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ABSTRACT 

 This thesis develops robust tactics for countering multi-domain super swarms. 

Previous research has provided tools for assessing adversarial swarms’ internal 

cooperating strategies, quantifying risk based on swarm and weapons models, and 

generating optimal defender trajectories. In this research, we develop a simulation-based 

testbed for experimental validation of these strategies and a database of adversarial 

swarming models against which to test. 

 In this research, the aforementioned simulation-based testbed is examined from 

the perspective of computational efficiency. A significant computational advantage is 

obtained by replacing the Runge Kutta with the Verlet integration scheme frequently used 

in the molecular dynamics community. This almost equally numerically stable 

framework offers an impressive performance advantage. 

 Additionally, this research seeks to find the ideal balance between the 

deterministic nature of the dynamics of adversarial swarms and the requirement for a 

probabilistic approach in order to model the mutual attrition between opposing agents 

during combat situations. To achieve this end, several models of dynamics and attrition 

are introduced for optimal motion planning. Their outcomes are compared with a Monte 

Carlo simulation model, in which survivability is partially influenced by random number 

generation that aims to simulate the unpredictability exhibited in the real world. 
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I. INTRODUCING THE OPTIMAL MOTION PLANNING 
PROBLEM FOR COUNTER - SWARMING 

A. AUTONOMY IN THE WARFARE OF TODAY AND TOMORROW 

In 1954, the American mathematician Norbert Wiener, father of Cybernetics, in 

his article “Men, Machines and the World About” [1] argued that a machine is more 

likely to use better judgment in an emergency than a human would. A human who is not 

trained to deal with a specific emergency situation will almost certainly make the wrong 

decision when such an event arises.  

In [1] Wiener wrote that the first industrial revolution, which changed our lives in 

all possible aspects, enabled us to replace human and animal power with the much 

superior strength and endurance of the machine. But he added, in 1954, a new industrial 

revolution was taking place that would replace less complex human judgment with the 

discrimination of the machine. This fact cannot be avoided; rather, it could used by 

humans to their advantage. 

According to the U.S. Department of Defense (DOD) document, Unmanned 

Systems Roadmap (2007–2032) [2], the use of autonomous systems in the military 

domain is already established and going to increase continuously with the integration in 

operations of systems that have augmented capabilities made possible by the 

technological advancements of our time. That development is desirable because 

autonomous systems represent a relatively inexpensive way to project power with the 

minimum loss of human life. Moreover, as we may see in Figure 1, today autonomous 

systems are widely employed in every branch of the military and in every type of 

operation. Furthermore, the use of such systems is going to continue to grow in the near 

future. 
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Figure 1. DOD unmanned systems, present and future roles. Source: [2]. 

B. INTRODUCING THE COUNTER-SWARMING PROBLEM  

In this thesis research we are addressing the problem of defending against super 

swarms, consisting of approximately 500 autonomous aerial assets. The proposed 

solution utilizes a modeling framework from [3] that enables the efficient computation of 

numerical solutions for the task of trajectory generation.  

In our simulation model, multiple opposing agents with pairwise interaction 

dynamics and a model of reciprocal attrition are combined with a cost function that 

encompasses a broad class of mission objectives. Our model output is trajectories that 

become the inputs in the high level controllers of the defending forces. These paths are 

optimized for combat situations with rapid fire rate, and multiple attacking and defending 

agents where the interaction forces matter for obstacle avoidance purposes, but have to be 

correctly constrained in order to avoid unrealistic solutions. Computationally efficient 
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algorithms are implemented in order to project our results in situations with a high 

number of agents inside the swarms. 

In this thesis research report we are presenting the challenges of modeling the 

interaction forces between opposing swarms inside the aforementioned framework, and 

we are proposing revised interaction models that give more realistic solutions in our 

counter-swarm problem. Two sets of results are presented in Chapters IV and V for the 

following two different mission objectives: 

1. High Value Unit Protection 

The mission objective of High Value Unit (HVU) protection was initially 

introduced by the authors C. Walton, P. Lambrianides, I. Kaminer, J. Royset, and  

Q. Gong in 2016 in their journal article [3]. In this mission, an incoming attacking swarm 

has to be intercepted effectively by the defender forces before any agent of the attacking 

swarm can harm the HVU. In the results that we present in Chapter IV, the critical unit 

that we have to protect is a fixed asset with no self- defense capabilities, whereas the 

attackers are deemed dispensable swarm agents heading toward the HVU in a 

“kamikaze” like attack.  

Each attacker has deterministic dynamics but its starting point varies in every 

scenario. In the first set of results they are approaching from a single threat direction. In 

the second set of results we address a much more challenging problem, because the threat 

directions are multiple. The attacking swarm has already encircled the HVU and the 

defenders have to spread towards all the thread directions in order to effectively protect 

the critical unit. 

The goal of the scenario is to maximize the probability of HVU survival in the 

event of a large-scale swarm attack. We have to maximize this probability given the 

available defending forces’ control inputs and constraints. There are two ways that the 

defenders can achieve a high survival probability for the HVU, and these approaches 

have been discussed in detail in [3]. 



4 

The first way is by exploiting their weapons capabilities, such as fire rate, range, 

field of view, and dead sectors, which are included in the damage function. 

Consequently, the aim is the neutralization of attacker capabilities, which in turn 

decreases the destruction probability of the HVU. 

The second way is through the defenders’ capability to repulse the attackers away 

from the HVU. This herding technique exploits the collision avoidance algorithms that all 

potential-based swarming methods use as reactive motion planning. Herding strategies 

use this collision-avoidance path planning algorithm in order to protect the critical unit by 

guiding the attacking swarm away from the asset.  

2. Air Superiority Operations 

In most military plans air superiority is desired or even required for at least a 

specific window of time during the execution of military operations. Consequently, in 

this second scenario, we are launching our autonomous vehicles in an area controlled and 

patrolled by a large number of hostile drones and we are seeking the optimal trajectories 

for our autonomous systems to maximize inflicted attrition on the opposing forces and 

provide us the necessary conditions for air superiority.  

Again, our mission objectives and constraints are captured in our cost function, 

which is now related with the probability of destruction of the hostile swarm. 

C. INTRODUCING THE TRAJECTORY GENERATION PROCEDURE 
USING BERNSTEIN POLYNOMIALS AND BEZIER CURVES 

The analytical form of the Optimal Control Problem (OCP) is used to determine 

the state vector ( )x t  and the control vector ( )u t  that minimize the cost function, 

expressed in Equation (1). 

 
0

( (0), ( )) ( ( ), ( ))
ft

fJ E x x t F x t u t dt= + ∫  (1) 
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where ( (0), ( ))fE x x t is called the terminal cost and 
0

( ( ), ( ))
ft

F x t u t dt∫  is called the running 

cost. In our problem formulation we have running cost that in the HVU protection 

scenario corresponds to the probability of destruction of the HVU. In the case of the air 

superiority scenario, we still have a scalar cost, which corresponds to the average 

probability of survival of the opposing swarm. In other words, our gradient-based 

constraint optimizer in Matlab (function fmincon) may find the case of local minimum 

cost, and subsequently, the problem has to be formulated appropriately.  

 
Figure 2. Discretization and interpolation of the non-linear optimal control 

problem. Source: [4]. 

The problem is subject to the system dynamics, equality, and inequality 

constraints, expressed in Equations (2)–(4). 

 ( ( ), ( )), [0, ]fx f x t u t t t= ∀ ∈  (2) 

 ( (0), ( ) 0fe x x t =  (3) 
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 ( ( ), ( )) 0, [0, ]fh x t u t t t≤ ∀ ∈  (4) 

In most cases, analytical solutions to such non-linear problems are not easy to 

find. Hence, in our case, we are implementing a numerical framework where we 

discretize the time interval, the state vector ( )x t , and the control vector ( )u t , and we 

exploit the numerical stability of Berstein polynomials and Berstein coefficients that are 

shown in Equations (5) and (6), in order to express the state vector ( )x t  and the control 

vector ( )u t  in terms of the Berstein coefficients.  

Figure 2 shows how we want to solve numerically the typical optimal control 

problem of reaching endpoint B1 or B2 from an initial point A1 or A2. The optimal 

encompasses our desire to follow the shortest route while we have to avoid hitting 

obstacles. Consequently, we try to discretize the problem, find the optimal solution, and 

finally interpolate between time nodes. 

A degree n Berstein polynomial is given by [4], [5] 

 
,

0
( ) ( )

N

N k k N
k

x t c b t
=

=∑
 (5) 

where , ( )k Nb t  are the basis of the Bernstein polynomial 

 , ( ) , [0, ]N N k
k N f f

N
b t t t t t

k
− 

= − ∈ 
 

 (6) 

and 3
kc ∈ℜ  are the Bernstein coefficients. 

In Figure 3 we may see how a Bezier curve is going to be created by six Bernstein 

coefficients. The curve is confined inside the convex hull that these six coefficients 

create. 
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Figure 3. A Bernstein polynomial is contained within the convex hull 

defined by its Bernstein coefficients. Source: [6]. 

Consequently, the numerical framework of the problem, asks for the Berstein 

coefficients for the state kc  and the controls ,u kc , where 0....k N=  that minimize the cost 

function J  and are subject to the following constraints: 

 ( ) ( ( ), ( )) , 0,...,p
N j N j N jx t f x t u t N j Nδ−− ≤ ∀ =  (7) 

 ( (0), ( )) 0N N Ne x x t =  (8) 

 ( ( ), ( ) , 0,....,p
N j N jh x t u t N j Nδ−≤ ∀ =  (9) 

In Figure 4, the flow diagram of the required procedure is illustrated in order to 

replace the analytical OCP problem with a discretized version where a numerical solution 

through the Bezier coefficients is feasible. 
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Figure 4. Flow diagram of the discretization of the original OCP in order to 

be solvable from our numerical tools. Source: [7]. 

The algorithm for the Bernstein polynomial approximation of the optimal 

trajectories solution is as follows:  

• Discretize time into time nodes: 

 
, 0.....f

j

t
t j j N

N
= =

 (10) 

• Apply Bernstein approximation of the state vector and the control vector 

[8]: 

 ,
0

( ) ( ) ( )
N

N k k N
k

x t x t c b t
=

≈ =∑  (11) 

 , ,
0

( ) ( ) ( )
N

N u k k N
k

u t u t c b t
=

≈ =∑  (12) 
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• Differentiate the state vector via the degree elevation matrix: 

1

, ( )
0 0

( ) ( ) )
N N

N i ij j N t
j i

x x t c D b
−

= =

≈ =∑ ∑           (13) 

where 

0 0

0 0

0

f

f

f

f

N
t

N
t

D
N
t

N
t

−

=

−



  

 

  

 

        (14) 

With degree elevation, which is implemented through the matrix D, we obtain 

equivalent Bernstein polynomials of a higher order.  

• Approximate the running cost: 

 00

( ( ), ( )) ( ( ), ( )),
1

ft N
f

i N i N i i
i

t
F x t u t dt w F x t u t w

N=

≈ =
+∑∫

 (15) 
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II. MODELING THE DYNAMICS AND MUTUAL ATTRITION 
FUNCTIONS OF A LARGE SCALE SWARM OF AUTONOMOUS 

SYSTEMS 

A. ATTACKING SWARM DYNAMICS MODEL 

Two dynamic swarming strategies have been chosen from the related literature for 

the formation of the attacking swarm, and they are both potential based. The potential 

function is defined as the sum of an attractive potential, pulling the swarm towards the 

HVU, and a repulsive potential, pushing the attacking swarm assets away from each other 

and from the defenders, for collision avoidance purposes. The notion of a virtual body is 

used in order to move the attacking swarm toward the HVU while keeping some form of 

cohesion. The virtual body consists of some fictional reference points  known as virtual 

leaders. These reference points initiate forces that control the translational and rotational 

motion of the swarm and are proportional to the relative distance between each virtual 

leader and the swarm agent. 

1. Virtual Body Artificial Potential 

In this model, swarm agents track to a virtual leader (or leaders) inside a 

neighborhood of interaction, guiding their course while also reacting to intra-swarm 

forces of collision avoidance and group cohesion. The implemented control input is 

defined in Equations (16)–(17), and the notations for distances and forces are consistent 

with Figures 5 and 6. 
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Figure 5. Model framework: Solid circles are vehicles and shaded circles are 

virtual leaders. Source: [9]. 

We are going to use Figures 5 and 6 to explain the driving forces of this model. In 

Figure 5 we have two vehicles, i  and j , represented by solid circles, and two virtual 

leaders, 0 and k , represented by shaded circles. We also have two coordinate systems, an 

inertial frame with the XYZ axis depicted in Figure 5, and a moving frame with respect 

to an inertial observer that is stationary relative to the virtual leader, which is depicted as 

0. The relative distance between vehicle i  and virtual leader k  is depicted as ikh  and the 

relative distance between i  and j  vehicles as ijr . Let us assume that the distance 

between i  attacker and w  defender is iws . Then the control input is as follows: 

 
1 1

( ) ( ) ( )
defatt lead

i i i

NN M
damp

i i x I ij x h il x d iw i
j i l w

u r V x V h V s F
≠ = =

= = − ∇ − ∇ − ∇ −∑ ∑ ∑  (16) 

 
1 1

( ) ( ) ( )defatt lead NN M
I ij damph il d iw

i ij il iw i
j i l wil iwij

f x f h f su x h s K x
h sx≠ = =

= − − − −∑ ∑ ∑   (17) 

where 
( )attN

I ij
ij

j i ij

f x
x

x≠
∑  corresponds to the sum of intra-swarm forces that i  attacker is 

accepting from the rest ker 1attac sN −  that are inside the neighborhood of interaction 
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1[0, )ijx d∈ . This force, according to Figure 6, is repulsive when 0ijx d≤ and attractive 

when 0 1ijd x d< ≤ . 

1

( )leadM
h il

il
l il

f h h
h=

∑  corresponds to the sum of the virtual leaders’ interaction with the i  attacker, 

which again are inside a tuned neighborhood of interaction 1[0, )ilh h∈ . This force is 

driving the i  attacker cohesively with the rest of the attacking swarm toward the HVU. 

This force, according to Figure 6, is repulsive when 0ilh h≤ and attractive when 

0 1ijh h h< ≤ . 

1

( )defN
d iw

iw
w iw

f s s
s=

∑ represents the summation of repulsive forces generated from 

defendersN toward the i  attacker in order to avoid collision with the defense agents inside a 

defined neighborhood of interaction 1[0, )iws s∈ . This is always a repulsive force because 

it is designed for reactive obstacle avoidance purposes with respect to the swarm agents’ 

sensors. As a result, this force is repulsive when 0iws s≤ and has zero magnitude when 

0iws s> . In Figure 23 in page 39, the purely repulsive force due to the defense agents is 

depicted. 

Finally, damp
iF  is the velocity dampening term that is used for greater stability. 
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Figure 6. Generated forces in a swarm of eight vehicles and three virtual 
leaders, due to virtual forces hf  and intra-swarm forces If . Source: [9]. 

In Figure 6 we see how the magnitude of virtual forces hf  and intra-swarm forces 

If  is changing with respect to the relative distance ilh  between the i  attacker and the l  

virtual leader, and the relative distance ijx  between the i  attacker and the j  attacker, 

accordingly. Namely, we are observing that a repulsive force from If  is generated when 

0[0, )ijx d∈ , and an attractive is generated when 0 1[ , ]ijx d d∈ . Additionally, there is a 

cutoff relative distance between the i  attacker and the j  attacker 1d , which is related 

with the end of the neighborhood of interaction. A relative distance greater than 1d  means 

that two agents are not interacting with each other. With exactly the same reasoning we 

can understand how the hf  force is repulsive when 0[0, )ilh h∈ , attractive when 

0 1[ , )ilh h h∈ , and has no effect for relative distances greater than 1h . 

