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DEAN H .  KROPP 
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This paper addresses the joint facilities design problem of determining both demand and capacity with stochastic demand arrivals 
and stochastic processing throughput. Using a simple M/M/l queueing model of a profit maximizing firm, we link marketing 
and production decision variables by recognizing appropriate congestion costs, and show that mrdinated decision-making pro- 
vides results superior to making demand and capacity decisions sequentially. Sensitivity analysis indicates that the model is robust 
with respect to its assumptions and parameters. An example illustrates the approach and demonstrates the application of the model. 

I In this paper we address the joint problem of deter- 
mining demand volume and production capacity under 
conditions of uncertainty. By introducing congestion 
costs, we link the demand volume decision (typically 
determined by the Marketing hnction) with the capacity 
design decision (typically made by the Manufacturing1 
Operations function). Analysis of the resulting model 
shows that the usual pattern of subordinating the pro- 
duction capacity decision to the demand volume deci- 
sion is suboptimal when demand amvals and processing 
times are uncertain, and further demonstrates that ig- 
noring congestion costs can lead to potentially expen- 
sive errors when making volume and capacity decisions. 

There is increasing interest in both the research liter- 
ature and in practice in coordinating manufacturing and 
marketing functions. Much has been written about the 
problems of "functional silos" in which functional spe- 
cialties make important decisions in isolation from other 
interested parties (Hayes, Wheelwright, and Clark [12]), 
and about the need for greater functional coordination 
(Shapiro [ 1 81). Presumably, coordinating activities 
across hnctional boundaries will result in lower costs, 
faster response to customers, greater flexibility, and bet- 
ter utilization of resources (Crittenden [4]). However, 
much of this literature is anecdotal without theoretical 
or analytic underpinning. A principal objective of this 
paper is to provide such support for the facilities plan- 
ning problem. 

A second objective of the paper is to add support to 
the growing literature which argues that congestion ef- 
fec ts must be recognized when addressing production 
problems. Much of the traditional capacity design liter- 
ature assumes, either implicitly or explicitly, that ca- 
pacity utilization rates of 100 percent are feasible and, 
indeed, desirable. However, recognition that workflow 
congestion creates negative impacts is increasing (Fry 
and Blackstone [8]). Manufacturing plants have typically 
used direct labor and machine utilization as the prin- 
ciple measure of production performance (Eloranta [5 1). 
While direct labor charges are a diminishing fiaction 
of total production costs in most manufacturing firms, 

the cost of materials is increasing relative to total produc- 
tion costs, thus shifting managerial attention from the 
control of direct labor expenditures to the control of 
inventories. Large wor k-in-process (WIP) inventories, 
once considered desirable to buffer production and pro- 
vide high utilization, are currently regarded as costly 
impediments to effective manufacturing by obscuring 
quality problems, increasing lead times, reducing flex- 
ibility, and tying-up expensive capital. Since workflow 
congestion leads to increased WIP inventories, attention 
is shifting to relieving congestion and hence reducing 
UIP. 

To capture the interaction between demand volume 
and production capacity in facilities design and to in- 
clude the effects of congestion, we develop a simple 
profit-maximizing model of an M/M/l production sys- 
tem under assumptions of declining returns to scale for 
both demand and capacity. With this model the mean 
arrival rate represents expected demand volume, the 
mean service rate represents production capacity, and 
the mean time-in-system captures worldlow congestion. 
We deliberately choose a simple and parsimonious model 
for this analysis in order to capture the aggregate ef- 
fects of demand volume and production capacity deci- 
sions in the spirit of Manne [15]. Consequently, we do 
not address other facilities design considerations such , 

as plant layout, product mix, technology selection, and 
so forth. Other objectives such as  return on investment 
(ROI) could also be considered. Although we briefly 
consider this, we will assume that we are dealing with 
a profit-maximizing firm. 

The balance of the paper is organized follows: In 
the next section we discuss the relevant capacity design 
literature, for which the decision variables have been 
either the demand rate or the service rate. The follow- 
ing section contains our basic model, which has both 
the demand and service rates as decision variables. We 
then analyze the model and give results a b u t  profit- 
ability and optimal utilization. Sensitivity analysis is 
undertaken, where the effects of errors in key model 
parameters are considered, and we illustrate an appli- ' 
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cation of our model and demonstrate the benefits of si- 
multaneous determination of volume and demand. Issues 
involving the implementation of our model and offer- 
ing directions for future research are discussed, and con- 
cluding remarks are made. 

Literature 

Hillier [13] was the first to consider the combination 
of capacity utiliz.ation, facilities design, and congestion 
costs. He derived a number of now-classic expressions 
for optimal senice rates, number of servers, and cus- 
tomer arrival rates with linear capacity costs, but did 
not address the problem of jointly determining both serv- 
ice rates and arrival, rates. Subsequent research has typi- 
cally assumed either the demand rate or the service rate 
to be fixed, or has considered both to be deterministic. 

