently, the problem has to be formulated appropriately.

Figure 2. Discretization and interpolation of the non-linear optimal control

problem. Source: [4].

The problem is subject to the system dynamics, equality, and inequality

constraints, expressed in Equations (2)–(4).

 ((), ()), [0,]fx f x t u t t t= ∀ ∈ (2)

 ((0), () 0fe x x t = (3)

6

 ((), ()) 0, [0,]fh x t u t t t≤ ∀ ∈ (4)

In most cases, analytical solutions to such non-linear problems are not easy to

find. Hence, in our case, we are implementing a numerical framework where we

discretize the time interval, the state vector ()x t , and the control vector ()u t , and we

exploit the numerical stability of Berstein polynomials and Berstein coefficients that are

shown in Equations (5) and (6), in order to express the state vector ()x t and the control

vector ()u t in terms of the Berstein coefficients.

Figure 2 shows how we want to solve numerically the typical optimal control

problem of reaching endpoint B1 or B2 from an initial point A1 or A2. The optimal

encompasses our desire to follow the shortest route while we have to avoid hitting

obstacles. Consequently, we try to discretize the problem, find the optimal solution, and

finally interpolate between time nodes.

A degree n Berstein polynomial is given by [4], [5]

,

0
() ()

N

N k k N
k

x t c b t
=

=∑
 (5)

where , ()k Nb t are the basis of the Bernstein polynomial

 , () , [0,]N N k
k N f f

N
b t t t t t

k
− 

= − ∈ 
 

 (6)

and 3
kc ∈ℜ are the Bernstein coefficients.

In Figure 3 we may see how a Bezier curve is going to be created by six Bernstein

coefficients. The curve is confined inside the convex hull that these six coefficients

create.

7

Figure 3. A Bernstein polynomial is contained within the convex hull

defined by its Bernstein coefficients. Source: [6].

Consequently, the numerical framework of the problem, asks for the Berstein

coefficients for the state kc and the controls ,u kc , where 0....k N= that minimize the cost

function J and are subject to the following constraints:

 () ((), ()) , 0,...,p
N j N j N jx t f x t u t N j Nδ−− ≤ ∀ = (7)

 ((0), ()) 0N N Ne x x t = (8)

 ((), () , 0,....,p
N j N jh x t u t N j Nδ−≤ ∀ = (9)

In Figure 4, the flow diagram of the required procedure is illustrated in order to

replace the analytical OCP problem with a discretized version where a numerical solution

through the Bezier coefficients is feasible.

8

Figure 4. Flow diagram of the discretization of the original OCP in order to

be solvable from our numerical tools. Source: [7].

The algorithm for the Bernstein polynomial approximation of the optimal

trajectories solution is as follows:

• Discretize time into time nodes:

, 0.....f

j

t
t j j N

N
= =

 (10)

• Apply Bernstein approximation of the state vector and the control vector

[8]:

 ,
0

() () ()
N

N k k N
k

x t x t c b t
=

≈ =∑ (11)

 , ,
0

() () ()
N

N u k k N
k

u t u t c b t
=

≈ =∑ (12)

9

• Differentiate the state vector via the degree elevation matrix:

1

, ()
0 0

() ())
N N

N i ij j N t
j i

x x t c D b
−

= =

≈ =∑ ∑  (13)

where

0 0

0 0

0

f

f

f

f

N
t

N
t

D
N
t

N
t

−

=

−



  

 

  

 

 (14)

With degree elevation, which is implemented through the matrix D, we obtain

equivalent Bernstein polynomials of a higher order.

• Approximate the running cost:

 00

((), ()) ((), ()),
1

ft N
f

i N i N i i
i

t
F x t u t dt w F x t u t w

N=

≈ =
+∑∫

 (15)

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

II. MODELING THE DYNAMICS AND MUTUAL ATTRITION
FUNCTIONS OF A LARGE SCALE SWARM OF AUTONOMOUS

SYSTEMS

A. ATTACKING SWARM DYNAMICS MODEL

Two dynamic swarming strategies have been chosen from the related literature for

the formation of the attacking swarm, and they are both potential based. The potential

function is defined as the sum of an attractive potential, pulling the swarm towards the

HVU, and a repulsive potential, pushing the attacking swarm assets away from each other

and from the defenders, for collision avoidance purposes. The notion of a virtual body is

used in order to move the attacking swarm toward the HVU while keeping some form of

cohesion. The virtual body consists of some fictional reference points known as virtual

leaders. These reference points initiate forces that control the translational and rotational

motion of the swarm and are proportional to the relative distance between each virtual

leader and the swarm agent.

1. Virtual Body Artificial Potential

In this model, swarm agents track to a virtual leader (or leaders) inside a

neighborhood of interaction, guiding their course while also reacting to intra-swarm

forces of collision avoidance and group cohesion. The implemented control input is

defined in Equations (16)–(17), and the notations for distances and forces are consistent

with Figures 5 and 6.

12

Figure 5. Model framework: Solid circles are vehicles and shaded circles are

virtual leaders. Source: [9].

We are going to use Figures 5 and 6 to explain the driving forces of this model. In

Figure 5 we have two vehicles, i and j , represented by solid circles, and two virtual

leaders, 0 and k , represented by shaded circles. We also have two coordinate systems, an

inertial frame with the XYZ axis depicted in Figure 5, and a moving frame with respect

to an inertial observer that is stationary relative to the virtual leader, which is depicted as

0. The relative distance between vehicle i and virtual leader k is depicted as ikh and the

relative distance between i and j vehicles as ijr . Let us assume that the distance

between i attacker and w defender is iws . Then the control input is as follows:

1 1

() () ()
defatt lead

i i i

NN M
damp

i i x I ij x h il x d iw i
j i l w

u r V x V h V s F
≠ = =

= = − ∇ − ∇ − ∇ −∑ ∑ ∑ (16)

1 1

() () ()defatt lead NN M
I ij damph il d iw

i ij il iw i
j i l wil iwij

f x f h f su x h s K x
h sx≠ = =

= − − − −∑ ∑ ∑  (17)

where
()attN

I ij
ij

j i ij

f x
x

x≠
∑ corresponds to the sum of intra-swarm forces that i attacker is

accepting from the rest ker 1attac sN − that are inside the neighborhood of interaction

13

1[0,)ijx d∈ . This force, according to Figure 6, is repulsive when 0ijx d≤ and attractive

when 0 1ijd x d< ≤ .

1

()leadM
h il

il
l il

f h h
h=

∑ corresponds to the sum of the virtual leaders’ interaction with the i attacker,

which again are inside a tuned neighborhood of interaction 1[0,)ilh h∈ . This force is

driving the i attacker cohesively with the rest of the attacking swarm toward the HVU.

This force, according to Figure 6, is repulsive when 0ilh h≤ and attractive when

0 1ijh h h< ≤ .

1

()defN
d iw

iw
w iw

f s s
s=

∑ represents the summation of repulsive forces generated from

defendersN toward the i attacker in order to avoid collision with the defense agents inside a

defined neighborhood of interaction 1[0,)iws s∈ . This is always a repulsive force because

it is designed for reactive obstacle avoidance purposes with respect to the swarm agents’

sensors. As a result, this force is repulsive when 0iws s≤ and has zero magnitude when

0iws s> . In Figure 23 in page 39, the purely repulsive force due to the defense agents is

depicted.

Finally, damp
iF is the velocity dampening term that is used for greater stability.

14

Figure 6. Generated forces in a swarm of eight vehicles and three virtual
leaders, due to virtual forces hf and intra-swarm forces If . Source: [9].

In Figure 6 we see how the magnitude of virtual forces hf and intra-swarm forces

If is changing with respect to the relative distance ilh between the i attacker and the l

virtual leader, and the relative distance ijx between the i attacker and the j attacker,

accordingly. Namely, we are observing that a repulsive force from If is generated when

0[0,)ijx d∈ , and an attractive is generated when 0 1[,]ijx d d∈ . Additionally, there is a

cutoff relative distance between the i attacker and the j attacker 1d , which is related

with the end of the neighborhood of interaction. A relative distance greater than 1d means

that two agents are not interacting with each other. With exactly the same reasoning we

can understand how the hf force is repulsive when 0[0,)ilh h∈ , attractive when

0 1[,)ilh h h∈ , and has no effect for relative distances greater than 1h .

Figure 7 shows that the system of two vehicles and one or two virtual leaders will

find an equilibrium stationing where the summation of potentials is minimal.

Additionally, we see in two dimensions the advantage of having two virtual leaders

instead of one when changing the orientation of the swarm.

15

Figure 7. Set of solutions that minimize the total potential in a two
dimensional swarm of two vehicles. (a) With one virtual leader there is a

family of solutions (two are shown). (b) With two virtual leaders the
orientation of the group can be altered appropriately. Source: [10].

2. Reynolds’ Rule-Based Model

The original Reynolds model was published in 1987 [11] and it aimed to construct

a behavioral animation model for a team of animals, like a swarm of birds, by summing

the results of the actions of each individual animal as a reaction of the own local

perception of the environment. Hence their flocking formation is not a priori defined;

rather, it results from the summation of local rules. In other words, a flock is just the

aggregate of the interactions between the behaviors of every individual bird, and if we

introduce a computational framework that adds all these individual behaviors for every

time step, we could predict a range of activities including path planning.

This research in [11] is not only useful for the simulation and the motion planning

of a flock of birds but also for swarms of autonomous systems. The Reynolds’ rule-based

distributed model that we implement has five competing forces which take into account

each time step in order to determine each agent’s acceleration. In turn, that will drive its

kinetics equation. The control equation is as follows:

1 1

() ()()
defatt lead NN M

damph il d iw
i i al coh sep il iw i

j i l wil iw

f h f su r f f f h s K x
h s≠ = =

= = − + + − − −∑ ∑ ∑ 
 (18)

16

Figure 8. Interaction rules for flocking behavior in Reynolds’ Model.

Source: [12].

In Equation (18), we observe that each agent updates its acceleration at each time

step by considering the following six components:

Alignment: Agents alter their heading in order to align their orientation with the

average heading of their neighborhood.

 1

neigh

al al i j
j Nneigh

f w x x
N ∈

 
= − − 

  
∑  (19)

Cohesion: Vehicles move toward the centroid of the agents located inside their

neighborhood [12].

 1

neigh

coh coh i j
j Nneigh

f w x x
N ∈

 
= − − 

  
∑ (20)

As we may observe in Figure 8, the robustness of a herd-like formation is

dependent on the cohesion and alignment forces, as shown in Equations (19) and (20).

Separation: The assets inside a neighborhood of interaction use a collision

avoidance algorithm that guarantees a minimum safety distance.

1

neigh

j i
sep sep

j Nneigh j i

x x
f w

N x x∈

−
= −

−∑ (21)

The separation rule prevents crowding and collisions.

17

Virtual leader(s) interaction: This corresponds to the sum of the virtual leaders’

interaction with the i attacker located inside the neighborhood of interaction 1[0,)ilh h∈ .

This force is driving the i attacker cohesively with the rest of the attacking swarm toward

the HVU.

1

()leadM
h il

lead il
l il

f hf h
h=

=
∑ (22)

Collision avoidance with swarm intruders: This represents the summation of

repulsive forces generated from defendersN toward the i attacker in order to avoid collision

inside the defined neighborhood of interaction 1[0,)iws s∈ .

 int
1

()defN
d iw

rud iw
w iw

f sf s
s=

= ∑ (23)

Velocity dampening: This is a dampening term used for greater stability.

 damp damp
i iF K x=  (24)

B. MUTUAL ATTRITION MODEL

In the large scale simulations we execute, there are some couple hundred

antagonistic vehicles from each side that are not stationary but are moving toward an

objective. Consequently, the mutual attrition model is a very crucial part of our solution

to correctly predict the outcome of the confrontation. The concept of mutual attrition is

analyzed in [3] where a damage function with specific distribution characteristics (see

Figures 9 and 10) is used to track the probability that defender k is destroyed by a shot

from attacker l , and vice versa. Figure 9 illustrates how the damage functions are used

for observing the inflicted mutual attrition.

18

Figure 9. Mutual attrition derived from the damage function. Source: [3].

In [3] the authors examine the parameters we have to take into account in order to

model our damage function appropriately. That is because in reality there are weapons

that are very successful in their effective range, and their lethality decreases from this

range up to the maximum range. Additionally, due to the building architecture of the

launching platform, there may be some dead sectors, such as superstructures in a warship,

where the platform cannot launch an attack. Moreover, the majority of aerial platforms

use missiles that exploit the operating speed of the launching platform in order to reduce

in size. Such a missile will not need a booster motor for the initial flight phase but only a

sustainer motor for the inertial flight. Consequently, the dimensions of such a missile are

significantly reduced and the payload of the aerial vehicle is increased. Hence, in these

situations, the field of view (FOV) of the weapon must be mirrored in the death rate

functions because these assets can launch their attack only toward specific directions, and

this will have a huge impact in the strategy that they follow to approach the enemy.

Figure 10 illustrates the shape of the damage function when a Poisson distribution is used

or when FOV limitations are applied.

A final consideration for modeling the damage function is the fact that eventually

we aim to find numerical solutions in an optimal control problem. Consequently, smooth

functions where the gradients are continuous is desired for better numerical performance.

19

In Figure 11 we see the difference between a maximum range limit damage function

versus the smooth and hence preferable Poisson scan model.

Figure 10. Damage functions: Poisson scan model (left), Resulting angularly

decaying function reflecting FOV limitations (right). Source: [3].

Figure 11. Maximum range limit (Left). Smoothed using the Poisson scan

model (Right). Source: [3].

The damage functions of our model follow the Poisson scan model. The attrition

dynamics take the following form:

[]2

()d d i katt
ik d d

d

F r s
d

α
λ

σ
− −

= Φ (24)

20

where att
ikd is the damage function of the i attacker due to defender k

2[]()def a a i k

ki a a
a

F a r sd λ
σ

− −
= Φ , (25)

def
kid is the “death rate” of the defender k due to i attacker

2[]()hvu a a i hvu

i a
a

F a r rd αλ
σ

− −
= Φ , (26)

and hvu
id is the “death rate” of the HVU due to i attacker.

The parameters λ, F, σ and α are modeling weapons characteristics such as range,

fire rate, and inflicted damage and can be manipulated to alter the steepness of the

damage function in order to represent correctly the weapons capabilities over distance.

Probability of agent survival can be modeled based on the aggregate number of

hits it takes to incapacitate the agent. In this thesis research we use two different systems

of ODEs for our two attrition models, the Weighted and the Threshold models.

1. Weighted Attrition Model

In the following system of equations (27)–(29), we compute the probabilities of

survival. ()iQ t is the survival probability of the attacker i , ()d
kP t is the survival

probability of defender k , ()P t is the survival probability of the HVU and att
ikd is the

damage efficiency of each of the k defenders towards the attacker i .

