
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2019

Strong scaling for numerical weather
prediction at petascale with the atmospheric
model NUMA

Müller, Andreas; Kopera, Michal A.; Marras, Simone;
Wilcox, Lucas C.; Issac, Tobin; Giraldo, Francis X.
SAGE

Müller, Andreas, et al. "Strong scaling for numerical weather prediction at petascale
with the atmospheric model NUMA." The International Journal of High Performance
Computing Applications 33.2 (2019): 411-426.
http://hdl.handle.net/10945/61977

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Research Paper

Strong scaling for numerical weather
prediction at petascale with the
atmospheric model NUMA

Andreas Müller1,2, Michal A Kopera1, Simone Marras3,
Lucas C Wilcox1, Tobin Isaac4 and Francis X Giraldo1

Abstract
Numerical weather prediction (NWP) has proven to be computationally challenging due to its inherent multiscale nature.
Currently, the highest resolution global NWP models use a horizontal resolution of 9 km. At this resolution, many
important processes in the atmosphere are not resolved. Needless to say, this introduces errors. In order to increase the
resolution of NWP models, highly scalable atmospheric models are needed. The non-hydrostatic unified model of the
atmosphere (NUMA), developed by the authors at the Naval Postgraduate School, was designed to achieve this purpose.
NUMA is used by the Naval Research Laboratory, Monterey as the engine inside its next generation weather prediction
system NEPTUNE. NUMA solves the fully compressible Navier–Stokes equations by means of high-order Galerkin
methods (both spectral element as well as discontinuous Galerkin methods can be used). NUMA is capable of running
middle and upper atmosphere simulations since it does not make use of the shallow-atmosphere approximation. This
article presents the performance analysis and optimization of the spectral element version of NUMA. The performance at
different optimization stages is analyzed using a theoretical performance model as well as measurements via hardware
counters. Machine-independent optimization is compared to machine-specific optimization using Blue Gene (BG)/Q
vector intrinsics. The best portable version of the main computations was found to be about two times slower than the
best non-portable version. By using vector intrinsics, the main computations reach 1.2 PFlops on the entire IBM Blue Gene
supercomputer Mira (12% of the theoretical peak performance). The article also presents scalability studies for two
idealized test cases that are relevant for NWP applications. The atmospheric model NUMA delivers an excellent strong
scaling efficiency of 99% on the entire supercomputer Mira using a mesh with 1.8 billion grid points. This allows running a
global forecast of a baroclinic wave test case at a 3-km uniform horizontal resolution and double precision within the time
frame required for operational weather prediction.

Keywords
Atmospheric modeling, numerical weather prediction, dynamical core, global circulation model, parallel scalability,
spectral elements, Galerkin methods, petascale

1. Introduction

Numerical weather prediction (NWP) has always been con-

sidered one of the important computationally intensive uses

of supercomputers. Nevertheless, there is a big gap between

the size of the available supercomputers and the amount of

computing power that is used for operational weather pre-

diction. State-of-the-art operational deterministic weather

forecasts typically use about 1000 processors (Bauer et al.,

2015) with a global resolution of 9 km, whereas the biggest

available supercomputers offer more than 1 million proces-

sors allowing more than 1015 floating point operations in 1

s (petascale). One of the reasons for this discrepancy is that

many weather models do not scale to this large number of

1 Department of Applied Mathematics, Naval Postgraduate School,

Monterey, CA, USA
2 European Center for Medium-Range Weather Forecasts, Reading, UK
3 Department of Mechanical and Industrial Engineering, New Jersey

Institute of Technology, Newark, NJ, USA
4 Georgia Institute of Technology, School of Computational Science and

Engineering, Atlanta, GA, USA

Corresponding author:

Andreas Müller, Department of Applied Mathematics, Naval Postgraduate

School, Monterey, CA 93943, USA.

Email: amueller@anmr.de

The International Journal of High
Performance Computing Applications
2019, Vol. 33(2) 411–426
ª The Author(s) 2018
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342018763966
journals.sagepub.com/home/hpc

mailto:amueller@anmr.de
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342018763966
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342018763966&domain=pdf&date_stamp=2018-04-05

processors and therefore are not able to make good use of

these big machines. The National Oceanic and Atmo-

spheric Administration (NOAA) has initiated the High-

Impact Weather Prediction Project (HIWPP) with the goal

to reach NWP at a resolution of 3 km by the year 2020

(Schneider, 2014). Being able to improve the resolution by

almost one order of magnitude will allow resolving some of

the atmospheric processes explicitly that are currently only

described by heuristic approximations (parameterizations).

For this reason, it is expected that such a significant

improvement in the resolution of weather prediction mod-

els will reduce the error and improve the accuracy of

weather forecast significantly.

In this article, we show that the non-hydrostatic unified

model of the atmosphere (NUMA) (Giraldo and Restelli,

2008; Giraldo et al., 2013; Kelly and Giraldo, 2012) is

capable of simulating a global baroclinic wave test case

within the time frame required for operational weather pre-

diction at 3 km resolution using a uniform global mesh with

31 layers in the vertical direction. We achieve this perfor-

mance with double precision and without making use of the

commonly used shallow atmosphere approximation; in

fact, NUMA (within the NEPTUNE modeling system) was

the only model studied by NOAA in the HIWPP study

that did not use the shallow atmosphere approximation

(Whitaker, 2015). Using the deep atmosphere equations

instead allows our simulations to include middle and upper

atmospheric processes which are important for long-term

(seasonal) weather and climate predictions. Furthermore,

our code does not assume any special alignment of its mesh

with the horizontal and vertical direction which allows the

simulation of arbitrary steep terrain. It was possible to

reach the desired resolution thanks to a careful optimization

of the code and an excellent strong scaling efficiency of

99% on the entire 3.14 million threads of the supercompu-

ter Mira using a mesh with 1.8 billion grid points. To the

best of our knowledge, this article not only presents the first

atmospheric model that is capable of reaching the envi-

sioned resolution within operational requirements but also

presents the first published strong scalability study up to

petascale of fully compressible three-dimensional (3-D)

global simulations.

Related work

There has been a lot of work on code optimization and

strong scaling efficiency studies before. All weather pre-

diction models have a long history of code optimizations

(Wedi et al., 2015). However, not many atmospheric mod-

els have shown the capability of making efficient use of

entire supercomputers at petascale. Yang et al. (2016) pres-

ent strong scaling efficiency of 67% at 2 km resolution on

the entire 10 M cores of the Sunway TaihuLight supercom-

puter with a sustained performance of 7.95 PFlops. Johnsen

et al. (2013) present strong scaling efficiency of about 65%
at almost 300 TFlops sustained performance on the Cray

machine Blue Waters for a hurricane simulation using

4 billion grid points. Wyszogrodzki et al. (2012) present

strong scaling up to 105 cores on the Hopper II system

including full parameterizations for moisture using up to

84 million grid points. Strong scaling for the Community

Atmosphere Spectral Element (CAM-SE) model using a

spectral element method similar to the one utilized in

NUMA is presented by Dennis et al. (2012). CAM-SE is

targeted at climate prediction. Dennis et al. report strong

scaling up to 172,800 cores on the Cray system JaguarPF

using 81 million grid points. Wedi et al. (2015) report

scaling with the Integrated Forecasting System of the Eur-

opean Center for Medium-Range Weather Forecasts

(ECMWF) on 200 k CPUs on Titan and Michalakes et al.

(2015) report scaling of the atmospheric models MPAS,

FV3, and NEPTUNE up to about 100 k cores on the Cray

supercomputer Edison. Another example of strong scaling

studies at much smaller scale is given by Nair et al. (2009)

and an example of work on shallow water equations is

given by Xue et al. (2014).

Outside the atmospheric community, there are a large

number of publications on code optimization. It is beyond

the scope of this article to give a complete overview of all

publications on code optimization. Some outstanding

examples for the Blue Gene (BG) architecture are given

by Rossinelli et al. (2013) and Rudi et al. (2015). An impor-

tant example for incompressible Navier–Stokes equations

is given by Tufo and Fischer (1999).

Our article is organized as follows. The numerical meth-

ods are introduced in Section 2. Section 3 presents the two

test cases considered for the studies of this article, Section 4

describes the mesh generation with the p4est library, and

Section 5 gives some important technical details about the

supercomputer Mira that we use for this work. A theoretical

performance model is presented in Section 6. The code

optimizations are presented in Section 7 and scalability

results are shown in Section 8.