There is a growing body of literature which investi- 
gates capacity design decisions given an exogenously 
imposed demand distribution. Freidenfelds [7] studies 
the impact of congestion on the timing of capacity expan- 
sion decisions. Yao and Kim [23] examine the loading 
of work stations and the assignment of servers to relieve 
congestion in an open queueing network. Karmarkar, 
Kekre and.Kekre [14] use an M/G/c queueing model 
with linear capacity costs to examine capacity and equip 
ment levels in a manufacturing cell with variable equip- 
ment levels, multiple shifts, overtime, and batching . 
Bitran and Timpati [2] investigate capacitylinventory 
tmdeoffs using decomposition techniques for the design 
of open queueing networks. Vander Veen and Jordon 
1201 examines the problem of designing a multi-machine 
production facility to meet fixed demand subject to non- 
linear capacity costs, and Pourbabai [ 171 investigates 
the optimal utilization of a finite capacity integrated as- 
sembly system. 

A second line of research assumes capacity to be fixed, 
and sets demand (usually through pricing mechanisms) to 
balance utilization with congestion costs. Banker, Datar 
and Kekre [l]  investigate the impact of congestion on 
management accounting decisions. They use an M/G/c 
queueing model to show that ignoring congestion effects 
can seriously distort product costing analysis, thus lead- 
ing to acceptance of work at unprofitable prices. In their 
model, plant capacity is considered to be fixed, while 
customer arrival rates are imp1 icitl y controlled through 
pricing mechanisms. 

A final related stream of research examines the joint 
problem of determining production and demand levels, 
but typically assumes both to be deterministic and thus 
does not include congestion costs. Pekelman [16J in- 
vestigates a model with dynamic inventory, price, and 
production decisions in which demand is a function of 
price and capacity is unlimited. Thompson, Sethi and 
Tang [I93 and Feichtinger and Hartl [6] extend Pekel- 
man's model by including nonlinear cost and demand 
functions. Gaimon [9] uses optimal control theory to 

determine price, capacity acquisition, production, mix, 
and inventory policies where demand is a function of 
price. 

Other relevant work regarding the design of queueing 
systems is summarized in Crabill, Gross and Magazine 
[3]. Previous work has not considered the capacity de- 
sign problem when both demand and production are 
stochastic - ours is apparently the first paper to investi- 
gate this joint problem. 

M/MA Volume and Capacity Model 

Our objective is to specify both the demand volume 
and the production capacity of a single-station prduc- 
tion facility providing one or more products for some 
market. This production facility might be a single ma- 
chine, work-center, or department, or could be a s h -  
ple single-stage plant. Our andysis is not limited to 
manufacturing plants, but is equally applicable to serv- 
ice facilities such as retail stores, health care delivery 
offices, communications nodes. 
Decision Variables. During the capacity design proc- 

ess we address, two decisions must be made: the capac- 
ity of the plant, and the volume of demand processed 
by the facility. We take as our decision variables both 
the fixed production capacity (defined as the mean proc- 
essing rate p) of the facility under consideration, and 
the demand volume (defined as the mean demand rate 
X) of business that will be processed by the facility. De- 
cision variables X and C( are mean rates; realized de- 
mand and capacity during any period are assumed to 
be stochastic. The production capacity decision is irn- 
pacted by choice of process, number of machines, plant 
layout, material handling methods, information technol- 
ogies, and scope of manufacturing. The volume deci- 
sion is typically considered a marketing decision and 
is affected by price, advertising level, promotion, sales 
effort, and distribution. Note that in most other opera- 
tions management and industrial engineering literature, 
demand volume is taken as an exogenously specified 
constraint rather than as a decision variable. 

Profit Maximizing Objective. The objective of our 
model is to maximize period profits II defined as pe- 
riod contribution 4 less period capacity costs 3Y and 
period congestion costs so that 

Each of these terms is described in detail below. 
First, however, note that the model requires that the 

cash-flow streams of all relevant revenues and costs be 
converted to equivalent level cash-flow streams (an an- 
nuity). This is accomplished using standard discounting 
techniques. For example, suppose that fixed costs of 
$10,000 are required to install some level of capacity 
p. If the expected life of the capacity is indefinite, then 
the $10,000 can represent the present value of a per- 
petuity. (If the capacity has a finite life, then an annuity 
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calculation would be appropriate.) For example, if the 
risk-adjusted opportunity cost of capital of the firm is 
20% per annum, and assuming that the capacity will 
operate 2,000 hours per year, then the equivalent per- 
petuity is approximately $1 per working hour. This cal- 
culation is equivalent to that which an equipment leasing 
firm might undertake. If the ongoing cost of maintain- 
ing this capacity is $9 per hour (perhaps for fixed labor, 
maintenance, insurance, etc .), then the total period cost 
of installing and maintaining capacity level p is $10 per 
hour. In a similar manner, aH cash flows affected by 
the demand volume and production capacity decisions 
need to be converted to equivalent level cash flows and 
incorporated into the model. The choice of time period 
(minutes, hours, days, weeks) is arbitrary and irnmate- 
rial so long as all parameters use the same units. 