Consequently, ()att d
ik kd P t dt dt− corresponds to the probability that defender k ,

destroys attacker i during a timestep dt. Thus (1 ())
defN

att d
ik k

k

d P t dt dt − − ∏ represents the

probability that i attacker would survive during a timestep dt, whereas

1 (1 ())
defN

att d
ik k

k

d P t dt dt − − − ∏ is the probability that the i attacker would be destroyed

during the timestep dt.

21

This quantity, multiplied by the current survival probability ()iQ t dt− ,

() 1 (1 ())
defN

att d
i ik k

k

Q t dt d P t dt dt
 

 − − − −  
 
∏ , should be subtracted from your current survival

probability ()iQ t dt− , in order to get i attacker survival probability at the next timestep,

as follows:

 () () (1 ())
defN

att d
i i ik k

k

Q t Q t dt d P t dt dt
   = − − −    
∏ (27)

As we see in Equation (27), the damage efficiency att
ikd of each of the k

defenders towards the attacker i is weighted by each defender probability of survival.

Hence a defender with low probability of survival, has small contribution to the attrition

of attacker i .

With the same reasoning as above, we may derive the survival probability of

defender k at time t, ()d
kP t :

 () () (1 ())
attN

d d def
k k ki i

i

P t P t dt d Q t dt dt
 

 = − − −  
 
∏ (28)

As we see in Equation (28), the damage efficiency def
kid of each of the kerattac sN

towards the defender k is weighted by each attacker probability of survival. Hence an

attacker with low probability of survival, has small contribution to the attrition of

defender k .

 () () (1 ())
attN

hvu
k k

k

P t P t dt d Q t dt dt
 

 = − − −  
 
∏ (29)

In Equation (29) we track the probability of survival of HVU based on the

attrition function of all the attackers. Again we tax their destructive capabilities with their

own probability of survival.

Initial conditions are set as (0) (0) (0) 1, ,d
i kQ P P i k= = = ∀ .

22

2. Attrition Model with Thresholds on Survival Probabilities

This is a model introduced for the first time in this thesis, and its usefulness is

shown in Chapter III, where we introduce the new proposed models. In this model we use

the following system of equations:

 () () (1) , () 50%
defN

att d
i i ik k

k

Q t Q t dt d dt P t
  = − − ∀ ≥ 
  
∏ (30)

 () () (1) , () 50%
attN

d d def
k k ki i

i

P t P t dt d dt Q t
 

= − − ∀ ≥ 
 
∏ (31)

 () () (1) , () 50%
attN

hvu
k i

k

P t P t dt d dt Q t
 

= − − ∀ ≥ 
 
∏ (32)

Consequently, the only difference with respect to the previous model is that now

we do not tax the damage functions with the probability of survival of each asset.

Nevertheless, as soon as someone’s survival probability drops below 50%, we assume

that this asset is more likely to have been incapacitated, and as a result, it will not

contribute to the destruction of its adversaries.

C. EVALUATING THE PERFORMANCE OF THE TRAJECTORY
OPTIMIZATION ALGORITHM COMPARED WITH INTUITION
CONCERNING THE STATIONING OF THE DEFENDING VEHICLES

Now that we have introduced the fundamental parts of our algorithm, we want to

show the efficiency of our method in terms of cost measurements. Our problem is

constrained in such a way that the comparison of a single number, the scalar cost, can

indicate whether it is advantageous to use the generated trajectories or not.

In Figures 12 and 13 we have at our disposal a force of 25 defenders tasked to

protect an HVU against a swarm of 100 attackers. Although outnumbered, the defenders

have a 50% larger weapons range as well as double the fire rate with respect to the

attackers. This range and fire rate advantage is what our optimization framework exploits

in order to define the defenders motion planning. In Figures 12 and 13 we initially

23

identify the trajectories of the attackers with the red color and the trajectories of the

defenders with a cyan color. As the scenario is executed, however, we color code the

followed paths with the survival probability of each agent. As a result, we may observe

spatially the mutual attrition of the antagonistic agents. In both scenarios the defenders

are stronger and suffer fewer losses; however, in the unoptimized scenario, some of the

attacking agents manage to penetrate the defenders’ zone and destroy the HVU.

Figure 12. 25 defenders with unoptimized trajectories but with superior

weapons failing to protect the HVU from 100 attackers.

In Figure 14 we compare the outcome of the optimized versus the unoptimized

scenario in terms of survival probabilities. According to Figure 14, the defenders with the

24

optimized trajectories successfully protect the HVU, whereas in the unoptimized scenario

they fail. Moreover, in the optimized scenario we observe that the attacking swarm is

completely incapacitated by the end of the first quarter of the simulation. By contrast, in

the unoptimized scenario we see that they manage to maintain a low survival probability

by the end of the scenario. Last but not least, in the optimized scenario we observe higher

mean survival probability for the defenders. Although this is not our primary mission

objective because we consider the defending agents as dispensable, it is always desirable

to minimize the attrition that our forces are going to suffer.

Figure 13. 25 defenders with optimized trajectories and superior weapons

protect the HVU effectively from 100 attackers.

25

Figure 14. Comparison of survival probabilities of the optimized and

unoptimized scenarios of the 100 attackers versus the 25 stronger
defenders.

In Figure 15 we present a collection of some characteristic snapshots of the

confrontations that we just analyzed with optimized trajectories for the defenders. Agents

with reduced survival probability start to fade until they become completely invisible for

0% survival probability.

26

Figure 15. Snapshots from the optimized scenario of the 100 attackers versus

the 25 stronger defenders.

D. CONTRIBUTION OF MOLECULAR DYNAMICS ALGORITHMS TO
THE COMPUTATIONAL EFFECTIVENESS OF OUR FRAMEWORK

We can easily observe that the modeling of the dynamics of the attacking swarm

in order to calculate its equations of motion is the most computationally expensive part of

the algorithm. All these antagonistic forces that we detailed in section A of the current

chapter contribute to the aggregate acceleration of each individual asset and must be

accurately calculated for each time step and for each asset. It is proven that a simple

Euler integration scheme is ineffective for accurately tracking the dynamics of such

27

sophisticated systems. Consequently, a fourth order Runge Kutta integration method with

fixed time-step size was originally used. This integration method, although accurate in

the calculation of the dynamics and the equations of motion of the attacking swarm, lacks

computational effectiveness.

Figure 16. Molecular dynamics demonstration compares particle 1 to particles

2, 3, 4, and 5 to determine whether their inflicted interaction is affecting
its trajectory. Source: [13].

Molecular dynamics (MD) is a fascinating domain in physics, where the motion

of molecules is simulated based on the generated forces due to interatomic potentials.

These forces define the molecular trajectories by simply applying Newton’s second law.

As we see in [13], MD is used to predict the damage inflicted from a ballistic impact on a

soil target. As we may easily understand, during the impact, large non-linear forces are

exerted, and as a result, the existing analytical models will not be able to accurately track

the interaction forces for at least this important initial stage.

As a result, the MD community has adopted numerical methods to execute

simulations that track the forces between the soil particles and then use the Verlet

28

integration algorithms to compute the velocity and the position of each particle. Verlet

integration is widely used in this community because this algorithm provides accurate

results with much better performance in comparison to Runge-Kutta integration.

The reason for this computational advantage is that Runge-Kutta has to calculate

the forces four times every time-step, whereas Verlet only once. In fact, LAMMPS, the

MD code that is primarily used for research nowadays, uses exclusively Verlet

integration [14].

Additionally, we could easily see the similarity in the nature of these contact

forces with the interaction forces that come into play in our counter-swarm simulations.

This observation allowed us to adopt their computationally efficient techniques. As a

result, a faster and more robust model was adopted that allowed us to execute simulations

with an unprecedented number of agents.

Figure 17. Computational superiority of Verlet versus Runge Kutta
integration framework and comparison with 2()O N logarithmic scaling.

29

The velocity Verlet algorithm for computing the velocity and position of each

particle from the equation of motion is shown as:

 21() () () ()
2i i i ir t dt r t v t dt a t dt+ = + + (33)

 []1() () () ()
2i i i iv t dt v t a t a t dt dt+ = + + + (34)

In Figure 13 and Tables 1 and 2 we observe a logarithmic comparison of the

originally implemented Runge Kutta integration scheme versus the Verlet integration

algorithm, which basically shows us that we have obtained an approximately 14.7 times

faster code for Leonard dynamics and a 26.01 times faster code for Reynolds dynamics.

Table 1. Computational effectiveness comparison of the Virtual Body
Artificial Potential dynamics model with Verlet integration versus original

model with Runge Kutta integration.

of agents in the

attacking swarm

Elapsed time [sec]

(Runge Kutta)

Elapsed time

[sec] (Verlet)

Computational gain based

on elapsed time division

5 4.27 0.79 5.4

50 15.8 1.55 10.2

500 421.78 37.55 11.23

1000 2095 142.56 14.7

2000 - 559.7

As mentioned previously, both our optimal motion planning problem and the MD

problem use behavioral rules for computing potentials generated from interactions.

Consequently, a significant computational advantage was gained by integrating this

scheme into our problem formulation.

30

Additionally, other parts of the code were improved from the aspect of efficiency.

Namely, the improved algorithm checks the neighbors interactions only once and this

check is taken into account for both agents. Moreover, unnecessary computations like in

the occasion where two agents are outside the neighborhood of interactions are avoided.

Last but not least, MATLAB commands that are proven to be computationally expensive

where replaced with faster scripts.

Table 2. Computational effectiveness comparison of the Reynolds dynamics
model with Verlet integration versus original model with Runge Kutta

integration.

of agents in the

attacking swarm

Elapsed time [sec]

(Runge Kutta)

Elapsed time

[sec] (Verlet)

Computational gain based

on elapsed time division

5 6.81 0.72 9.46

50 21.01 1.6 13.13

500 1304.84 50.16 26.01

1000 - 197.4 -

2000 - 783.76 -

31

III. THE GHOST-HERDING PROBLEM AND THE PROPOSED
INTERACTION AND ATTRITION MODELS

A. THE GHOST-HERDING PROBLEM — GENERATION OF NON-
PHYSICAL SOLUTIONS

We have defined our problem in such a way that the Optimization Toolbox will

generate the optimal trajectories for the defenders according to the mission objectives that

are incorporated into the cost function, as discussed in Chapter I. Namely, we have

accounted for two mission objectives, the protection of an HVU and the acquisition of air

superiority by maximizing the adversary swarm attrition. Nevertheless, we have to

constrain the optimization problem properly such that we avoid unrealistic solutions.

In Figures 18–22 we present an analysis that we have made based on the

optimization results from a large scale simulation where 200 defenders protect the HVU

from an attacking swarm of 2066 agents, which is the world’s largest unmanned aerial

vehicle (UAV) swarm that has ever been airborne [14]. In Figure 18 we see that the

solution we predict is very optimistic. Namely, the survival probability of the HVU is as

high as 96.3%.

Yet, in Figures 19 and 20 we see that half of the defenders die in the first quarter

of the simulation. Moreover, the remaining defenders die by the end of the simulation. By

contrast, as far as the attacking swarm is concerned, we observe some attrition during the

first quarter of the scenario, but their mean survival probability stabilizes at 90%

thereafter. Finally, we see in Figure 19 that by the end of the scenario all defenders are

dead and about 1870 attackers are still operational.

So far we have applied some of the most widely known dynamics and attrition

models that have been published (see List of References and Chapter II). With that in

mind, we see that the swarm of the 2066 assets is approaching cohesively toward the

HVU, making a collision avoidance maneuver in front of the defenders that are following

the trajectories the optimal motion planning algorithm has computed.

32

Although from a mathematical point of view, the solver has found a correct

solution for the mission of HVU protection, this local minimum has no physical meaning.

The conducted analysis shows us that the Optimization Toolbox uses defenders that are

already dead as a shield for the protection of the HVU.

Figure 18. HVU survival probability during a 3000 time sample simulation.

In other words, defender trajectories are chosen such that the collision avoidance

algorithm will create repulsive forces for the attackers. Namely, the dead defenders create

a repulsive barrier that has no real meaning. In Figures 19 and 20 we observe that

although for most of the simulation all the defenders are dead and no further attrition

occurs between attackers and defenders, the attackers do not succeed in penetrating the

barrier that the dead defenders are applying.

In Figure 22 we have chosen snapshots of the scenario for a ghost-herding

problem demonstration. We see the positions of all the agents in the scenario according to

their respective color codes. In the beginning of the scenario, when the opposing agents

are at a distance with respect to their weapons capabilities, the attackers are magenta

33

colored whereas the defenders are shown in cyan, as their survival probability is close to

100%.

As the scenario advances, the attacking swarm approaches the HVU, but the

defenders intercept their path. At that time, the color coding indicates the attrition of the

assets, where black signifies 0% survival probability and the in-between colors represent

how likely an asset is to be operational.

According to Figure 22, we see that the ghost-herding phenomenon starts to

appear after the first 600 time samples from the beginning of the scenario consisting of

3000 total time samples.

Referring to Figure 21 we see the ratios of mean survival probabilities as Def
Att

and
Att
Def

. It is clear that since the opposing forces have the same weapons characteristics,

the attrition of the defenders due to multiple attackers would be much more significant.

Figure 19. Total number of live defenders and attackers for the ghost-herding

scenario of an attacking swarm of 2066 agents versus a defending force of
200 agents with the same kinetics and weapons capabilities.

34

Figure 20. Mean survival probability for defenders, attackers, and HVU for

the ghost-herding scenario of 2066 attackers versus 200 defenders.

Figure 21. Ratios of mean survival probabilities Def
Att

 and
Att
Def

 for the ghost-

herding scenario of 2066 attackers versus 200 defenders.

35

Figure 22. Snapshots of the ghost-herding scenario of 2066 attackers

(Guinness world record) versus 200 defenders at time samples: 23, 210,
639 and 3000.

In both Figure 23 and in Figure 6 we see how steep the slope of the repulsive

force is when an attacker is approaching a defender closer than the minimum distance.

This minimum distance and the overwhelming generated repulsive force have, of course,

a deterministic nature. They are associated with the collision avoidance algorithm of the

attacking swarm but they are certainly an important parameter of the simulation because

36

they associate the deterministic nature of the exerted forces with the probabilistic

approach of the whole scenario.

Figure 23. Magnitude of the intra-swarm forces and collision avoidance

forces, due to defenders, with respect to the relative distance.

B. PROPOSED INTERACTION AND ATTRITION MODELS FOR
OPTIMIZATION

To deal with the ghost-herding problem just described, we created models that

correlate the deterministic nature of the dynamics with the survival probabilities of the

attacking swarm, the defender forces, and the HVU.