2. Numerical methods

NUMA solves the compressible Navier–Stokes equations

which can be written as (see e.g. Müller et al., 2013)

@q

@t
þ � � FðqÞ ¼ SðqÞ ð1Þ

where t is the time, q � qðt; x; y; zÞ ¼ ðr; ruT ;YÞT is a

time-dependent vector field containing the so-called prog-

nostic variables (air density r, 3-D wind speed, u, and

potential temperature, y), and x; y; and z are the coordinates

in the three space dimensions. The nonlinear operator F

denotes the flux tensor and S is a source function.

In the following subsections, we illustrate the main steps

of the numerical solution of these equations using a spectral

element method. In the last subsection of this section, we

describe two different numerical possibilities to organize

the data of our simulation. The two methods are identified

as continuous Galerkin (CG) storage and discontinuous

Galerkin (DG) storage (Abdi and Giraldo, 2016).

412 The International Journal of High Performance Computing Applications 33(2)

2.1. Spatial discretization

In order to discretize equation (1), we introduce a mesh of

elements. An example for a two-dimensional (2-D) cross

section of our mesh is illustrated in Figure 1(a). Inside each

element, we approximate the solution q in each dimension

by polynomials of order p. We indicate with qN the approx-

imation of q. To define these polynomials, we introduce a

mesh of pþ 1 grid points inside each element e and in each

direction. We use Gauss–Lobatto points for the numerical

integration and denote the coordinates of these grid points by

ðxi; yj; zkÞ. We restrict the rest of this section to the special

case of p ¼ 3 because this case is most efficient for vector-

ization on the supercomputer Mira (see Section 7). We

define our polynomials in a reference element over the inter-

val ½�1; 1� in each direction, with coordinates ðx; Z; zÞ and

grid points ðxi; Zj; zkÞ. We denote the Jacobian determinant

of the coordinate transformation between the reference ele-

ment and physical element e at grid point ðxi; yj; zkÞ with

Je
i;j;k . The numerical solution qN inside element e is given by

qN ðt; x; Z; zÞ ¼
X4

l;m;n¼1

ql;m;nðtÞcnðzÞcmðZÞclðxÞ ð2Þ

with ql;m;nðtÞ ¼ qðt; xl; Zm; znÞ and the one-dimensional

(1-D) Lagrange basis polynomials ci are given by

ciðxÞ ¼
Y

m ¼ 1; . . . ; pþ 1

m 6¼ i

x� xm

xi � xm

; 8i ¼ 1; . . . ; pþ 1 ð3Þ

where Oe is the domain of element e.

The goal is now to insert equation (2) into equation (1)

and solve it for the values of qN at the grid points qi;j;k . In

this article, we use a spectral element method. From now

on, the spectral element method will be often referred to

with the acronym CG. We multiply equation (1) by

ciðxÞcjðZÞckðzÞ (including Je
i;j;k) and integrate over the

entire domain O. By using Gauss–Lobatto quadrature with

quadrature weights wi, we obtain the following equation:

Mi;j;k

dqi;j;k

dt
¼ �

X

e

Je
i;j;kwi;j;kð� � FN � SN Þ ð4Þ

where wl;m;n ¼ wlwmwn, FN ¼ FðqN Þ, SN ¼ SðqN Þ, and

Mi;j;k ¼
P

ewi;j;kJ e
i;j;k are the entries of the diagonal mass

matrix.

The spatial derivatives in the divergence of the flux

tensor � � FN are given with equation (2) by

@qN

@x

����
i;j;k

¼
X4

m¼1

qm;j;k

dcmðxÞ
dx

����
xi

@x
@x

����
i;j;k

þ
X4

m¼1

qi;m;k

dcmðZÞ
dZ

����
Zi

@x
@x

����
i;j;k

þ
X4

m¼1

qi;j;m

dcmðzÞ
dz

����
zi

@z
@x

����
i;j;k

ð5Þ

The products of the values of qN at the grid points and

the derivatives of our basis functions are essentially 4� 4

matrix–matrix multiplications. All of the derivatives in

equation (5) are computed once at the beginning of the

simulation.

The basis functions ci vanish outside of element e. For

this reason, the sum over all elements in equation (4) reduces

to a single element for the interior grid points. For the grid

points along the edges, we need to sum over all neighboring

elements weighted by the volume of the elements (this sum-

mation is called direct stiffness summation).

2.2. Time discretization

In order to keep communication between different processors

simple, we use explicit time integration in the horizontal

direction. If the vertical resolution is of the same order of

magnitude of the horizontal resolution, we use a fully explicit

Runge–Kutta scheme with five stages and third order. In each

of those five stages, we need to evaluate the right-hand side of

equation (4) and communicate the values of the grid points

along the process boundaries (blue lines in Figure 1(a)).

If the vertical resolution is much finer than the horizon-

tal resolution, we organize our mesh in such a way that all

e1

e5

e9

e13

e2

e6

e10

e14

e3

e7

e11

e15

e4

e8

e12

e16

grid points of the center
MPI process
element and
MPI process boundaries
element boundaries

e6

e10

e7

e11

e1

e5

e9

e13

e2

e14

e3

e15

e4

e8

e12

e16

a) physical mesh

c) DG storage

legend:

e1

e5

e9

e13

e2

e6

e10

e14

e3

e7

e11

e15

e4

e8

e12

e16

b) CG storage

grid points

Figure 1. Illustration of a sample 2-D cross section containing 16
elements e1; . . . ; e16 of our mesh (a) and two possible
approaches to store the data: CG storage (b) and DG storage (c).
For illustration purposes, we assume that elements e6, e7, e10, and
e11 are computed in the same MPI process, while the other ele-
ments are computed on different MPI processes. The elements
and grid points of the MPI process in the center of the figure are
highlighted in red. The process boundaries are shown by the blue
lines, while element boundaries that are not process boundaries
are shown by green lines. The square shape of the elements is
used to keep this illustration simple. The elements can have
arbitrarily curved faces. 2-D: two-dimensional; CG: continuous
Galerkin; DG: discontinuous Galerkin.

Müller et al. 413

the vertical columns of our elements are always computed

in the same MPI process. This allows us to make implicit

corrections along the vertical columns after an explicit step

of a leap-frog scheme. We call this approach 1D-implicit–

explicit (IMEX) (Giraldo et al., 2013). The time step is

restricted in this case by the sound waves in the explicitly

treated horizontal direction. The time step has to be small

enough to make sure that horizontal sound waves cannot

travel further than the shortest distance between the nodal

points in Figure 1(a).

2.3. Filter

Spectral element methods require stabilization (Marras

et al., 2015a). NUMA allows for the use of different stabi-

lization schemes that range from subgrid-scale models

(Marras et al., 2015b) to low-pass filters (Boyd–Vande-

ven). In this article, we use a Boyd–Vandeven filter. The

main idea of this filter is to perform a spectral transforma-

tion of the nodal values qi;j;k and to dampen the highest

order modes. From a computational point of view, this

results in multiplying all the values qi;j;k of the element e

with a filter matrix. Each time the filter is applied, the new

filtered values need to be communicated between neighbor-

ing MPI processes. In the future, we will move to

Laplacian-based stabilization methods which do not

require an additional communication step (see Giraldo

et al., 2013).

2.4. CG and DG storage

Each MPI process needs to own a copy of values at the grid

points along the process boundaries. This is illustrated in

Figure 1(b) by drawing a gray gap between the different

processes. There is only one copy in memory for interior

grid points even if they are located on a boundary between

different elements (green lines in Figure 1(b)). We call this

approach CG storage because it requires the solution to be

continuous and works only for CG methods.

Another possibility to organize the data is to always

store the values along element boundaries for each neigh-

boring element separately (Figure 1(c)). We call this

approach DG storage because it allows the use of DG meth-

ods. We compare the performance of these two approaches

in a simple performance model in Section 6. For more

details about the efficient implementation of CG and DG

methods, we refer to Abdi and Giraldo (2016).

3. Test cases

Two test cases are considered in this article. One test case is

the baroclinic wave instability problem on the sphere by

Jablonowski and Williamson (2006). This problem is clas-

sically used to test the dynamical core of global circulation

models (also in HIWPP, cf. Schneider, 2014). It is initia-

lized by a zonal band of high wind speed in the midlatitudes

(jet stream). A Gaussian perturbation of the zonal wind is

added. This perturbation leads to wave-like meridional per-

turbations of the jet stream (Figure 2). After some time, the

flow pattern looks similar to the polar front jet stream of the

real atmosphere. The spherical mesh that is used in this

article is based on a cubed-sphere mesh. The implementa-

tion of NUMA recognizes the mesh only through the

curved elements generated by p4est in Cartesian coordi-

nates. NUMA could easily handle any other spherical mesh

without any impact on the performance measurements in

this article.