Contribution to Projt. We defrne contribution to profit 
as the difference between revenues and variable costs 
(exclusive of capacity costs) associated with a given level 
of expected demand. Components of contribution might 
include sales revenues, variable material and labor costs 
related to volume, and marketing and advertising ex- 
penditures (an example appears later). The contribution 
function A@) is assumed to be a pure function of the 
demand rate X and is represented as a power function 
of demand: A@) = MAa, where M is a scale param- 
eter, and ar is the (constant) elasticity of contribution. 
This representation is commonly used in economics (an 
example is the familiar Cobb-Douglas function; Varian 
[2 I]), and allows increasing, constant, or decreasing 
returns to scale for demand by appropriate selection of 
values for a. 

Capacity Costs. We define capacity costs to be the 
costs per time unit of providing an expected production 
capacity of p. These penbd capacity costs include arnor- 
tized fixed expenses such as equipment and building 
costs, plus other ongoing capacity -related expenses such 
as plant, maintenance, and fixed labor costs (an exarn- 
ple appears in a later section). As with contribution, 
we represent capacity costs a) as a power function 
of capacity: = K#, where K is a scale pararn- 
eter, and f i  is the (constant) elasticity of capacity. This 
representation of capacity has been widely used in the 
capacity planning and capacity expansion literature (e. g . , 
Manne [IS] and Freidenfelds 1'71). 

Declining Returns to Scale. For both capacity costs 
and contribution we assume that there exist linear or 
declining returns to scale. For contribution function 
this requires that a! s 1, and that 6 r 1 for the ca- 
pacity cost function S, We justify these declining re- 
turn assumptions using a relevant range argument. In 
practice, both capacity costs and contribution functions 
will often follow an "S-shaped" curve. For such curves 
there are increasing returns to scale for low levels of 
volume and capacity, approximately linear returns for 
middle levels, and decreasing returns for high levels. 
Each of these regions can be individually represented 

by appropriate values of a! and /3 in our model, although 
clearly our functions are not S-shaped. 

In the case of increasing returns to scale, intuition 
suggests (and mathematics confirm) that the optimal pol- 
icy would be to increase volume and capacity without 
limit (see Appendix). Similar results obtain when both 
volume and capacity have linear returns to scale. Only 
when the range of decreasing returns for demand andor 
capacity is reached does a finite optimal solution exist. 
We will therefore restrict our analysis to this relevant 
range in which there are decreasing returns to scale in 
capacity or  demand (or both), and for which a finite 
solution exists. Thus, we assume 5 1 s IS, with at 
least one strict inequality. 

Congestion Costs. Congestion costs are the costs of 
maintaining work-in-process inventories and include 
warehousing and storage costs, materials handling ex- 
pense, insurance costs, inventory tracking and expedit- 
ing charges, capital opportunity costs, quality expenses 
arising from deteriorating in- process inventory, and 
other relevant inventory hotding expenses. Consistent 
with most of the inventory management literature, we 
assume that congestion costs are a linear function of the 
time for which inventories are held (Hadley and Whitin 
[ll]). Let F be the marginal cost of holding a produc- 
tion lot for one time period, and let Wbe the time an 
average production lot or job is held. Then if jobs are 
arriving at mean rate A, the average period cost of con- 
gestion is # = FA * = F9, where 9 = X W is the 
average number of jobs in the system by Little's law. 

We model congestion in the production facility using 
an M/M/l queue with the usual assumptions of inde- 
pendent Poisson arrivals, exponential service times, first- 
come first-served discipline, and a single server. The 
mean steady-state number in system for an M/M/1 queue 
is =,p) = W(p-A) (Gross and Harris [lo]), so that 
congestion function S h m e s  

The M/M/l queueing model is chosen for parsimony 
- it is the simplest model which captures the interac- 
tion of volume and capacity in determining congestion, 
and has the added benefit of analytic tractability. While 
few actual production systems satisfy all M/M/l assump- 
tions, sensitivity analysis in the example shown later 
demonstrate that our model is robust with respect to 
its assumptions. 

M/M/l  Volume and Capacity Model. Our model is 
now fully specified and its objective function ll can be 
written: 

Implicit in the model is the constraint X < C( indicat- 
ing that mean steady-state demand cannot exceed mean 
steady-state capacity. It is further assumed that all fin- 
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ished goods wl be sold immediately, that capacity is 
continuous and can be increased without limit, and that 
customer processing times vaq  with the inverse of ca- 
pacity. 

Several limitations of this model are worth noting. 
First, the model is for a single-stage production facil- 
ity, and so is inappropriate for detailed analysis of sto- 
chastic manufacturing networks such as job-shops or 
flow-lines. However, it may be useful in these settings 
as an aid to determining the aggregate levels of pro- 
duction capacity and demand volume. We will discuss 
possible extensions of the model to queueing networks 
later. Second, implicit in the choice of an M/M/l pro- 
duction system is the assumption that the coefficients 
of variation for both the demand process and the pro- 
duction process are unity, which precludes the direct 
modeling of variance effects. However, we show that 
the model is robust with respect to different coefficients 
of variation for both demand and production processes. 
F i y  , the model assumes steady-state demand and pro- 
duction processes, and so does not directly accommodate 
dynamic changes in contribution function A (perhaps 
due to demand estimation errors, demand growth, or 
seasonality) or in capacity cost function %(perhaps due 
to learning or continuous-improvement effects). We later 
discuss how the model can be adapted for use in more 
dynamic environments. 