Figure 7 shows that the system of two vehicles and one or two virtual leaders will 

find an equilibrium stationing where the summation of potentials is minimal. 

Additionally, we see in two dimensions the advantage of having two virtual leaders 

instead of one when changing the orientation of the swarm. 
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Figure 7. Set of solutions that minimize the total potential in a two 
dimensional swarm of two vehicles. (a) With one virtual leader there is a 

family of solutions (two are shown). (b) With two virtual leaders the 
orientation of the group can be altered appropriately. Source: [10]. 

2. Reynolds’ Rule-Based Model 

The original Reynolds model was published in 1987 [11] and it aimed to construct 

a behavioral animation model for a team of animals, like a swarm of birds, by summing 

the results of the actions of each individual animal as a reaction of the own local 

perception of the environment. Hence their flocking formation is not a priori defined; 

rather, it results from the summation of local rules. In other words, a flock is just the 

aggregate of the interactions between the behaviors of every individual bird, and if we 

introduce a computational framework that adds all these individual behaviors for every 

time step, we could predict a range of activities including path planning. 

This research in [11] is not only useful for the simulation and the motion planning 

of a flock of birds but also for swarms of autonomous systems. The Reynolds’ rule-based 

distributed model that we implement has five competing forces which take into account 

each time step in order to determine each agent’s acceleration. In turn, that will drive its 

kinetics equation. The control equation is as follows: 

 
1 1

( ) ( )( )
defatt lead NN M

damph il d iw
i i al coh sep il iw i

j i l wil iw

f h f su r f f f h s K x
h s≠ = =

= = − + + − − −∑ ∑ ∑ 
 (18) 
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Figure 8. Interaction rules for flocking behavior in Reynolds’ Model. 

Source: [12]. 

In Equation (18), we observe that each agent updates its acceleration at each time 

step by considering the following six components: 

Alignment: Agents alter their heading in order to align their orientation with the 

average heading of their neighborhood. 

 1

neigh

al al i j
j Nneigh

f w x x
N ∈

 
= − − 

  
∑   (19) 

Cohesion: Vehicles move toward the centroid of the agents located inside their 

neighborhood [12]. 

 1

neigh

coh coh i j
j Nneigh

f w x x
N ∈

 
= − − 

  
∑  (20) 

As we may observe in Figure 8, the robustness of a herd-like formation is 

dependent on the cohesion and alignment forces, as shown in Equations (19) and (20). 

Separation: The assets inside a neighborhood of interaction use a collision 

avoidance algorithm that guarantees a minimum safety distance. 

 
1

neigh

j i
sep sep

j Nneigh j i

x x
f w

N x x∈

−
= −

−∑  (21) 

The separation rule prevents crowding and collisions. 
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Virtual leader(s) interaction: This corresponds to the sum of the virtual leaders’ 

interaction with the i  attacker located inside the neighborhood of interaction 1[0, )ilh h∈ . 

This force is driving the i  attacker cohesively with the rest of the attacking swarm toward 

the HVU. 

 
1

( )leadM
h il

lead il
l il

f hf h
h=

=
∑  (22) 

Collision avoidance with swarm intruders: This represents the summation of 

repulsive forces generated from defendersN toward the i  attacker in order to avoid collision 

inside the defined neighborhood of interaction 1[0, )iws s∈ .  

 int
1

( )defN
d iw

rud iw
w iw

f sf s
s=

= ∑  (23) 

Velocity dampening: This is a dampening term used for greater stability. 

 damp damp
i iF K x=   (24) 

B. MUTUAL ATTRITION MODEL 

In the large scale simulations we execute, there are some couple hundred 

antagonistic vehicles from each side that are not stationary but are moving toward an 

objective. Consequently, the mutual attrition model is a very crucial part of our solution 

to correctly predict the outcome of the confrontation. The concept of mutual attrition is 

analyzed in [3] where a damage function with specific distribution characteristics (see 

Figures 9 and 10) is used to track the probability that defender k  is destroyed by a shot 

from attacker l , and vice versa. Figure 9 illustrates how the damage functions are used 

for observing the inflicted mutual attrition. 
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Figure 9. Mutual attrition derived from the damage function. Source: [3]. 

In [3] the authors examine the parameters we have to take into account in order to 

model our damage function appropriately. That is because in reality there are weapons 

that are very successful in their effective range, and their lethality decreases from this 

range up to the maximum range. Additionally, due to the building architecture of the 

launching platform, there may be some dead sectors, such as superstructures in a warship, 

where the platform cannot launch an attack. Moreover, the majority of aerial platforms 

use missiles that exploit the operating speed of the launching platform in order to reduce 

in size. Such a missile will not need a booster motor for the initial flight phase but only a 

sustainer motor for the inertial flight. Consequently, the dimensions of such a missile are 

significantly reduced and the payload of the aerial vehicle is increased. Hence, in these 

situations, the field of view (FOV) of the weapon must be mirrored in the death rate 

functions because these assets can launch their attack only toward specific directions, and 

this will have a huge impact in the strategy that they follow to approach the enemy. 

Figure 10 illustrates the shape of the damage function when a Poisson distribution is used 

or when FOV limitations are applied. 

A final consideration for modeling the damage function is the fact that eventually 

we aim to find numerical solutions in an optimal control problem. Consequently, smooth 

functions where the gradients are continuous is desired for better numerical performance. 
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In Figure 11 we see the difference between a maximum range limit damage function 

versus the smooth and hence preferable Poisson scan model. 

 
Figure 10. Damage functions: Poisson scan model (left), Resulting angularly 

decaying function reflecting FOV limitations (right). Source: [3]. 

 
Figure 11. Maximum range limit (Left). Smoothed using the Poisson scan 

model (Right). Source: [3]. 

The damage functions of our model follow the Poisson scan model. The attrition 

dynamics take the following form: 

 
[ ]2

( )d d i katt
ik d d

d

F r s
d

α
λ

σ
− −

= Φ  (24) 
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where att
ikd  is the damage function of the i  attacker due to defender k  

 
2[ ]( )def a a i k

ki a a
a

F a r sd λ
σ

− −
= Φ , (25) 

def
kid  is the “death rate” of the defender k  due to i  attacker 

 
2[ ]( )hvu a a i hvu

i a
a

F a r rd αλ
σ

− −
= Φ , (26) 

and hvu
id  is the “death rate” of the HVU due to i  attacker. 

The parameters λ, F, σ and α are modeling weapons characteristics such as range, 

fire rate, and inflicted damage and can be manipulated to alter the steepness of the 

damage function in order to represent correctly the weapons capabilities over distance. 

Probability of agent survival can be modeled based on the aggregate number of 

hits it takes to incapacitate the agent. In this thesis research we use two different systems 

of ODEs for our two attrition models, the Weighted and the Threshold models. 

1. Weighted Attrition Model 

In the following system of equations (27)–(29), we compute the probabilities of 

survival. ( )iQ t  is the survival probability of the attacker i , ( )d
kP t  is the survival 

probability of defender k , ( )P t  is the survival probability of the HVU and att
ikd  is the 

damage efficiency of each of the k  defenders towards the attacker i .  

Consequently, ( )att d
ik kd P t dt dt−  corresponds to the probability that defender k , 

destroys attacker i  during a timestep dt. Thus (1 ( ) )
defN

att d
ik k

k

d P t dt dt − − ∏  represents the 

probability that i  attacker would survive during a timestep dt, whereas 

1 (1 ( ) )
defN

att d
ik k

k

d P t dt dt − − − ∏  is the probability that the i  attacker would be destroyed 

during the timestep dt.  
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This quantity, multiplied by the current survival probability ( )iQ t dt− , 

( ) 1 (1 ( ) )
defN

att d
i ik k

k

Q t dt d P t dt dt
 

 − − − −  
 
∏ , should be subtracted from your current survival 

probability ( )iQ t dt− , in order to get i  attacker survival probability at the next timestep, 

as follows: 

 ( ) ( ) (1 ( ) )
defN

att d
i i ik k

k

Q t Q t dt d P t dt dt
   = − − −    
∏  (27) 

As we see in Equation (27), the damage efficiency att
ikd  of each of the k  

defenders towards the attacker i  is weighted by each defender probability of survival. 

Hence a defender with low probability of survival, has small contribution to the attrition 

of attacker i . 

With the same reasoning as above, we may derive the survival probability of 

defender k  at time t, ( )d
kP t : 

 ( ) ( ) (1 ( ) )
attN

d d def
k k ki i

i

P t P t dt d Q t dt dt
 

 = − − −  
 
∏  (28) 

As we see in Equation (28), the damage efficiency def
kid  of each of the kerattac sN  

towards the defender k  is weighted by each attacker probability of survival. Hence an 

attacker with low probability of survival, has small contribution to the attrition of 

defender k . 

 ( ) ( ) (1 ( ) )
attN

hvu
k k

k

P t P t dt d Q t dt dt
 

 = − − −  
 
∏  (29) 

In Equation (29) we track the probability of survival of HVU based on the 

attrition function of all the attackers. Again we tax their destructive capabilities with their 

own probability of survival. 

Initial conditions are set as (0) (0) (0) 1, ,d
i kQ P P i k= = = ∀ . 
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2. Attrition Model with Thresholds on Survival Probabilities 

This is a model introduced for the first time in this thesis, and its usefulness is 

shown in Chapter III, where we introduce the new proposed models. In this model we use 

the following system of equations: 

 ( ) ( ) (1 ) , ( ) 50%
defN

att d
i i ik k

k

Q t Q t dt d dt P t
  = − − ∀ ≥ 
  
∏  (30) 

 ( ) ( ) (1 ) , ( ) 50%
attN

d d def
k k ki i

i

P t P t dt d dt Q t
 

= − − ∀ ≥ 
 
∏  (31) 

 ( ) ( ) (1 ) , ( ) 50%
attN

hvu
k i

k

P t P t dt d dt Q t
 

= − − ∀ ≥ 
 
∏  (32) 

Consequently, the only difference with respect to the previous model is that now 

we do not tax the damage functions with the probability of survival of each asset. 

Nevertheless, as soon as someone’s survival probability drops below 50%, we assume 

that this asset is more likely to have been incapacitated, and as a result, it will not 

contribute to the destruction of its adversaries. 

C. EVALUATING THE PERFORMANCE OF THE TRAJECTORY 
OPTIMIZATION ALGORITHM COMPARED WITH INTUITION 
CONCERNING THE STATIONING OF THE DEFENDING VEHICLES 

Now that we have introduced the fundamental parts of our algorithm, we want to 

show the efficiency of our method in terms of cost measurements. Our problem is 

constrained in such a way that the comparison of a single number, the scalar cost, can 

indicate whether it is advantageous to use the generated trajectories or not. 

In Figures 12 and 13 we have at our disposal a force of 25 defenders tasked to 

protect an HVU against a swarm of 100 attackers. Although outnumbered, the defenders 

have a 50% larger weapons range as well as double the fire rate with respect to the 

attackers. This range and fire rate advantage is what our optimization framework exploits 

in order to define the defenders motion planning. In Figures 12 and 13 we initially 
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identify the trajectories of the attackers with the red color and the trajectories of the 

defenders with a cyan color. As the scenario is executed, however, we color code the 

followed paths with the survival probability of each agent. As a result, we may observe 

spatially the mutual attrition of the antagonistic agents. In both scenarios the defenders 

are stronger and suffer fewer losses; however, in the unoptimized scenario, some of the 

attacking agents manage to penetrate the defenders’ zone and destroy the HVU. 

 
Figure 12. 25 defenders with unoptimized trajectories but with superior 

weapons failing to protect the HVU from 100 attackers. 

In Figure 14 we compare the outcome of the optimized versus the unoptimized 

scenario in terms of survival probabilities. According to Figure 14, the defenders with the 
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optimized trajectories successfully protect the HVU, whereas in the unoptimized scenario 

they fail. Moreover, in the optimized scenario we observe that the attacking swarm is 

completely incapacitated by the end of the first quarter of the simulation. By contrast, in 

the unoptimized scenario we see that they manage to maintain a low survival probability 

by the end of the scenario. Last but not least, in the optimized scenario we observe higher 

mean survival probability for the defenders. Although this is not our primary mission 

objective because we consider the defending agents as dispensable, it is always desirable 

to minimize the attrition that our forces are going to suffer. 

 
Figure 13. 25 defenders with optimized trajectories and superior weapons 

protect the HVU effectively from 100 attackers.  
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Figure 14. Comparison of survival probabilities of the optimized and 

unoptimized scenarios of the 100 attackers versus the 25 stronger 
defenders. 

In Figure 15 we present a collection of some characteristic snapshots of the 

confrontations that we just analyzed with optimized trajectories for the defenders. Agents 

with reduced survival probability start to fade until they become completely invisible for 

0% survival probability.  
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Figure 15. Snapshots from the optimized scenario of the 100 attackers versus 

the 25 stronger defenders. 

D. CONTRIBUTION OF MOLECULAR DYNAMICS ALGORITHMS TO 
THE COMPUTATIONAL EFFECTIVENESS OF OUR FRAMEWORK 

We can easily observe that the modeling of the dynamics of the attacking swarm 

in order to calculate its equations of motion is the most computationally expensive part of 

the algorithm. All these antagonistic forces that we detailed in section A of the current 

chapter contribute to the aggregate acceleration of each individual asset and must be 

accurately calculated for each time step and for each asset. It is proven that a simple 

Euler integration scheme is ineffective for accurately tracking the dynamics of such 
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sophisticated systems. Consequently, a fourth order Runge Kutta integration method with 

fixed time-step size was originally used. This integration method, although accurate in 

the calculation of the dynamics and the equations of motion of the attacking swarm, lacks 

computational effectiveness. 

 
Figure 16. Molecular dynamics demonstration compares particle 1 to particles 

2, 3, 4, and 5 to determine whether their inflicted interaction is affecting 
its trajectory. Source: [13]. 

Molecular dynamics (MD) is a fascinating domain in physics, where the motion 

of molecules is simulated based on the generated forces due to interatomic potentials. 

These forces define the molecular trajectories by simply applying Newton’s second law. 

As we see in [13], MD is used to predict the damage inflicted from a ballistic impact on a 

soil target. As we may easily understand, during the impact, large non-linear forces are 

exerted, and as a result, the existing analytical models will not be able to accurately track 

the interaction forces for at least this important initial stage. 

As a result, the MD community has adopted numerical methods to execute 

simulations that track the forces between the soil particles and then use the Verlet 
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integration algorithms to compute the velocity and the position of each particle. Verlet 

integration is widely used in this community because this algorithm provides accurate 

results with much better performance in comparison to Runge-Kutta integration. 

The reason for this computational advantage is that Runge-Kutta has to calculate 

the forces four times every time-step, whereas Verlet only once. In fact, LAMMPS, the 

MD code that is primarily used for research nowadays, uses exclusively Verlet 

integration [14]. 

Additionally, we could easily see the similarity in the nature of these contact 

forces with the interaction forces that come into play in our counter-swarm simulations. 

This observation allowed us to adopt their computationally efficient techniques. As a 

result, a faster and more robust model was adopted that allowed us to execute simulations 

with an unprecedented number of agents. 