The other test case is a 3-D rising thermal bubble in a

box of 1000 m in each direction. This test case is initialized

with a temperature perturbation in a neutrally stratified

atmosphere. The precise definition and analysis of the full

simulation is reported by Kelly and Giraldo (2012).

Both test cases are important for NWP applications.

Operational weather prediction needs to cover the global

circulation on the entire Earth like in the baroclinic wave

test case. In order to use a higher resolution, for specific

localized features of the atmosphere like hurricanes, one

needs to run the simulation in limited area mode like in the

3-D rising thermal bubble test case.

4. Mesh generation and load balancing

The data structures and algorithms for parallel mesh gen-

eration, partitioning, and load balancing used in our simu-

lations were provided by the p4est library. The p4est library

has been used for efficient and scalable parallel adaptive

mesh refinement for 2-D advection on the sphere (Bur-

stedde et al., 2014), in other applications such as mantle

convection and seismic wave propagation (Burstedde et al.,

2010), and as a backend for the deal.II finite element library

(Bangerth et al., 2015). Our present article is the first time

that p4est is used for full 3-D atmospheric simulations. This

article does not make use of the adaptive mesh refinement

but it uses the p4est library to generate the grid for the

simulations. This approach makes it possible to easily add

adaptive mesh refinement in future work.

The p4est library represents 2-D and 3-D domains via a

two-level structure, with a macro mesh and a micro mesh.

The macro mesh is a conformal quadrilateral or hexahedral

mesh, which is encoded as an unstructured mesh that is

reproduced on each MPI process. Each element in the

macro mesh is then treated as the root of a partitioned

quadtree or octree, which recursively refines the macro

element isotropically to create a micro mesh. The tree

structure is represented in memory as a list of the leaves

of the tree, ordered by the Morton curve (also known as the

z-curve). This ordering induces a space filling curve that

visits the centers of the leaves; while this curve is not a

continuous space filling curve, it has many of their nice

properties. One important property is that partitioning a

domain by dividing the Morton curve into continuous seg-

ments creates subdomains that are fairly compact, with low

surface-to-volume ratios (Hungershöfer and Wierum,

2002). This means that partitioning by this method keeps

414 The International Journal of High Performance Computing Applications 33(2)

the intra-process communication during simulations low. A

full description of p4est’s forest-of-quadtree and forest-of-

octree data structures and algorithms can be found in the

study by Burstedde et al. (2011).

When used in its raw form, the neighborhood informa-

tion of an element in the micro mesh (i.e. which elements

are adjacent) takes logðNiÞ time to calculate, where Ni is the

number of micro mesh elements in the ith partition. To

avoid incurring this cost during each time step, the adja-

cency information for all elements in the ith partition can

be converted into a lookup table, much like an unstructured

mesh. An efficient approach to creating this information,

which can also be used to enumerate the nodes for high-

order CG finite elements, is described by Isaac et al.

(2015a).

The numerical methods in our simulations involve 3-D

computations, but the vertical direction is treated differ-

ently from the other two: its grid resolution requirements

are different, and achieving efficiency in the IMEX time

evolution scheme (and other calculations that are per-

formed only in the vertical direction) requires that vertical

columns of elements and degrees of freedom be contiguous

in memory. A forest-of-octrees approach would be ill-

suited for these constraints. First, octree refinement is iso-

tropic: the aspect ratio of a macro element is inherited by all

of the micro elements created by refinement. This means

that the relationship between horizontal and vertical reso-

lution would have to be respected at the macro mesh level,

increasing the macro mesh’s complexity. Second, the 3-D

Morton curve does not respect the need to keep vertical

columns contiguous: elements in a column would be sepa-

rated in memory and, without care, would even be placed in

separate partitions.

For these reasons, we want to use a forest-of-quadtrees

approach to generate and partition vertical columns but to

handle the elements within each column using a different

approach. An extension to the p4est library, which was first

used in the context of ice sheet modeling (Isaac et al.,

2015b), provides the necessary data structures and inter-

face. This extension is a set of “p6est” data types and

functions (so named because it uses aspects of the 2-D

“p4est” interface and the 3-D “p8est” interface). Essen-

tially, it treats each vertical column as a list, from the

bottom to top, of the elements created by recursive

Figure 2. Baroclinic instability simulation at 9, 12, 15, and 20 days using a horizontal resolution of 50 km and a vertical resolution of
1 km. Shown is a top-view looking down onto the northern hemisphere. Plotted is the vertical component of the vorticityo ¼ r� u in s�1.
The simulation uses a dynamic subgrid-scale eddy viscosity model for stabilization purposes. We refer to Marras et al. (2015a, 2015b)
for more details about this stabilization method and to Jablonowski and Williamson (2006) for more details about the test case.
(a) Time ¼ 9. (b) Time ¼ 12. (c) Time ¼ 15. (d) Time ¼ 20.

Müller et al. 415

bisection of the full column and uses the existing 2-D p4est

routines to manage the partitioning of columns and inter-

column interactions. A more complete description of this

approach can be found in the study by Isaac (2015: Ch. 2).

The p6est mesh format is illustrated in Figure 3.

As the elements within a column are defined by recur-

sive bisection, p6est was designed for meshes with 2k

elements per column for some k. Because NUMA must

work with meshes which do not have this property, the

p6est format was extended for this work to support an

arbitrary number of elements per column. The p4est

library allows us to generate large meshes very efficiently.

The runtime spent on generating the mesh is less than 20 s

even in the case of 43 billion grid points and 3 million

hardware threads.

It should be noted that, although mesh adaptivity is not

used in this work, the p6est data structures support bimodal

local mesh adaptivity: elements may be independently

refined in the vertical direction, and each column can be

independently refined into four smaller columns.

5. Blue Gene/Q Mira

The simulations presented in this article were performed on

the supercomputer Mira of the Argonne National Labora-

tory. Mira is an IBM BG/Q system offering 49,152 com-

putational nodes. Each of these nodes has 16 cores resulting

in a total number of 786,432 cores. Each core has a quad

floating point unit. This permits running up to four MPI

processes or up to four OpenMP (OMP) threads on each

core. The maximum total number of hardware threads is

therefore 3,145,728.

Important for the performance of our code is the mem-

ory architecture of Mira. Each computational node has 16

GB of random access memory (RAM). The processor

receives its data from RAM through two levels of cache.

Each core has its own level 1 (L1) cache of 16 KB, while

the L2 cache of Mira is shared among all 16 processors of

the computational node and has a size of 32 MB.

In addition to these two levels of cache, each core has an

L1 cache prefetch (L1P) of 4 KB (Chung et al., 2012).

Whenever the data needed for the simulation cannot be

found in the L1 cache (L1 cache miss), the computer

checks if this data are available in L1P. This is always done

for an entire cache line of 128 bytes (16 double precision

floating point numbers). If the requested cache line is not in

L1P, it goes on and looks in L2 cache and eventually in the

RAM for this data. The prefetcher of the BG/Q keeps track

of previous cache misses. The stream prefetcher of the BG/

Q establishes a stream if consecutive cache lines are

requested, that is, L1P loads the next cache lines even when

no cache miss occurs. If this consecutive data are actually

needed by the code, this can save a lot of runtime. How-

ever, if the data are not used consecutively by the code, the

prefetcher will read a lot of data from L2 cache without

ever using it. This can produce a huge number of unneces-

sary cache misses.

Important for our optimizations is also the vector unit.

The registers of Mira have a length of 256 bits offering

space for four double precision floating point numbers.

This allows performing up to eight double precision fused

multiply-add floating point operations per core within the

same clock cycle. Each core can perform one floating point

instruction and one integer instruction per clock cycle.

Load and store instructions take each one cycle of the inte-

ger unit.