Consequently, we created three respective models, two of them for optimization

purposes and one for verification of the correctness of our results. For optimization

purposes we introduce the models that we call:

37

• Weighted Dynamics and Attrition Model

• Threshold Dynamics and Attrition Model

For analysis and verification of the results we introduce the model that we have

named:

• Monte Carlo Dynamics and Attrition Model

1. Dynamics and Attrition Model “Weighted” with Survival
Probabilities

The weighted model correlates both the magnitude of the interaction forces and

the lethality of the weapons of each asset with their survivability. As a result, the

gradient-based optimizer that we are using can no longer employ defenders that are

already incapacitated. Furthermore, it also cannot use assets with low probability of

survival because their contribution to the attacking swarm attrition is very small.

a. Weighted Dynamics Model

The driving equations of the dynamics models detailed in Chapter II take the

following form:

(1) Virtual Body Artificial Potential

1 1

() () ()
deflead att

i i i

NM N
damp d

i i x h il i j x I ij k x d ik
l j i k

u r V h F Q V x P V s
= ≠ =

 
 = = − ∇ + − ∇ − ∇   

 
∑ ∑ ∑

 (35)

1 1

()() ()deflead att NM N
I ijdamp dh il d ik

i il i j ij k ik
l j i kil ikij

f xf h f su h K x Q x P s
h sx= ≠ =

    = − + − −   
    
∑ ∑ ∑ (36)

As we see in Equations (35) and (36), our control law for the i attacker still

consists of the intra-swarm forces, the virtual leader interaction, the repulsive forces from

the defenders, and the dampening term. However, we now weight these forces with the

survival probability of the agent that is the cause of this interaction.

38

The sum of intra-swarm forces that i attacker is accepting from the rest

ker 1attac sN − that are inside the neighborhood of interaction 1[0,)ijx d∈ is taxed by the

survival probability of each attacker j , respectively.

The repulsive forces generated from defendersN toward the i attacker in order to

avoid collision with the defense agents inside the neighborhood of interaction 1[0,)iws s∈

are taxed with the survival probability of each individual defender.

(2) Reynold’s Rule-based Model

1 1

() ()()
deflead att NM N

damp dh il d iw
i i il i j al coh sep k iw

l j i kil iw

f h f su r h K x Q f f f P s
h s= ≠ =

    = = − + − + + −   
    
∑ ∑ ∑  (37)

In Equation (37) we see the modified control law that we propose for the i

attacker defined by the six forces we analyzed in Chapter II for the Reynold’s dynamics

model. Again the alignment, cohesion, and separation forces are weighted from the

probability of the corresponding swarm agent that causes the interaction. Finally,

defender forces are stronger when the defenders have high survival probabilities.

b. Weighted Attrition Model

For reciprocal attrition, in this case we use the model presented in [3].

2. Dynamics and Attrition Models Correlated with a Survival
Probability Cutoff “Threshold”

The weighted model just described is able to tackle the problem of unrealistic

solutions due to the fact that dead defenders are acting as a repulsive barrier. One could

argue, however, that although it is an improved version, it is also a non-physical model

because, and especially for aerial assets, you would either expect them to be fully

functional and operational or completely destroyed and no longer operational. Further,

you might predict that an asset, due to its proximity with opposing forces and due to the

range and lethality of their weapons, would have only a 15% probability of being

operational. In other words, this would mean that if you run the same scenario 100 times,

39

you would expect this asset to be operational at this specific time instant only in 15

iterations. It would, however, be either fully operational or completely ineffective, and

this statement is what you should expect for both its interaction forces and its weapons.

This very reasonable statement was our driver for creating the threshold model, in

which we do not weight the probability of survival with the interaction forces and the

weapons effectiveness at all. Instead, we are using the 50% survival probability as a

cutoff switch. This threshold and the survival probability of an agent define whether the

model will take into account its interaction and weapons contribution.

a. Threshold Dynamics Model

Having introduced the rules of this model, we now give the driving forces of the

control law as follows:

(1) Virtual Body Artificial Potential

1 1

() () ()defatt leadNN M
I ij d h dampd ik h il

i j ij k ik l il i
j i k lik ilij

f x f s f hu W x W s W h K x
s hx

Ι

≠ = =

     
= − − − −     

      
∑ ∑ ∑ 

1 [0.5,1.0], 0 [0,0.5)

1 [0.5,1.0], 0 [0,0.5)
1 [0.5,1.0], 0 [0,0.5)

I I
j j j j

d d d d
k k k k
h h

l i l i

W Q W Q

W P W P
W Q W Q

 = ∀ ∈ = ∀ ∈
  = ∀ ∈ = ∀ ∈ 
 = ∀ ∈ = ∀ ∈  

 (38)

The probability acts as a switch that neutralizes an asset instantaneously when its

survival probability falls below 50 %. Namely, as soon as the destruction is more

probable than the survival, we neutralize the asset.

(2) Reynold’s Rule-based Model

 ()
1 1

() ()defatt leadNN M
I d h dampd ik h il

i i j al coh sep k ik l il i
j i k lik il

f s f hu r W f f f W s W h K x
s h≠ = =

   
 = = − + + − − −    

   
∑ ∑ ∑ 

1 [0.5,1.0], 0 [0,0.5)

1 [0.5,1.0], 0 [0,0.5)
1 [0.5,1.0], 0 [0,0.5)

I I
j j j j

d d d d
k k k k
h h

l i l i

W Q W Q

W P W P
W Q W Q

 = ∀ ∈ = ∀ ∈
  = ∀ ∈ = ∀ ∈ 
 = ∀ ∈ = ∀ ∈  

 (39)

40

The same notion of a cutoff switch is applied in the Reynold’s dynamics model as

well.

b. Threshold Attrition Model

For reciprocal attrition we use the model introduced in Chapter II.

C. MONTE CARLO SIMULATION MODEL FOR ANALYSIS

Finally, in our last model, the Monte Carlo model, the fundamental difference is

that we replace the survival probability approach for the defenders and the attackers with

a binary state of being alive and operational or dead and out of the simulation. Although

we can still use this approach for the HVU as well, we keep the previous probabilistic

scheme for this unit. For better results during optimization, we would like a relatively

smooth probabilistic approach for the HVU rather than an unpredictable approach.

a. Monte Carlo Attrition Model

The binary survival probabilities are updated via random number generation at

each time step in the following way. The probability att
ip for the i attacker to die due to

all defenders k during a given time step with duration dt is given by:

1

() 1 (1 ())
defN

att att def
i ik k

k

p t d W t dt dt
=

= − − −∏ (43)

Similarly, the probability def
kp for the defender k to die due to all attackers i

during a given time step with duration dt is given by:

() 1 (1 ())
attN

def def att
k ki i

i

p t d W t dt dt= − − −∏ (44)

Then, a random number iX or kY is generated with a uniform distribution

between 0 and 1 for each attacker i and defender k , respectively. We change att
iW and

def
kW that now represent the binary state of the i attacker and the k defender,

respectively, from 1 to 0, from alive to dead, when these random numbers are smaller

41

than the death probability. Otherwise, when these random numbers are bigger than the

death probability, it would mean that this agent will survive the current time step and will

be queried again during the next iteration. The mathematical statement is as follows:

() () () 0att att
i i iX t p t W t< → = (45)

() () () ()att att att
i i i iX t p t W t W t dt≥ → = − (46)

() () () 0def def
k k kY t p t W t< → = (47)

() () () ()def def def
k k k kY t p t W t W t dt≥ → = − (48)

The HVU survival probability could be calculated in this way as well, but for

optimization we use a continuous approach, where P(t) is initialized with P(0) = 1 and

then integrated in the same way as shown in the weighted attrition model in Chapter II

and in [3] and [15]. Namely:

 () () 1 1 (1 ())
attN

hvu att
k k

k

P t P t dt d W t dt dt
    = − − − − −      

∏ (49)

The only difference with Equation (49) is that now att
kW is the binary state of the

i attacker. Consequently, only the live attackers contribute to the attrition of the HVU.

b. Monte Carlo Dynamics Model

Our model is based on random number generation that aims to simulate the

unpredictability often exhibited in the real world. We are using a dynamics framework

similar to the one analyzed in Chapter II, but because the survival probabilities have been

replaced from the binary state condition, we have the following equations for the control

law of the i attacker:

(1) Virtual Body Artificial Potential

1 1

() () ()
deflead att

i i i

NM N
att damp att def

i i i x h il i j x I ij k x d ik
l j i k

u r W V h F W V x W V s
= ≠ =

   = = − ∇ + + ∇ + ∇    
∑ ∑ ∑ (40)

42

1 1

()() ()deflead att NM N
I ijatt damp att defh il d ik

i i il i j ij k ik
l j i kil ikij

f xf h f su W h K x W x W s
h sx= ≠ =

      = − + + +     
       

∑ ∑ ∑
 (41)

where { }(), () 0,1att def
i kW t W t ∈ . Hence, for an interaction between attackers or between

attacker and defender to be exerted, both agents must be stated as alive.

(2) Reynold’s Rule-based Model

1 1

() ()()
deflead att NM N

att damp att defh il d ik
i i i il i j al coh sep k ik

l j i kil ik

f h f su r W h K x W f f f W s
h s= ≠ =

      = = − + + + + +     
     
∑ ∑ ∑  (42)

where { }(), () 0,1att def
i kW t W t ∈ . Hence, for an interaction between attackers or between

attacker and defender to be exerted, both agents must be stated as alive.

43

IV. OPTIMIZATION RESULTS AND ANALYSIS WITH MISSION
OBJECTIVE TO MINIMIZE HVU DESTRUCTION PROBABILITY

A. LOCAL AND GLOBAL MINIMUM SOLUTIONS FOR OPTIMIZATION
PROBLEMS SPANNING A CONFIGURATION SPACE OF INFINITE
DIMENSIONS

The main idea for our optimal motion planning problem is to use an objective

function, in this chapter the HVU survival probability, and by computing its gradients we

seek to find the ideal defender trajectories.

At this point we have to underline the importance of the initial estimate. The

gradient based algorithm will drive the solution towards the direction of the gradient’s

steepest descent and it will stop when one or more of the following conditions are met:

• a local minimum is found

• a sufficiently flat area, within some tolerance defined in advance, of the

configuration space is found

• the objective goal is met

• the maximum number of evaluation iterations is reached

Consequently the initial estimate is important to be an educated guess, based on

our intuition or based on Operational Research techniques rather than a random guess, in

order to drive the algorithm faster to a local minimum. When a local minimum is

achieved, it will be analyzed in order to find out whether it is a descent local minimum

that we could exploit or it is different than our intuition tells us that the global minimum

should be.

In Chapter III we introduced the problem we called ghost-herding via a simulation

in which the world’s biggest-ever simultaneous UAV swarm [14], 2066 agents, was

attacking our HVU, which was protected by 200 defenders. In such a large scale problem,

our state vector, the set of data carrying the necessary information for every time-step to

conduct our simulation, consists of the position and the velocity in 3-dimensional

44

coordinates of the attacking swarm, as well as the survival probability of all the assets

(attackers, defenders, and HVU). Consequently, we end up for the aforementioned

simulation with an enormous configuration space that has 14,662 variables.

As we may understand, a problem with so many variables may have thousands of

local minimum solutions and a global minimum that is very computationally expensive to

be found. We have to take into account that this application of optimal motion planning

for the defenders is currently a robust analysis tool but the ultimate goal is to eventually

reach real-time solutions.

Consequently, the larger the scale of our problem, the more important a good

initial estimate will become, in order to end up with a local minimum close enough to the

optimal solution, which is almost impossible to find.

In the rest of this chapter we demonstrate some results of our motion planning

optimization algorithm for different initial conditions and different weapons

characteristics that would indicate the ability of our framework to deal with a wide range

of scenarios and simulation characteristics.

B. ELIMINATING THE GHOST-HERDING PROBLEM WITH OUR
PROPOSED MODELS

We are going to revisit the scenario of the 2066 attackers versus the 200 defenders

analyzed in Chapter III in order to demonstrate the ability of our proposed models to

correlate effectively the dynamics of the antagonistic agents with the attrition models that

are tracking the inflicted damage.

In Figures 24–26 we are tracking the survival probability of the HVU as well as

the number of live defenders and attackers for each individual model. In Figure 24 we see

that both the weighted and the threshold model are completely aligned with the Monte

Carlo model that we use as a reference to validate our solution, whereas we see that the

original code fails to predict the destruction of the HVU.

The Monte Carlo simulation is executed 200 times (ω=200) and the computed

outcomes are averaged each time-step, in order to obtain unbias results from the random

numbers generation procedure.

45

In Figure 25 we observe that the weighted model is closer to the Monte Carlo

prediction concerning the live defenders for each time step. Nevertheless, both the

weighted and the threshold models make perfect sense when combined with Figure 26. In

this figure we see that around the 300th time sample, the confrontation of the antagonistic

forces takes place. Despite the fact that the defenders in this scenario have superior

weapons, they are heavily outnumbered and they all die around the 350th time sample,

together with the HVU, due to the fact that there are no defenders left to protect it.

Additionally, from this time sample and until the end of the scenario, we also see that the

attackers suffer no more losses.

On the other hand, in this scenario we see that the ghost-herding model not only

fails to predict the HVU survival probability but it also gives us inconclusive information

concerning the inflicted attrition between opposing forces. Namely, we see in Figures 27

and 28 that according to the ghost-herding model, at the end of the scenario 1000

attackers and 60 defenders are still alive.

Figure 24. HVU survival probability comparison between multiple models for

the scenario of 2066 attackers versus 200 defenders with superior
weapons.

46

Figure 25. Number of live attackers for each time step for the different

models introduced for the scenario of 2066 attackers versus 200 defenders
with superior weapons.

This trend that we see in Figures 27 and 28 can be explained by examining the

snapshots of the scenario depicted in Figure 29. In Figure 29 we see snapshots of the 3-

dimensional representation of the scenario according to the ghost-herding model. Both

attackers and defenders are color coded with their survival probability, where black

means incapacitated and magenta and cyan mean operational. From the snapshots we see

again the implications of having the dynamics of the model completely uncorrelated with

the attrition model.

From the snapshots in Figure 29 we are able to observe that after the first 1000

time samples, multiple front layers of defenders and attackers have already been

incapacitated. Since the attrition and the dynamics models are uncorrelated, these layers

of incapacitated agents block the physical continuation of the scenario. As a result, we

may see in Figures 25 and 26 that not only is the prediction of the HVU survival

probability wrong, but also the survivability of both attackers and defenders is

miscalculated.

47

Figure 26. Number of live defenders for each time step for the different

models introduced for the scenario of 2066 attackers versus 200 defenders
with superior weapons.

Figure 27. Mean survival probabilities for attackers, defenders, and HVU

using the ill-performed ghost-herding model.

48

Figure 28. Number of live attackers and defenders for each time step, using

the ill-performed ghost-herding model.

Figure 29. Snapshots for the scenario of 2066 attackers versus 200 defenders

with superior weapons, performed with the ghost-herding model.