 
Figure 17. Computational superiority of Verlet versus Runge Kutta 
integration framework and comparison with 2( )O N  logarithmic scaling. 
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The velocity Verlet algorithm for computing the velocity and position of each 

particle from the equation of motion is shown as: 

 21( ) ( ) ( ) ( )
2i i i ir t dt r t v t dt a t dt+ = + +  (33) 

 [ ]1( ) ( ) ( ) ( )
2i i i iv t dt v t a t a t dt dt+ = + + +  (34) 

In Figure 13 and Tables 1 and 2 we observe a logarithmic comparison of the 

originally implemented Runge Kutta integration scheme versus the Verlet integration 

algorithm, which basically shows us that we have obtained an approximately 14.7 times 

faster code for Leonard dynamics and a 26.01 times faster code for Reynolds dynamics. 

Table 1. Computational effectiveness comparison of the Virtual Body 
Artificial Potential dynamics model with Verlet integration versus original 

model with Runge Kutta integration. 

# of agents in the 

attacking swarm 

Elapsed time [sec] 

(Runge Kutta) 

Elapsed time 

[sec] (Verlet) 

Computational gain based 

on elapsed time division 

5 4.27 0.79 5.4 

50 15.8 1.55 10.2 

500 421.78 37.55 11.23 

1000 2095 142.56 14.7 

2000 - 559.7  

 

As mentioned previously, both our optimal motion planning problem and the MD 

problem use behavioral rules for computing potentials generated from interactions. 

Consequently, a significant computational advantage was gained by integrating this 

scheme into our problem formulation. 
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Additionally, other parts of the code were improved from the aspect of efficiency. 

Namely, the improved algorithm checks the neighbors interactions only once and this 

check is taken into account for both agents. Moreover, unnecessary computations like in 

the occasion where two agents are outside the neighborhood of interactions are avoided. 

Last but not least, MATLAB commands that are proven to be computationally expensive 

where replaced with faster scripts. 

Table 2. Computational effectiveness comparison of the Reynolds dynamics 
model with Verlet integration versus original model with Runge Kutta 

integration. 

# of agents in the 

attacking swarm 

Elapsed time [sec] 

(Runge Kutta) 

Elapsed time 

[sec] (Verlet) 

Computational gain based 

on elapsed time division  

5 6.81 0.72 9.46 

50 21.01 1.6 13.13 

500 1304.84 50.16 26.01 

1000 - 197.4 - 

2000  - 783.76 - 
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III. THE GHOST-HERDING PROBLEM AND THE PROPOSED 
INTERACTION AND ATTRITION MODELS  

A. THE GHOST-HERDING PROBLEM — GENERATION OF NON-
PHYSICAL SOLUTIONS 

We have defined our problem in such a way that the Optimization Toolbox will 

generate the optimal trajectories for the defenders according to the mission objectives that 

are incorporated into the cost function, as discussed in Chapter I. Namely, we have 

accounted for two mission objectives, the protection of an HVU and the acquisition of air 

superiority by maximizing the adversary swarm attrition. Nevertheless, we have to 

constrain the optimization problem properly such that we avoid unrealistic solutions. 

In Figures 18–22 we present an analysis that we have made based on the 

optimization results from a large scale simulation where 200 defenders protect the HVU 

from an attacking swarm of 2066 agents, which is the world’s largest unmanned aerial 

vehicle (UAV) swarm that has ever been airborne [14]. In Figure 18 we see that the 

solution we predict is very optimistic. Namely, the survival probability of the HVU is as 

high as 96.3%. 

Yet, in Figures 19 and 20 we see that half of the defenders die in the first quarter 

of the simulation. Moreover, the remaining defenders die by the end of the simulation. By 

contrast, as far as the attacking swarm is concerned, we observe some attrition during the 

first quarter of the scenario, but their mean survival probability stabilizes at 90% 

thereafter. Finally, we see in Figure 19 that by the end of the scenario all defenders are 

dead and about 1870 attackers are still operational. 

So far we have applied some of the most widely known dynamics and attrition 

models that have been published (see List of References and Chapter II). With that in 

mind, we see that the swarm of the 2066 assets is approaching cohesively toward the 

HVU, making a collision avoidance maneuver in front of the defenders that are following 

the trajectories the optimal motion planning algorithm has computed.  
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Although from a mathematical point of view, the solver has found a correct 

solution for the mission of HVU protection, this local minimum has no physical meaning. 

The conducted analysis shows us that the Optimization Toolbox uses defenders that are 

already dead as a shield for the protection of the HVU. 

 
Figure 18. HVU survival probability during a 3000 time sample simulation. 

In other words, defender trajectories are chosen such that the collision avoidance 

algorithm will create repulsive forces for the attackers. Namely, the dead defenders create 

a repulsive barrier that has no real meaning. In Figures 19 and 20 we observe that 

although for most of the simulation all the defenders are dead and no further attrition 

occurs between attackers and defenders, the attackers do not succeed in penetrating the 

barrier that the dead defenders are applying. 

In Figure 22 we have chosen snapshots of the scenario for a ghost-herding 

problem demonstration. We see the positions of all the agents in the scenario according to 

their respective color codes. In the beginning of the scenario, when the opposing agents 

are at a distance with respect to their weapons capabilities, the attackers are magenta 
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colored whereas the defenders are shown in cyan, as their survival probability is close to 

100%.  

As the scenario advances, the attacking swarm approaches the HVU, but the 

defenders intercept their path. At that time, the color coding indicates the attrition of the 

assets, where black signifies 0% survival probability and the in-between colors represent 

how likely an asset is to be operational.  

According to Figure 22, we see that the ghost-herding phenomenon starts to 

appear after the first 600 time samples from the beginning of the scenario consisting of 

3000 total time samples.  

Referring to Figure 21 we see the ratios of mean survival probabilities as Def
Att

 

and 
Att
Def

. It is clear that since the opposing forces have the same weapons characteristics, 

the attrition of the defenders due to multiple attackers would be much more significant. 

 
Figure 19. Total number of live defenders and attackers for the ghost-herding 

scenario of an attacking swarm of 2066 agents versus a defending force of 
200 agents with the same kinetics and weapons capabilities. 
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Figure 20. Mean survival probability for defenders, attackers, and HVU for 

the ghost-herding scenario of 2066 attackers versus 200 defenders. 

 

Figure 21. Ratios of mean survival probabilities Def
Att

 and 
Att
Def

 for the ghost-

herding scenario of 2066 attackers versus 200 defenders. 
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Figure 22. Snapshots of the ghost-herding scenario of 2066 attackers 

(Guinness world record) versus 200 defenders at time samples: 23, 210, 
639 and 3000. 

In both Figure 23 and in Figure 6 we see how steep the slope of the repulsive 

force is when an attacker is approaching a defender closer than the minimum distance. 

This minimum distance and the overwhelming generated repulsive force have, of course, 

a deterministic nature. They are associated with the collision avoidance algorithm of the 

attacking swarm but they are certainly an important parameter of the simulation because 
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they associate the deterministic nature of the exerted forces with the probabilistic 

approach of the whole scenario. 

 
Figure 23. Magnitude of the intra-swarm forces and collision avoidance 

forces, due to defenders, with respect to the relative distance. 

B. PROPOSED INTERACTION AND ATTRITION MODELS FOR 
OPTIMIZATION 

To deal with the ghost-herding problem just described, we created models that 

correlate the deterministic nature of the dynamics with the survival probabilities of the 

attacking swarm, the defender forces, and the HVU.  

Consequently, we created three respective models, two of them for optimization 

purposes and one for verification of the correctness of our results. For optimization 

purposes we introduce the models that we call: 
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• Weighted Dynamics and Attrition Model 

• Threshold Dynamics and Attrition Model 

For analysis and verification of the results we introduce the model that we have 

named: 

• Monte Carlo Dynamics and Attrition Model 

1. Dynamics and Attrition Model “Weighted” with Survival 
Probabilities  

The weighted model correlates both the magnitude of the interaction forces and 

the lethality of the weapons of each asset with their survivability. As a result, the 

gradient-based optimizer that we are using can no longer employ defenders that are 

already incapacitated. Furthermore, it also cannot use assets with low probability of 

survival because their contribution to the attacking swarm attrition is very small. 

a. Weighted Dynamics Model 

The driving equations of the dynamics models detailed in Chapter II take the 

following form: 

(1) Virtual Body Artificial Potential 

 
1 1

( ) ( ) ( )
deflead att

i i i

NM N
damp d

i i x h il i j x I ij k x d ik
l j i k

u r V h F Q V x P V s
= ≠ =

 
 = = − ∇ + − ∇ − ∇   

 
∑ ∑ ∑

 (35) 

 
1 1

( )( ) ( )deflead att NM N
I ijdamp dh il d ik

i il i j ij k ik
l j i kil ikij

f xf h f su h K x Q x P s
h sx= ≠ =

    = − + − −   
    
∑ ∑ ∑  (36) 

As we see in Equations (35) and (36), our control law for the i  attacker still 

consists of the intra-swarm forces, the virtual leader interaction, the repulsive forces from 

the defenders, and the dampening term. However, we now weight these forces with the 

survival probability of the agent that is the cause of this interaction. 
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The sum of intra-swarm forces that i  attacker is accepting from the rest 

ker 1attac sN −  that are inside the neighborhood of interaction 1[0, )ijx d∈  is taxed by the 

survival probability of each attacker j , respectively.  

The repulsive forces generated from defendersN toward the i  attacker in order to 

avoid collision with the defense agents inside the neighborhood of interaction 1[0, )iws s∈  

are taxed with the survival probability of each individual defender. 

(2) Reynold’s Rule-based Model 

 
1 1

( ) ( )( )
deflead att NM N

damp dh il d iw
i i il i j al coh sep k iw

l j i kil iw

f h f su r h K x Q f f f P s
h s= ≠ =

    = = − + − + + −   
    
∑ ∑ ∑   (37) 

In Equation (37) we see the modified control law that we propose for the i  

attacker defined by the six forces we analyzed in Chapter II for the Reynold’s dynamics 

model. Again the alignment, cohesion, and separation forces are weighted from the 

probability of the corresponding swarm agent that causes the interaction. Finally, 

defender forces are stronger when the defenders have high survival probabilities. 

b. Weighted Attrition Model 

For reciprocal attrition, in this case we use the model presented in [3]. 

2. Dynamics and Attrition Models Correlated with a Survival 
Probability Cutoff “Threshold” 

The weighted model just described is able to tackle the problem of unrealistic 

solutions due to the fact that dead defenders are acting as a repulsive barrier. One could 

argue, however, that although it is an improved version, it is also a non-physical model 

because, and especially for aerial assets, you would either expect them to be fully 

functional and operational or completely destroyed and no longer operational. Further, 

you might predict that an asset, due to its proximity with opposing forces and due to the 

range and lethality of their weapons, would have only a 15% probability of being 

operational. In other words, this would mean that if you run the same scenario 100 times, 



39 

you would expect this asset to be operational at this specific time instant only in 15 

iterations. It would, however, be either fully operational or completely ineffective, and 

this statement is what you should expect for both its interaction forces and its weapons. 

This very reasonable statement was our driver for creating the threshold model, in 

which we do not weight the probability of survival with the interaction forces and the 

weapons effectiveness at all. Instead, we are using the 50% survival probability as a 

cutoff switch. This threshold and the survival probability of an agent define whether the 

model will take into account its interaction and weapons contribution. 

a. Threshold Dynamics Model 

Having introduced the rules of this model, we now give the driving forces of the 

control law as follows: 

(1) Virtual Body Artificial Potential 

1 1

( ) ( ) ( )defatt leadNN M
I ij d h dampd ik h il

i j ij k ik l il i
j i k lik ilij

f x f s f hu W x W s W h K x
s hx

Ι

≠ = =

     
= − − − −     

      
∑ ∑ ∑    

1 [0.5,1.0], 0 [0,0.5)

1 [0.5,1.0], 0 [0,0.5)
1 [0.5,1.0], 0 [0,0.5)

I I
j j j j

d d d d
k k k k
h h

l i l i

W Q W Q

W P W P
W Q W Q

 = ∀ ∈ = ∀ ∈
  = ∀ ∈ = ∀ ∈ 
 = ∀ ∈ = ∀ ∈  

 (38) 

The probability acts as a switch that neutralizes an asset instantaneously when its 

survival probability falls below 50 %. Namely, as soon as the destruction is more 

probable than the survival, we neutralize the asset. 

(2) Reynold’s Rule-based Model 

 ( )
1 1

( ) ( )defatt leadNN M
I d h dampd ik h il

i i j al coh sep k ik l il i
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1 [0.5,1.0], 0 [0,0.5)

I I
j j j j

d d d d
k k k k
h h

l i l i

W Q W Q

W P W P
W Q W Q

 = ∀ ∈ = ∀ ∈
  = ∀ ∈ = ∀ ∈ 
 = ∀ ∈ = ∀ ∈  

 (39) 
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The same notion of a cutoff switch is applied in the Reynold’s dynamics model as 

well. 

b. Threshold Attrition Model 

For reciprocal attrition we use the model introduced in Chapter II. 

C. MONTE CARLO SIMULATION MODEL FOR ANALYSIS  

Finally, in our last model, the Monte Carlo model, the fundamental difference is 

that we replace the survival probability approach for the defenders and the attackers with 

a binary state of being alive and operational or dead and out of the simulation. Although 

we can still use this approach for the HVU as well, we keep the previous probabilistic 

scheme for this unit. For better results during optimization, we would like a relatively 

smooth probabilistic approach for the HVU rather than an unpredictable approach. 

a. Monte Carlo Attrition Model 

The binary survival probabilities are updated via random number generation at 

each time step in the following way. The probability att
ip  for the i  attacker to die due to 

all defenders k  during a given time step with duration dt is given by: 

 
1

( ) 1 (1 ( ) )
defN

att att def
i ik k

k

p t d W t dt dt
=

= − − −∏  (43) 

Similarly, the probability def
kp  for the defender k  to die due to all attackers i  

during a given time step with duration dt is given by: 

( ) 1 (1 ( ) )
attN

def def att
k ki i

i

p t d W t dt dt= − − −∏   (44) 

Then, a random number iX  or kY  is generated with a uniform distribution 

between 0 and 1 for each attacker i  and defender k , respectively. We change att
iW  and 

def
kW  that now represent the binary state of the i  attacker and the k  defender, 

respectively, from 1 to 0, from alive to dead, when these random numbers are smaller 



41 

than the death probability. Otherwise, when these random numbers are bigger than the 

death probability, it would mean that this agent will survive the current time step and will 

be queried again during the next iteration. The mathematical statement is as follows: 

( ) ( ) ( ) 0att att
i i iX t p t W t< → =     (45) 

( ) ( ) ( ) ( )att att att
i i i iX t p t W t W t dt≥ → = −   (46) 

( ) ( ) ( ) 0def def
k k kY t p t W t< → =     (47) 

( ) ( ) ( ) ( )def def def
k k k kY t p t W t W t dt≥ → = −   (48) 

The HVU survival probability could be calculated in this way as well, but for 

optimization we use a continuous approach, where P(t) is initialized with P(0) = 1 and 

then integrated in the same way as shown in the weighted attrition model in Chapter II 

and in [3] and [15]. Namely: 

 ( ) ( ) 1 1 (1 ( ) )
attN

hvu att
k k

k

P t P t dt d W t dt dt
    = − − − − −      

∏  (49) 

The only difference with Equation (49) is that now att
kW  is the binary state of the 

i  attacker. Consequently, only the live attackers contribute to the attrition of the HVU. 

b. Monte Carlo Dynamics Model 

Our model is based on random number generation that aims to simulate the 

unpredictability often exhibited in the real world. We are using a dynamics framework 

similar to the one analyzed in Chapter II, but because the survival probabilities have been 

replaced from the binary state condition, we have the following equations for the control 

law of the i  attacker: 

(1) Virtual Body Artificial Potential 

 
1 1

( ) ( ) ( )
deflead att

i i i

NM N
att damp att def

i i i x h il i j x I ij k x d ik
l j i k

u r W V h F W V x W V s
= ≠ =

   = = − ∇ + + ∇ + ∇    
∑ ∑ ∑  (40) 
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1 1

( )( ) ( )deflead att NM N
I ijatt damp att defh il d ik

i i il i j ij k ik
l j i kil ikij

f xf h f su W h K x W x W s
h sx= ≠ =

      = − + + +     
       

∑ ∑ ∑
 (41) 

where { }( ), ( ) 0,1att def
i kW t W t ∈ . Hence, for an interaction between attackers or between 

attacker and defender to be exerted, both agents must be stated as alive. 