Analysis of the Basic Model 

In this section we analyze the basic model presented 
in the previous section. We examine first the special 
case without flow costs (i.e., no congestion), and sub- 
sequently the general model. Although we cannot ob- 
tain a closed-form solution for the general case, we will 
see that much can be said about the solution depending 
on the relative returns to scale. 

Solution Without Congestion 
If congestion costs are negligible (or are ignored), 

then F =O and solution of the model is straightforward. 
Applying the usual constrained marginal analysis to this 
problem providt:~ the solution (A&, Cc:P): 

which is profit-maximizing providing f l  > cr. In the 
case that B I a, the optimal decision would be to build 
an infinitely large plant serving infinite demand. Pos- 
itive profits will be made in the range: 

where we assume that X = p. It is clear that in the ab- 
sence of congestion costs capacity utilization will al- 
ways be one. Indeed, if any firm with the profit function 
in Equation (3) has p > X, then profits can be increased 

by increasing X until p = A. That is, g = Wp = 1. 
This situation is not observed, however; capacity util- 
ization is almost always less than unity; in recent times 
,aggregate capacity utilization in the industrial sector has 
been well below 85 % (for instance, see Banker, Datar , 
and Kekre; [I]). 

Solution With Congestion 
If F > 0, then the solution obtained above is sub- 

optunal, since the resulting congestion would make flow 
costs arbitrarily large. To guarantee a finite solution, 
we assume that a! I 1 I 8, where at least one inequal- 
ity is strict. The lint-order conditions for an optimal 
solution are: 

We also have,. from NL + fl, =. 0, that M & X ~  = 
K&~. Thus, the optimal capacity p* is a solution to 
+Q = 0, where 

(see Appendix). The behavior of 4 depends on the sign 
of the exponent of p in the second term of Equation (8) 
giving rise to three cases: cr < 8/@3 + l), a! = #I/@ + I) ,  
and /3/(/3+ 1) < a!. 

b e  1 : a! < dl@ + 1) - Guaranteed Solution. In this 
case, diseconomies of scale are sufficient to insure a 
unique positive local maximum at a positive level. This 
solution is given by (A*,p*) = ((K~/MU)~'~(~*)B/~, p*), 
where F* is the solution to +(p) = 0. Note that for this 
case it is possible to have B < 1, that is, increasing 
returns in volume, provided the decreasing returns in 
capacity are sufficient (see Appendix). 

Case 2: a! = @I@ + 1) - Possible Unique Solution. 
The likelihood that this condition will eurctiy hold is, 
of course, rather small, but we include it for complete- 
ness. As in Case 1 , $ 'b) > 0, but $(0) I 0 or $(O) 
> 0,  depending on the sign of 

Mar (m) - (&yn. 
If Expression (9) is greater than zero, then there is 

always a solution P' to $@) = 0 which, as with the 
previous case, results in an optimal solution. On the 
other hand, if Expression (9) is less than or equal to 
zero, then there is no non-zero optimal solution; profits 
may always be increased by decreasing the scale of op- 
erations to levels that are arbitrarily close to zero (i.e., 
A-0, p-0). 

Observe that the condition involving Expression (9) 
for an optimal solution is equivalent to an upper bound 
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on the unit flow costs F: 
Mar 

F < KB (=) a 

Condition (10) shows that congestion costs must be 
sufficiently small in order for a non-zero optimal solu- 
tion to exist. 

Care 3: a > B/@ + 1) - Possible Unique Solution. 
In this case, a non-zero solution may or may not be 
optimal. The function 4 is unimodal, having a unique 
minimum at 

(see Appendix). Furthermore, = 0 will have two 
solutions, provided 

Observe that if (1 2) is an equahty, then there is a single 
solution, and if the inequality in (12) is reversed, then 
there are no solutions. If the latter, profits may always 
be increased by decreasing the scale of operations, so 
that the optimal solution is arbitrarily close to zero. Since 
p only depends on a, @, K, and M, inequality (1 2) shows 
that flow costs must be sufficiently small (relative to 
capacity costs) for a positive optimal solution to exist. 
On the other hand, flow costs that are too high can re- 
sult in the optimal solution being (0,O). In this situation 
it is best to not produce at all or, if other considerations 
force production, to produce at the smallest possible 
level. Similar results can be obtained by focusing on 
X rather than p, as above. For the remainder of the pa- 
per we will assume that there is a finite, non-zero op- 
timal solution. 

Positive Profits. For the decreasing returns model to 
exhibit finite optima (p < 00 and X < oo), it is nec- 
essary to have positive profits for some combination 
(A, p).  Otherwise, operating at any positive level will 
be dominated by not producing or selling at all, with 
the consequent zero profits. It is therefore of interest 
to obtain conditions under which profits will be posi- 
tive. For Cases 1 and 2 the conditions for positive profits 
are no more stringent than the basic conditions for op- 
tirnality. For Case 3, the profit-maximizing solution is 
the larger of the two solutions to +(p) = 0, and the 
condition for profits to be positive is (see Appendix) 

Now consider H(x'(p),rc), in which A'&) is the so- 
lution to (6) for fixed p. The optimal solution is 
(A'(p3,p), where p' is the larger solution to 401) = 0. 
If Il(x'(p3, p 3  > 0, then there is an interval (pL, pU) 
in which ll(x'(p), p) > 0. That is, there is an interval 
in which positive profits are attainable. 