49

C. COMPARING THE PERFORMANCE OF THE PROPOSED MODELS BY
COMPUTING THE NUMBER OF DEFENDERS REQUIRED TO
DEFEND THE HVU FROM A SWARM ATTACK

In Section B of this chapter we compared the results derived from our proposed

models that deal effectively with the correlation between dynamics and attrition. We used

an example of 2066 attackers and 200 defenders, and we observed that the weighted and

the threshold models derived almost the same results. Yet, one could say that our

example had disproportional distribution of forces and the result was almost certain.

In Figures 30 and 31, we compare the optimization results for a confrontation

between an attacking swarm of 50 agents and a defending force in order to compute how

many defenders are required to effectively protect an HVU from such an assault,

according to the different models.

Figure 30. Number of defenders required to effectively protect an HVU from

a 50-agent swarm attack with 10% longer weapons range than the
defenders.

50

Figure 31. Number of defenders, with 10% longer weapons range than the

attackers, required to effectively protect an HVU from a 50-agent swarm
attack.

In Figure 30, the 50 agents of the attacking swarm have a 10% bigger range with

respect to the defenders. The optimization results of this problem show us firstly that the

ill-performing ghost-herding model differs significantly from the newly introduced

models and is computing that only 20 defenders are enough. Additionally, we observe

from Figure 30 that the weighted model estimates that 52 defenders are enough, whereas

the threshold model gives a more pessimistic estimate requiring 65 defenders.

On the other hand, in Figure 31, the defending agents are those that have a 10%

bigger range with respect to the attackers. In this simulation, though, the threshold model

is more optimistic compared to the weighted model because, according to the weighted

model computations, only 30 defenders are required versus 37 that the threshold model

predicts. Interestingly, we see that in both scenarios, the estimate of the ghost-herding

model is almost the same, either 20 or 21 defenders. This is another proof that the ghost-

herding model gives non-physical results due to the uncorrelated attrition and dynamics

models.

51

D. ANALYSIS OF THE OPTIMIZATION RESULTS

In order to analyze the derived optimization results, we refer again to the two

scenarios introduced in Section C of this chapter, where a confrontation with a swarm of

50 agents was examined from both the perspective of stronger attackers and stronger

defenders. Our analysis focuses on multiple checkpoints that are depicted in Figures 30

and 31.

These checkpoints (A1, B1) represent points in the plots predicting that the

number of defenders is not sufficient with respect to our mission objective, according to

both the weighted and the threshold models. Additionally, we examine the checkpoints

(A3, B3) where the number of defenders is satisfactory for the HVU’s protection

according to both aforementioned models. On the other hand, we investigate the

checkpoints (A2, B2) where both the weighted and the threshold models contradict each

other. In all the aforementioned cases we use the Monte Carlo model as a reference to

cross check our results.

The Monte Carlo simulation is executed 200 times (ω=200) and the computed

outcomes are averaged each time-step, in order to obtain unbias results from the random

numbers generation procedure.

1. Checkpoints A1–B1: Not Enough Defenders for HVU Protection

In Figures 32 and 33 we perform an analysis for the Checkpoints A1 and B1

derived from the optimization results presented via Figures 30 and 31. In Figure 32 we

verify that the 50 defending agents are insufficient to prevent the HVU’s destruction from

the stronger 50 agents of the attacking swarm. In Figure 30 we saw that the threshold

model was the most pessimistic for this scenario. This is the reason why in Figure 32 we

see that according to this model, not only is the HVU destroyed more quickly, but also

fewer defenders and more attackers remain operational. As a result, both models do

capture the outcome of the confrontation, but the weighted model does that with higher

fidelity.

52

Figure 32. Checkpoint A1 (stronger attackers) analysis: Weighted and

Threshold models align with the Monte Carlo estimation of HVU
destruction.

Figure 33 is also in accordance with the optimization predictions of Figure 31.

Even though the defenders are stronger now, 25 of them seem to be insufficient to

achieve the goal of HVU protection. Both the weighted and the threshold models capture

the outcome of the confrontation. Again the weighted model is closer to the Monte Carlo

prediction, especially with respect to the mean attacker survivability.

Figure 33. Checkpoint B1 (stronger defenders) analysis: Weighted and

Threshold models align with the Monte Carlo estimation of HVU
destruction.

53

2. Checkpoints A2–B2: Differentiation between Weighted and
Threshold Models

Checkpoints A2 and B2 represent the gray area between the models. This

uncertainty area where, according to Figures 30 and 31, the weighted and the threshold

models predict different outcomes for the confrontation is what we are going to examine

in this section.

According to both the scenarios of stronger attackers and stronger defenders,

Figures 34 and 35, respectively, we may verify again the close fidelity of the weighted

model with respect to the Monte Carlo simulation of the real outcome. In fact, we see that

in the scenario of stronger attackers depicted in Figure 34, the 60 defenders are sufficient

for the HVU’s protection. The threshold model, however, predicts the opposite.

Moreover, in the scenario of stronger defenders depicted in Figure 35, for the

confrontation between 50 attackers and 35 defenders we would have to increase the

defending numbers to avoid the HVU’s destruction. According to the threshold model,

however, the HVU’s survival could succeed even with this force of 35 defenders.

Figure 34. Checkpoint A2 (stronger attackers) analysis: Threshold model fails

to predict HVU survival.

54

Figure 35. Checkpoint B2 (stronger defenders) analysis: Threshold model

fails to predict HVU destruction.

3. Checkpoints A3–B3: Sufficient

Last but not least, we have to examine the Checkpoints A3 and B3 where the two

optimization models, according to Figures 30 and 31, predict that our mission objective

will be accomplished.

In Figures 36 and 37, we execute the analysis of the aforementioned checkpoints.

As we may see, the results for both the scenarios of stronger attackers and stronger

defenders verify the optimization prediction and the HVU’s survival are achieved.

55

Figure 36. Checkpoint A3 (stronger attackers) analysis: Weighted and
Threshold models align with the Monte Carlo estimation of HVU survival.

Figure 37. Checkpoint B3 (stronger defenders) analysis: Weighted and

Threshold models align with the Monte Carlo estimation of HVU survival.

E. PERIPHERAL THREAT AXIS

A less practical but really challenging scenario is to defend an HVU asset when

the attacking swarm has already encircled the defending forces. This means that we

cannot focus our defending forces to a specific threat direction, rather we have to station

the defenders accordingly, such that adequate peripheral protection is achieved.

56

In Figures 38–41, we examine this new scenario by optimizing the trajectories of

50 defenders with much superior weapons, double the range and double the fire rate, in

order to deal with an assault from a swarm of 500 agents aiming to destroy the HVU.

In Figure 38 we see the followed trajectory of both the attackers and the

defenders, color coded with their survival probabilities. Firstly, we observe that in such a

confrontation where the threat axis is peripheral, the optimum solution for the fewer

defenders that have superior weapons is to remain very close to the HVU. Secondly, we

see that the defenders are effectively dealing with the threat because we see that when the

attackers are close enough to launch their attack, they are moving around in a spherical

pattern find potential weak points. However, by that time their path is depicted as black,

which means that their survival probability is too low and they have been incapacitated.

Figure 38. 500 attackers approaching from peripheral directions to destroy the

HVU protected by 50 defenders with much superior weapons (double
range and fire rate).

57

Figures 39 and 40 verify the assumptions made from Figure 38, because we

observe in both figures that all the attackers are incapacitated by the end of the first 10%

of the simulation, after a short period of mutual attrition, whereas almost 33 defenders

remain operational by the end of the scenario.

Figure 39. Mean survival probabilities for the scenario of the peripheral threat

of 500 attackers facing 50 much stronger defenders.

Figure 40. Mean number of live attackers and defenders for the scenario of

the peripheral threat of 500 attackers facing 50 much stronger defenders.

In Figure 41, we execute a comparison analysis of the three different optimization

models spoken of throughout this paper with respect to the Monte Carlo reference model.

58

Hence, we may see that all models are in close fidelity with the reference modelnot

only for tracking the HVU’s survival probability but also for estimating the survivability

of the rest of the antagonistic agents.

It is clear from this scenario, as well as from the previously examined scenarios,

that the non-physical results of the ghost-herding model appear only in situations where

the defenders would inevitably lose if they rely only on their weapons. On the other hand,

in scenarios where the defenders are in sufficient numbers or are equipped with the

appropriate weapons, the original ghost-herding model with the uncorrelated attrition and

dynamics models would converge with the rest of the models.

Figure 41. Comparison analysis of the four models for the confrontation

between the 500 attackers approaching peripherally and the 50 much
stronger defenders.

59

V. OPTIMIZATION RESULTS WITH RESPECT TO THE
MISSION OBJECTIVE OF AIR SUPERIORITY

A. COMPARING OPTIMIZATION RESULTS FOR A CONFRONTATION
WITH THE SAME CONDITIONS BUT DIFFERENT COST FUNCTIONS
(HVU PROTECTION — AIR SUPERIORITY)

In this research, we have used the probability of an HVU’s destruction as a

mission objective for our motion planning problem. This HVU was a stationary unit with

no self-defense capabilities. In this chapter, we introduce another mission objective to

demonstrate the wide usability of our framework.

Specifically, we introduce a new cost function appropriate for achieving the

mission objective of air superiority. The objective function of the mean attacker survival

probability must be minimized to achieve our mission by causing the greatest possible

attrition among the attackers. For consistency with the previous chapters, we regard the

defending autonomous systems as dispensables means in order to achieve our goal.

In Figures 42–45, we compare a confrontation of 100 attackers versus a force of

25 defenders with double the fire rate and a 25% larger weapons range. In Figure 42 we

see the trajectories of both the attackers and the defenders color-coded according to their

survival probability. The defenders’ path planning is computed with respect to the

mission objective of HVU protection.

60

Figure 42. 100 attackers versus 25 defenders with superior weapons — HVU

protection objective.

In addition to Figure 42, we can see in Figure 43 the color-coded trajectories of all

the agents of the previous scenario. The initial conditions, the dynamics characteristics,

and the weapons capabilities are exactly the same as before. The only difference is that

on this occasion the defender trajectories are computed with respect to the new mission

objective of air superiority acquisition.

The main difference we can observe between these two scenarios is that in Figure

42 the defenders have a more conservative motion. They intercept the attackers only

when the attackers approach the HVU; the defenders block the attackers’ way to the

HVU and its destruction, and only then do they fight each other. In Figure 43, on the

other hand, we see a more aggressive behavior on the part of the defenders. Now there is

no HVU to be protected, and as a result, they are guided toward a head-on confrontation

in order to achieve the minimization of the cost function as quickly as possible.

61

Figure 43. 100 attackers versus 25 defenders with superior weapons — Air

superiority objective.

In Figures 44 and 45, the comparison of the two different scenarios is extended to

the analysis of the survival probabilities and the survivability of all the agents. The take-

away from these two figures is the following. Because the new objective function of air-

superiority drives the defenders more aggressively to maximize the attrition of the

opposing swarm, the cost that corresponds to the mean survival probability of the

defenders decreases more quickly. This happens, however, with the sacrifice of more

defenders with respect to the scenario of HVU protection. Namely, we see in Figure 44

that the mean defender survival probability for the air-superiority objective, at the end of

the scenario, is 19% whereas in the HVU protection scenario it is 51%.

62

Figure 44. Mean survival probabilities comparison between the two different

mission objectives for the scenarios with 100 attackers and 25 defenders
with superior weapons.

In sheer numbers we see in Figure 45 that this mean probability difference

corresponds to seven more defenders at the end of the HVU protection scenario. This

difference makes sense since we regard the defender autonomous systems indispensable,

and consequently, they do not influence the cost. If we had to consider their survivability

as well, the head-on confrontation would not be the best solution since it does not exploit

in the best way the extended range of the defenders’ weapons.

Of course, this argument would not be correct if we had not extended this range

for our forces, since we would like to drive the defenders as quickly as possible to a

region where the extended weapons range advantage of the attackers would not matter

anymore.

63

Figure 45. Mean survivability comparison between the two different mission

objectives for the scenarios with 100 attackers and 25 defenders with
superior weapons.

B. COMPARING THE PERFORMANCE OF THE PROPOSED MODELS BY
COMPUTING THE NUMBER OF DEFENDERS REQUIRED TO OBTAIN
AIR — SUPERIORITY

In Figures 46 and 47, we compare the optimization results for a confrontation

between an attacking swarm of 50 agents and a defending force in order to compute how

many defenders are required to achieve air superiority, according to the different models.

In Figure 46, the defending agents have a 10% bigger range with respect to the

attackers. On the other hand, in Figure 47, the attacking swarm agents have a 10% bigger

range with respect to the defenders. In both scenarios, though, the optimization results

show us the same trend. Firstly, the ill-performing ghost-herding model is converging

with the newly introduced models as the number of antagonistic agents that are

interacting with each other is relatively low, and hence, the correlation between dynamics

and attrition is not so important.

64

On the other hand, for a defending force of 20 or more agents, according to Figure

46, or for a defending force of 25 agents or more, according to Figure 47, we enter into

the ghost-herding problem region. In this region the interaction of the antagonistic forces

plays an important role in the outcome of the scenario. Consequently, these forces have to

be correlated with the survivability of the agents in order to obtain a reliable computation

of the final cost of the simulation.

Figure 46. Number of defenders with 10% more extended weapons range than

the attackers. Defenders must challenge a 50-agent swarm and obtain air
superiority.

65

Figure 47. Number of defenders with 10% shorter weapons range than the

attackers. Defenders must challenge a 50-agent swarm and obtain air
superiority.

C. ANALYSIS OF THE OPTIMIZATION RESULTS

To analyze the derived optimization results, we refer again to the two scenarios

introduced in Section B of this chapter, where a confrontation with a swarm of 50 agents

was examined from both the perspective of the stronger attackers and the stronger

defenders. Our analysis focuses on the checkpoints depicted in Figures 46 and 47.

These checkpoints (A1, B1) represent points in the plots predicting that the

interaction forces do not influence the final cost of the scenario, and consequently, the

ghost-herding model converges to both weighted and threshold models. On the other

hand, we investigate the checkpoints (A2, B2) where the number of agents is such that

the antagonistic forces do influence the final cost of the scenario. In all the

aforementioned cases, we use the Monte Carlo model as a reference to cross check our

results.

66

The Monte Carlo simulation is executed 200 times (ω=200) and the computed

outcomes are averaged each time-step, in order to obtain unbias results from the random

numbers generation procedure.

1. Checkpoints A1–B1: Models’ Converging Region

In Figures 48 and 49 we perform an analysis for the Checkpoints A1 and B1

derived from the optimization results presented via Figures 46 and 47. In Figure 48 we

see the analysis of a confrontation between 50 attackers and 20 defenders that have a

10% longer weapons range than the attackers. The objective of the scenario now is to

minimize the attackers’ survivability. Figure 48 shows us that all models converge not

only with respect to the cost represented by the mean attackers’ survivability but also

with respect to the mean defenders’ survival probability.