(2) Reynold’s Rule-based Model 

 
1 1

( ) ( )( )
deflead att NM N

att damp att defh il d ik
i i i il i j al coh sep k ik

l j i kil ik

f h f su r W h K x W f f f W s
h s= ≠ =

      = = − + + + + +     
     
∑ ∑ ∑  (42) 

where { }( ), ( ) 0,1att def
i kW t W t ∈ . Hence, for an interaction between attackers or between 

attacker and defender to be exerted, both agents must be stated as alive. 
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IV. OPTIMIZATION RESULTS AND ANALYSIS WITH MISSION 
OBJECTIVE TO MINIMIZE HVU DESTRUCTION PROBABILITY 

A. LOCAL AND GLOBAL MINIMUM SOLUTIONS FOR OPTIMIZATION 
PROBLEMS SPANNING A CONFIGURATION SPACE OF INFINITE 
DIMENSIONS 

The main idea for our optimal motion planning problem is to use an objective 

function, in this chapter the HVU survival probability, and by computing its gradients we 

seek to find the ideal defender trajectories.  

At this point we have to underline the importance of the initial estimate. The 

gradient based algorithm will drive the solution towards the direction of the gradient’s 

steepest descent and it will stop when one or more of the following conditions are met: 

• a local minimum is found 

• a sufficiently flat area, within some tolerance defined in advance, of the 

configuration space is found 

• the objective goal is met 

• the maximum number of evaluation iterations is reached 

Consequently the initial estimate is important to be an educated guess, based on 

our intuition or based on Operational Research techniques rather than a random guess, in 

order to drive the algorithm faster to a local minimum. When a local minimum is 

achieved, it will be analyzed in order to find out whether it is a descent local minimum 

that we could exploit or it is different than our intuition tells us that the global minimum 

should be. 

In Chapter III we introduced the problem we called ghost-herding via a simulation 

in which the world’s biggest-ever simultaneous UAV swarm [14], 2066 agents, was 

attacking our HVU, which was protected by 200 defenders. In such a large scale problem, 

our state vector, the set of data carrying the necessary information for every time-step to 

conduct our simulation, consists of the position and the velocity in 3-dimensional 
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coordinates of the attacking swarm, as well as the survival probability of all the assets 

(attackers, defenders, and HVU). Consequently, we end up for the aforementioned 

simulation with an enormous configuration space that has 14,662 variables. 

As we may understand, a problem with so many variables may have thousands of 

local minimum solutions and a global minimum that is very computationally expensive to 

be found. We have to take into account that this application of optimal motion planning 

for the defenders is currently a robust analysis tool but the ultimate goal is to eventually 

reach real-time solutions. 

Consequently, the larger the scale of our problem, the more important a good 

initial estimate will become, in order to end up with a local minimum close enough to the 

optimal solution, which is almost impossible to find. 

In the rest of this chapter we demonstrate some results of our motion planning 

optimization algorithm for different initial conditions and different weapons 

characteristics that would indicate the ability of our framework to deal with a wide range 

of scenarios and simulation characteristics. 

B. ELIMINATING THE GHOST-HERDING PROBLEM WITH OUR 
PROPOSED MODELS 

We are going to revisit the scenario of the 2066 attackers versus the 200 defenders 

analyzed in Chapter III in order to demonstrate the ability of our proposed models to 

correlate effectively the dynamics of the antagonistic agents with the attrition models that 

are tracking the inflicted damage. 

In Figures 24–26 we are tracking the survival probability of the HVU as well as 

the number of live defenders and attackers for each individual model. In Figure 24 we see 

that both the weighted and the threshold model are completely aligned with the Monte 

Carlo model that we use as a reference to validate our solution, whereas we see that the 

original code fails to predict the destruction of the HVU. 

The Monte Carlo simulation is executed 200 times (ω=200) and the computed 

outcomes are averaged each time-step, in order to obtain unbias results from the random 

numbers generation procedure. 
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In Figure 25 we observe that the weighted model is closer to the Monte Carlo 

prediction concerning the live defenders for each time step. Nevertheless, both the 

weighted and the threshold models make perfect sense when combined with Figure 26. In 

this figure we see that around the 300th time sample, the confrontation of the antagonistic 

forces takes place. Despite the fact that the defenders in this scenario have superior 

weapons, they are heavily outnumbered and they all die around the 350th time sample, 

together with the HVU, due to the fact that there are no defenders left to protect it. 

Additionally, from this time sample and until the end of the scenario, we also see that the 

attackers suffer no more losses. 

On the other hand, in this scenario we see that the ghost-herding model not only 

fails to predict the HVU survival probability but it also gives us inconclusive information 

concerning the inflicted attrition between opposing forces. Namely, we see in Figures 27 

and 28 that according to the ghost-herding model, at the end of the scenario 1000 

attackers and 60 defenders are still alive. 

 
Figure 24. HVU survival probability comparison between multiple models for 

the scenario of 2066 attackers versus 200 defenders with superior 
weapons. 
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Figure 25. Number of live attackers for each time step for the different 

models introduced for the scenario of 2066 attackers versus 200 defenders 
with superior weapons. 

This trend that we see in Figures 27 and 28 can be explained by examining the 

snapshots of the scenario depicted in Figure 29. In Figure 29 we see snapshots of the 3-

dimensional representation of the scenario according to the ghost-herding model. Both 

attackers and defenders are color coded with their survival probability, where black 

means incapacitated and magenta and cyan mean operational. From the snapshots we see 

again the implications of having the dynamics of the model completely uncorrelated with 

the attrition model.  

From the snapshots in Figure 29 we are able to observe that after the first 1000 

time samples, multiple front layers of defenders and attackers have already been 

incapacitated. Since the attrition and the dynamics models are uncorrelated, these layers 

of incapacitated agents block the physical continuation of the scenario. As a result, we 

may see in Figures 25 and 26 that not only is the prediction of the HVU survival 

probability wrong, but also the survivability of both attackers and defenders is 

miscalculated. 
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Figure 26. Number of live defenders for each time step for the different 

models introduced for the scenario of 2066 attackers versus 200 defenders 
with superior weapons. 

 
Figure 27. Mean survival probabilities for attackers, defenders, and HVU 

using the ill-performed ghost-herding model. 
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Figure 28. Number of live attackers and defenders for each time step, using 

the ill-performed ghost-herding model. 

 

  
Figure 29. Snapshots for the scenario of 2066 attackers versus 200 defenders 

with superior weapons, performed with the ghost-herding model. 
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C. COMPARING THE PERFORMANCE OF THE PROPOSED MODELS BY 
COMPUTING THE NUMBER OF DEFENDERS REQUIRED TO 
DEFEND THE HVU FROM A SWARM ATTACK 

In Section B of this chapter we compared the results derived from our proposed 

models that deal effectively with the correlation between dynamics and attrition. We used 

an example of 2066 attackers and 200 defenders, and we observed that the weighted and 

the threshold models derived almost the same results. Yet, one could say that our 

example had disproportional distribution of forces and the result was almost certain. 

In Figures 30 and 31, we compare the optimization results for a confrontation 

between an attacking swarm of 50 agents and a defending force in order to compute how 

many defenders are required to effectively protect an HVU from such an assault, 

according to the different models. 

 
Figure 30. Number of defenders required to effectively protect an HVU from 

a 50-agent swarm attack with 10% longer weapons range than the 
defenders. 
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Figure 31. Number of defenders, with 10% longer weapons range than the 

attackers, required to effectively protect an HVU from a 50-agent swarm 
attack.  

In Figure 30, the 50 agents of the attacking swarm have a 10% bigger range with 

respect to the defenders. The optimization results of this problem show us firstly that the 

ill-performing ghost-herding model differs significantly from the newly introduced 

models and is computing that only 20 defenders are enough. Additionally, we observe 

from Figure 30 that the weighted model estimates that 52 defenders are enough, whereas 

the threshold model gives a more pessimistic estimate requiring 65 defenders. 

On the other hand, in Figure 31, the defending agents are those that have a 10% 

bigger range with respect to the attackers. In this simulation, though, the threshold model 

is more optimistic compared to the weighted model because, according to the weighted 

model computations, only 30 defenders are required versus 37 that the threshold model 

predicts. Interestingly, we see that in both scenarios, the estimate of the ghost-herding 

model is almost the same, either 20 or 21 defenders. This is another proof that the ghost-

herding model gives non-physical results due to the uncorrelated attrition and dynamics 

models. 
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D. ANALYSIS OF THE OPTIMIZATION RESULTS 

In order to analyze the derived optimization results, we refer again to the two 

scenarios introduced in Section C of this chapter, where a confrontation with a swarm of 

50 agents was examined from both the perspective of stronger attackers and stronger 

defenders. Our analysis focuses on multiple checkpoints that are depicted in Figures 30 

and 31.  

These checkpoints (A1, B1) represent points in the plots predicting that the 

number of defenders is not sufficient with respect to our mission objective, according to 

both the weighted and the threshold models. Additionally, we examine the checkpoints 

(A3, B3) where the number of defenders is satisfactory for the HVU’s protection 

according to both aforementioned models. On the other hand, we investigate the 

checkpoints (A2, B2) where both the weighted and the threshold models contradict each 

other. In all the aforementioned cases we use the Monte Carlo model as a reference to 

cross check our results. 

The Monte Carlo simulation is executed 200 times (ω=200) and the computed 

outcomes are averaged each time-step, in order to obtain unbias results from the random 

numbers generation procedure. 

1. Checkpoints A1–B1: Not Enough Defenders for HVU Protection 

In Figures 32 and 33 we perform an analysis for the Checkpoints A1 and B1 

derived from the optimization results presented via Figures 30 and 31. In Figure 32 we 

verify that the 50 defending agents are insufficient to prevent the HVU’s destruction from 

the stronger 50 agents of the attacking swarm. In Figure 30 we saw that the threshold 

model was the most pessimistic for this scenario. This is the reason why in Figure 32 we 

see that according to this model, not only is the HVU destroyed more quickly, but also 

fewer defenders and more attackers remain operational. As a result, both models do 

capture the outcome of the confrontation, but the weighted model does that with higher 

fidelity. 
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Figure 32. Checkpoint A1 (stronger attackers) analysis: Weighted and 

Threshold models align with the Monte Carlo estimation of HVU 
destruction. 

Figure 33 is also in accordance with the optimization predictions of Figure 31. 

Even though the defenders are stronger now, 25 of them seem to be insufficient to 

achieve the goal of HVU protection. Both the weighted and the threshold models capture 

the outcome of the confrontation. Again the weighted model is closer to the Monte Carlo 

prediction, especially with respect to the mean attacker survivability.  

 
Figure 33. Checkpoint B1 (stronger defenders) analysis: Weighted and 

Threshold models align with the Monte Carlo estimation of HVU 
destruction. 
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2. Checkpoints A2–B2: Differentiation between Weighted and 
Threshold Models 

Checkpoints A2 and B2 represent the gray area between the models. This 

uncertainty area where, according to Figures 30 and 31, the weighted and the threshold 

models predict different outcomes for the confrontation is what we are going to examine 

in this section. 

According to both the scenarios of stronger attackers and stronger defenders, 

Figures 34 and 35, respectively, we may verify again the close fidelity of the weighted 

model with respect to the Monte Carlo simulation of the real outcome. In fact, we see that 

in the scenario of stronger attackers depicted in Figure 34, the 60 defenders are sufficient 

for the HVU’s protection. The threshold model, however, predicts the opposite. 

Moreover, in the scenario of stronger defenders depicted in Figure 35, for the 

confrontation between 50 attackers and 35 defenders we would have to increase the 

defending numbers to avoid the HVU’s destruction. According to the threshold model, 

however, the HVU’s survival could succeed even with this force of 35 defenders. 

 
Figure 34. Checkpoint A2 (stronger attackers) analysis: Threshold model fails 

to predict HVU survival. 
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Figure 35. Checkpoint B2 (stronger defenders) analysis: Threshold model 

fails to predict HVU destruction. 

3. Checkpoints A3–B3: Sufficient 

Last but not least, we have to examine the Checkpoints A3 and B3 where the two 

optimization models, according to Figures 30 and 31, predict that our mission objective 

will be accomplished. 

In Figures 36 and 37, we execute the analysis of the aforementioned checkpoints. 

As we may see, the results for both the scenarios of stronger attackers and stronger 

defenders verify the optimization prediction and the HVU’s survival are achieved. 
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Figure 36. Checkpoint A3 (stronger attackers) analysis: Weighted and 
Threshold models align with the Monte Carlo estimation of HVU survival. 

 
Figure 37. Checkpoint B3 (stronger defenders) analysis: Weighted and 

Threshold models align with the Monte Carlo estimation of HVU survival. 

E. PERIPHERAL THREAT AXIS 

A less practical but really challenging scenario is to defend an HVU asset when 

the attacking swarm has already encircled the defending forces. This means that we 

cannot focus our defending forces to a specific threat direction, rather we have to station 

the defenders accordingly, such that adequate peripheral protection is achieved. 
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In Figures 38–41, we examine this new scenario by optimizing the trajectories of 

50 defenders with much superior weapons, double the range and double the fire rate, in 

order to deal with an assault from a swarm of 500 agents aiming to destroy the HVU. 

In Figure 38 we see the followed trajectory of both the attackers and the 

defenders, color coded with their survival probabilities. Firstly, we observe that in such a 

confrontation where the threat axis is peripheral, the optimum solution for the fewer 

defenders that have superior weapons is to remain very close to the HVU. Secondly, we 

see that the defenders are effectively dealing with the threat because we see that when the 

attackers are close enough to launch their attack, they are moving around in a spherical 

pattern find potential weak points. However, by that time their path is depicted as black, 

which means that their survival probability is too low and they have been incapacitated. 

 
Figure 38. 500 attackers approaching from peripheral directions to destroy the 

HVU protected by 50 defenders with much superior weapons (double 
range and fire rate). 
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Figures 39 and 40 verify the assumptions made from Figure 38, because we 

observe in both figures that all the attackers are incapacitated by the end of the first 10% 

of the simulation, after a short period of mutual attrition, whereas almost 33 defenders 

remain operational by the end of the scenario. 

 
Figure 39. Mean survival probabilities for the scenario of the peripheral threat 

of 500 attackers facing 50 much stronger defenders. 

 
Figure 40. Mean number of live attackers and defenders for the scenario of 

the peripheral threat of 500 attackers facing 50 much stronger defenders. 

In Figure 41, we execute a comparison analysis of the three different optimization 

models spoken of throughout this paper with respect to the Monte Carlo reference model. 
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Hence, we may see that all models are in close fidelity with the reference modelnot 

only for tracking the HVU’s survival probability but also for estimating the survivability 

of the rest of the antagonistic agents. 