6. Performance model

Making a theoretical performance model allows us to esti-

mate the expected performance and to compare different

numerical methods without fully optimizing them in our

code. We created the performance model by counting all

floating point operations as well as memory read and write

accesses throughout our entire code. The optimal runtime is

then computed by using the roofline model for the arith-

metic intensity of the counted values. The results of this

theoretical model are presented in Tables 1 to 3. We do this

for three possible implementations: our CG version avoids

having multiple copies of data in memory wherever possi-

ble (as in Figure 1(b)). The only variables that still require

multiple values at the same physical locations are the

metric terms in equation (5). The CG/DG version uses the

same approach like the CG version for dynamically

Ωp

Figure 3. An illustration of meshing with the p6est extension of the p4est library. A macro mesh represents the cubed-sphere domain
(left), division of the Morton curve creates the partitions for each MPI process, the columns in the ith partition Oi are ordered by a 2-D
Morton curve (middle), and each vertical column is stored as a list of “layers” from the bottom to the top (right). 2-D: two-dimensional.

416 The International Journal of High Performance Computing Applications 33(2)

changing variables but allows additional copies of the data

at element boundaries (Figure 1(c)) for data related to the

reference atmosphere that does not change throughout the

simulation. The DG version allows multiple copies of the

data along element interfaces (Figure 1(c)) for all variables.

Table 1 shows the expected number of floating point

operations and total memory read and write traffic through-

out the entire simulation for the rising thermal bubble test

case. The additional copies of data along the element inter-

faces in DG storage lead to a significant increase in the

number of floating point operations as well as memory

traffic and to a significant reduction of arithmetic intensity.

Our results for arithmetic intensity show that all of our

cases are memory bound (see roofline plots in Figure 5).

The optimal runtime in Table 1 is the runtime that we

expect if we manage to reach 100% of the theoretical peak

memory bandwidth as given by the STREAM benchmark

in the study by Morozov et al. (2013). The percentage of the

theoretical peak performance of the processor is also given

in Table 1 for this optimal runtime. Our CG-only version

gives us the best performance in all of these results.

CG storage has a big disadvantage that we have not

included in Table 1: we have to perform the computations

of equation (5) on a per element basis while data stored in

CG storage are not arranged on a per element basis. This

leads to noncontiguous memory access that appears to be

random. Having random memory access will not affect the

results in Table 1 if most of the data is already in L2 cache.

Therefore, the results of Table 1 will still be correct if the

number of elements per compute core is small. Our goal for

the rising thermal bubble problem is to use a very high grid

resolution which produces much more data than we can fit

into L2 cache. In this case, we expect to get a much better

estimate for the performance of our code by assuming that

none of the data is already in L2 cache and by counting the

full cache lines in those cases where CG storage requires us

to access only a small portion of that cache line. The results

including this estimate for the effect of random memory

access are shown in Table 2. Including the effect of random

memory access does not change the number of floating

point operations but it leads to a significant increase in

memory traffic. This makes DG storage now the version

with the highest arithmetic intensity and therefore the best

percentage of the theoretical peak performance of the pro-

cesses. The overall runtime of the entire simulation is still

slower for DG storage due to the increased number of

floating point operations. The winner in terms of overall

runtime is our CG/DG version.

All of the results presented so far have been obtained for

p ¼ 3. Our performance model allows us to compare the

optimal performance of different polynomial orders p for

Table 1. Theoretical amount of floating point operations and
memory traffic for the rising thermal bubble test case at
polynomial degree p ¼ 3.a

CG CG/DG DG

GFlops per node 3007.00 3007.00 4023.19
Read traffic in GB 2129.42 2537.28 3489.66
Write traffic in GB 661.83 688.34 1168.69
Arithmetic intensity in flops/bytes 1.08 0.93 0.86
Optimal runtime in seconds 97.94 113.18 163.45
Percentage of theoretical peak of

processor
14.99 12.97 12.02

CG: continuous Galerkin; DG: discontinuous Galerkin; BG: Blue Gene.
aThe effect of random memory access for CG is not taken into account in
these results. All the numbers given in this table are summed over the
entire simulation on 768 BG/Q nodes. The simulations use an effective
resolution of 1.30 m in x- and y-direction and an effective resolution of
0.89 m in z-direction which leads to a total number of 7:4� 108 grid
points. This corresponds to 60 k grid points per BG/Q core which is the
workload we aim at using on the entire machine Mira. All simulations use a
Courant number of 0.7 in the vertical direction and are run for a model
time of 1 s. This corresponds for p ¼ 3 to 690 time steps. The columns
“CG” and “DG” give the results for CG and DG storage, respectively. The
column “CG/DG” uses DG storage for data that does not change
throughout the simulation and CG storage for the rest. The number of
floating point operations is adjusted according to real measurements to
take the effects of compiler optimization into account. The optimal
runtime is based on the peak memory bandwidth of 28.5 GB/s according
to the STREAM benchmark (Morozov et al., 2013). This runtime leads to
the given percentage of the theoretical peak performance of the
processor. This demonstrates that all of our simulations are expected to
be memory bound.

Table 2. Like Table 1 but including an estimate for the effect of
random memory access due to CG storage if the previously
computed elements are no longer available in cache.

CG CG/DG DG

GFlops per node 3007.00 3007.00 4023.19
Read traffic in GB 3483.05 3138.46 3682.77
Write traffic in GB 853.44 879.95 1360.30
Arithmetic intensity in flops/bytes 0.69 0.75 0.80
Optimal runtime in seconds 152.16 141.00 176.95
Percentage of theoretical peak of

processor
9.65 10.41 11.10

CG: continuous Galerkin; DG: discontinuous Galerkin.

Table 3. Theoretical amount of floating point operations and
memory traffic for the baroclinic instability test case.a

CG CG/DG DG

GFlops per node 61.96 61.96 83.00
Read traffic in GB 58.55 62.18 94.22
Write traffic in GB 22.48 22.48 36.69
Arithmetic intensity in flops/bytes 0.76 0.73 0.63
Optimal runtime in seconds 2.84 2.97 4.59
Percentage of theoretical peak of

processor
10.64 10.18 8.82

CG: continuous Galerkin; DG: discontinuous Galerkin.
aThese results are calculated for 972 BG/Q nodes. The simulations use an
effective horizontal resolution of 21.3 km and an effective vertical
resolution of 1.0 km which leads to a total number of 4:4� 107 grid
points. This corresponds to 2821 grid points per BG/Q core which is the
workload we aim at using on the entire machine Mira. All simulations use a
Courant number of 0.4 in the horizontal direction and 6.4 in the vertical
direction and are run for a model time of 4 h. This corresponds for p ¼ 3
to 947 time steps.

Müller et al. 417

the three different versions in Table 2. The results are

shown in Figure 4. The runtime per time step increases

with decreasing order due to the additional copies of data

for DG storage (Figure 4(b)). This effect occurs also in our

CG version because even in this version we still need to

store metric terms in DG storage. The results look very

different when the actual time to solution for the entire

simulation is considered (Figure 4(a)). The numerical

methods considered in this article require reducing the time

step with increasing order to keep the explicitly resolved

part of the simulation stable (see Section 2.2). This makes

low polynomial order much faster than high order. As

shown in Figure 4(a), we get the most efficient time to

solution for convergence order 3 which corresponds to

polynomial order p ¼ 2. We still choose p ¼ 3 for the

remainder of this article because we expect p ¼ 3 to be

easier to vectorize on the BG/Q architecture.

Table 3 shows the results of our theoretical performance

model for the baroclinic instability test case. As described

in the introduction, our final goal is to run this test case at 3

km resolution on the entire supercomputer Mira. This setup

gives us only 20 elements per hardware thread which

makes it possible to fit most of the data in each time step

into L2 cache. For this reason, we do not estimate the effect

of random memory access in this case. Our CG and CG/DG

versions are again significantly faster than our DG version.

We will use the CG/DG version for our optimizations in the

next section because this version gives us a significant

advantage for the rising thermal bubble test case in Table 2.

7. Code optimizations

The goal of this section is to present the optimization steps

of our CG storage version of NUMA for p ¼ 3. To take the

advantage of the reduced amount of data compared to DG

storage, we aim at computing as much work as possible on

a per grid point basis and try to avoid making computations

on a per element basis. The main structure of our code is

illustrated in Code example 1. Computations that need to be

computed element-wise are highlighted in blue. Commu-

nication is highlighted in red.

We tried to optimize all parts of our code. We found

create_rhs (the computation of the right-hand side in equa-

tion (4), see also Code example 1) to be the only function

that contains enough floating point operations to allow sig-

nificant optimizations.