Optimal CIpmry Utikation. Our model demonstrates 

that high capacity utilization g is not necessarily a profit- 
able goal. Using the relation X = QC(, the optimal ca- 
pacity utilization is given by 

The condition of positive profits may be used to de- 
velop a lower bound on the optimal capacity utilization 
(see - ~ ~ ~ e n d i x ) :  8-a 

Q* > I-- 4 ' 

The lower bound in Equation (15) is consistent with 
the firm's desire to utilize capacity as fully as possible. 
This bound representi the minimum utdhtion required 
to have positive optimal profits. On the other hand, the 
value of n is - ao for Q = 1, indicating the futility of 
attempting to achieve 100 96 utilization levels. Clearly 
utilization above a certain level will drive profits nega- 
tive through high congestion costs. Thus, there will be 
a range for capacity utilization within which the firm 
can profitably operate. 

Sensitivity Analysis . 

We now discuss the sensitivity of the optimal capac- 
ity, volume, and utilization results to deviations fiom 
optimality in the decision variables and to mis-specifics- 
tion of the model or its parameters. We consider, in 
turn, contribution (M), the cost parameters (K and F), 
and the ' 'returns to scale ' ' parameters (a and 8). Final- 
ly, we examine the sensitivity of the underlying M/M/1 
model to changes in the coefficients of variation in both 
arrival and service processes. Throughout the section, 
we will assume that the conditions for a fmite, non- 
zero optimum are met. 

Compurative Statics. Since the optimal solution 
(Ae,p3 solves the first order conditions, we may obtain 
the derivatives ap*/aM and aX*/aM by differentiating 
both sides of (6) and (7) with respect to M and solving 
(see Appendix). The derivatives of g are obtained by 
the relationship q w  = X*/p*, and those with respect to 
K and F are similarly obtained. The exact expressions 
for these derivatives are of less interest than their re- 
spective signs, which are: 

ape ax* - > o ;  aM - > o ;  aM g . 0 .  a~ (1 6) 

ap* ax* 
aK :K' < 0. x < o ;  - < o ;  - (1 7) 

ax* ae* - < o ;  - < o ;  - aF aF aF < O. (1 8) 

In (16) the signs of the first two derivatives are in- 
tuitive, since increasing unit contribution leads to a 
higher level of activity, and hence a higher demand rate. 
The corresponding increase in capacity is in reaction 
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to the increase in desired volume. Also, optimal capac- 
ity utilization y increases with increasing contribution 
M. The intuition behind this result is that as contribu- 
tion M becomes large relative to congestion costs F, 
greater capacity utilization will be sustainable. Thus, 
the response to increased contribution is an increase in 
both volume and capacity, with an increased utilization 
level. However, p' increases faster than A* in this case. 
Obsetve further that the previous analysis shows that 
g' decreases from unity as congestion costs increase 
from zero, which is consistent with these comparative- 
statics results. 

Similarly, in (1 7) we see that increasing unit capacity 
costs decreases the level of both capacity and volume. 
Capacity utilization also decreases, since capacity costs 
are now higher relative to congestion costs. From (18), 
increases in F also result in both lower capacity and 
volume levels. Capacity utilization levels also decrease, 
as expected, since congestion is associated with higher 
utilization levels and increasing congestion effects 
creates pressure to reduce congestion. 
Deviarionsfir)rn Q~tirnality. We now examine the con- 

sequences of deviations fiom to demonstrate the 
robusmess of the M/M/l model. For a given scenario 
(contribution, costs, and returns- tescale parameters), 
the profit function is relatively flat near the optimum. 
Figure 1 shows the percentage deviations from optimal 
profits as a function of percent deviation from optimal 
decisions for volume (X) and capacity Or). The param- 
eters in Figure I are from the example in the following 
section. For capacity, deviations on the high side are 
not as serious ns on the low side. Clearly it is better 
for the firm to overestimate its capacity requirements 
than underestimate them. If too little capacity is built, . 

Deviation from Optimal Value (%) 
Figure 1. Sensitivity of profit to deviations in optimal 
volume and capacity. Example of degradation in profits 
when optimal volume X or capacity p is not achieved. For 
example, if mean volume is 10% greater than expected, 
pmflts decline by 30% (capacity assumed fixed). Here, M 
= 2005, K = 160, F 250, a = 0.715, andB = 1.333. 

then the flow costs become large as congestion increases. 
Thus, while Figure 1 demonstrates that the profit func- 
tion is relatively flat near the optimum, it also shows 
the dramatic impact of flow costs when capacity require- 
ments are not met. Often, capacity can only be obtained 
in discrete units rather than continuously (see the ex- 
ample in the following section) and the actual capacity 
decision must be rounded up or down. Figure 1 demon- 
strates that it is preferable to found up for capacity de- 
cisions. The opposite situation exists for the volume 
decision: if too little demand is generated, then profit- 
ability is not hurt as badly as with too much volume, 
with its increased congestion and high flow costs. When 
faced with discrete demand volumes, it is better to e n  
on the low side (i.e., round down) rather than the high 
side. Note, however, that these results are both consis- 
tent with the fact that too little congestion is better than 
too much congestion. That is, for capacity utilization 
it is better to round down than up. 