It is clear from this scenario, as well as from the previously examined scenarios, 

that the non-physical results of the ghost-herding model appear only in situations where 

the defenders would inevitably lose if they rely only on their weapons. On the other hand, 

in scenarios where the defenders are in sufficient numbers or are equipped with the 

appropriate weapons, the original ghost-herding model with the uncorrelated attrition and 

dynamics models would converge with the rest of the models. 

 
Figure 41. Comparison analysis of the four models for the confrontation 

between the 500 attackers approaching peripherally and the 50 much 
stronger defenders. 
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V. OPTIMIZATION RESULTS WITH RESPECT TO THE 
MISSION OBJECTIVE OF AIR SUPERIORITY 

A. COMPARING OPTIMIZATION RESULTS FOR A CONFRONTATION 
WITH THE SAME CONDITIONS BUT DIFFERENT COST FUNCTIONS 
(HVU PROTECTION — AIR SUPERIORITY) 

In this research, we have used the probability of an HVU’s destruction as a 

mission objective for our motion planning problem. This HVU was a stationary unit with 

no self-defense capabilities. In this chapter, we introduce another mission objective to 

demonstrate the wide usability of our framework. 

Specifically, we introduce a new cost function appropriate for achieving the 

mission objective of air superiority. The objective function of the mean attacker survival 

probability must be minimized to achieve our mission by causing the greatest possible 

attrition among the attackers. For consistency with the previous chapters, we regard the 

defending autonomous systems as dispensables means in order to achieve our goal. 

In Figures 42–45, we compare a confrontation of 100 attackers versus a force of 

25 defenders with double the fire rate and a 25% larger weapons range. In Figure 42 we 

see the trajectories of both the attackers and the defenders color-coded according to their 

survival probability. The defenders’ path planning is computed with respect to the 

mission objective of HVU protection. 



60 

 
Figure 42. 100 attackers versus 25 defenders with superior weapons — HVU 

protection objective. 

In addition to Figure 42, we can see in Figure 43 the color-coded trajectories of all 

the agents of the previous scenario. The initial conditions, the dynamics characteristics, 

and the weapons capabilities are exactly the same as before. The only difference is that 

on this occasion the defender trajectories are computed with respect to the new mission 

objective of air superiority acquisition. 

The main difference we can observe between these two scenarios is that in Figure 

42 the defenders have a more conservative motion. They intercept the attackers only 

when the attackers approach the HVU; the defenders block the attackers’ way to the 

HVU and its destruction, and only then do they fight each other. In Figure 43, on the 

other hand, we see a more aggressive behavior on the part of the defenders. Now there is 

no HVU to be protected, and as a result, they are guided toward a head-on confrontation 

in order to achieve the minimization of the cost function as quickly as possible. 
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Figure 43. 100 attackers versus 25 defenders with superior weapons — Air 

superiority objective. 

In Figures 44 and 45, the comparison of the two different scenarios is extended to 

the analysis of the survival probabilities and the survivability of all the agents. The take-

away from these two figures is the following. Because the new objective function of air-

superiority drives the defenders more aggressively to maximize the attrition of the 

opposing swarm, the cost that corresponds to the mean survival probability of the 

defenders decreases more quickly. This happens, however, with the sacrifice of more 

defenders with respect to the scenario of HVU protection. Namely, we see in Figure 44 

that the mean defender survival probability for the air-superiority objective, at the end of 

the scenario, is 19% whereas in the HVU protection scenario it is 51%.  
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Figure 44. Mean survival probabilities comparison between the two different 

mission objectives for the scenarios with 100 attackers and 25 defenders 
with superior weapons. 

In sheer numbers we see in Figure 45 that this mean probability difference 

corresponds to seven more defenders at the end of the HVU protection scenario. This 

difference makes sense since we regard the defender autonomous systems indispensable, 

and consequently, they do not influence the cost. If we had to consider their survivability 

as well, the head-on confrontation would not be the best solution since it does not exploit 

in the best way the extended range of the defenders’ weapons. 

Of course, this argument would not be correct if we had not extended this range 

for our forces, since we would like to drive the defenders as quickly as possible to a 

region where the extended weapons range advantage of the attackers would not matter 

anymore. 
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Figure 45. Mean survivability comparison between the two different mission 

objectives for the scenarios with 100 attackers and 25 defenders with 
superior weapons. 

B. COMPARING THE PERFORMANCE OF THE PROPOSED MODELS BY 
COMPUTING THE NUMBER OF DEFENDERS REQUIRED TO OBTAIN 
AIR — SUPERIORITY 

In Figures 46 and 47, we compare the optimization results for a confrontation 

between an attacking swarm of 50 agents and a defending force in order to compute how 

many defenders are required to achieve air superiority, according to the different models. 

In Figure 46, the defending agents have a 10% bigger range with respect to the 

attackers. On the other hand, in Figure 47, the attacking swarm agents have a 10% bigger 

range with respect to the defenders. In both scenarios, though, the optimization results 

show us the same trend. Firstly, the ill-performing ghost-herding model is converging 

with the newly introduced models as the number of antagonistic agents that are 

interacting with each other is relatively low, and hence, the correlation between dynamics 

and attrition is not so important. 
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On the other hand, for a defending force of 20 or more agents, according to Figure 

46, or for a defending force of 25 agents or more, according to Figure 47, we enter into 

the ghost-herding problem region. In this region the interaction of the antagonistic forces 

plays an important role in the outcome of the scenario. Consequently, these forces have to 

be correlated with the survivability of the agents in order to obtain a reliable computation 

of the final cost of the simulation. 

 
Figure 46. Number of defenders with 10% more extended weapons range than 

the attackers. Defenders must challenge a 50-agent swarm and obtain air 
superiority. 
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Figure 47. Number of defenders with 10% shorter weapons range than the 

attackers. Defenders must challenge a 50-agent swarm and obtain air 
superiority. 

C. ANALYSIS OF THE OPTIMIZATION RESULTS 

To analyze the derived optimization results, we refer again to the two scenarios 

introduced in Section B of this chapter, where a confrontation with a swarm of 50 agents 

was examined from both the perspective of the stronger attackers and the stronger 

defenders. Our analysis focuses on the checkpoints depicted in Figures 46 and 47.  

These checkpoints (A1, B1) represent points in the plots predicting that the 

interaction forces do not influence the final cost of the scenario, and consequently, the 

ghost-herding model converges to both weighted and threshold models. On the other 

hand, we investigate the checkpoints (A2, B2) where the number of agents is such that 

the antagonistic forces do influence the final cost of the scenario. In all the 

aforementioned cases, we use the Monte Carlo model as a reference to cross check our 

results. 
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The Monte Carlo simulation is executed 200 times (ω=200) and the computed 

outcomes are averaged each time-step, in order to obtain unbias results from the random 

numbers generation procedure. 

1. Checkpoints A1–B1: Models’ Converging Region 

In Figures 48 and 49 we perform an analysis for the Checkpoints A1 and B1 

derived from the optimization results presented via Figures 46 and 47. In Figure 48 we 

see the analysis of a confrontation between 50 attackers and 20 defenders that have a 

10% longer weapons range than the attackers. The objective of the scenario now is to 

minimize the attackers’ survivability. Figure 48 shows us that all models converge not 

only with respect to the cost represented by the mean attackers’ survivability but also 

with respect to the mean defenders’ survival probability. 

 
Figure 48. Checkpoint A1 (20 stronger defenders) analysis: Ghost-herding 

model converges to the other models. 

Figure 49 also presents a simulation in which the ghost-herding problem does not 

differ significantly from the other models. Figure 49 also examines a confrontation 

between 50 attackers and 20 defenders, but now the 10% longer weapons range 

corresponds to the attackers. 
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Figure 49. Checkpoint B1 (20 weaker defenders) analysis: Ghost-herding 

model converges to the other models. 

2. Checkpoints A2–B2: Ghost-Herding Problem Region 

Figure 50 depicts the Checkpoint A2 where 40 defenders with 10% longer 

weapons range eliminate an attacking swarm of 50 agents. In this simulation, the number 

of agents participating is such that we see that the problem of uncorrelated dynamics and 

attrition comes into play. 

 
Figure 50. Checkpoint A2 (40 stronger defenders) analysis: Ghost-herding 

model differs with respect to the other models. 
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Consequently, agents are incapacitated and removed from the scenario for all 

models except from the ghost-herding model. In this model they remain in the field only 

to generate attractive and repulsive forces, since their weapons have been waived by the 

attrition model. 

Figure 51 repeats the demonstration of the ghost-herding problem but this time for 

a confrontation involving 50 attackers versus 100 defenders. This time the attackers have 

the 10% range superiority in weapons capability. 

 
Figure 51. Checkpoint B2 (100 weaker defenders) analysis: Ghost-herding 

model differs with respect to the other models. 
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VI. CONCLUSION  

The main goal of this thesis was to address a challenging issue of the optimal 

motion planning problem for autonomous systems facing large-scale antagonistic 

swarms. This issue is related to the nature of the models that come into play in such a 

framework. Namely, we seek to find the appropriate balance between the deterministic 

nature of the dynamics, which define the controlling forces for all the agents, and the 

probabilistic nature of the weapons engagements. 

First, in Chapters I and II we introduced the framework used nowadays for 

optimal control. In Chapter III we demonstrated the issue we dubbed the ghost-herding 

problem in the original framework. Additionally, in Chapter III we presented our 

proposed models for dealing with this challenge. We introduced two models for 

optimization purposes, the weighted and the threshold models, as well as one model for 

analysis purposes, the Monte Carlo model.  

The Monte Carlo simulation model was used as a reference during the analysis 

sections of this thesis. In this model, survivability is partially influenced by random 

number generation aimed at simulating the unpredictability that the real world exhibits. 

The demonstration and the analysis of our models were presented in Chapters IV and V 

for a number of different swarm confrontations. In Chapter IV, our cost was represented 

by our goal to protect an HVU unit whereas in Chapter V we used the objective function 

of  minimizing the survival rate of the mean attackers. 

Last but not least, the aspect of computational efficiency that allowed us to 

execute large-scale swarm simulations was addressed in Chapter II. A significant 

computational advantage was gained by replacing the Runge Kutta with the Verlet 

integration scheme frequently used in molecular dynamics. This almost equally 

numerically stable framework offers an impressive performance advantage. 
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APPENDIX. MATLAB FILES 

A. COMPUTATIONALLY IMPROVED DYNAMICS / ATTRITION MODELS

1. Monte Carlo Dynamics and Attrition Model 

a. Leonard Dynamics

function [yout,tot_surv_att,tot_surv_def,tot_surv_HVU,att_surv,def_surv] = 
new_ode4_Leon_MonteCarlo(t0,dt,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x,i) 
seed = i; 
rng(seed); 
Patt_death = zeros(size((tf-t0)/dt)); 
Patt_rand = Patt_death; 
Pdef_death = Patt_death; 
Pdef_rand = Patt_death; 
tot_surv_att = Patt_death; 
tot_surv_def = Patt_death; 
att_lamda = PARAMETERS.ATTACKERWEAPON.lambda; 
att_sigma = PARAMETERS.ATTACKERWEAPON.sigma; 
t_count = 1; 
yout = x; 
epsilon = 0.01; %distance cut off for near zero 
umax = PARAMETERS.SWARM.umax; 
K = PARAMETERS.SWARM.K; 
K_hvu = PARAMETERS.SWARM.K_hvu; 
d0_att=PARAMETERS.SWARM.d0; 
d1_att=PARAMETERS.SWARM.d1; 
alpha_att=PARAMETERS.SWARM.alpha_i; 
d0_def=PARAMETERS.SWARM.INTd0; 
d1_def=PARAMETERS.SWARM.INTd1; 
alpha_def=PARAMETERS.SWARM.alphaINT_i; 
mass_att = ones(1,N_attackers); 
follower_states = reshape(x(1:6*N_attackers),6,N_attackers);  
x_att=follower_states(1,:); 
y_att=follower_states(2,:); 
z_att=follower_states(3,:); 
vx_att=follower_states(4,:); 
vy_att=follower_states(5,:); 
vz_att=follower_states(6,:); 
ax_att = 0; 
ay_att = 0; 
az_att = 0; 
ax_att_old = ax_att; 
ay_att_old = ay_att; 
az_att_old = az_att; 
Q = x(6*N_attackers+1:7*N_attackers); %probability of attacker survival 
Pd = x(7*N_attackers+1:7*N_attackers+N_defenders); %prob of def surv 
P = x(end); %prob of HVU surv 
t = t0:dt:tf; 
length_time = length(t); 
def_surv = ones(length_time, N_defenders); 
att_surv = ones(length_time, N_attackers); 
HVU_surv = 1; 
for t = t0 : dt : tf-dt 

  % first step in Verlet integration 
  x_att=x_att+vx_att*dt+ax_att_old.*dt.^2/2;  