Tables 5 to 8 show performance measurements for dif-

ferent versions of create_rhs. The different versions are

explained in Table 4. For the rest of this section, we simply

refer to the different versions in these tables. Versions

MPI1 to OMP are measured by using the Hardware Perfor-

mance Monitoring Toolkit. Version T gives theoretical

expectations from our performance model as presented in

the previous section. As in Table 2, we include here our

estimate for random memory access for the rising thermal

bubble test case. Version O is another theoretical result that

is obtained by making some further optimizations. These

optimizations consist of avoiding some unnecessary mem-

ory access and minimizing memory access by computing

metric terms in equation (5) in each stage of our time inte-

gration method. This leads to a significant increase in the

number of floating point operations but more importantly it

allows a significant reduction in memory traffic. We will

try these optimizations in our future work.

All of the measurements in Tables 5 to 8 are taken over

the entire simulation. The column “% peak” gives the per-

centage of the theoretical peak performance of the proces-

sor. The column “% max.” shows how close this part of the

code is to the maximum performance according to the roof-

line model for the given arithmetic intensity. The column

“vect.” shows how many percent of all floating point oper-

ations are vectorized. The column “FMA” gives the per-

centage of fused multiply-add operations among all

floating point operations. We have not estimated the opti-

mal number of fused multiply-add operations in our per-

formance model. For this reason, we leave the column

“fma” empty for the versions T and O. The column “mix”

tim
e

to
 s

ol
ut

io
n

in
 s

ec
on

ds

0

50

100

150

200

250

300

350

convergence order

2 3 4 5 6 7 8 9 10

ru
nt

im
e

pe
r

tim
es

te
p

in
 s

ec
on

ds

0.0

0.2

0.4

0.6

0.8

1.0

convergence order

2 3 4 5 6 7 8 9 10

a) b)
DG

CG

CG/DG

DG

CG

CG/DG

Figure 4. Time to solution (a) and runtime per time step (b) as a function of convergence order pþ 1 for the CG and DG storage
versions and setup shown in Table 2 for the rising thermal bubble test case. All polynomial orders use the same effective resolution
(average distance between points) of 1.3 m in the horizontal direction and 0.89 m in the vertical direction and the same Courant
number. CG: continuous Galerkin; DG: discontinuous Galerkin.

418 The International Journal of High Performance Computing Applications 33(2)

shows the percentage of floating point instructions among

all instructions.

We made simulations with a fairly high polynomial

order of p ¼ 6. These simulations confirmed that order

p ¼ 3 gives us significantly better time to solution (version

MPI1). We have not seen a significant impact on the

Code example 1. Pseudocode of the main structure of our code NUMA. The part of the code highlighted in blue needs to be
computed element-wise. The rest (black lines) can be computed for each grid point separately. MPI communication is highlighted in red.

Table 4. Description of the different optimization stages shown
in Tables 5 to 8.a

Version Description

MPI1 p ¼ 3, one MPI process per core
MPI4 Like version MPI1, four MPI processes per core
PORT Like version MPI4, optimized for compiler vectorization
BG/Q Like version MPI4, rewritten using vector intrinsics
OMP Like version BG/Q, four OMP threads per core
T Theoretical expectation for version OMP
O Like T, further optimized (see text for details)

BG: Blue Gene; OMP: OpenMP.
aVersion PORT is the best portable version that we could achieve. Version
BG/Q is the best version that we could get by using BG/Q vector
instructions without OMP and version OMP is the best result with OMP.
The versions T and O are theoretical results based on counting memory
access by hand and estimating the runtime by using the memory bandwidth
according to the STREAM benchmark results by Morozov et al. (2013).

Table 5. Performance measurements for create_rhs (the
computation of the right-hand side in equation (4), see also Code
example 1) with the Hardware Performance Monitor Toolkit for
the rising thermal bubble test case and the different versions of
our code as described in Table 4.a

Flops

Runtime (s) % peak % max. vect. (%) FMA (%) Mix (%)

MPI1 802.2 1.4 8.8 14.4 80.0 18.0
MPI4 351.4 3.2 25.6 14.4 80.0 18.0
PORT 180.4 6.6 48.8 73.9 81.3 21.2
BG/Q 88.1 13.9 81.6 98.6 75.7 28.9
OMP 96.7 12.6 71.3 98.6 75.7 28.1
T 86.2 14.2 100.0 100.0 50.0
O 41.5 36.7 100.0 100.0 50.0

BG: Blue Gene; FMA: fused multiply-add.
aWe use the setup as described in Table 1. The column “runtime” shows
the overall time spent in create_rhs (over all 690 time steps (3450
executions of create_rhs)). All measurements were obtained by taking the
average values over four arbitrary nodes. We refer to the main text for
the explanation of the other columns.

Table 6. Performance measurements for the rising thermal
bubble test case like in Table 5 but for the entire time loop.

Flops

Runtime (s) % peak % max.
vect.
(%)

FMA
(%)

Mix
(%)

MPI1 972.7 1.4 14.8 13.6 79.1 17.9
MPI4 454.3 3.0 34.9 13.6 79.1 17.1
PORT 283.6 5.1 56.2 63.1 80.2 18.4
BG/Q 191.7 7.7 82.5 84.0 75.6 20.5
OMP 198.5 7.4 72.7 83.5 75.0 21.6
T 141.0 10.4 100.0 100.0 50.0
O 80.8 21.9 100.0 100.0 50.0

BG: Blue Gene; FMA: fused multiply-add.

Table 7. Performance measurements for create_rhs like in Table
5 but for the baroclinic instability test case for the setup explained
in the caption of Table 3.

Flops

Runtime (s) % peak % max. vect. (%) FMA (%) Mix (%)

MPI1 9.5 1.3 5.9 14.4 80.0 17.9
MPI4 4.0 3.0 24.1 14.4 80.0 17.8
PORT 2.1 6.2 51.3 73.9 81.3 20.7
BG/Q 1.0 13.3 78.1 98.6 75.7 28.1
OMP 1.1 11.7 68.4 98.6 75.7 27.1
T 0.7 18.9 100.0 100.0 50.0
O 0.5 34.3 100.0 100.0 50.0

BG: Blue Gene; FMA: fused multiply-add.

Müller et al. 419

accuracy of our test cases. We use p ¼ 3 for all measure-

ments shown in the rest of this article because this order is

very well suited for vectorization on Mira (four double

precision floating point numbers fit into one register).

Another significant speedup was obtained by running four

MPI processes per core (version MPI4).

We computed the derivatives of equation (5) in versions

MPI1 and MPI4 for each of the five variables of q sepa-

rately. We tried merging all these derivatives into one

matrix for each direction and element. This version was

significantly faster but not as fast as version PORT below.

We also used the BLAS function dgemm but without any

improvement on the performance.

The rest of our optimizations can be categorized into

three main topics which we discuss in the following sub-

sections: compiler optimizations, BG/Q vector intrinsics,

and OMP. At the end of this section, we give a short

description of possible next steps for further optimization.

7.1. Compiler optimization

To improve the performance while retaining portability, we

worked first on enabling better optimization through the

compiler. We spent some time on finding the best level

of compiler optimization for each function of our code.

We found a few functions for which level 3 optimization

gave us wrong results. This is not surprising because level 3

compiler optimization is not IEEE compliant.

Many of our operations in create_rhs looked initially

like Code example 2. The operations were computed for

each grid point of the element separately which makes it

impossible for the compiler to vectorize the code. This

explains the very low fraction of vectorized operations in

versions MPI1 and MPI4 (column “vect.” in Tables 5 to 8).

To improve vectorization, we changed our code in such

a way that the operations are performed for the entire ele-

ment at once (Code example 3). Our measurements for

version PORT show that this simple modification leads to

a significant improvement of the vectorization.

7.2. BG/Q vector intrinsics

To make even better use of the vector unit, we rewrote

our function create_rhs by using BG/Q vector intrinsics

(Code example 4). This gave us another significant speedup

(version BG/Q). This brings create_rhs to an excellent

level of about 80% of the maximum attainable performance

according to the roofline model (column “% max.” in

Tables 5 and 7 and Figure 5).

Measurements showed that about 13% of all loads hit L2

cache and about 7% hit L1P. These fairly large numbers

seem to be due to the random memory access that CG

storage produces. Optimal would be if the prefetcher could

bring all data into L1 cache before it is needed. We tried

different prefetching strategies and handwritten prefetching

but could not improve the performance compared to the

default strategy. According to our performance model,

we still expect CG storage to be significantly faster com-

pared to DG storage even though CG storage makes pre-

fetching very difficult.