Mis-Specified Parameters. Next, we examine the im- 
pact of mis-specifying the parameters of the model. 
Since these values must typically be estimated, they will 
probably be different from their actual values, and con- 
sequently the robustness of the model to these deviations 
is important. Figure 2 shows the percentage deviation 
From optimal profit as a function of percentage devi- 
ation from true parameter values. The deviation from 
optimality is s m d  for the cost and contribution param- 
eters (K, F, and M); as evidenced by the flat curves 
in Figure 2. Profits are only slightly more sensitive to 
deviations in K and M than F. This relative insensitivity 
of the model to estimation errors in congestion costs 
F is fortunate in that F will typically be the most di f- 
ficult parameter to estimate. 

Deviation from True Parameter Value (%) 
Figure 2. Sensttlvity of profits to parameter mis- 
specification. Degradation in profits when "true" parameter 
values deviate from estimated values. For example, if true 
flowcosts F are 10% larger than estimated, profits will 
decline by about 0.5%. Here, M = 2005, K = 160, F = 
250, u = 0.715, and j3 = 1.333. 
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The same figure shows the impact of misestimating 
the economy-of-scale parameters, ar and 8. The percent 
impact on profitability is much greater for these param- 
eters. Furthermore, we see that it is better to under- 
estimate a! than to overestimate it, and that the reverse 
is true for /3. Recall that increasing a gives rise to in- 
creasing economies of scale which will lead to increased 
capacity and profits. As Figure 2 indicates, the rnag- 
nitude of this effect can be substantial. 

Mis-SpeciJed Model. Finally, we examine some con- 
sequences of incorrectly using the M/M/1 model for 
congestion. Since it is beyond the scope of this paper 
to examine all alternative models we will conhe ow- 
selves to the GI/G/l queue, which can represent a broad 
range of single-stat ion production facilities. This enables 
us to study the'effect of changes in the coefficients of 
variation for processing (c,) and inter-arrival times of 
demand (c.). From the GI/G/l heavy traffic approxi- 
mation (Gross and Hams [lo]), the mean steady-state 
number in a GI/G/l system can be approximated as 

for levels of high utilization (heavy traffic). While this 
expression strictly holds only in the limit as Q -- 1, it 
has been shown to be robust for utilization levels as 
low as Q =0.6 in some contexts (Wein [22]). With Fig- 
ure 3 we illustrate the'sensitivity of the M/M/l  produc- 
tion model to changes in the coefficients of variation 
for arrival processes (c,) and servite processes (c,). The 
M/M/1 model, of course, implicitly assumes that c. = 
c, = 1. As the figure shows, the M/M/1 model is rel- 
atively insensitive to processing-time cv for c, s 1.0 
and c, - 1.0, the range in which we would expect many 
actual production processes to exist. But when both c, 
and c, are small (nearly deterministic) or both large 

(highly variable), the M/M/l model differs significantly 
from the GI/G/1 model. In these situations, care must 
be taken when applying the results of the M/M/l  model. 

Sequential vs Joint Decisions. As discussed earlier, 
the volume and capacity decisions are often made se- 
quentially rather than jointly. We now consider the con- 
sequences of each decision being made sequentially 
starting fiom the zero flow cost solution of Equation 
(4). If there indeed exist flowcosts, this solution is in- 
feasible and must be adjusted to attain feasibility. Two 
sequential approaches of attaining feasibility are to hold 
volume fixed and adjust capacity upward, or to hold 
capacity fixed and adjust volume downward. We term 
the fmt the MARKETING solution, since the capacity 
(production) decision is subordinated to the volume 
(marketing) decision, and the latter the PRODUCTION 
solution, since volume is subordinated to capacity. Fig- 
ure 4 compares the sequential MARKETING and PRO- 
DUCTION solutions with the optimal (joint) solutions 
over a wide range of flowcosts F, using the parameters 
of the example in the following section. As flowcosts 
increase, the percentage differences in' profits between 
the optimal (joint) solution and the sequential PRODUC- 
TION and MARKETING decisions grow arbitrarily 
large. This particular result is interesting in light of the 
increasing emphasis on cycle time reduction and just- 
in-time production, indicating an increased need for joint 
capacity/volume decisions as flowcosts effectively in- 
crease. Similar figures can be obtained by varying ca- 
pacity costs and contribution margins. 
In summary, our m e 1  is robust with respect to devia- 

tions from the true basic cost and revenue parameters 
and is reasonably robust with respect to to demand and 
processing variances, but exhibits greater sensitivity to 
deviations fiom the true economy of scale factors. The 
implications are that economies of scale play an impor- 

Processing Cwfflclent of Variation 

Figure 3. Sensitivity of profits to arrival and service 
prwesses. Degradation in profits when the coefficients of 
variation for arrival processes (c,) or service processes (c,) 
deviate from 1 .O, the assumed coefncients of variation for 
the M/M/I volumelcapacity model. A heavy-traffic GU#l 
approximation was used. An MAW model produced a 
nearly identical curve with that for c, E 1.0. Here, M = 
2005, K = 160, F = 250, cr = 0.715, and f l  = 1.333. 