72 

    y_att=y_att+vy_att*dt+ay_att_old.*dt.^2/2; 
    z_att=z_att+vz_att*dt+az_att_old.*dt.^2/2; 
    BN_t = bernsteinMatrix_a2b(N_Bezier,t,t0,tf); 
    pd = (BN_t*Cd); 
    pd = reshape(pd,3,N_defenders); % pd - position of the defenders 
    x_def=pd(1,:); 
    y_def=pd(2,:); 
    z_def=pd(3,:); 
    pd = [x_def;y_def;z_def]; 
    follower_states = [x_att;y_att;z_att;vx_att;vy_att;vz_att]; 
    position = [follower_states(1:3,:) pd]; % position: 3-by-(n+m) 
    p_hvu = PARAMETERS.DEFENDER.p_hvu; 
    Fx = zeros(1,N_attackers); 
    Fy = Fx; 
    Fz = Fx; 
    for nn = 1:N_attackers 
        if att_surv(t_count,nn)==1 
            dx_hvu = x_att(nn)-p_hvu(1); 
            dy_hvu = y_att(nn)-p_hvu(2); 
            dz_hvu = z_att(nn)-p_hvu(3); 
            dd_hvu = sqrt(dx_hvu.^2+dy_hvu.^2+dz_hvu.^2); 
            Fx(nn) = Fx(nn) - K_hvu.*dx_hvu./dd_hvu; 
            Fy(nn) = Fy(nn) - K_hvu.*dy_hvu./dd_hvu; 
            Fz(nn) = Fz(nn) - K_hvu.*dz_hvu./dd_hvu; 
            for mm = (nn+1):N_attackers 
                if att_surv(t_count,mm)==1 
                    dx = x_att(nn) - x_att(mm); 
                    if dx < d1_att 
                        dy = y_att(nn) - y_att(mm); 
                        if dy < d1_att 
                            dz = z_att(nn) - z_att(mm); 
                            ddnm = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon); 
                            if ddnm < d1_att 
                                F = (1./ddnm.^2).*alpha_att.*(1-d0_att./ddnm);%; 
                                Fx(nn) = Fx(nn) - F.*dx; 
                                Fx(mm) = Fx(mm) + F.*dx;% same 
                                Fy(nn) = Fy(nn) - F.*dy;% add something there 
                                Fy(mm) = Fy(mm) + F.*dy;% same 
                                Fz(nn) = Fz(nn) - F.*dz;% add something there 
                                Fz(mm) = Fz(mm) + F.*dz;% same 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
    % b. Velocity dampening forces 
    Fx = Fx - K.*vx_att; 
    Fy = Fy - K.*vy_att; 
    Fz = Fz - K.*vz_att; 
    % c. Defender forces computation 
    distance_2defenders = d1_def*ones(N_attackers, N_defenders); 
    for nn = 1:N_attackers 
        if att_surv(t_count,nn)==1 
            for mm = 1:N_defenders 
                if def_surv(t_count,mm)==1 
                    dx = x_att(nn) - x_def(mm); 
                    if dx < d1_def 
                        dy = y_att(nn) - y_def(mm); 
                        if dy < d1_def 
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                            dz = z_att(nn) - z_def(mm); 
                            distance_2defenders(nn,mm) = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon); 
                            if distance_2defenders(nn,mm) < d1_def 
                                F = (1./(distance_2defenders(nn,mm)).^2).*alpha_def.*(1-d0_def./distance_2defenders(nn,mm)); 
                                Fx(nn) = Fx(nn) - F.*dx; 
                                Fy(nn) = Fy(nn) - F.*dy; 
                                Fz(nn) = Fz(nn) - F.*dz; 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
    % Thrust limits 
    for i = 1:N_attackers 
        if Fx(i) >= umax 
            Fx(i) = umax; 
        elseif Fx(i) <= -umax 
            Fx(i) = -umax; 
        end 
        if Fy(i) >= umax 
            Fy(i) = umax; 
        elseif Fy(i) <= -umax 
            Fy(i) = -umax; 
        end 
        if Fz(i) >= umax 
            Fz(i) = umax; 
        elseif Fz(i) <= -umax 
            Fz(i) = -umax; 
        end 
    end 
    %Second step in Verlet integration 
    vx_att = vx_att + (ax_att_old + ax_att).*dt/2; 
    vy_att = vy_att + (ay_att_old + ay_att).*dt/2; 
    vz_att = vz_att + (az_att_old + az_att).*dt/2; 
    ax_att_old = ax_att; 
    ay_att_old = ay_att; 
    az_att_old = az_att; 
    %%  Deterministic Approach for attrition 
    rand_def = rand(1,N_defenders); 
    rand_att = rand(1,N_attackers); 
    rand_HVU = rand(1,1); 
    P_death_att=(1-prod(1-rda2d'.*dt)); 
    P_death_def=(1-prod(1-rdd2a.*dt)); 
    P_death_HVU=(1-prod(1-ra2hvu.*dt)); 
    att_surv(t_count:end,rand_att<P_death_att)=0; 
    def_surv(t_count:end,rand_def<P_death_def)=0; 
    HVU_surv(rand_HVU<P_death_HVU)=0; 
    Patt_death(t_count) = mean(P_death_att); 
    Patt_rand(t_count) = mean(rand_att); 
    Pdef_death(t_count) = mean(P_death_def); 
    Pdef_rand(t_count) = mean(rand_def); 
    tot_surv_att(t_count) = sum(att_surv(t_count,:)); 
    tot_surv_def(t_count) = sum(def_surv(t_count,:)); 
    tot_surv_HVU(t_count) = HVU_surv; 
    t_count = t_count+1; 
    dy = [reshape([x_att; y_att; z_att; vx_att; vy_att; vz_att],6*N_attackers,1)]; 
    yout = [yout; dy]; 
end 
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b. Reynolds Dynamics 

function [yout, Patt_death, Patt_rand,Pdef_death, Pdef_rand,tot_surv_att,tot_surv_def,tot_surv_HVU] = 
new_ode4_Reyn_MonteCarlo(t0,dt,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x,i) 
seed = i; 
rng(seed); 
Patt_death = zeros(size((tf-t0)/dt)); 
Patt_rand = Patt_death; 
Pdef_death = Patt_death; 
Pdef_rand = Patt_death; 
tot_surv_att = Patt_death; 
tot_surv_def = Patt_death; 
t_count = 1; 
yout = x; 
epsilon = 0.01; %distance cut off for near zero 
umax = PARAMETERS.SWARM.umax; 
K = PARAMETERS.SWARM.K; 
K_hvu = PARAMETERS.SWARM.K_hvu; 
d_alig=PARAMETERS.SWARM.N_size_al_F; 
weight_alig = PARAMETERS.SWARM.w_al_F; 
% d_cohes=PARAMETERS.SWARM.N_size_c_F; 
weight_cohes=PARAMETERS.SWARM.w_c_F; 
d_separ=PARAMETERS.SWARM.N_size_s_I; 
weight_separ = PARAMETERS.SWARM.w_s_F; 
weight_separ_intr = PARAMETERS.SWARM.w_s_I; 
mass_att = ones(1,N_attackers); 
follower_states = reshape(x(1:6*N_attackers),6,N_attackers);  
x_att=follower_states(1,:); 
y_att=follower_states(2,:); 
z_att=follower_states(3,:); 
vx_att=follower_states(4,:); 
vy_att=follower_states(5,:); 
vz_att=follower_states(6,:); 
ax_att = 0; 
ay_att = 0; 
az_att = 0; 
ax_att_old = ax_att; 
ay_att_old = ay_att; 
az_att_old = az_att; 
Q = x(6*N_attackers+1:7*N_attackers);  
Pd = x(7*N_attackers+1:7*N_attackers+N_defenders);  
P = x(end); 
def_surv = ones(1, N_defenders); 
att_surv = ones(1, N_attackers); 
HVU_surv = 1; 
for t = t0 : dt : tf-dt 
    % first step in Verlet integration 
    x_att=x_att+vx_att*dt+ax_att_old.*dt.^2/2;   
    y_att=y_att+vy_att*dt+ay_att_old.*dt.^2/2; 
    z_att=z_att+vz_att*dt+az_att_old.*dt.^2/2; 
    BN_t = bernsteinMatrix_a2b(N_Bezier,t,t0,tf); 
    pd = (BN_t*Cd); 
    pd = reshape(pd,3,N_defenders); % pd - position of the defenders 
    follower_states = [x_att;y_att;z_att;vx_att;vy_att;vz_att]; 
    position = [follower_states(1:3,:) pd]; % position: 3-by-(n+m) 
    velocity = [follower_states(4:6,:) vd]; % velocity: 3-by-(n+m) 
    p_hvu = PARAMETERS.DEFENDER.p_hvu; 
    Fx = zeros(1,N_attackers); 
    Fy = Fx; 
    Fz = Fx; 
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    %Velocity dampening forces 
    Fx = Fx - K.*vx_att; 
    Fy = Fy - K.*vy_att; 
    Fz = Fz - K.*vz_att; 
    counter_al = zeros(1,N_attackers); 
    sumx_al = counter_al; 
    sumy_al = counter_al; 
    sumz_al = counter_al; 
    sumx_coh = counter_al; 
    sumy_coh = counter_al; 
    sumz_coh = counter_al; 
    counter_sep = zeros(1,N_attackers); 
    sumx_sep = counter_sep; 
    sumy_sep = counter_sep; 
    sumz_sep = counter_sep; 
    x_def=pd(1,:); 
    y_def=pd(2,:); 
    z_def=pd(3,:); 
    counter_sep_int = zeros(1,N_attackers); 
    sumx_sep_int = counter_sep_int; 
    sumy_sep_int = counter_sep_int; 
    sumz_sep_int = counter_sep_int; 
    distance_2defenders = d_separ*ones(N_attackers, N_defenders); 
    for nn = 1:N_attackers 
        if att_surv(nn)==1 
            dx_hvu = x_att(nn)-p_hvu(1); 
            dy_hvu = y_att(nn)-p_hvu(2); 
            dz_hvu = z_att(nn)-p_hvu(3); 
            dd_hvu = sqrt(dx_hvu.^2+dy_hvu.^2+dz_hvu.^2); 
            %Artificial Potential forces 
            Fx(nn) = Fx(nn) - K_hvu.*dx_hvu./dd_hvu; 
            Fy(nn) = Fy(nn) - K_hvu.*dy_hvu./dd_hvu; 
            Fz(nn) = Fz(nn) - K_hvu.*dz_hvu./dd_hvu; 
            for mm = (nn+1):N_attackers 
                if att_surv(mm)==1 
                    dx = x_att(nn) - x_att(mm); 
                    if dx < d_alig 
                        dy = y_att(nn) - y_att(mm); 
                        if dy < d_alig 
                            dz = z_att(nn) - z_att(mm); 
                            ddnm = sqrt(dx.^2+dy.^2+dz.^2); 
                            if (ddnm < d_separ && ddnm > epsilon) 
                                counter_sep(nn) = counter_sep(nn) +1; 
                                counter_sep(mm) = counter_sep(mm) +1; 
                                sumx_sep(nn) = sumx_sep(nn) + (dx/ddnm); 
                                sumx_sep(mm) = sumx_sep(mm) - (dx/ddnm); 
                                sumy_sep(nn) = sumy_sep(nn) + (dy/ddnm); 
                                sumy_sep(mm) = sumy_sep(mm) - (dy/ddnm); 
                                sumz_sep(nn) = sumz_sep(nn) + (dz/ddnm); 
                                sumz_sep(mm) = sumz_sep(mm) - (dz/ddnm); 
                                counter_al(nn) = counter_al(nn) +1; 
                                counter_al(mm) = counter_al(mm) +1; 
                                sumx_al(nn) = sumx_al(nn) + vx_att(mm); 
                                sumx_al(mm) = sumx_al(mm) + vx_att(nn); 
                                sumy_al(nn) = sumy_al(nn) + vy_att(mm); 
                                sumy_al(mm) = sumy_al(mm) + vy_att(nn); 
                                sumz_al(nn) = sumz_al(nn) + vz_att(mm); 
                                sumz_al(mm) = sumz_al(mm) + vz_att(nn); 
                                sumx_coh(nn) = sumx_coh(nn) + x_att(mm); 
                                sumx_coh(mm) = sumx_coh(mm) + x_att(nn); 
                                sumy_coh(nn) = sumy_coh(nn) + y_att(mm); 



76 

                                sumy_coh(mm) = sumy_coh(mm) + y_att(nn); 
                                sumz_coh(nn) = sumz_coh(nn) + z_att(mm); 
                                sumz_coh(mm) = sumz_coh(mm) + z_att(nn); 
                            elseif (ddnm < d_alig  && ddnm > epsilon) 
                                counter_al(nn) = counter_al(nn) +1; 
                                counter_al(mm) = counter_al(mm) +1; 
                                sumx_al(nn) = sumx_al(nn) + vx_att(mm); 
                                sumx_al(mm) = sumx_al(mm) + vx_att(nn); 
                                sumy_al(nn) = sumy_al(nn) + vy_att(mm); 
                                sumy_al(mm) = sumy_al(mm) + vy_att(nn); 
                                sumz_al(nn) = sumz_al(nn) + vz_att(mm); 
                                sumz_al(mm) = sumz_al(mm) + vz_att(nn); 
                                sumx_coh(nn) = sumx_coh(nn) + x_att(mm); 
                                sumx_coh(mm) = sumx_coh(mm) + x_att(nn); 
                                sumy_coh(nn) = sumy_coh(nn) + y_att(mm); 
                                sumy_coh(mm) = sumy_coh(mm) + y_att(nn); 
                                sumz_coh(nn) = sumz_coh(nn) + z_att(mm); 
                                sumz_coh(mm) = sumz_coh(mm) + z_att(nn); 
                                 
                            end 
                        end 
                    end 
                end 
            end 
            if att_surv(mm)==1 
                for mm = 1:N_defenders 
                    if def_surv(mm)==1 
                        dx = x_att(nn) - x_def(mm); 
                        if dx < d_separ 
                            dy = y_att(nn) - y_def(mm); 
                             if dy < d_separ 
                                dz = z_att(nn) - z_def(mm); 
                                distance_2defenders(nn,mm) = sqrt(dx.^2+dy.^2+dz.^2); 
                                if (distance_2defenders(nn,mm) < d_separ  && distance_2defenders(nn,mm) > epsilon) 
                                    counter_sep_int(nn) = counter_sep_int(nn) +1; 
                                    sumx_sep_int(nn) = sumx_sep_int(nn) + (dx./distance_2defenders(nn,mm)); 
                                    sumy_sep_int(nn) = sumy_sep_int(nn) + (dy./distance_2defenders(nn,mm)); 
                                    sumz_sep_int(nn) = sumz_sep_int(nn) + (dz./distance_2defenders(nn,mm)); 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
    for nn = 1:N_attackers 
        if counter_al(nn) ==0 
            counter_al(nn)=1; 
        end 
        if counter_sep(nn) ==0 
            counter_sep(nn)=1; 
        end 
        if counter_sep_int(nn)==0 
            counter_sep_int(nn)=1; 
        end 
    end 
    %Alignment Forces &Cohesion Forces 
    Fx = Fx + mass_att.*(weight_alig.*(sumx_al./counter_al - vx_att) + weight_cohes.*(sumx_coh./counter_al - x_att)); 
    Fy = Fy + mass_att.*(weight_alig.*(sumy_al./counter_al - vy_att) + weight_cohes.*(sumy_coh./counter_al - y_att)); 
    Fz = Fz + mass_att.*(weight_alig.*(sumz_al./counter_al - vz_att) + weight_cohes.*(sumz_coh./counter_al - z_att)); 
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    %Separation Forces 
    Fx = Fx + mass_att.*(weight_separ.*(sumx_sep./counter_sep) + 
weight_separ_intr.*(sumx_sep_int./counter_sep_int)); 
    Fy = Fy + mass_att.*(weight_separ.*(sumy_sep./counter_sep) + 
weight_separ_intr.*(sumy_sep_int./counter_sep_int)); 
    Fz = Fz + mass_att.*(weight_separ.*(sumz_sep./counter_sep) + 
weight_separ_intr.*(sumz_sep_int./counter_sep_int)); 
    % Thrust limits 
    for i = 1:N_attackers 
        if Fx(i) >= umax 
            Fx(i) = umax; 
        elseif Fx(i) <= -umax 
            Fx(i) = -umax; 
        end 
        if Fy(i) >= umax 
            Fy(i) = umax; 
        elseif Fy(i) <= -umax 
            Fy(i) = -umax; 
        end 
        if Fz(i) >= umax 
            Fz(i) = umax; 
        elseif Fz(i) <= -umax 
            Fz(i) = -umax; 
        end 
    end 
    ax_att = Fx./mass_att; 
    ay_att = Fy./mass_att; 
    az_att = Fz./mass_att; 
    vx_att = vx_att + (ax_att_old + ax_att).*dt/2; 
    vy_att = vy_att + (ay_att_old + ay_att).*dt/2; 
    vz_att = vz_att + (az_att_old + az_att).*dt/2; 
    ax_att_old = ax_att; 
    ay_att_old = ay_att; 
    az_att_old = az_att; 
    dy = [reshape([x_att; y_att; z_att; vx_att; vy_att; vz_att],6*N_attackers,1);Q;Pd;P]; 
    yout = [yout; dy]; 
    rand_def = rand(1,N_defenders); 
    rand_att = rand(1,N_attackers); 
    rand_HVU = rand(1,1); 
    P_death_att=(1-prod(1-rda2d'.*dt)); 
    P_death_def=(1-prod(1-rdd2a.*dt)); 
    P_death_HVU=(1-prod(1-ra2hvu.*dt)); 
    att_surv(rand_att<P_death_att)=0; 
    def_surv(rand_def<P_death_def)=0; 
    HVU_surv(rand_HVU<P_death_HVU)=0; 
    Patt_death(t_count) = mean(P_death_att); 
    Patt_rand(t_count) = mean(rand_att); 
    Pdef_death(t_count) = mean(P_death_def); 
    Pdef_rand(t_count) = mean(rand_def); 
    tot_surv_att(t_count) = sum(att_surv); 
    tot_surv_def(t_count) = sum(def_surv); 
    tot_surv_HVU(t_count) = HVU_surv; 
    t_count = t_count+1; 
end 