Figure 48. Checkpoint A1 (20 stronger defenders) analysis: Ghost-herding

model converges to the other models.

Figure 49 also presents a simulation in which the ghost-herding problem does not

differ significantly from the other models. Figure 49 also examines a confrontation

between 50 attackers and 20 defenders, but now the 10% longer weapons range

corresponds to the attackers.

67

Figure 49. Checkpoint B1 (20 weaker defenders) analysis: Ghost-herding

model converges to the other models.

2. Checkpoints A2–B2: Ghost-Herding Problem Region

Figure 50 depicts the Checkpoint A2 where 40 defenders with 10% longer

weapons range eliminate an attacking swarm of 50 agents. In this simulation, the number

of agents participating is such that we see that the problem of uncorrelated dynamics and

attrition comes into play.

Figure 50. Checkpoint A2 (40 stronger defenders) analysis: Ghost-herding

model differs with respect to the other models.

68

Consequently, agents are incapacitated and removed from the scenario for all

models except from the ghost-herding model. In this model they remain in the field only

to generate attractive and repulsive forces, since their weapons have been waived by the

attrition model.

Figure 51 repeats the demonstration of the ghost-herding problem but this time for

a confrontation involving 50 attackers versus 100 defenders. This time the attackers have

the 10% range superiority in weapons capability.

Figure 51. Checkpoint B2 (100 weaker defenders) analysis: Ghost-herding

model differs with respect to the other models.

69

VI. CONCLUSION

The main goal of this thesis was to address a challenging issue of the optimal

motion planning problem for autonomous systems facing large-scale antagonistic

swarms. This issue is related to the nature of the models that come into play in such a

framework. Namely, we seek to find the appropriate balance between the deterministic

nature of the dynamics, which define the controlling forces for all the agents, and the

probabilistic nature of the weapons engagements.

First, in Chapters I and II we introduced the framework used nowadays for

optimal control. In Chapter III we demonstrated the issue we dubbed the ghost-herding

problem in the original framework. Additionally, in Chapter III we presented our

proposed models for dealing with this challenge. We introduced two models for

optimization purposes, the weighted and the threshold models, as well as one model for

analysis purposes, the Monte Carlo model.

The Monte Carlo simulation model was used as a reference during the analysis

sections of this thesis. In this model, survivability is partially influenced by random

number generation aimed at simulating the unpredictability that the real world exhibits.

The demonstration and the analysis of our models were presented in Chapters IV and V

for a number of different swarm confrontations. In Chapter IV, our cost was represented

by our goal to protect an HVU unit whereas in Chapter V we used the objective function

of minimizing the survival rate of the mean attackers.

Last but not least, the aspect of computational efficiency that allowed us to

execute large-scale swarm simulations was addressed in Chapter II. A significant

computational advantage was gained by replacing the Runge Kutta with the Verlet

integration scheme frequently used in molecular dynamics. This almost equally

numerically stable framework offers an impressive performance advantage.

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

APPENDIX. MATLAB FILES

A. COMPUTATIONALLY IMPROVED DYNAMICS / ATTRITION MODELS

1. Monte Carlo Dynamics and Attrition Model

a. Leonard Dynamics

function [yout,tot_surv_att,tot_surv_def,tot_surv_HVU,att_surv,def_surv] =
new_ode4_Leon_MonteCarlo(t0,dt,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x,i)
seed = i;
rng(seed);
Patt_death = zeros(size((tf-t0)/dt));
Patt_rand = Patt_death;
Pdef_death = Patt_death;
Pdef_rand = Patt_death;
tot_surv_att = Patt_death;
tot_surv_def = Patt_death;
att_lamda = PARAMETERS.ATTACKERWEAPON.lambda;
att_sigma = PARAMETERS.ATTACKERWEAPON.sigma;
t_count = 1;
yout = x;
epsilon = 0.01; %distance cut off for near zero
umax = PARAMETERS.SWARM.umax;
K = PARAMETERS.SWARM.K;
K_hvu = PARAMETERS.SWARM.K_hvu;
d0_att=PARAMETERS.SWARM.d0;
d1_att=PARAMETERS.SWARM.d1;
alpha_att=PARAMETERS.SWARM.alpha_i;
d0_def=PARAMETERS.SWARM.INTd0;
d1_def=PARAMETERS.SWARM.INTd1;
alpha_def=PARAMETERS.SWARM.alphaINT_i;
mass_att = ones(1,N_attackers);
follower_states = reshape(x(1:6*N_attackers),6,N_attackers);
x_att=follower_states(1,:);
y_att=follower_states(2,:);
z_att=follower_states(3,:);
vx_att=follower_states(4,:);
vy_att=follower_states(5,:);
vz_att=follower_states(6,:);
ax_att = 0;
ay_att = 0;
az_att = 0;
ax_att_old = ax_att;
ay_att_old = ay_att;
az_att_old = az_att;
Q = x(6*N_attackers+1:7*N_attackers); %probability of attacker survival
Pd = x(7*N_attackers+1:7*N_attackers+N_defenders); %prob of def surv
P = x(end); %prob of HVU surv
t = t0:dt:tf;
length_time = length(t);
def_surv = ones(length_time, N_defenders);
att_surv = ones(length_time, N_attackers);
HVU_surv = 1;
for t = t0 : dt : tf-dt

 % first step in Verlet integration
 x_att=x_att+vx_att*dt+ax_att_old.*dt.^2/2;

72

 y_att=y_att+vy_att*dt+ay_att_old.*dt.^2/2;
 z_att=z_att+vz_att*dt+az_att_old.*dt.^2/2;
 BN_t = bernsteinMatrix_a2b(N_Bezier,t,t0,tf);
 pd = (BN_t*Cd);
 pd = reshape(pd,3,N_defenders); % pd - position of the defenders
 x_def=pd(1,:);
 y_def=pd(2,:);
 z_def=pd(3,:);
 pd = [x_def;y_def;z_def];
 follower_states = [x_att;y_att;z_att;vx_att;vy_att;vz_att];
 position = [follower_states(1:3,:) pd]; % position: 3-by-(n+m)
 p_hvu = PARAMETERS.DEFENDER.p_hvu;
 Fx = zeros(1,N_attackers);
 Fy = Fx;
 Fz = Fx;
 for nn = 1:N_attackers
 if att_surv(t_count,nn)==1
 dx_hvu = x_att(nn)-p_hvu(1);
 dy_hvu = y_att(nn)-p_hvu(2);
 dz_hvu = z_att(nn)-p_hvu(3);
 dd_hvu = sqrt(dx_hvu.^2+dy_hvu.^2+dz_hvu.^2);
 Fx(nn) = Fx(nn) - K_hvu.*dx_hvu./dd_hvu;
 Fy(nn) = Fy(nn) - K_hvu.*dy_hvu./dd_hvu;
 Fz(nn) = Fz(nn) - K_hvu.*dz_hvu./dd_hvu;
 for mm = (nn+1):N_attackers
 if att_surv(t_count,mm)==1
 dx = x_att(nn) - x_att(mm);
 if dx < d1_att
 dy = y_att(nn) - y_att(mm);
 if dy < d1_att
 dz = z_att(nn) - z_att(mm);
 ddnm = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon);
 if ddnm < d1_att
 F = (1./ddnm.^2).*alpha_att.*(1-d0_att./ddnm);%;
 Fx(nn) = Fx(nn) - F.*dx;
 Fx(mm) = Fx(mm) + F.*dx;% same
 Fy(nn) = Fy(nn) - F.*dy;% add something there
 Fy(mm) = Fy(mm) + F.*dy;% same
 Fz(nn) = Fz(nn) - F.*dz;% add something there
 Fz(mm) = Fz(mm) + F.*dz;% same
 end
 end
 end
 end
 end
 end
 end
 % b. Velocity dampening forces
 Fx = Fx - K.*vx_att;
 Fy = Fy - K.*vy_att;
 Fz = Fz - K.*vz_att;
 % c. Defender forces computation
 distance_2defenders = d1_def*ones(N_attackers, N_defenders);
 for nn = 1:N_attackers
 if att_surv(t_count,nn)==1
 for mm = 1:N_defenders
 if def_surv(t_count,mm)==1
 dx = x_att(nn) - x_def(mm);
 if dx < d1_def
 dy = y_att(nn) - y_def(mm);
 if dy < d1_def

73

 dz = z_att(nn) - z_def(mm);
 distance_2defenders(nn,mm) = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon);
 if distance_2defenders(nn,mm) < d1_def
 F = (1./(distance_2defenders(nn,mm)).^2).*alpha_def.*(1-d0_def./distance_2defenders(nn,mm));
 Fx(nn) = Fx(nn) - F.*dx;
 Fy(nn) = Fy(nn) - F.*dy;
 Fz(nn) = Fz(nn) - F.*dz;
 end
 end
 end
 end
 end
 end
 end
 % Thrust limits
 for i = 1:N_attackers
 if Fx(i) >= umax
 Fx(i) = umax;
 elseif Fx(i) <= -umax
 Fx(i) = -umax;
 end
 if Fy(i) >= umax
 Fy(i) = umax;
 elseif Fy(i) <= -umax
 Fy(i) = -umax;
 end
 if Fz(i) >= umax
 Fz(i) = umax;
 elseif Fz(i) <= -umax
 Fz(i) = -umax;
 end
 end
 %Second step in Verlet integration
 vx_att = vx_att + (ax_att_old + ax_att).*dt/2;
 vy_att = vy_att + (ay_att_old + ay_att).*dt/2;
 vz_att = vz_att + (az_att_old + az_att).*dt/2;
 ax_att_old = ax_att;
 ay_att_old = ay_att;
 az_att_old = az_att;
 %% Deterministic Approach for attrition
 rand_def = rand(1,N_defenders);
 rand_att = rand(1,N_attackers);
 rand_HVU = rand(1,1);
 P_death_att=(1-prod(1-rda2d'.*dt));
 P_death_def=(1-prod(1-rdd2a.*dt));
 P_death_HVU=(1-prod(1-ra2hvu.*dt));
 att_surv(t_count:end,rand_att<P_death_att)=0;
 def_surv(t_count:end,rand_def<P_death_def)=0;
 HVU_surv(rand_HVU<P_death_HVU)=0;
 Patt_death(t_count) = mean(P_death_att);
 Patt_rand(t_count) = mean(rand_att);
 Pdef_death(t_count) = mean(P_death_def);
 Pdef_rand(t_count) = mean(rand_def);
 tot_surv_att(t_count) = sum(att_surv(t_count,:));
 tot_surv_def(t_count) = sum(def_surv(t_count,:));
 tot_surv_HVU(t_count) = HVU_surv;
 t_count = t_count+1;
 dy = [reshape([x_att; y_att; z_att; vx_att; vy_att; vz_att],6*N_attackers,1)];
 yout = [yout; dy];
end

74

b. Reynolds Dynamics

function [yout, Patt_death, Patt_rand,Pdef_death, Pdef_rand,tot_surv_att,tot_surv_def,tot_surv_HVU] =
new_ode4_Reyn_MonteCarlo(t0,dt,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x,i)
seed = i;
rng(seed);
Patt_death = zeros(size((tf-t0)/dt));
Patt_rand = Patt_death;
Pdef_death = Patt_death;
Pdef_rand = Patt_death;
tot_surv_att = Patt_death;
tot_surv_def = Patt_death;
t_count = 1;
yout = x;
epsilon = 0.01; %distance cut off for near zero
umax = PARAMETERS.SWARM.umax;
K = PARAMETERS.SWARM.K;
K_hvu = PARAMETERS.SWARM.K_hvu;
d_alig=PARAMETERS.SWARM.N_size_al_F;
weight_alig = PARAMETERS.SWARM.w_al_F;
% d_cohes=PARAMETERS.SWARM.N_size_c_F;
weight_cohes=PARAMETERS.SWARM.w_c_F;
d_separ=PARAMETERS.SWARM.N_size_s_I;
weight_separ = PARAMETERS.SWARM.w_s_F;
weight_separ_intr = PARAMETERS.SWARM.w_s_I;
mass_att = ones(1,N_attackers);
follower_states = reshape(x(1:6*N_attackers),6,N_attackers);
x_att=follower_states(1,:);
y_att=follower_states(2,:);
z_att=follower_states(3,:);
vx_att=follower_states(4,:);
vy_att=follower_states(5,:);
vz_att=follower_states(6,:);
ax_att = 0;
ay_att = 0;
az_att = 0;
ax_att_old = ax_att;
ay_att_old = ay_att;
az_att_old = az_att;
Q = x(6*N_attackers+1:7*N_attackers);
Pd = x(7*N_attackers+1:7*N_attackers+N_defenders);
P = x(end);
def_surv = ones(1, N_defenders);
att_surv = ones(1, N_attackers);
HVU_surv = 1;
for t = t0 : dt : tf-dt
 % first step in Verlet integration
 x_att=x_att+vx_att*dt+ax_att_old.*dt.^2/2;
 y_att=y_att+vy_att*dt+ay_att_old.*dt.^2/2;
 z_att=z_att+vz_att*dt+az_att_old.*dt.^2/2;
 BN_t = bernsteinMatrix_a2b(N_Bezier,t,t0,tf);
 pd = (BN_t*Cd);
 pd = reshape(pd,3,N_defenders); % pd - position of the defenders
 follower_states = [x_att;y_att;z_att;vx_att;vy_att;vz_att];
 position = [follower_states(1:3,:) pd]; % position: 3-by-(n+m)
 velocity = [follower_states(4:6,:) vd]; % velocity: 3-by-(n+m)
 p_hvu = PARAMETERS.DEFENDER.p_hvu;
 Fx = zeros(1,N_attackers);
 Fy = Fx;
 Fz = Fx;