7.3. OpenMP

OMP allows a reduction in the number of MPI processes.

This leads for CG storage to a reduced amount of work for

some parts of the code (namely the black text in Code

example 1). However, we need to be very careful to avoid

race conditions. In create_rhs, race conditions can occur in

the summation over all the elements in equation (4). Using

OMP atomic statements made our code too slow. The best

solution that we could find was to reorder the elements

inside each MPI process in such a way that different OMP

threads can never compute neighboring elements at the

same time. To ensure this, we need to synchronize all

threads by using an OMP barrier after each element com-

putation. These barriers slow down create_rhs by less than

10% (version OMP). Nevertheless, we obtain in the case of

the baroclinic instability a noticeable improvement on the

runtime of the entire simulation due to the reduced amount

of work for the IMEX corrections in the vertical direction.

We obtained the best performance by using 4 OMP threads

per MPI process (2, 8, 16, and 64 OMP threads per MPI

process were slower).

Comparing our final version OMP with our theoretical

results (version T) shows reasonably good agreement

(Tables 6 and 8). The number of floating point operations

in our theoretical performance model has been tuned to

agree with our overall measurements of version OMP in

order to take compiler optimizations into account.

7.4. Next steps

The roofline plots in Figure 5 show that our optimizations

have given us a massive improvement in the number of

Table 8. Performance measurements for the entire time loop
like in Table 6 but for the baroclinic instability test case.a

Flops

Runtime (s) % peak % max. vect. (%) FMA (%) Mix (%)

MPI1 19.3 1.5 10.2 12.6 77.3 20.4
MPI4 9.4 3.4 37.8 12.6 77.3 19.5
PORT 7.5 4.4 49.4 38.0 77.9 20.7
BG/Q 6.4 5.2 55.6 49.1 75.6 21.7
OMP 5.8 5.2 42.1 48.4 74.4 22.1
T 3.0 10.2 100.0 100.0 50.0
O 2.2 15.6 100.0 100.0 50.0

BG: Blue Gene; FMA: fused multiply-add.
aEven though only create_rhs is changed between the different
simulations in this table, the runtime saved for the entire time loop is
larger than the time saved in create_rhs. The reason for this behavior is
that the reduced runtime of create_rhs leads to an improved
synchronization between different MPI processes which reduces the time
spent in MPI communication.

420 The International Journal of High Performance Computing Applications 33(2)

gigaflops per second per node which has brought us very

close to the maximum attainable performance at the given

arithmetic intensity. Our measurements show also that our

final version OMP achieves an excellent level of vectoriza-

tion (98.6% of all floating point operations are vectorized).

The main remaining bottleneck of our optimized code is the

low arithmetic intensity and the low instruction mix

(Tables 5 to 8). As mentioned in Section 5, each load and

store instruction takes one cycle of the integer unit. This

explains the low instruction mix and demonstrates that our

code could perform a lot more floating point operations

while still achieving the same performance. In order to

improve performance further, we need to increase arith-

metic intensity by reducing the overall amount of memory

Code example 2. Fortran code similar to a function from the non-optimized initial version of NUMA (used in versions MPI1 and MPI4
in Tables 5 to 8).

Code example 3. Like Code example 2 rewritten for improved compiler vectorization (used in version PORT).

Code example 4. Like Code example 2 rewritten with vector intrinsics (used in versions BG/Q and OMP).

Müller et al. 421

traffic. We have found some unnecessary memory access

which we will remove in our future work and we have

found that we could reduce memory traffic by recomputing

the metric terms in equation (5) in each stage of our time

integration method. These optimizations have been included

in our performance model and are shown in version O in

Tables 5 to 8. According to our performance model, we

should be able to achieve another factor 2 of speedup for

create_rhs. This should bring us to about 35% of the theo-

retical peak performance of the processor. Recomputing the

metric terms in each time integration stage should also

improve the very low percentage of floating point instruc-

tions among all instructions (column “mix” in Tables 5 to 8).

We will try these optimizations in our future work.

8. Strong scaling results

We present in this section strong scaling results up to the

entire machine Mira for the baroclinic wave test case

(Figures 6, 7, and 9) and the rising thermal bubble test case

(Figures 8 and 10). All these results use version OMP from

Section 7.

The runtime of the entire simulation for the baroclinic

wave test case is shown in Figure 6. The dynamics of a 1-

day forecast needs to be finished within less than about 4.5

min runtime (more than 320 model days per wall clock

day). We reach this goal on the entire machine Mira for

our 3.0 km uniform horizontal resolution simulation of the

baroclinic wave test case which takes 4.15 min runtime per

1 day forecast (346.6 model days per wall clock day).

The strong scaling efficiency of the simulations in

Figure 6 is shown in Figure 7 for the different parts of the

code. The entire code reaches a strong scaling efficiency of

99.1% on the entire machine Mira. The parts create_rhs

and filter show a scaling efficiency of more than 100%.

This is not surprising because the problem fits better into

L2 cache with increasing number of threads and at the same

time the time spent in our OMP barriers is decreasing. The

IMEX part gives us the lowest scaling efficiency. We still

need to understand the reason for this behavior.

arithemtic intensity (Flops/Bytes)
10-1 100 101 102

G
Fl

op
s

pe
r

se
co

nd
 p

er
 n

od
e

100

101

102

103

attainable timeloop createrhs

9.5.

(a)

arithmetic intensity (Flops/Bytes)
10-1 100 101 102

G
Fl

op
s

pe
r

se
co

nd
 p

er
 n

od
e

100

101

102

103

attainable timeloop createrhs

9.5

3.3

(b)

Figure 5. Roofline plot for the different versions shown in Tables 5 and 6 for (a) the rising thermal bubble test case and (b) for the
baroclinic instability test case. For the identification of the different versions, we refer to the data in the tables. The arrows illustrate the
performance improvement between the slowest and fastest version.

number of threads # 106

0 0.5 1 1.5 2 2.5 3 3.5

m
od

el
 d

ay
s

pe
r

w
al

lc
lo

ck
 d

ay

0

100

200

300

400

Figure 6. Strong scaling for the baroclinic wave test case with
polynomial order p ¼ 3 using 1024 elements per cubed-sphere edge
and 10 elements in the vertical direction (31 degrees of freedom).
This corresponds to a global effective resolution of 3.0 km and a total
number of about 1.8 billion grid points. The dashed line shows ideal
strong scaling over a base run on 6:5� 104 threads.

number of threads # 106
0 0.5 1 1.5 2 2.5 3 3.5

st
ro

ng
 s

ca
lin

g
ef

fi
ci

en
cy

 in
 %

60

70

80

90

100

110

total

filter

createrhs

IMEX

Figure 7. Strong scaling efficiency over base run on 6:5� 104

threads for the simulations shown in Figure 6 (baroclinic instability).

422 The International Journal of High Performance Computing Applications 33(2)

The lowest scaling efficiency for the entire simulation

is obtained for 2:1� 106 threads. This is due to nonopti-

mal load balancing. The number of elements per thread is

always perfectly balanced for all results shown in this

article. However, the arrangement of these elements can

vary which leads for CG storage to variations in the num-

ber of grid points. So far we use the very simple mesh

partitioning built into the p4est library. We expect to be

able to improve this result by using more advanced mesh

partitioning algorithms.

The strong scaling efficiency of the rising thermal bub-

ble test case is shown in Figure 8. We achieve 99.7% strong

scaling efficiency on the entire machine for this case. We

use a much larger total number of grid points of about 43

billion grid points for this case because we plan to use our

code for hurricane and cloud simulations at this kind of

problem size. We have not optimized the memory usage

of our code. The smallest number of threads that can handle

this problem is currently 7:7� 105. We expect to be able to

reduce the memory usage of our code significantly. Also

we need to understand the reason why the simulation using

1:6� 106 shows a reduced performance.

The percentage of the theoretical peak performance in

terms of floating point operations is shown in Figures 9 and

10. Not surprisingly, we obtain the best performance for

our optimized part create_rhs. For the baroclinic wave test,

create_rhs reaches 1.21 PFlops (12.1% of peak) and for the

rising thermal bubble test, it reaches 1.28 PFlops (12.8% of

peak) on the entire machine. The sustained performance of

the entire simulation is at 0.55 PFlops for the baroclinic

wave test and at 0.70 PFlops for the rising thermal bubble

test on the entire machine Mira.