2. Weighted Dynamics and Attrition Model  

a. Leonard Dynamics 

function yout = new_ode4_Leon_WeightForces(t0,dt,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x,~) 



78 

yout = x; 
epsilon = 0.01; %distance cut off for near zero 
umax = PARAMETERS.SWARM.umax; 
K = PARAMETERS.SWARM.K; 
K_hvu = PARAMETERS.SWARM.K_hvu; 
d0_att=PARAMETERS.SWARM.d0; 
d1_att=PARAMETERS.SWARM.d1; 
alpha_att=PARAMETERS.SWARM.alpha_i; 
d0_def=PARAMETERS.SWARM.INTd0; 
d1_def=PARAMETERS.SWARM.INTd1; 
alpha_def=PARAMETERS.SWARM.alphaINT_i; 
mass_att = ones(1,N_attackers); 
att_lamda = PARAMETERS.ATTACKERWEAPON.lambda; 
att_sigma = PARAMETERS.ATTACKERWEAPON.sigma; 
follower_states = reshape(x(1:6*N_attackers),6,N_attackers);  
x_att=follower_states(1,:); 
y_att=follower_states(2,:); 
z_att=follower_states(3,:); 
vx_att=follower_states(4,:); 
vy_att=follower_states(5,:); 
vz_att=follower_states(6,:); 
ax_att = 0; 
ay_att = 0; 
az_att = 0; 
ax_att_old = ax_att; 
ay_att_old = ay_att; 
az_att_old = az_att; 
Q = x(6*N_attackers+1:7*N_attackers); %probability of attacker survival 
Pd = x(7*N_attackers+1:7*N_attackers+N_defenders); %prob of def surv 
P = x(end); %prob of HVU surv 
for t = t0 : dt : tf-dt 
  % first step in Verlet integration   
    x_att=x_att+vx_att*dt+ax_att_old.*dt.^2/2;   
    y_att=y_att+vy_att*dt+ay_att_old.*dt.^2/2; 
    z_att=z_att+vz_att*dt+az_att_old.*dt.^2/2; 
    BN_t = bernsteinMatrix_a2b(N_Bezier,t,t0,tf); 
    pd = (BN_t*Cd); 
    pd = reshape(pd,3,N_defenders);      
    follower_states = [x_att;y_att;z_att;vx_att;vy_att;vz_att]; 
    position = [follower_states(1:3,:) pd];  
    p_hvu = PARAMETERS.DEFENDER.p_hvu; 
    Fx = zeros(1,N_attackers); 
    Fy = Fx; 
    Fz = Fx; 
    for nn = 1:N_attackers 
        dx_hvu = x_att(nn)-p_hvu(1); 
        dy_hvu = y_att(nn)-p_hvu(2); 
        dz_hvu = z_att(nn)-p_hvu(3); 
        dd_hvu = sqrt(dx_hvu.^2+dy_hvu.^2+dz_hvu.^2); 
        Fx(nn) = Fx(nn) - (K_hvu.*dx_hvu./dd_hvu + K.*vx_att(nn)); 
        Fy(nn) = Fy(nn) - (K_hvu.*dy_hvu./dd_hvu + K.*vy_att(nn)); 
        Fz(nn) = Fz(nn) - (K_hvu.*dz_hvu./dd_hvu + K.*vz_att(nn)); 
        for mm = (nn+1):N_attackers 
            dx = x_att(nn) - x_att(mm); 
            if dx < d1_att 
                dy = y_att(nn) - y_att(mm); 
                if dy < d1_att 
                    dz = z_att(nn) - z_att(mm); 
                    ddnm = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon); 
                    if ddnm < d1_att 
                        F = (1./ddnm.^2).*alpha_att.*(1-d0_att./ddnm);%; 
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                        Fx(nn) = Fx(nn) - Q(mm).*F.*dx;% weighted forces 
                        Fx(mm) = Fx(mm) + Q(nn).*F.*dx; 
                        Fy(nn) = Fy(nn) - Q(mm).*F.*dy; 
                        Fy(mm) = Fy(mm) + Q(nn).*F.*dy; 
                        Fz(nn) = Fz(nn) - Q(mm).*F.*dz; 
                        Fz(mm) = Fz(mm) + Q(nn).*F.*dz; 
                    end 
                end 
            end 
        end 
    end 
    x_def=pd(1,:); 
    y_def=pd(2,:); 
    z_def=pd(3,:); 
    distance_2defenders = d1_def*ones(N_attackers, N_defenders); 
    for nn = 1:N_attackers 
        for mm = 1:N_defenders 
            dx = x_att(nn) - x_def(mm); 
            if dx < d1_def 
                dy = y_att(nn) - y_def(mm); 
                if dy < d1_def 
                    dz = z_att(nn) - z_def(mm); 
                    distance_2defenders(nn,mm) = sqrt(dx.^2+dy.^2+dz.^2); 
                    distance_2defenders(nn,mm) = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon); 
                    if distance_2defenders(nn,mm) < d1_def 
                        F = (1./(distance_2defenders(nn,mm)).^2).*alpha_def.*(1-d0_def./distance_2defenders(nn,mm)); 
                        Fx(nn) = Fx(nn) - Pd(mm).*F.*dx; 
                        Fy(nn) = Fy(nn) - Pd(mm).*F.*dy; 
                        Fz(nn) = Fz(nn) - Pd(mm).*F.*dz; 
                    end 
                end 
            end 
        end 
    end 
    % Thrust limits 
    for i = 1:N_attackers 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        if Fx(i) >= umax 
            Fx(i) = umax; 
        elseif Fx(i) <= -umax 
            Fx(i) = -umax; 
        end 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        if Fy(i) >= umax 
            Fy(i) = umax; 
        elseif Fy(i) <= -umax 
            Fy(i) = -umax; 
        end 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        if Fz(i) >= umax 
            Fz(i) = umax; 
        elseif Fz(i) <= -umax 
            Fz(i) = -umax; 
        end 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    end 
    %  compute probability of attacker/defender/hvu survival 
    rda2d = PARAMETERS.DEFENDERWEAPON.lambda*normcdf((PARAMETERS.DEFENDERWEAPON.F - 
PARAMETERS.DEFENDERWEAPON.a*distance_2defenders.^2)/PARAMETERS.DEFENDERWEAPON.sigma,0,
1); 
    Pdmat = repmat(Pd',[N_attackers 1]); 



80 

    Q = Q.*(1-(1-prod(1-(rda2d.*Pdmat)'.*dt)))'; 
    % compute probability of defender survival 
    rdd2a = att_lamda*normcdf((PARAMETERS.ATTACKERWEAPON.F - 
PARAMETERS.ATTACKERWEAPON.a*distance_2defenders.^2)/att_sigma,0,1); 
    Qmat = repmat(Q,[1 N_defenders]); 
    Pd = Pd.*(1-(1-prod(1-(rdd2a.*Qmat).*dt)))'; 
    % compute probability of HVU survival 
    distance_2HVU_sq = (position(1,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(1)).^2 + 
(position(2,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(2)).^2 + (position(3,1:N_attackers) - 
PARAMETERS.DEFENDER.p_hvu(3)).^2; 
    ra2hvu = att_lamda*normcdf((PARAMETERS.ATTACKERWEAPON.F - 
PARAMETERS.ATTACKERWEAPON.a*distance_2HVU_sq)/att_sigma,0,1); 
    P = P.*(1-(1-prod(1-ra2hvu.*dt))); 
    ax_att = Fx./mass_att; 
    ay_att = Fy./mass_att; 
    az_att = Fz./mass_att; 
    vx_att = vx_att + (ax_att_old + ax_att).*dt/2; 
    vy_att = vy_att + (ay_att_old + ay_att).*dt/2; 
    vz_att = vz_att + (az_att_old + az_att).*dt/2; 
    ax_att_old = ax_att; 
    ay_att_old = ay_att; 
    az_att_old = az_att; 
    dy = [reshape([x_att; y_att; z_att; vx_att; vy_att; vz_att],6*N_attackers,1);Q;Pd;P]; 
    yout = [yout; dy]; 
end 

b. Reynolds Dynamics 

function yout = new_ode4_Reyn_WeightForces(t0,dt,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x) 
yout = x; 
epsilon = 0.01; %distance cut off for near zero 
umax = PARAMETERS.SWARM.umax; 
K = PARAMETERS.SWARM.K; 
K_hvu = PARAMETERS.SWARM.K_hvu; 
d_alig=PARAMETERS.SWARM.N_size_al_F; 
weight_alig = PARAMETERS.SWARM.w_al_F; 
% d_cohes=PARAMETERS.SWARM.N_size_c_F; 
weight_cohes=PARAMETERS.SWARM.w_c_F; 
d_separ=PARAMETERS.SWARM.N_size_s_I; 
weight_separ = PARAMETERS.SWARM.w_s_F; 
weight_separ_intr = PARAMETERS.SWARM.w_s_I; 
mass_att = ones(1,N_attackers); 
follower_states = reshape(x(1:6*N_attackers),6,N_attackers); %% x y z vx vy vz 
x_att=follower_states(1,:); 
y_att=follower_states(2,:); 
z_att=follower_states(3,:); 
vx_att=follower_states(4,:); 
vy_att=follower_states(5,:); 
vz_att=follower_states(6,:); 
ax_att = 0; 
ay_att = 0; 
az_att = 0; 
ax_att_old = ax_att; 
ay_att_old = ay_att; 
az_att_old = az_att; 
Q = x(6*N_attackers+1:7*N_attackers); %probability of attacker survival 
Pd = x(7*N_attackers+1:7*N_attackers+N_defenders); %prob of def surv 
P = x(end); 
for t = t0 : dt : tf-dt 
    % first step in Verlet integration 
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    x_att=x_att+vx_att*dt+ax_att_old.*dt.^2/2;   
    y_att=y_att+vy_att*dt+ay_att_old.*dt.^2/2; 
    z_att=z_att+vz_att*dt+az_att_old.*dt.^2/2; 
    BN_t = bernsteinMatrix_a2b(N_Bezier,t,t0,tf); 
    pd = (BN_t*Cd); 
    pd = reshape(pd,3,N_defenders); % pd - position of the defenders 
    follower_states = [x_att;y_att;z_att;vx_att;vy_att;vz_att]; 
    position = [follower_states(1:3,:) pd]; % position: 3-by-(n+m)  
    velocity = [follower_states(4:6,:) vd]; % velocity: 3-by-(n+m) 
    p_hvu = PARAMETERS.DEFENDER.p_hvu; 
    Fx = zeros(1,N_attackers); 
    Fy = Fx; 
    Fz = Fx; 
    counter_al = zeros(1,N_attackers); 
    sumx_al = counter_al; 
    sumy_al = counter_al; 
    sumz_al = counter_al; 
    sumx_coh = counter_al; 
    sumy_coh = counter_al; 
    sumz_coh = counter_al; 
    counter_sep = zeros(1,N_attackers); 
    sumx_sep = counter_sep; 
    sumy_sep = counter_sep; 
    sumz_sep = counter_sep; 
    x_def=pd(1,:); 
    y_def=pd(2,:); 
    z_def=pd(3,:); 
    counter_sep_int = zeros(1,N_attackers); 
    sumx_sep_int = counter_sep_int; 
    sumy_sep_int = counter_sep_int; 
    sumz_sep_int = counter_sep_int; 
    distance_2defenders = d_separ*ones(N_attackers, N_defenders); 
    for nn = 1:N_attackers 
        dx_hvu = x_att(nn)-p_hvu(1); 
        dy_hvu = y_att(nn)-p_hvu(2); 
        dz_hvu = z_att(nn)-p_hvu(3); 
        dd_hvu = sqrt(dx_hvu.^2+dy_hvu.^2+dz_hvu.^2); 
        %Artificial Potential forces 
        Fx(nn) = Fx(nn) - (K_hvu.*dx_hvu./dd_hvu + K.*vx_att(nn)); 
        Fy(nn) = Fy(nn) - (K_hvu.*dy_hvu./dd_hvu + K.*vy_att(nn)); 
        Fz(nn) = Fz(nn) - (K_hvu.*dz_hvu./dd_hvu + K.*vz_att(nn)); 
        for mm = (nn+1):N_attackers 
            dx = x_att(nn) - x_att(mm); 
            if dx < d_alig 
                dy = y_att(nn) - y_att(mm); 
                if dy < d_alig 
                    dz = z_att(nn) - z_att(mm); 
                    ddnm = sqrt(dx.^2+dy.^2+dz.^2); 
                    if (ddnm < d_separ && ddnm > epsilon) 
                        counter_sep(nn) = counter_sep(nn) +1; 
                        counter_sep(mm) = counter_sep(mm) +1; 
                        sumx_sep(nn) = sumx_sep(nn) + (dx/ddnm); 
                        sumx_sep(mm) = sumx_sep(mm) - (dx/ddnm); 
                        sumy_sep(nn) = sumy_sep(nn) + (dy/ddnm); 
                        sumy_sep(mm) = sumy_sep(mm) - (dy/ddnm); 
                        sumz_sep(nn) = sumz_sep(nn) + (dz/ddnm); 
                        sumz_sep(mm) = sumz_sep(mm) - (dz/ddnm); 
                        counter_al(nn) = counter_al(nn) +1; 
                        counter_al(mm) = counter_al(mm) +1; 
                        sumx_al(nn) = sumx_al(nn) + vx_att(mm); 
                        sumx_al(mm) = sumx_al(mm) + vx_att(nn); 
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                        sumy_al(nn) = sumy_al(nn) + vy_att(mm); 
                        sumy_al(mm) = sumy_al(mm) + vy_att(nn); 
                        sumz_al(nn) = sumz_al(nn) + vz_att(mm); 
                        sumz_al(mm) = sumz_al(mm) + vz_att(nn); 
                        sumx_coh(nn) = sumx_coh(nn) + x_att(mm); 
                        sumx_coh(mm) = sumx_coh(mm) + x_att(nn); 
                        sumy_coh(nn) = sumy_coh(nn) + y_att(mm); 
                        sumy_coh(mm) = sumy_coh(mm) + y_att(nn); 
                        sumz_coh(nn) = sumz_coh(nn) + z_att(mm); 
                        sumz_coh(mm) = sumz_coh(mm) + z_att(nn); 
                    elseif (ddnm < d_alig  && ddnm > epsilon) 
                        counter_al(nn) = counter_al(nn) +1; 
                        counter_al(mm) = counter_al(mm) +1; 
                        sumx_al(nn) = sumx_al(nn) + vx_att(mm); 
                        sumx_al(mm) = sumx_al(mm) + vx_att(nn); 
                        sumy_al(nn) = sumy_al(nn) + vy_att(mm); 
                        sumy_al(mm) = sumy_al(mm) + vy_att(nn); 
                        sumz_al(nn) = sumz_al(nn) + vz_att(mm); 
                        sumz_al(mm) = sumz_al(mm) + vz_att(nn); 
                        sumx_coh(nn) = sumx_coh(nn) + x_att(mm); 
                        sumx_coh(mm) = sumx_coh(mm) + x_att(nn); 
                        sumy_coh(nn) = sumy_coh(nn) + y_att(mm); 
                        sumy_coh(mm) = sumy_coh(mm) + y_att(nn); 
                        sumz_coh(nn) = sumz_coh(nn) + z_att(mm); 
                        sumz_coh(mm) = sumz_coh(mm) + z_att(nn); 
                    end 
                end 
            end 
        end 
        for mm = 1:N_defenders 
            dx = x_att(nn) - x_def(mm); 
             if dx < d_separ 
                dy = y_att(nn) - y_def(mm); 
                if dy < d_separ 
                    dz = z_att(nn) - z_def(mm); 
                    distance_2defenders(nn,mm) = sqrt(dx.^2+dy.^2+dz.^2); 
                    if (distance_2defenders(nn,mm) < d_separ  && distance_2defenders(nn,mm) > epsilon) 
                        counter_sep_int(nn) = counter_sep_int(nn) +1; 
                        sumx_sep_int(nn) = sumx_sep_int(nn) + Pd(mm).*(dx./distance_2defenders(nn,mm)); 
                        sumy_sep_int(nn) = sumy_sep_int(nn) + Pd(mm).*(dy./distance_2defenders(nn,mm)); 
                        sumz_sep_int(nn) = sumz_sep_int(nn) + Pd(mm).*(dz./distance_2defenders(nn,mm));                  
                    end 
                end 
            end 
        end 
    end 
    for nn = 1:N_attackers 
        if counter_al(nn) ==0 
            counter_al(nn)=1; 
        end 
        if counter_sep(nn) ==0 
            counter_sep(nn)=1; 
        end 
        if counter_sep_int(nn)==0 
            counter_sep_int(nn)=1; 
        end 
      %Alignment Forces &Cohesion Forces 
        Fx = Fx +Q(nn).*mass_att.*(weight_separ.*(sumx_sep./counter_sep) + weight_alig.*(sumx_al./counter_al - 
vx_att(nn)) + weight_cohes.*(sumx_coh./counter_al - x_att(nn))); 
        Fy = Fy +Q(nn).*mass_att.*(weight_separ.*(sumy_sep./counter_sep) + weight_alig.*(sumy_al./counter_al - 
vy_att(nn)) + weight_cohes.*(sumy_coh./counter_al - y_att(nn))); 
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        Fz = Fz +Q(nn).*mass_att.*(weight_separ.*(sumz_sep./counter_sep) + weight_alig.*(sumz_al./counter_al - 
vz_att(nn)) + weight_cohes.*(sumz_coh./counter_al - z_att(nn))); 
         %Separation Forces 
        Fx = Fx + mass_att.*(weight_separ_intr.*(sumx_sep_int./counter_sep_int)); 
        Fy = Fy + mass_att.*(weight_separ_intr.*(sumy_sep_int./counter_sep_int)); 
        Fz = Fz + mass_att.*(weight_separ_intr.*(sumz_sep_int./counter_sep_int));     
    end 
    % Thrust limits 
    for i = 1:N_attackers 
        if Fx(i) >= umax 
            Fx(i) = umax; 
        elseif Fx(i) <= -umax 
            Fx(i) = -umax; 
        end 
        if Fy(i) >= umax 
            Fy(i) = umax; 
        elseif Fy(i) <= -umax 
            Fy(i) = -umax; 
        end 
        if Fz(i) >= umax 
            Fz(i) = umax; 
        elseif Fz(i) <= -umax 
            Fz(i) = -umax; 
        end 
    end 
    %  compute probability of attacker/defender/hvu survival 
    rda2d = PARAMETERS.DEFENDERWEAPON.lambda*normcdf((PARAMETERS.DEFENDERWEAPON.F - 
PARAMETERS.DEFENDERWEAPON.a*distance_2defenders.^2)/PARAMETERS.DEFENDERWEAPON.sigma,0,
1); 
    Pdmat = repmat(Pd',[N_attackers 1]); 
    Q = Q.*(1-(1-prod(1-(rda2d.*Pdmat)'.*dt)))'; 
    % compute probability of defender survival 
    rdd2a = PARAMETERS.ATTACKERWEAPON.lambda*normcdf((PARAMETERS.ATTACKERWEAPON.F - 
PARAMETERS.ATTACKERWEAPON.a*distance_2defenders.^2)/PARAMETERS.ATTACKERWEAPON.sigma,0,
1); 
    Qmat = repmat(Q,[1 N_defenders]); 
    Pd = Pd.*(1-(1-prod(1-(rdd2a.*Qmat).*dt)))'; 
    % compute probability of HVU survival 
    distance_2HVU_sq = (position(1,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(1)).^2 + 
(position(2,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(2)).^2 + (position(3,1:N_attackers) - 
PARAMETERS.DEFENDER.p_hvu(3)).^2; 
    ra2hvu = PARAMETERS.ATTACKERWEAPON.lambda*normcdf((PARAMETERS.ATTACKERWEAPON.F - 
PARAMETERS.ATTACKERWEAPON.a*distance_2HVU_sq)/PARAMETERS.ATTACKERWEAPON.sigma,0,1); 
    P = P.*(1-(1-prod(1-ra2hvu.*dt))); 
    ax_att = Fx./mass_att; 
    ay_att = Fy./mass_att; 
    az_att = Fz./mass_att; 
    vx_att = vx_att + (ax_att_old + ax_att).*dt/2; 
    vy_att = vy_att + (ay_att_old + ay_att).*dt/2; 
    vz_att = vz_att + (az_att_old + az_att).*dt/2; 
    ax_att_old = ax_att; 
    ay_att_old = ay_att; 
    az_att_old = az_att; 
    dy = [reshape([x_att; y_att; z_att; vx_att; vy_att; vz_att],6*N_attackers,1);Q;Pd;P]; 
    yout = [yout; dy]; 
end 
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3. Threshold Dynamics and Attrition Models 