75

 %Velocity dampening forces
 Fx = Fx - K.*vx_att;
 Fy = Fy - K.*vy_att;
 Fz = Fz - K.*vz_att;
 counter_al = zeros(1,N_attackers);
 sumx_al = counter_al;
 sumy_al = counter_al;
 sumz_al = counter_al;
 sumx_coh = counter_al;
 sumy_coh = counter_al;
 sumz_coh = counter_al;
 counter_sep = zeros(1,N_attackers);
 sumx_sep = counter_sep;
 sumy_sep = counter_sep;
 sumz_sep = counter_sep;
 x_def=pd(1,:);
 y_def=pd(2,:);
 z_def=pd(3,:);
 counter_sep_int = zeros(1,N_attackers);
 sumx_sep_int = counter_sep_int;
 sumy_sep_int = counter_sep_int;
 sumz_sep_int = counter_sep_int;
 distance_2defenders = d_separ*ones(N_attackers, N_defenders);
 for nn = 1:N_attackers
 if att_surv(nn)==1
 dx_hvu = x_att(nn)-p_hvu(1);
 dy_hvu = y_att(nn)-p_hvu(2);
 dz_hvu = z_att(nn)-p_hvu(3);
 dd_hvu = sqrt(dx_hvu.^2+dy_hvu.^2+dz_hvu.^2);
 %Artificial Potential forces
 Fx(nn) = Fx(nn) - K_hvu.*dx_hvu./dd_hvu;
 Fy(nn) = Fy(nn) - K_hvu.*dy_hvu./dd_hvu;
 Fz(nn) = Fz(nn) - K_hvu.*dz_hvu./dd_hvu;
 for mm = (nn+1):N_attackers
 if att_surv(mm)==1
 dx = x_att(nn) - x_att(mm);
 if dx < d_alig
 dy = y_att(nn) - y_att(mm);
 if dy < d_alig
 dz = z_att(nn) - z_att(mm);
 ddnm = sqrt(dx.^2+dy.^2+dz.^2);
 if (ddnm < d_separ && ddnm > epsilon)
 counter_sep(nn) = counter_sep(nn) +1;
 counter_sep(mm) = counter_sep(mm) +1;
 sumx_sep(nn) = sumx_sep(nn) + (dx/ddnm);
 sumx_sep(mm) = sumx_sep(mm) - (dx/ddnm);
 sumy_sep(nn) = sumy_sep(nn) + (dy/ddnm);
 sumy_sep(mm) = sumy_sep(mm) - (dy/ddnm);
 sumz_sep(nn) = sumz_sep(nn) + (dz/ddnm);
 sumz_sep(mm) = sumz_sep(mm) - (dz/ddnm);
 counter_al(nn) = counter_al(nn) +1;
 counter_al(mm) = counter_al(mm) +1;
 sumx_al(nn) = sumx_al(nn) + vx_att(mm);
 sumx_al(mm) = sumx_al(mm) + vx_att(nn);
 sumy_al(nn) = sumy_al(nn) + vy_att(mm);
 sumy_al(mm) = sumy_al(mm) + vy_att(nn);
 sumz_al(nn) = sumz_al(nn) + vz_att(mm);
 sumz_al(mm) = sumz_al(mm) + vz_att(nn);
 sumx_coh(nn) = sumx_coh(nn) + x_att(mm);
 sumx_coh(mm) = sumx_coh(mm) + x_att(nn);
 sumy_coh(nn) = sumy_coh(nn) + y_att(mm);

76

 sumy_coh(mm) = sumy_coh(mm) + y_att(nn);
 sumz_coh(nn) = sumz_coh(nn) + z_att(mm);
 sumz_coh(mm) = sumz_coh(mm) + z_att(nn);
 elseif (ddnm < d_alig && ddnm > epsilon)
 counter_al(nn) = counter_al(nn) +1;
 counter_al(mm) = counter_al(mm) +1;
 sumx_al(nn) = sumx_al(nn) + vx_att(mm);
 sumx_al(mm) = sumx_al(mm) + vx_att(nn);
 sumy_al(nn) = sumy_al(nn) + vy_att(mm);
 sumy_al(mm) = sumy_al(mm) + vy_att(nn);
 sumz_al(nn) = sumz_al(nn) + vz_att(mm);
 sumz_al(mm) = sumz_al(mm) + vz_att(nn);
 sumx_coh(nn) = sumx_coh(nn) + x_att(mm);
 sumx_coh(mm) = sumx_coh(mm) + x_att(nn);
 sumy_coh(nn) = sumy_coh(nn) + y_att(mm);
 sumy_coh(mm) = sumy_coh(mm) + y_att(nn);
 sumz_coh(nn) = sumz_coh(nn) + z_att(mm);
 sumz_coh(mm) = sumz_coh(mm) + z_att(nn);

 end
 end
 end
 end
 end
 if att_surv(mm)==1
 for mm = 1:N_defenders
 if def_surv(mm)==1
 dx = x_att(nn) - x_def(mm);
 if dx < d_separ
 dy = y_att(nn) - y_def(mm);
 if dy < d_separ
 dz = z_att(nn) - z_def(mm);
 distance_2defenders(nn,mm) = sqrt(dx.^2+dy.^2+dz.^2);
 if (distance_2defenders(nn,mm) < d_separ && distance_2defenders(nn,mm) > epsilon)
 counter_sep_int(nn) = counter_sep_int(nn) +1;
 sumx_sep_int(nn) = sumx_sep_int(nn) + (dx./distance_2defenders(nn,mm));
 sumy_sep_int(nn) = sumy_sep_int(nn) + (dy./distance_2defenders(nn,mm));
 sumz_sep_int(nn) = sumz_sep_int(nn) + (dz./distance_2defenders(nn,mm));
 end
 end
 end
 end
 end
 end
 end
 end
 for nn = 1:N_attackers
 if counter_al(nn) ==0
 counter_al(nn)=1;
 end
 if counter_sep(nn) ==0
 counter_sep(nn)=1;
 end
 if counter_sep_int(nn)==0
 counter_sep_int(nn)=1;
 end
 end
 %Alignment Forces &Cohesion Forces
 Fx = Fx + mass_att.*(weight_alig.*(sumx_al./counter_al - vx_att) + weight_cohes.*(sumx_coh./counter_al - x_att));
 Fy = Fy + mass_att.*(weight_alig.*(sumy_al./counter_al - vy_att) + weight_cohes.*(sumy_coh./counter_al - y_att));
 Fz = Fz + mass_att.*(weight_alig.*(sumz_al./counter_al - vz_att) + weight_cohes.*(sumz_coh./counter_al - z_att));

77

 %Separation Forces
 Fx = Fx + mass_att.*(weight_separ.*(sumx_sep./counter_sep) +
weight_separ_intr.*(sumx_sep_int./counter_sep_int));
 Fy = Fy + mass_att.*(weight_separ.*(sumy_sep./counter_sep) +
weight_separ_intr.*(sumy_sep_int./counter_sep_int));
 Fz = Fz + mass_att.*(weight_separ.*(sumz_sep./counter_sep) +
weight_separ_intr.*(sumz_sep_int./counter_sep_int));
 % Thrust limits
 for i = 1:N_attackers
 if Fx(i) >= umax
 Fx(i) = umax;
 elseif Fx(i) <= -umax
 Fx(i) = -umax;
 end
 if Fy(i) >= umax
 Fy(i) = umax;
 elseif Fy(i) <= -umax
 Fy(i) = -umax;
 end
 if Fz(i) >= umax
 Fz(i) = umax;
 elseif Fz(i) <= -umax
 Fz(i) = -umax;
 end
 end
 ax_att = Fx./mass_att;
 ay_att = Fy./mass_att;
 az_att = Fz./mass_att;
 vx_att = vx_att + (ax_att_old + ax_att).*dt/2;
 vy_att = vy_att + (ay_att_old + ay_att).*dt/2;
 vz_att = vz_att + (az_att_old + az_att).*dt/2;
 ax_att_old = ax_att;
 ay_att_old = ay_att;
 az_att_old = az_att;
 dy = [reshape([x_att; y_att; z_att; vx_att; vy_att; vz_att],6*N_attackers,1);Q;Pd;P];
 yout = [yout; dy];
 rand_def = rand(1,N_defenders);
 rand_att = rand(1,N_attackers);
 rand_HVU = rand(1,1);
 P_death_att=(1-prod(1-rda2d'.*dt));
 P_death_def=(1-prod(1-rdd2a.*dt));
 P_death_HVU=(1-prod(1-ra2hvu.*dt));
 att_surv(rand_att<P_death_att)=0;
 def_surv(rand_def<P_death_def)=0;
 HVU_surv(rand_HVU<P_death_HVU)=0;
 Patt_death(t_count) = mean(P_death_att);
 Patt_rand(t_count) = mean(rand_att);
 Pdef_death(t_count) = mean(P_death_def);
 Pdef_rand(t_count) = mean(rand_def);
 tot_surv_att(t_count) = sum(att_surv);
 tot_surv_def(t_count) = sum(def_surv);
 tot_surv_HVU(t_count) = HVU_surv;
 t_count = t_count+1;
end

2. Weighted Dynamics and Attrition Model

a. Leonard Dynamics

function yout = new_ode4_Leon_WeightForces(t0,dt,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x,~)

78

yout = x;
epsilon = 0.01; %distance cut off for near zero
umax = PARAMETERS.SWARM.umax;
K = PARAMETERS.SWARM.K;
K_hvu = PARAMETERS.SWARM.K_hvu;
d0_att=PARAMETERS.SWARM.d0;
d1_att=PARAMETERS.SWARM.d1;
alpha_att=PARAMETERS.SWARM.alpha_i;
d0_def=PARAMETERS.SWARM.INTd0;
d1_def=PARAMETERS.SWARM.INTd1;
alpha_def=PARAMETERS.SWARM.alphaINT_i;
mass_att = ones(1,N_attackers);
att_lamda = PARAMETERS.ATTACKERWEAPON.lambda;
att_sigma = PARAMETERS.ATTACKERWEAPON.sigma;
follower_states = reshape(x(1:6*N_attackers),6,N_attackers);
x_att=follower_states(1,:);
y_att=follower_states(2,:);
z_att=follower_states(3,:);
vx_att=follower_states(4,:);
vy_att=follower_states(5,:);
vz_att=follower_states(6,:);
ax_att = 0;
ay_att = 0;
az_att = 0;
ax_att_old = ax_att;
ay_att_old = ay_att;
az_att_old = az_att;
Q = x(6*N_attackers+1:7*N_attackers); %probability of attacker survival
Pd = x(7*N_attackers+1:7*N_attackers+N_defenders); %prob of def surv
P = x(end); %prob of HVU surv
for t = t0 : dt : tf-dt
 % first step in Verlet integration
 x_att=x_att+vx_att*dt+ax_att_old.*dt.^2/2;
 y_att=y_att+vy_att*dt+ay_att_old.*dt.^2/2;
 z_att=z_att+vz_att*dt+az_att_old.*dt.^2/2;
 BN_t = bernsteinMatrix_a2b(N_Bezier,t,t0,tf);
 pd = (BN_t*Cd);
 pd = reshape(pd,3,N_defenders);
 follower_states = [x_att;y_att;z_att;vx_att;vy_att;vz_att];
 position = [follower_states(1:3,:) pd];
 p_hvu = PARAMETERS.DEFENDER.p_hvu;
 Fx = zeros(1,N_attackers);
 Fy = Fx;
 Fz = Fx;
 for nn = 1:N_attackers
 dx_hvu = x_att(nn)-p_hvu(1);
 dy_hvu = y_att(nn)-p_hvu(2);
 dz_hvu = z_att(nn)-p_hvu(3);
 dd_hvu = sqrt(dx_hvu.^2+dy_hvu.^2+dz_hvu.^2);
 Fx(nn) = Fx(nn) - (K_hvu.*dx_hvu./dd_hvu + K.*vx_att(nn));
 Fy(nn) = Fy(nn) - (K_hvu.*dy_hvu./dd_hvu + K.*vy_att(nn));
 Fz(nn) = Fz(nn) - (K_hvu.*dz_hvu./dd_hvu + K.*vz_att(nn));
 for mm = (nn+1):N_attackers
 dx = x_att(nn) - x_att(mm);
 if dx < d1_att
 dy = y_att(nn) - y_att(mm);
 if dy < d1_att
 dz = z_att(nn) - z_att(mm);
 ddnm = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon);
 if ddnm < d1_att
 F = (1./ddnm.^2).*alpha_att.*(1-d0_att./ddnm);%;

79

 Fx(nn) = Fx(nn) - Q(mm).*F.*dx;% weighted forces
 Fx(mm) = Fx(mm) + Q(nn).*F.*dx;
 Fy(nn) = Fy(nn) - Q(mm).*F.*dy;
 Fy(mm) = Fy(mm) + Q(nn).*F.*dy;
 Fz(nn) = Fz(nn) - Q(mm).*F.*dz;
 Fz(mm) = Fz(mm) + Q(nn).*F.*dz;
 end
 end
 end
 end
 end
 x_def=pd(1,:);
 y_def=pd(2,:);
 z_def=pd(3,:);
 distance_2defenders = d1_def*ones(N_attackers, N_defenders);
 for nn = 1:N_attackers
 for mm = 1:N_defenders
 dx = x_att(nn) - x_def(mm);
 if dx < d1_def
 dy = y_att(nn) - y_def(mm);
 if dy < d1_def
 dz = z_att(nn) - z_def(mm);
 distance_2defenders(nn,mm) = sqrt(dx.^2+dy.^2+dz.^2);
 distance_2defenders(nn,mm) = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon);
 if distance_2defenders(nn,mm) < d1_def
 F = (1./(distance_2defenders(nn,mm)).^2).*alpha_def.*(1-d0_def./distance_2defenders(nn,mm));
 Fx(nn) = Fx(nn) - Pd(mm).*F.*dx;
 Fy(nn) = Fy(nn) - Pd(mm).*F.*dy;
 Fz(nn) = Fz(nn) - Pd(mm).*F.*dz;
 end
 end
 end
 end
 end
 % Thrust limits
 for i = 1:N_attackers
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 if Fx(i) >= umax
 Fx(i) = umax;
 elseif Fx(i) <= -umax
 Fx(i) = -umax;
 end
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 if Fy(i) >= umax
 Fy(i) = umax;
 elseif Fy(i) <= -umax
 Fy(i) = -umax;
 end
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 if Fz(i) >= umax
 Fz(i) = umax;
 elseif Fz(i) <= -umax
 Fz(i) = -umax;
 end
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 end
 % compute probability of attacker/defender/hvu survival
 rda2d = PARAMETERS.DEFENDERWEAPON.lambda*normcdf((PARAMETERS.DEFENDERWEAPON.F -
PARAMETERS.DEFENDERWEAPON.a*distance_2defenders.^2)/PARAMETERS.DEFENDERWEAPON.sigma,0,
1);
 Pdmat = repmat(Pd',[N_attackers 1]);