9. Conclusions

In this article, we present the optimization and performance

analysis of the atmospheric model NUMA. Our optimiza-

tions have improved the performance of the main computa-

tional kernel create_rhs of our code by a factor of almost 10

and have brought us very close to the maximum attainable

performance due to the peak memory bandwidth (Figure 5).

These optimizations allow us to perform most of the com-

putations at 1.2 PFlops on the entire supercomputer Mira by

using BG/Q vector intrinsics. The sustained performance of

the entire simulation is at 0.70 PFlops for a rising thermal

bubble test case using explicit time integration. We have

not optimized all parts of the code yet. For the baroclinic

wave test, the non-optimized computations for the implicit

part of the time integration lead to a slightly lower sus-

tained performance of 0.55 PFlops. We expect to improve

our performance significantly by optimizing the remaining

non-optimized parts of our code. The best portable version

of the main computations was found to be about two times

slower than the best non-portable version. We used the

IBM XL compiler in this work. We expect the comparison

between portable and non-portable optimizations to be very

different on other architectures due to the availability of

different compilers.

We have shown that NUMA achieves a near perfect

strong scaling efficiency of 99.7% for the rising thermal

bubble test case using 43 billion grid points on the entire

3.14 million threads of Mira. For the baroclinic wave test

number of threads # 106
0.5 1 1.5 2 2.5 3 3.5

st
ro

ng
 s

ca
lin

g
ef

fi
ci

en
cy

 in
 %

60

70

80

90

100

110

total

filter

createrhs

Figure 8. Strong scaling efficiency over base run on 7:7� 105

threads for the rising thermal bubble test case using
1024� 1024� 1536 elements which corresponds to about 43
billion grid points.

number of threads # 106

0 0.5 1 1.5 2 2.5 3 3.5

%
 o

f
pe

ak
 f

lo
ps

0

5

10

15

total filter createrhs

Figure 10. Percentage of theoretical peak performance in terms
of floating point operations for the rising thermal bubble test case
like in Figure 8.

number of threads # 106

0 0.5 1 1.5 2 2.5 3 3.5

%
 o

f
pe

ak
 f

lo
ps

0

5

10

15

total filter createrhs IMEX

Figure 9. Percentage of theoretical peak performance in terms of
floating point operations for the baroclinic wave test case like in
Figure 6.

Müller et al. 423

case on the sphere, we obtain a strong scaling efficiency of

99.1% using a mesh with 1.8 billion grid points. This

allows us to compute a 1-day forecast at 3.0 km resolution

within 4.15 min runtime and fulfils the requirements for

operational weather prediction (less than 4.5 min runtime

for the dynamics of a 1-day forecast).

As explained in the introduction, we expect this massive

increase in resolution to be a major step toward more accu-

rate weather forecasts. Nevertheless, the demand to

increase the resolution of NWP models does not end at 3

km resolution (Bauer et al., 2015). The demand for better

performance is even more severe when high resolution

climate prediction is considered. Climate prediction

requires forecast periods of more than 100 years. To simu-

late such a long period of time at a resolution of 3 km would

still require about 1 year of runtime on the entire machine

Mira when tracers and physics parameterizations are taken

into account. For this reason, we need to continue to work

on improving the performance of our code and to optimize

it for next generation supercomputers.

Our analysis in this article shows that we need to reduce

the amount of memory traffic to further improve our per-

formance. It should be possible to achieve this by recom-

puting metric terms in each stage of our time integration

method. For this reason, we expect to improve our sus-

tained performance of the entire simulation beyond 1

PFlops. This should allow us to reach a uniform horizontal

resolution close to 2 km within operational requirements.

The next goal will be the optimization of our code for the

upcoming next generation supercomputer Aurora at the

Argonne National Laboratory. We hope to be able to reach

1 km resolution for global NWP once Aurora is available

and once our code is fully optimized for that machine.

Authors’ note

Michal A Kopera is now affiliated to Department of Earth

and Planetary Science, University of California, Santa

Cruz, CA, USA.

Acknowledgements

The authors would like to thank Vitali Morozov at the

Argonne National Laboratory for his support in analyzing

the performance of our code with the Hardware Perfor-

mance Monitor Toolkit. AM, MK, and SM are grateful to

the National Research Council of the National Academies.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work was supported by the Office of Naval

Research (PE-0602435 N), the Air Force Office of Scien-

tific Research (Computational Mathematics program), and

the National Science Foundation (Division of Mathemati-

cal Sciences; 121670). This research used resources of the

Argonne Leadership Computing Facility, which is a DOE

Office of Science User Facility supported under Contract

DE-AC02-06CH11357.

References

Abdi DS and Giraldo FX (2016) Efficient construction of unified

continuous and discontinuous Galerkin formulations for the

3D Euler equations. Journal of Computational Physics 320:

46–68.

Bangerth W, Heister T, Heltai L, et al. (2015) The deal.II library,

version 8.2. Archive of Numerical Software 3(100): 1–8.

Bauer P, Thorpe A and Brunet G (2015) The quiet revolution of

numerical weather prediction. Nature 525(7567): 47–55.

Burstedde C, Calhoun D, Mandli K, et al. (2014) ForestClaw:

hybrid forest-of-octrees AMR for hyperbolic conservation

laws. In: Bader M, Bode A and Bungartz HJ (eds) Parallel

Computing: Accelerating Computational Science and Engi-

neering (CSE). Amsterdam: IOS Press BV, pp. 253–262.

Burstedde C, Ghattas O, Gurnis M, et al. (2010) Extreme-scale

AMR. In: Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking,

Storage and Analysis, New Orleans, Louisiana, USA, 13–19

November 2010, pp. 1–12. Washington, DC, USA: IEEE

Computer Society.

Burstedde C, Wilcox LC and Ghattas O (2011) P4est: scalable

algorithms for parallel adaptive mesh refinement on forests of

octrees. SIAM: SIAM Journal on Scientific Computing 33(3):

1103–1133.

Chung IH, Kim C, Wen HF, et al. (2012) Application data pre-

fetching on the IBM Blue Gene/Q supercomputer. In: 2012

International conference for high performance computing,

networking, storage and analysis (SC), Salt Lake City, UT,

USA, 10–16 November 2012, pp. 1–8. Los Alamitos, CA,

USA: IEEE Computer Society Press.

Dennis JM, Edwards J, Evans KJ, et al. (2012) CAM-SE: a scal-

able spectral element dynamical core for the community atmo-

sphere model. International Journal of High Performance

Computing Applications 26(1): 74–89.

Giraldo FX and Restelli M (2008) A study of spectral element and

discontinuous Galerkin methods for the Navier-Stokes equa-

tions in nonhydrostatic mesoscale atmospheric modeling:

equation sets and test cases. Journal of Computational Physics

227(8): 3849–3877.

Giraldo FX, Kelly JF and Constantinescu EM (2013) Implicit-

explicit formulations of a three-dimensional nonhydrostatic

unified model of the atmosphere (NUMA). SIAM: SIAM Jour-

nal on Scientific Computing 35(5): B1162–B1194.

Hungershöfer J and Wierum JMM (2002) On the quality of parti-

tions based on spacefilling curves. In: Peter M. A. Sloot (ed.),

Computational Science—ICCS 2002, Amsterdam, The Nether-

lands, 21–24 April 2002 pp. 36–45. Berlin; Heidelberg; New

York; Barcelona; Hong Kong; London; Milan; Paris; Tokyo:

Springer.

424 The International Journal of High Performance Computing Applications 33(2)

Isaac T, Burstedde C, Wilcox LC, et al. (2015a) Recursive algo-

rithms for distributed forests of octrees. SIAM Journal on Sci-

entific Computing 37(5): C497–C531.

Isaac T, Stadler G and Ghattas O (2015b) Solution of nonlinear

Stokes equations discretized by high-order finite elements on

nonconforming and anisotropic meshes, with application to ice

sheet dynamics. SIAM Journal on Scientific Computing 37(6):

B804–B833.

Isaac TG (2015) Scalable, adaptive methods for forward and

inverse problems in continental-scale ice sheet modeling. PhD

Thesis, UT Electronic Theses and Dissertations. Available at:

http://hdl.handle.net/2152/31372.

Jablonowski C and Williamson DL (2006) A baroclinic instability

test case for atmospheric model dynamical cores. Quarterly

Journal of the Royal Meteorological Society 132(621C):

2943–2975.