a. Leonard Dynamics 

function yout = new_ode4_Leon_ThreshForces_v2(t0,dt,tf,Cd,N_attackers, N_defenders, N_Bezier, 
PARAMETERS,x,~)  
yout = x; 
epsilon = 0.01; %distance cut off for near zero 
umax = PARAMETERS.SWARM.umax; 
K = PARAMETERS.SWARM.K; 
K_hvu = PARAMETERS.SWARM.K_hvu; 
d0_att=PARAMETERS.SWARM.d0; 
d1_att=PARAMETERS.SWARM.d1; 
alpha_att=PARAMETERS.SWARM.alpha_i; 
d0_def=PARAMETERS.SWARM.INTd0; 
d1_def=PARAMETERS.SWARM.INTd1; 
alpha_def=PARAMETERS.SWARM.alphaINT_i; 
mass_att = ones(1,N_attackers); 
att_lamda = PARAMETERS.ATTACKERWEAPON.lambda; 
att_sigma = PARAMETERS.ATTACKERWEAPON.sigma; 
follower_states = reshape(x(1:6*N_attackers),6,N_attackers); %% x y z vx vy vz 
x_att=follower_states(1,:); 
y_att=follower_states(2,:); 
z_att=follower_states(3,:); 
vx_att=follower_states(4,:); 
vy_att=follower_states(5,:); 
vz_att=follower_states(6,:); 
ax_att = 0; 
ay_att = 0; 
az_att = 0; 
ax_att_old = ax_att; 
ay_att_old = ay_att; 
az_att_old = az_att; 
Q = x(6*N_attackers+1:7*N_attackers); %probability of attacker survival 
Pd = x(7*N_attackers+1:7*N_attackers+N_defenders); %prob of def surv 
P = x(end); %prob of HVU surv 
for t = t0 : dt : tf-dt 
   % first step in Verlet integration  
    x_att=x_att+vx_att*dt+ax_att_old.*dt.^2/2;   
    y_att=y_att+vy_att*dt+ay_att_old.*dt.^2/2; 
    z_att=z_att+vz_att*dt+az_att_old.*dt.^2/2; 
    BN_t = bernsteinMatrix_a2b(N_Bezier,t,t0,tf); 
    pd = (BN_t*Cd); 
    pd = reshape(pd,3,N_defenders); % pd - position of the defenders 
    follower_states = [x_att;y_att;z_att;vx_att;vy_att;vz_att]; 
    position = [follower_states(1:3,:) pd];  
    p_hvu = PARAMETERS.DEFENDER.p_hvu; 
    Fx = zeros(1,N_attackers); 
    Fy = Fx; 
    Fz = Fx; 
    for nn = 1:N_attackers 
        if Q(nn)>= 0.5  
            dx_hvu = x_att(nn)-p_hvu(1); 
            dy_hvu = y_att(nn)-p_hvu(2); 
            dz_hvu = z_att(nn)-p_hvu(3); 
            dd_hvu = sqrt(dx_hvu.^2+dy_hvu.^2+dz_hvu.^2);         
            Fx(nn) = Fx(nn) - K_hvu.*dx_hvu./dd_hvu - K.*vx_att(nn); 
            Fy(nn) = Fy(nn) - K_hvu.*dy_hvu./dd_hvu - K.*vy_att(nn); 
            Fz(nn) = Fz(nn) - K_hvu.*dz_hvu./dd_hvu - K.*vz_att(nn); 
        end 
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        for mm = (nn+1):N_attackers 
            dx = x_att(nn) - x_att(mm); 
            if dx < d1_att 
                dy = y_att(nn) - y_att(mm); 
                if dy < d1_att 
                    dz = z_att(nn) - z_att(mm); 
                    ddnm = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon); 
                    if ddnm < d1_att 
                        if Q(mm)>= 0.5 
                            F = (1./ddnm.^2).*alpha_att.*(1-d0_att./ddnm); 
                            Fx(nn) = Fx(nn) - F.*dx; 
                            Fx(mm) = Fx(mm) + F.*dx; 
                            Fy(nn) = Fy(nn) - F.*dy; 
                            Fy(mm) = Fy(mm) + F.*dy; 
                            Fz(nn) = Fz(nn) - F.*dz; 
                            Fz(mm) = Fz(mm) + F.*dz; 
                        end 
                    end 
                end 
            end 
        end 
    end 
    % c. Defender forces computation 
    x_def=pd(1,:); 
    y_def=pd(2,:); 
    z_def=pd(3,:);    
    distance_2defenders = d1_def*ones(N_attackers, N_defenders); 
    for nn = 1:N_attackers 
        for mm = 1:N_defenders  
            dx = x_att(nn) - x_def(mm); 
            if dx < d1_def 
                dy = y_att(nn) - y_def(mm); 
                if dy < d1_def 
                    dz = z_att(nn) - z_def(mm); 
                    distance_2defenders(nn,mm) = sqrt(dx.^2+dy.^2+dz.^2); 
                    distance_2defenders(nn,mm) = max(sqrt(dx.^2+dy.^2+dz.^2),epsilon); 
                    if distance_2defenders(nn,mm) < d1_def 
                        if Pd(mm)>=0.5 
                            F = (1./(distance_2defenders(nn,mm)).^2).*alpha_def.*(1-d0_def./distance_2defenders(nn,mm)); 
                            Fx(nn) = Fx(nn) - F.*dx; 
                            Fy(nn) = Fy(nn) - F.*dy; 
                            Fz(nn) = Fz(nn) - F.*dz; 
                        end 
                    end 
                end 
            end 
        end 
    end 
    % Thrust limits 
    for i = 1:N_attackers 
        if Fx(i) >= umax 
            Fx(i) = umax; 
        elseif Fx(i) <= -umax 
            Fx(i) = -umax; 
        end 
        if Fy(i) >= umax 
            Fy(i) = umax; 
        elseif Fy(i) <= -umax 
            Fy(i) = -umax; 
        end 
        if Fz(i) >= umax 
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            Fz(i) = umax; 
        elseif Fz(i) <= -umax 
            Fz(i) = -umax; 
        end 
    end 
    %THRESHOLD ATTRITION MODEL IMPLEMENTATION 
%  compute probability of attacker/defender/hvu survival 
    rda2d = PARAMETERS.DEFENDERWEAPON.lambda*normcdf((PARAMETERS.DEFENDERWEAPON.F - 
PARAMETERS.DEFENDERWEAPON.a*distance_2defenders.^2)/PARAMETERS.DEFENDERWEAPON.sigma,0,
1); 
  %  Pdmat = repmat(Pd',[N_attackers 1]); 
  for mm = 1:N_defenders 
      if Pd(mm)<0.5 
          rda2d(:,mm) = 0; 
      end 
  end 
    Q = Q.*(1-(1-prod(1-(rda2d)'.*dt)))'; 
    % compute probability of defender survival 
    rdd2a = att_lamda*normcdf((PARAMETERS.ATTACKERWEAPON.F - 
PARAMETERS.ATTACKERWEAPON.a*distance_2defenders.^2)/att_sigma,0,1); 
   % Qmat = repmat(Q,[1 N_defenders]); 
   for  nn = 1:N_attackers 
       if Q(nn)< 0.5 
           rdd2a(nn,:) = 0; 
       end 
   end    
    Pd = Pd.*(1-(1-prod(1-(rdd2a).*dt)))'; 
    % compute probability of HVU survival 
    distance_2HVU_sq = (position(1,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(1)).^2 + 
(position(2,1:N_attackers) - PARAMETERS.DEFENDER.p_hvu(2)).^2 + (position(3,1:N_attackers) - 
PARAMETERS.DEFENDER.p_hvu(3)).^2; 
    ra2hvu = att_lamda*normcdf((PARAMETERS.ATTACKERWEAPON.F - 
PARAMETERS.ATTACKERWEAPON.a*distance_2HVU_sq)/att_sigma,0,1); 
   for  nn = 1:N_attackers 
       if Q(nn)< 0.5 
           ra2hvu(1,nn) = 0; 
       end 
   end    
    P = P.*(1-(1-prod(1-ra2hvu.*dt))); 
    ax_att = Fx./mass_att; 
    ay_att = Fy./mass_att; 
    az_att = Fz./mass_att; 
    vx_att = vx_att + (ax_att_old + ax_att).*dt/2; 
    vy_att = vy_att + (ay_att_old + ay_att).*dt/2; 
    vz_att = vz_att + (az_att_old + az_att).*dt/2; 
    ax_att_old = ax_att; 
    ay_att_old = ay_att; 
    az_att_old = az_att; 
    dy = [reshape([x_att; y_att; z_att; vx_att; vy_att; vz_att],6*N_attackers,1);Q;Pd;P]; 
    yout = [yout; dy]; 
end 

B. COST FUNCTIONS 

1. HVU PROTECTION 

function J = costFunc_singleswarm(x,x_init,t0,h,tf,N_Bezier, N_attackers, N_defenders,  N_omega, PARAMETERS) 
Cd = reshape(x,[(N_Bezier+1),N_defenders*PARAMETERS.DEFENDER.Nx]); 
P_new = zeros(1, N_omega); 
parfor i = 1:N_omega 
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    x_real = PARAMETERS.ode_func(t0,h,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x_init{i}, i); 
    P_new(i) = x_real(end); 
end 
Pnew = (sum(1 - P_new)/N_omega); 
J = Pnew; 
end 

2. AIR SUPERIORITY 

function J = costFunc_min_att(x,x_init,t0,h,tf,N_Bezier, N_attackers, N_defenders,  N_omega, PARAMETERS) 
Cd = reshape(x,[(N_Bezier+1),N_defenders*PARAMETERS.DEFENDER.Nx]); 
length_time = (tf-t0)/h+1; 
P_new = zeros(1, N_omega); 
for i = 1:N_omega 
    x_real = PARAMETERS.ode_func(t0,h,tf,Cd,N_attackers, N_defenders, N_Bezier, PARAMETERS,x_init{i}, i); 
    temp1 = reshape(x_real,7*N_attackers+N_defenders+1,length_time); 
    att_surv = temp1(6*N_attackers+1:7*N_attackers,:); 
    P_new(i) = mean(att_surv(:,end)); 
end 
Pnew = (sum(P_new)/N_omega); 
J = Pnew; 
end 
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