80

 Q = Q.*(1-(1-prod(1-(rda2d.*Pdmat)'.*dt)))';
 % compute probability of defender survival
 rdd2a = att_lamda*normcdf((PARAMETERS.ATTACKERWEAPON.F -
PARAMETERS.ATTACKERWEAPON.a*distance_2defenders.^2)/att_sigma,0,1);
 Qmat = repmat(Q,[1 N_defenders]);
 Pd = Pd.*(1-(1-prod(1-(rdd2a.*Qmat).*dt)))';
 % compute probability of HVU survival
 distance_2HVU_sq = (position(1,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(1)).^2 +
(position(2,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(2)).^2 + (position(3,1:N_attackers) -
PARAMETERS.DEFENDER.p_hvu(3)).^2;
 ra2hvu = att_lamda*normcdf((PARAMETERS.ATTACKERWEAPON.F -
PARAMETERS.ATTACKERWEAPON.a*distance_2HVU_sq)/att_sigma,0,1);
 P = P.*(1-(1-prod(1-ra2hvu.*dt)));
 ax_att = Fx./mass_att;
 ay_att = Fy./mass_att;
 az_att = Fz./mass_att;
 vx_att = vx_att + (ax_att_old + ax_att).*dt/2;
 vy_att = vy_att + (ay_att_old + ay_att).*dt/2;
 vz_att = vz_att + (az_att_old + az_att).*dt/2;
 ax_att_old = ax_att;
 ay_att_old = ay_att;
 az_att_old = az_att;
 dy = [reshape([x_att; y_att; z_att; vx_att; vy_att; vz_att],6*N_attackers,1);Q;Pd;P];
 yout = [yout; dy];
end

b. Reynolds Dynamics

function yout = new_ode4_Reyn_WeightForces(t0,dt,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x)
yout = x;
epsilon = 0.01; %distance cut off for near zero
umax = PARAMETERS.SWARM.umax;
K = PARAMETERS.SWARM.K;
K_hvu = PARAMETERS.SWARM.K_hvu;
d_alig=PARAMETERS.SWARM.N_size_al_F;
weight_alig = PARAMETERS.SWARM.w_al_F;
% d_cohes=PARAMETERS.SWARM.N_size_c_F;
weight_cohes=PARAMETERS.SWARM.w_c_F;
d_separ=PARAMETERS.SWARM.N_size_s_I;
weight_separ = PARAMETERS.SWARM.w_s_F;
weight_separ_intr = PARAMETERS.SWARM.w_s_I;
mass_att = ones(1,N_attackers);
follower_states = reshape(x(1:6*N_attackers),6,N_attackers); %% x y z vx vy vz
x_att=follower_states(1,:);
y_att=follower_states(2,:);
z_att=follower_states(3,:);
vx_att=follower_states(4,:);
vy_att=follower_states(5,:);
vz_att=follower_states(6,:);
ax_att = 0;
ay_att = 0;
az_att = 0;
ax_att_old = ax_att;
ay_att_old = ay_att;
az_att_old = az_att;
Q = x(6*N_attackers+1:7*N_attackers); %probability of attacker survival
Pd = x(7*N_attackers+1:7*N_attackers+N_defenders); %prob of def surv
P = x(end);
for t = t0 : dt : tf-dt
 % first step in Verlet integration

81

 x_att=x_att+vx_att*dt+ax_att_old.*dt.^2/2;
 y_att=y_att+vy_att*dt+ay_att_old.*dt.^2/2;
 z_att=z_att+vz_att*dt+az_att_old.*dt.^2/2;
 BN_t = bernsteinMatrix_a2b(N_Bezier,t,t0,tf);
 pd = (BN_t*Cd);
 pd = reshape(pd,3,N_defenders); % pd - position of the defenders
 follower_states = [x_att;y_att;z_att;vx_att;vy_att;vz_att];
 position = [follower_states(1:3,:) pd]; % position: 3-by-(n+m)
 velocity = [follower_states(4:6,:) vd]; % velocity: 3-by-(n+m)
 p_hvu = PARAMETERS.DEFENDER.p_hvu;
 Fx = zeros(1,N_attackers);
 Fy = Fx;
 Fz = Fx;
 counter_al = zeros(1,N_attackers);
 sumx_al = counter_al;
 sumy_al = counter_al;
 sumz_al = counter_al;
 sumx_coh = counter_al;
 sumy_coh = counter_al;
 sumz_coh = counter_al;
 counter_sep = zeros(1,N_attackers);
 sumx_sep = counter_sep;
 sumy_sep = counter_sep;
 sumz_sep = counter_sep;
 x_def=pd(1,:);
 y_def=pd(2,:);
 z_def=pd(3,:);
 counter_sep_int = zeros(1,N_attackers);
 sumx_sep_int = counter_sep_int;
 sumy_sep_int = counter_sep_int;
 sumz_sep_int = counter_sep_int;
 distance_2defenders = d_separ*ones(N_attackers, N_defenders);
 for nn = 1:N_attackers
 dx_hvu = x_att(nn)-p_hvu(1);
 dy_hvu = y_att(nn)-p_hvu(2);
 dz_hvu = z_att(nn)-p_hvu(3);
 dd_hvu = sqrt(dx_hvu.^2+dy_hvu.^2+dz_hvu.^2);
 %Artificial Potential forces
 Fx(nn) = Fx(nn) - (K_hvu.*dx_hvu./dd_hvu + K.*vx_att(nn));
 Fy(nn) = Fy(nn) - (K_hvu.*dy_hvu./dd_hvu + K.*vy_att(nn));
 Fz(nn) = Fz(nn) - (K_hvu.*dz_hvu./dd_hvu + K.*vz_att(nn));
 for mm = (nn+1):N_attackers
 dx = x_att(nn) - x_att(mm);
 if dx < d_alig
 dy = y_att(nn) - y_att(mm);
 if dy < d_alig
 dz = z_att(nn) - z_att(mm);
 ddnm = sqrt(dx.^2+dy.^2+dz.^2);
 if (ddnm < d_separ && ddnm > epsilon)
 counter_sep(nn) = counter_sep(nn) +1;
 counter_sep(mm) = counter_sep(mm) +1;
 sumx_sep(nn) = sumx_sep(nn) + (dx/ddnm);
 sumx_sep(mm) = sumx_sep(mm) - (dx/ddnm);
 sumy_sep(nn) = sumy_sep(nn) + (dy/ddnm);
 sumy_sep(mm) = sumy_sep(mm) - (dy/ddnm);
 sumz_sep(nn) = sumz_sep(nn) + (dz/ddnm);
 sumz_sep(mm) = sumz_sep(mm) - (dz/ddnm);
 counter_al(nn) = counter_al(nn) +1;
 counter_al(mm) = counter_al(mm) +1;
 sumx_al(nn) = sumx_al(nn) + vx_att(mm);
 sumx_al(mm) = sumx_al(mm) + vx_att(nn);

82

 sumy_al(nn) = sumy_al(nn) + vy_att(mm);
 sumy_al(mm) = sumy_al(mm) + vy_att(nn);
 sumz_al(nn) = sumz_al(nn) + vz_att(mm);
 sumz_al(mm) = sumz_al(mm) + vz_att(nn);
 sumx_coh(nn) = sumx_coh(nn) + x_att(mm);
 sumx_coh(mm) = sumx_coh(mm) + x_att(nn);
 sumy_coh(nn) = sumy_coh(nn) + y_att(mm);
 sumy_coh(mm) = sumy_coh(mm) + y_att(nn);
 sumz_coh(nn) = sumz_coh(nn) + z_att(mm);
 sumz_coh(mm) = sumz_coh(mm) + z_att(nn);
 elseif (ddnm < d_alig && ddnm > epsilon)
 counter_al(nn) = counter_al(nn) +1;
 counter_al(mm) = counter_al(mm) +1;
 sumx_al(nn) = sumx_al(nn) + vx_att(mm);
 sumx_al(mm) = sumx_al(mm) + vx_att(nn);
 sumy_al(nn) = sumy_al(nn) + vy_att(mm);
 sumy_al(mm) = sumy_al(mm) + vy_att(nn);
 sumz_al(nn) = sumz_al(nn) + vz_att(mm);
 sumz_al(mm) = sumz_al(mm) + vz_att(nn);
 sumx_coh(nn) = sumx_coh(nn) + x_att(mm);
 sumx_coh(mm) = sumx_coh(mm) + x_att(nn);
 sumy_coh(nn) = sumy_coh(nn) + y_att(mm);
 sumy_coh(mm) = sumy_coh(mm) + y_att(nn);
 sumz_coh(nn) = sumz_coh(nn) + z_att(mm);
 sumz_coh(mm) = sumz_coh(mm) + z_att(nn);
 end
 end
 end
 end
 for mm = 1:N_defenders
 dx = x_att(nn) - x_def(mm);
 if dx < d_separ
 dy = y_att(nn) - y_def(mm);
 if dy < d_separ
 dz = z_att(nn) - z_def(mm);
 distance_2defenders(nn,mm) = sqrt(dx.^2+dy.^2+dz.^2);
 if (distance_2defenders(nn,mm) < d_separ && distance_2defenders(nn,mm) > epsilon)
 counter_sep_int(nn) = counter_sep_int(nn) +1;
 sumx_sep_int(nn) = sumx_sep_int(nn) + Pd(mm).*(dx./distance_2defenders(nn,mm));
 sumy_sep_int(nn) = sumy_sep_int(nn) + Pd(mm).*(dy./distance_2defenders(nn,mm));
 sumz_sep_int(nn) = sumz_sep_int(nn) + Pd(mm).*(dz./distance_2defenders(nn,mm));
 end
 end
 end
 end
 end
 for nn = 1:N_attackers
 if counter_al(nn) ==0
 counter_al(nn)=1;
 end
 if counter_sep(nn) ==0
 counter_sep(nn)=1;
 end
 if counter_sep_int(nn)==0
 counter_sep_int(nn)=1;
 end
 %Alignment Forces &Cohesion Forces
 Fx = Fx +Q(nn).*mass_att.*(weight_separ.*(sumx_sep./counter_sep) + weight_alig.*(sumx_al./counter_al -
vx_att(nn)) + weight_cohes.*(sumx_coh./counter_al - x_att(nn)));
 Fy = Fy +Q(nn).*mass_att.*(weight_separ.*(sumy_sep./counter_sep) + weight_alig.*(sumy_al./counter_al -
vy_att(nn)) + weight_cohes.*(sumy_coh./counter_al - y_att(nn)));

83

 Fz = Fz +Q(nn).*mass_att.*(weight_separ.*(sumz_sep./counter_sep) + weight_alig.*(sumz_al./counter_al -
vz_att(nn)) + weight_cohes.*(sumz_coh./counter_al - z_att(nn)));
 %Separation Forces
 Fx = Fx + mass_att.*(weight_separ_intr.*(sumx_sep_int./counter_sep_int));
 Fy = Fy + mass_att.*(weight_separ_intr.*(sumy_sep_int./counter_sep_int));
 Fz = Fz + mass_att.*(weight_separ_intr.*(sumz_sep_int./counter_sep_int));
 end
 % Thrust limits
 for i = 1:N_attackers
 if Fx(i) >= umax
 Fx(i) = umax;
 elseif Fx(i) <= -umax
 Fx(i) = -umax;
 end
 if Fy(i) >= umax
 Fy(i) = umax;
 elseif Fy(i) <= -umax
 Fy(i) = -umax;
 end
 if Fz(i) >= umax
 Fz(i) = umax;
 elseif Fz(i) <= -umax
 Fz(i) = -umax;
 end
 end
 % compute probability of attacker/defender/hvu survival
 rda2d = PARAMETERS.DEFENDERWEAPON.lambda*normcdf((PARAMETERS.DEFENDERWEAPON.F -
PARAMETERS.DEFENDERWEAPON.a*distance_2defenders.^2)/PARAMETERS.DEFENDERWEAPON.sigma,0,
1);
 Pdmat = repmat(Pd',[N_attackers 1]);
 Q = Q.*(1-(1-prod(1-(rda2d.*Pdmat)'.*dt)))';
 % compute probability of defender survival
 rdd2a = PARAMETERS.ATTACKERWEAPON.lambda*normcdf((PARAMETERS.ATTACKERWEAPON.F -
PARAMETERS.ATTACKERWEAPON.a*distance_2defenders.^2)/PARAMETERS.ATTACKERWEAPON.sigma,0,
1);
 Qmat = repmat(Q,[1 N_defenders]);
 Pd = Pd.*(1-(1-prod(1-(rdd2a.*Qmat).*dt)))';
 % compute probability of HVU survival
 distance_2HVU_sq = (position(1,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(1)).^2 +
(position(2,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(2)).^2 + (position(3,1:N_attackers) -
PARAMETERS.DEFENDER.p_hvu(3)).^2;
 ra2hvu = PARAMETERS.ATTACKERWEAPON.lambda*normcdf((PARAMETERS.ATTACKERWEAPON.F -
PARAMETERS.ATTACKERWEAPON.a*distance_2HVU_sq)/PARAMETERS.ATTACKERWEAPON.sigma,0,1);
 P = P.*(1-(1-prod(1-ra2hvu.*dt)));
 ax_att = Fx./mass_att;
 ay_att = Fy./mass_att;
 az_att = Fz./mass_att;
 vx_att = vx_att + (ax_att_old + ax_att).*dt/2;
 vy_att = vy_att + (ay_att_old + ay_att).*dt/2;
 vz_att = vz_att + (az_att_old + az_att).*dt/2;
 ax_att_old = ax_att;
 ay_att_old = ay_att;
 az_att_old = az_att;
 dy = [reshape([x_att; y_att; z_att; vx_att; vy_att; vz_att],6*N_attackers,1);Q;Pd;P];
 yout = [yout; dy];
end

84

3. Threshold Dynamics and Attrition Models

a. Leonard Dynamics

function yout = new_ode4_Leon_ThreshForces_v2(t0,dt,tf,Cd,N_attackers, N_defenders, N_Bezier,
PARAMETERS,x,~)
yout = x;
epsilon = 0.01; %distance cut off for near zero
umax = PARAMETERS.SWARM.umax;
K = PARAMETERS.SWARM.K;
K_hvu = PARAMETERS.SWARM.K_hvu;
d0_att=PARAMETERS.SWARM.d0;
d1_att=PARAMETERS.SWARM.d1;
alpha_att=PARAMETERS.SWARM.alpha_i;
d0_def=PARAMETERS.SWARM.INTd0;
d1_def=PARAMETERS.SWARM.INTd1;
alpha_def=PARAMETERS.SWARM.alphaINT_i;
mass_att = ones(1,N_attackers);
att_lamda = PARAMETERS.ATTACKERWEAPON.lambda;
att_sigma = PARAMETERS.ATTACKERWEAPON.sigma;
follower_states = reshape(x(1:6*N_attackers),6,N_attackers); %% x y z vx vy vz
x_att=follower_states(1,:);
y_att=follower_states(2,:);
z_att=follower_states(3,:);
vx_att=follower_states(4,:);
vy_att=follower_states(5,:);
vz_att=follower_states(6,:);
ax_att = 0;
ay_att = 0;
az_att = 0;
ax_att_old = ax_att;
ay_att_old = ay_att;
az_att_old = az_att;
Q = x(6*N_attackers+1:7*N_attackers); %probability of attacker survival
Pd = x(7*N_attackers+1:7*N_attackers+N_defenders); %prob of def surv
P = x(end); %prob of HVU surv
for t = t0 : dt : tf-dt
 % first step in Verlet integration
 x_att=x_att+vx_att*dt+ax_att_old.*dt.^2/2;
 y_att=y_att+vy_att*dt+ay_att_old.*dt.^2/2;
 z_att=z_att+vz_att*dt+az_att_old.*dt.^2/2;
 BN_t = bernsteinMatrix_a2b(N_Bezier,t,t0,tf);
 pd = (BN_t*Cd);
 pd = reshape(pd,3,N_defenders); % pd - position of the defenders
 follower_states = [x_att;y_att;z_att;vx_att;vy_att;vz_att];
 position = [follower_states(1:3,:) pd];
 p_hvu = PARAMETERS.DEFENDER.p_hvu;
 Fx = zeros(1,N_attackers);
 Fy = Fx;
 Fz = Fx;
 for nn = 1:N_attackers
 if Q(nn)>= 0.5
 dx_hvu = x_att(nn)-p_hvu(1);
 dy_hvu = y_att(nn)-p_hvu(2);
 dz_hvu = z_att(nn)-p_hvu(3);
 dd_hvu = sqrt(dx_hvu.^2+dy_hvu.^2+dz_hvu.^2);
 Fx(nn) = Fx(nn) - K_hvu.*dx_hvu./dd_hvu - K.*vx_att(nn);
 Fy(nn) = Fy(nn) - K_hvu.*dy_hvu./dd_hvu - K.*vy_att(nn);
 Fz(nn) = Fz(nn) - K_hvu.*dz_hvu./dd_hvu - K.*vz_att(nn);
 end