Johnsen P, Straka M, Shapiro M, et al. (2013) Petascale WRF

simulation of hurricane sandy: deployment of NCSA’s cray

XE6 blue waters. In: 2013 SC - International conference for

high performance computing, networking, storage and analy-

sis, Denver, Colorado, USA, 17–22 November 2013, pp. 1–7.

Washington, DC, USA: IEEE Computer Society.

Kelly JF and Giraldo FX (2012) Continuous and discontinuous

Galerkin methods for a scalable three-dimensional nonhydro-

static atmospheric model: limited-area mode. Journal of Com-

putational Physics 231(24): 7988–8008.

Marras S, Kelly JF, Moragues M, et al. (2015a) A review of

element-based Galerkin methods for numerical weather pre-

diction: finite elements, spectral elements, and discontinuous

Galerkin. Archives of Computational Methods in Engineering

23(4): 673–722.

Marras S, Nazarov M and Giraldo FX (2015b) Stabilized high-

order Galerkin methods based on a parameter-free dynamic

SGS model for LES. Journal of Computational Physics 301:

77–101.

Michalakes J, Benson R, Black T, et al. (2015) Evaluating per-

formance and scalability of candidate dynamical cores for the

next generation global prediction system. Available at: https://

www2.cisl.ucar.edu/sites/default/files/Michalakes_Slides.pdf

Morozov V, Kumaran K, Vishwanath V, et al. (2013) Early expe-

rience on the Blue Gene/Q supercomputing system. In: Paral-

lel & Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium, 20 May 2013, pp. 1229–1240.

IEEE.

Müller A, Behrens J, Giraldo FX, et al. (2013) Comparison

between adaptive and uniform discontinuous Galerkin simula-

tions in dry 2D bubble experiments. Journal of Computational

Physics 235(0): 371–393.

Nair RD, Choi HW and Tufo HM (2009) Computational aspects

of a scalable high-order discontinuous Galerkin atmospheric

dynamical core. Computers and Fluids 38(2): 309–319.

Rossinelli D, Hejazialhosseini B, Hadjidoukas P, et al. (2013) 11

PFLOP/s simulations of cloud cavitation collapse. In: 2013

International conference for high performance computing,

networking, storage and analysis (SC), Denver, Colorado,

USA, 17–22 November 2013, pp. 1–13. Washington, DC,

USA: IEEE Computer Society.

Rudi J, Malossi ACI, Isaac T, et al. (2015) An extreme-scale

implicit solver for complex PDEs: highly heterogeneous flow

in earth’s mantle. In: Proceedings of the international confer-

ence for high performance computing, networking, storage

and analysis, Austin, TX, USA, 15–20 November 2015, p. 5.

New York, NY, USA: ACM.

Schneider T (2014) High-Impact Weather Prediction Project

(HIWPP). Technical report, NOAA. Available at: http://web.

archive.org/web/20150221115209/http://hiwpp.noaa.gov/

docs/HIWPP_ProjectPlan_Public.pdf

Tufo HM and Fischer PF (1999) Terascale spectral element algo-

rithms and implementations. In: Proceedings of the 1999

ACM/IEEE conference on Supercomputing, Portland, OR,

USA, 14–19 November 1999, p. 68. New York, NY, USA:

ACM.

Wedi NP, Bauer P, Deconinck W, et al. (2015) The Modelling

Infrastructure of the Integrated Forecasting System: Recent

Advances and Future Challenges. Technical Memorandum

760 (2015), ECMWF. pp. 48.

Whitaker J (2015) HIWPP Non-hydrostatic Dynamical Core Tests:

Results from Idealized Test Cases. Technical report, NOAA.

Available at: http://web.archive.org/web/20151003234909/;

http://www.nws.noaa.gov/ost/nggps/DycoreTestingFiles/

HIWPP_idealized_tests-v8%20revised%2005212015.pdf

Wyszogrodzki AA, Piotrowski ZP and Grabowski WW (2012)

Parallel implementation and scalability of cloud resolving

EULAG model. In: Roman Wyrzykowski, Jack Dongarra,

Konrad Karczewski and JerzyWaśniewski (eds), Parallel

Processing and Applied Mathematics 9th International

Conference, PPAM 2011, Torun, Poland, 11–14 September

2011, pp. 252–261.Berlin, Heidelberg: Springer.

Xue W, Yang C, Fu H, et al. (2014) Enabling and scaling a global

shallow-water atmospheric model on Tianhe-2. In: 2014 IEEE

28th international parallel and distributed processing sympo-

sium, Phoenix, AZ, USA, 19–23 May 2014, pp. 745–754.

IEEE.

Yang C, Xue W, Fu H, et al. (2016) 10M-core scalable fully-implicit

solver for nonhydrostatic atmospheric dynamics. In: SC16: inter-

national conference for high performance computing, network-

ing, storage and analysis, Salt Lake City, UT, USA, 13–18

November 2016, pp. 57–68. IEEE Press.

Author biographies

Andreas Müller received a BS, MSc, and PhD in physics

from the University of Mainz, Germany. After 4 years as a

National Research Council postdoctoral fellow at the Naval

Postgraduate School, he is now a scientist at the European

Centre for Medium-Range Weather Forecasts in Reading,

UK. His current work focuses on developing energy effi-

cient scalable numerical methods toward weather predic-

tion on exascale supercomputers.

Michal A Kopera received BS and MSc in mechanical

engineering from Warsaw University of Technology, and

MSc in scientific computing and PhD in engineering from

Müller et al. 425

http://hdl.handle.net/2152/31372
https://www2.cisl.ucar.edu/sites/default/files/Michalakes_Slides.pdf
https://www2.cisl.ucar.edu/sites/default/files/Michalakes_Slides.pdf
http://web.archive.org/web/20150221115209/http://hiwpp.noaa.gov/docs/HIWPP_ProjectPlan_Public.pdf
http://web.archive.org/web/20150221115209/http://hiwpp.noaa.gov/docs/HIWPP_ProjectPlan_Public.pdf
http://web.archive.org/web/20150221115209/http://hiwpp.noaa.gov/docs/HIWPP_ProjectPlan_Public.pdf
http://web.archive.org/web/20151003234909/
http://www.nws.noaa.gov/ost/nggps/DycoreTestingFiles/HIWPP_idealized_tests-v8%20revised%2005212015.pdf
http://www.nws.noaa.gov/ost/nggps/DycoreTestingFiles/HIWPP_idealized_tests-v8%20revised%2005212015.pdf
http://www.nws.noaa.gov/ost/nggps/DycoreTestingFiles/HIWPP_idealized_tests-v8%20revised%2005212015.pdf
http://www.nws.noaa.gov/ost/nggps/DycoreTestingFiles/HIWPP_idealized_tests-v8%20revised%2005212015.pdf

the University of Warwick. After 5 years as a National

Research Council postdoctoral fellow at the Naval Post-

graduate School, he is now an assistant researcher in the

Department of Earth and Planetary Sciences at the Univer-

sity of California, Santa Cruz.

Simone Marras received a MS in aerospace engineering

from Politecnico di Milano and a PhD from the Universitat

Politècnica de Catalunya jointly with the Barcelona Super-

computing Center. After 2 years as an NRC research asso-

ciate at the Naval Postgraduate School and 2 years as a

research scientist at Stanford University, he is currently

an assistant professor in the Department of Mechanical and

Industrial Engineering at the New Jersey Institute of Tech-

nology. His research interests include computational fluid

dynamics for compressible, large eddy simulation of turbu-

lence, and aeroacoustics.

Lucas C Wilcox received a BS in mathematical and com-

puter sciences from the Colorado School of Mines in 2001.

He graduated with a MSc and PhD in applied mathematics

from Brown University in 2002 and 2006, respectively. He

was an ICES Postdoctoral Fellow at the Institute for Com-

putational Engineering and Science at the University of

Texas at Austin, and is currently an associate professor in

the Department of Applied Mathematics at the Naval Post-

graduate School.

Tobin Isaac is an assistant professor in the School of Com-

putational Science and Engineering at Georgia Tech. He

has a BA from Rice University and a PhD in computa-

tional science, engineering and mathematics from the

University of Texas at Austin. His research topics include

numerical methods and data structures for partial differ-

ential equations (PDEs) and PDE-constrained inference.

Francis X Giraldo received a BS from Princeton University

and a PhD from the University of Virginia. He is currently a

professor in the Department of Applied Mathematics at the

Naval Postgraduate School. His research interests include

the analysis of numerical methods, computational fluid

dynamics, and high-performance computing.

426 The International Journal of High Performance Computing Applications 33(2)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