Flowcosts 

Figure 4. Optimal vs sequential decisions. Comparison of 
sequential MARKETING and PRODUCTION solutions as a 
percentage of optimal solutions obtained wer a range of 
flowcosts F. Here, M = 2005, K = 160, a = 0.715, and /3 
= 1.333. 
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tant role in deciding the overall level of capacity and 
utilization, and that effort devoted to accurate measure- 
ment of these quantities is weU spent. Finally, our model 
demonstrates the potential superiority of the joint over 
sequential approaches when making the capacity/volume 
decision. 

An Example with Declining Returns to Scale 

In this section we demonstrate with an example the 
benefit of simultaneous optimization of demand volume 
and production capacity compared with sequential op- 
timization. The example is sufficiently complex so that 
several of the assumptions of the M/M/l  model are vio- 
lated, but is also simple enough for a nearly exact solu- 
tion to be found. This allows us to compare the quality 
of the approximate M/M/l  solution relative to the ex- 
act. Note that for many real-world problems an exact 
solution will be inaccessible, thereby necessitating the 
use of such approximations. 

Consider a job-shop manufacturer that is expanding 
a profitable line of business. For the process in ques- 
tion, the manufilcturer currently has a single machine ' 
(k= 1) with a single-shift capacity of v = 50 units per 
month, the costs of which are considered sunk. Addi- 
tional machines can be acquired (purchased or leased) 
and operated for a cost equivalent to $1,500 per month 
(installation and maintenance included), and each re- 
quires one machine operator costing $1,000 per month 
to employ. The current facility has room for a total of 
four machines. 

Expansion beyond k = 4 machines would require the 
introduction of a second shift. Shift premiums and ad- 
ditional supervision would increase machine operator 
costs to $1,500 per month, while economies of scale 
(heat, power, maintenance) would reduce machine costs 
to $1,250 per month. From one to four machines could 
be used on the second shift, for a maximum shop ca- 
pacity of eight machine-shifts. Further expansion would 
require the acquisition of an additional off-site building 
at a cost of $3,000 per month, would require a foreman 
at $2,000 per month, and ancillary services and super- 
vision costing $3,000 per month. Note that capacity is 
not a continuou:; variable, as assumed by our model, 
but changes in cliscrete increments. 

The contribution of additional business (revenues less 
variable material and marketing costs) is $125 for the 
first 50 units sold. Additional business commands a de- 
creasing price and is increasingly expensive to secure. 
The next 100 units yield a contribution of $80 per unit; 
the following 100 units provide $65 per unit in contri- 
bution; sales between 250 and 400 would bring about 
$55 per unit; and sales beyond 400 units would yield 
a contribution of only $45 per unit. The costs of ca- 
pacity and the contribution function are shown in Fig- 
ure 5. 

Jobs arrive to the facility as orders from customers 

having geometrically distributed order quantities with 
a mean of 10 units, with exponential times between or- 
ders. Let X be the total number of units arriving per 
month, so that the mean number of orders per month 
will be U10. Orders are to be serviced on a f i r s t ame  
first-served basis. The processing time of each unit is 
effectively deterministic, so the time required to proc- . 
ess each order has a geometric distribution with mean 
101~1, where p = kv is monthly unit capacity. Order flow 
costs are $250 per month reflecting the importance of 
fast cycle times. The task of management is to deter- 
mine the number of machines k to put in service, and 
the expected volume of business X to solicit and accept, 
such that profits Il are maximized. 

An A h s t  h c t  Joint Solution. For this simple prob- 
lem, a good numerical solution is possible using the 
actual contribution and capacity cost functions described 
above, together with congestion costs based on the ex- 
pected number in system for an M / M k  multi-server 
queueing system (Gross and Harris [lo]). This solution 

Volume (units/month) 

Figure 5. Example: Actual and approximate cost and 
revenue functions 

x denotes model optimum 
Volume (unitslrnonth) 

Figure 6. Example: Profit as a function of volume 
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is exact except that the geometric service distribution 
is approximated as exponential. 

The resulting profit function can be maximized by 
solving for A for each feasible value of k and choosing 
the best solution. Figure 6 illustrates profit as a func- 
tion of volume A, and shows that maximum profits of 
n = $6,232 are achieved with total capacity p = 200 
(k =4 machines), a monthly volume of X = 172 units, 
with corresponding utilization of Q =0.86. We label 
this the EXACT solution. 

Approximate Joint Sohion.  We  now apply the model 
previously developed in this paper to this example. First, 
the capacity cost function 3@) is approximated as  the 
power function 7 . 4 3 0 ~ ' . ~ ~ ~ ,  the parameters of which are 
found via log-linear regression. Note that production 
is approximated as a continuously variable single-server 
rather than as multiple discreteapacity servers. Similar- 
ly, the contribution function A@) is approximated by 
386. 147X0-715. These approximate contribution and ca- 
pacity cost functions are shown in Figure 5. Geomet- 
rically distributed batch processing times are approxi- 
mated as exponential with mean 101~. Transforming m) and m) to reflect batch arrivals, the capacity 
design problem facing the manufacturer is estimated as 

nix,;) = 2m5 i0.715 - 250 ^X la0 (20) m- 
where i = U10 is the mean batch interarrival rate and 
$ = cJ 10 is the mean batch processing rate. 