85

 for mm = (nn+1):N_attackers
 dx = x_att(nn) - x_att(mm);
 if dx < d1_att
 dy = y_att(nn) - y_att(mm);
 if dy < d1_att
 dz = z_att(nn) - z_att(mm);
 ddnm = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon);
 if ddnm < d1_att
 if Q(mm)>= 0.5
 F = (1./ddnm.^2).*alpha_att.*(1-d0_att./ddnm);
 Fx(nn) = Fx(nn) - F.*dx;
 Fx(mm) = Fx(mm) + F.*dx;
 Fy(nn) = Fy(nn) - F.*dy;
 Fy(mm) = Fy(mm) + F.*dy;
 Fz(nn) = Fz(nn) - F.*dz;
 Fz(mm) = Fz(mm) + F.*dz;
 end
 end
 end
 end
 end
 end
 % c. Defender forces computation
 x_def=pd(1,:);
 y_def=pd(2,:);
 z_def=pd(3,:);
 distance_2defenders = d1_def*ones(N_attackers, N_defenders);
 for nn = 1:N_attackers
 for mm = 1:N_defenders
 dx = x_att(nn) - x_def(mm);
 if dx < d1_def
 dy = y_att(nn) - y_def(mm);
 if dy < d1_def
 dz = z_att(nn) - z_def(mm);
 distance_2defenders(nn,mm) = sqrt(dx.^2+dy.^2+dz.^2);
 distance_2defenders(nn,mm) = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon);
 if distance_2defenders(nn,mm) < d1_def
 if Pd(mm)>=0.5
 F = (1./(distance_2defenders(nn,mm)).^2).*alpha_def.*(1-d0_def./distance_2defenders(nn,mm));
 Fx(nn) = Fx(nn) - F.*dx;
 Fy(nn) = Fy(nn) - F.*dy;
 Fz(nn) = Fz(nn) - F.*dz;
 end
 end
 end
 end
 end
 end
 % Thrust limits
 for i = 1:N_attackers
 if Fx(i) >= umax
 Fx(i) = umax;
 elseif Fx(i) <= -umax
 Fx(i) = -umax;
 end
 if Fy(i) >= umax
 Fy(i) = umax;
 elseif Fy(i) <= -umax
 Fy(i) = -umax;
 end
 if Fz(i) >= umax

86

 Fz(i) = umax;
 elseif Fz(i) <= -umax
 Fz(i) = -umax;
 end
 end
 %THRESHOLD ATTRITION MODEL IMPLEMENTATION
% compute probability of attacker/defender/hvu survival
 rda2d = PARAMETERS.DEFENDERWEAPON.lambda*normcdf((PARAMETERS.DEFENDERWEAPON.F -
PARAMETERS.DEFENDERWEAPON.a*distance_2defenders.^2)/PARAMETERS.DEFENDERWEAPON.sigma,0,
1);
 % Pdmat = repmat(Pd',[N_attackers 1]);
 for mm = 1:N_defenders
 if Pd(mm)<0.5
 rda2d(:,mm) = 0;
 end
 end
 Q = Q.*(1-(1-prod(1-(rda2d)'.*dt)))';
 % compute probability of defender survival
 rdd2a = att_lamda*normcdf((PARAMETERS.ATTACKERWEAPON.F -
PARAMETERS.ATTACKERWEAPON.a*distance_2defenders.^2)/att_sigma,0,1);
 % Qmat = repmat(Q,[1 N_defenders]);
 for nn = 1:N_attackers
 if Q(nn)< 0.5
 rdd2a(nn,:) = 0;
 end
 end
 Pd = Pd.*(1-(1-prod(1-(rdd2a).*dt)))';
 % compute probability of HVU survival
 distance_2HVU_sq = (position(1,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(1)).^2 +
(position(2,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(2)).^2 + (position(3,1:N_attackers) -
PARAMETERS.DEFENDER.p_hvu(3)).^2;
 ra2hvu = att_lamda*normcdf((PARAMETERS.ATTACKERWEAPON.F -
PARAMETERS.ATTACKERWEAPON.a*distance_2HVU_sq)/att_sigma,0,1);
 for nn = 1:N_attackers
 if Q(nn)< 0.5
 ra2hvu(1,nn) = 0;
 end
 end
 P = P.*(1-(1-prod(1-ra2hvu.*dt)));
 ax_att = Fx./mass_att;
 ay_att = Fy./mass_att;
 az_att = Fz./mass_att;
 vx_att = vx_att + (ax_att_old + ax_att).*dt/2;
 vy_att = vy_att + (ay_att_old + ay_att).*dt/2;
 vz_att = vz_att + (az_att_old + az_att).*dt/2;
 ax_att_old = ax_att;
 ay_att_old = ay_att;
 az_att_old = az_att;
 dy = [reshape([x_att; y_att; z_att; vx_att; vy_att; vz_att],6*N_attackers,1);Q;Pd;P];
 yout = [yout; dy];
end

B. COST FUNCTIONS

1. HVU PROTECTION

function J = costFunc_singleswarm(x,x_init,t0,h,tf,N_Bezier, N_attackers, N_defenders, N_omega, PARAMETERS)
Cd = reshape(x,[(N_Bezier+1),N_defenders*PARAMETERS.DEFENDER.Nx]);
P_new = zeros(1, N_omega);
parfor i = 1:N_omega

87

 x_real = PARAMETERS.ode_func(t0,h,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x_init{i}, i);
 P_new(i) = x_real(end);
end
Pnew = (sum(1 - P_new)/N_omega);
J = Pnew;
end

2. AIR SUPERIORITY

function J = costFunc_min_att(x,x_init,t0,h,tf,N_Bezier, N_attackers, N_defenders, N_omega, PARAMETERS)
Cd = reshape(x,[(N_Bezier+1),N_defenders*PARAMETERS.DEFENDER.Nx]);
length_time = (tf-t0)/h+1;
P_new = zeros(1, N_omega);
for i = 1:N_omega
 x_real = PARAMETERS.ode_func(t0,h,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x_init{i}, i);
 temp1 = reshape(x_real,7*N_attackers+N_defenders+1,length_time);
 att_surv = temp1(6*N_attackers+1:7*N_attackers,:);
 P_new(i) = mean(att_surv(:,end));
end
Pnew = (sum(P_new)/N_omega);
J = Pnew;
end

88

THIS PAGE INTENTIONALLY LEFT BLANK

89

LIST OF REFERENCES

[1] N. Wiener, “Men, Machines, and the World about.,” N.Y. Int. Univ. Press, pp.
793–799, 1954.

[2] Department Of Defense, “Unmanned Systems Roadmap 2007–2032,”
Washington, DC, USA, Technical, 2007. Accessed: Apr. 12, 2020. [Online].
Available: http://www.dtic.mil/docs/citations/ADA475002.

[3] C. Walton, P. Lambrianides, I. Kaminer, J. Royset, and Q. Gong, “Optimal
motion planning in rapid-fire combat situations with attacker uncertainty,” Nav.
Res. Logist. NRL, vol. 65, no. 2, pp. 101–119, Mar. 2018, doi: 10.1002/nav.21790.

[4] R. T. Farouki, “The Bernstein polynomial basis: A centennial retrospective,”
Comput. Aided Geom. Des., vol. 29, no. 6, pp. 379–419, 2012, doi: 10.1016/
j.cagd.2012.03.001.

[5] V. Cichella, I. Kaminer, C. Walton, and N. Hovakimyan, “Optimal Motion
Planning for Differentially Flat Systems Using Bernstein Approximation,” IEEE
Control Syst. Lett., vol. 2, no. 1, pp. 181–186, Jan. 2018, doi: 10.1109/
LCSYS.2017.2778313.

[6] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for computing
the distance between complex objects in three-dimensional space,” IEEE J.
Robot. Autom., vol. 4, no. 2, pp. 193–203, Apr. 1988, doi: 10.1109/56.2083.

[7] V. Cichella, I. Kaminer, C. Walton, N. Hovakimyan, and A. Pascoal, “Bernstein
approximation of optimal control problems,” arXiv.org, 2018, Accessed: Apr. 12,
2020. [Online]. Available: http://search.proquest.com/docview/2158090969/?pq-
origsite=primo.

[8] V. Cichella, I. Kaminer, C. Walton, N. Hovakimyan, and A. M. Pascoal,
“Consistent approximation of optimal control problems using Bernstein
polynomials,” in 2019 IEEE 58th Conference on Decision and Control (CDC),
Dec. 2019, pp. 4292–4297, doi: 10.1109/CDC40024.2019.9029677.

[9] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and
coordinated control of groups,” in Proceedings of the 40th IEEE Conference on
Decision and Control (Cat. No.01CH37228), Dec. 2001, vol. 3, pp. 2968–2973
vol.3, doi: 10.1109/CDC.2001.980728.

[10] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative Control of Mobile Sensor
Networks: Adaptive Gradient Climbing in a Distributed Environment,” IEEE
Trans. Autom. Control, vol. 49, no. 8, pp. 1292–1302, Aug. 2004, doi: 10.1109/
TAC.2004.832203.

90

[11] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,”
ACM SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 25–34, 1987, doi: 10.1145/
37402.37406.

[12] U. Mehmood et al., “Declarative vs Rule-based Control for Flocking Dynamics,”
ArXiv171010013 Cs, Oct. 2017, Accessed: Apr. 10, 2020. [Online]. Available:
http://arxiv.org/abs/1710.10013.

[13] N. Krizou, “Nontrivial Power-Law Scaling of Peak Forces during Granular
Impact,” M.S. thesis, Monterey, CA; Naval Postgraduate School, 2019.

[14] “Most Unmanned Aerial Vehicles (UAVs) airborne simultaneously,” Guinness
World Records. https://www.guinnessworldrecords.com/world-records/373319-
most%C2%A0unmanned-aerial%C2%A0vehicles%C2%A0uavs-
airborne%C2%A0simultaneously%C2%A05-kg-or-less (accessed Apr. 29, 2020).

[15] A. Washburn, Combat Modeling, 1st ed. 2009. New York, NY: Springer U.S.,
2009.

91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	20Jun_Tsatsanifos_Theodoros_First8
	20Jun_Tsatsanifos_Theodoros
	I. INTRODUCING THE OPTIMAL MOTION PLANNING PROBLEM FOR COUNTER - SWARMING
	A. AUTONOMY IN THE WARFARE OF TODAY AND TOMORROW
	B. introducing the counter-swarming problem
	1. High Value Unit Protection
	2. Air Superiority Operations

	C. Introducing the trajectory generation procedure using Bernstein polynomials and Bezier curves

	II. modeling the dynamics and mutual aTtrition FUNCTIONS of a large scale swarm of autonomous systems
	A. attacking swarm dynamics model
	1. Virtual Body Artificial Potential
	2. Reynolds’ Rule-Based Model

	B. Mutual Attrition model
	1. Weighted Attrition Model
	2. Attrition Model with Thresholds on Survival Probabilities

	C. evaluating the performance of the trajectory optimization algorithm compared with intuition concerning the stationing of the defending vehicles
	D. CONTRIBUTION of molecular dynamics algorithms TO THE computational effectiveness of our framework

	III. the ghost-herding problem and the proposed interaction and attrition models
	A. the ghost-herding problem — generation of NON-physical solutions
	B. proposed interaction and attrition models for optimization
	1. Dynamics and Attrition Model “Weighted” with Survival Probabilities
	a. Weighted Dynamics Model
	(1) Virtual Body Artificial Potential
	(2) Reynold’s Rule-based Model

	b. Weighted Attrition Model

	2. Dynamics and Attrition Models Correlated with a Survival Probability Cutoff “Threshold”
	a. Threshold Dynamics Model
	(1) Virtual Body Artificial Potential
	(2) Reynold’s Rule-based Model

	b. Threshold Attrition Model

	C. Monte Carlo Simulation model for analysis
	a. Monte Carlo Attrition Model
	b. Monte Carlo Dynamics Model
	(1) Virtual Body Artificial Potential
	(2) Reynold’s Rule-based Model

	IV. optimization results and analysis with mission objective to minimize HVU destruction probability
	A. local and global minimum solutions for optimization problems spanning a configuration space of infinite dimensions
	B. eliminating the ghost-herding problem with our proposed models
	C. comparing the performance of the proposed models by computing the number of defenders required to DEFEND THE HVU FROM a swarm attack
	D. analysis of the optimization results
	1. Checkpoints A1–B1: Not Enough Defenders for HVU Protection
	2. Checkpoints A2–B2: Differentiation between Weighted and Threshold Models
	3. Checkpoints A3–B3: Sufficient

	E. peripheral threat axis

	V. OPTIMIZATION RESULTS with respect to the MISSION OBJECTIVE of air superiority
	A. COMPARING OPTIMIZATION RESULTS for A CONFRONTATION WITH THE SAME CONDITIONS BUT DIFFERENT COST FUNCTIONs (HVU PROTECTION — AIR SUPERIORITY)
	B. COMPARING THE PERFORMANCE OF THE PROPOSED MODELS BY COMPUTING THE NUMBER OF DEFENDERS REQUIRED TO OBTAIN AIR — SUPERIORITY
	C. analysis of the optimization results
	1. Checkpoints A1–B1: Models’ Converging Region
	2. Checkpoints A2–B2: Ghost-Herding Problem Region

	VI. conclusion
	appendix. matlab files
	A. COMPUTATIONALY IMPROVED DYNAMICS / ATTRITION MODELS
	1. Monte Carlo Dynamics and Attrition Model
	a. Leonard Dynamics
	b. Reynolds Dynamics

	2. Weighted Dynamics and Attrition Model
	a. Leonard Dynamics
	b. Reynolds Dynamics

	3. Threshold Dynamics and Attrition Models
	a. Leonard Dynamics

	B. Cost functions
	1. HVU PROTECTION
	2. AIR SUPERIORITY

	List of References
	initial distribution list