Analysis and solution of this model proceeds as fol- 
lows. First note that PI@ + 1) < cu < 6, which allows 
application of the results of Case 3. Expression (1 1) 
gives p = 3.667, and inequality (10) is satisfied 
(250 < 3 8 1.2), verifying that a unique optimum solution 
to profit hnction in Expression (20) exists. Solving (20) 
numerically provides an optimal solution of X = 156 
and C( = 1 8 1 units per month. The expected profits are 
Il = $5,160 (APPROX 1 solution), and optimal utiliza- 
tion of the facility will be Q' = 0.86. Profit as a hnc- 
tion of volume is plotted in Figure 6. Note that the 
APPROX 1 solution is infeasiible, since capacity must be 

acquired in discrete multiples of 50 units per month. 
Re-solving (20) with p = 200 yields a volume of X = 
172 (APPROX2 solution), expected profits of ll = 
$5,134 (see Figure 6) ,  and utilization of q = 0.86. 

Congestion Ignored. If congestion effects are ignored, 
expected profits are easily calculated as the difference 
between contribution and capacity costs, as shown eat- 
her. Profit as a function of voluine for this case is shown 
in Figure 6, which indicates that maximum profits are 
achieved with X = p = 250 (k = 5) which provides ap 
parent expected profits of Il = $10,375 (NAIVE solu- 
tion). Of course, actual profits will be far less than this. 

Sequential Decisions. Volume and capacity of X = 
p = 250 units per month could not be sustained in re- 
ality, since the resulting losses would be arbitrarily large 
due to congestion effects, requiring that either X or p 
be adjusted. First, suppose that X = 250 is fixed (per- 
haps because of prior marketing commitments) so that 
production capacity must be adjusted to meet this de- 
mand level. With A = 250, actual profit is maximized 
with p = 300, providing expected profits of IX = $5,766 
(MARKETING solution). In contrast, if production ca- 
pacity is first lked at p = 250 aad X optimized, volume 
is reduced to X = 2 18 and expected profit (including 
congestion costs) is II = $6,136 (PRODUCTION solu- 
tion). 

C o ~ o 1 1 ~ .  Table 1 summarizes the results obtained 
for this example. Note that the table distinguishes be- 
tween apparent profits (which are a hction of the m&l 
used) and actual profits which would occur in reality 
(calculated using the exact model). In addition to prof- 
its, Table 1 includes figures for return-on-investment 
r defined as 6 , p )  =. MAu/(FXI~-X) + Kp) - 1, 
which illustrates the period investment required to 
achieve a given contribution level. Several patterns are 
apparent upon examining Table 1. First, the two ap- 
proximate solutions APPROXl and APPROX2 based on 
our M/M/l  'volumelcapacity model provide decisions 
which are quite close to those of the exact M / M k  so- 
lution. Both provide machine utilizations of 8696, as 
does the EXACT solution, while APPROX2 yields the 

Note: Apparent profits are the profits expected glven the assumptions of the model used and its resulting volume/capacity decision. 
Actual profits are the profits that tn fact would be realized if the model and its decision were implemented, and are calcu!ated 
using the exact mdel. 

Table 1. Comparison of Example Solutions 
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Solution 
EXACT 
APPROXl 
APPROX2 
MARKETING 
PRODUCTION 
NAIVE 

Apparent 
T n 

0.66 $8,232 
0.56 5,180 
0.50 5,134 

1.02 10,500 

A c Q 
1 72 200 0.86 
1 56 181 0.86 
172 200 0.86 

250 300 0.83 
21 8 250 0.87 
250 250 1.00 

Actual 
t n 

0.68 $6,232 

Infeasible 
0.66 6,232 
0.39 5,766 
0.49 6,136 

Infeasible 



optimal volume /capacity decision. Both approximations 
provide conservative estimates for profit and for return- 
on-investment . 

A second pattern is that sequential voIume/capacity 
decision proce~ses, represented by the m G  and 
PRODUCTION solutions, provide results which are 
clearly inferior to the joint decision (EXACT). For the 
sequential MARKEIWG solution, profits are about 7.5 96 
less than with the joint EXACT solution, optimal vol- 
ume and capacity ate overstated by 45 96 and 50% re- 
spectively, and the rate of return-on-investment is re- 
duced by almost 41 %. For the PRODUCTION solution, 
achievable profits are 2 % less than with the EXACT so- 
lution, while optimal volume and capacity are overstated 
by 27 % and 25 % respectively, and retum-on-investment 
is reduced by almost 26%. These results are of course 
predicated on our choice of model parameters - dif- 
ferent values will result in quantitatively different but 
qualitatively sindar results (see Figure 4, for example). 

Finally, Table 1 shows that ignoring congestion ef- 
fects ( N m )  when making demand volume and pro- 
duction capacity decisions can be very costly. Compared 
with the "actucal" EXACT solution, the "apparent," 
but infeasible, NAIVE solution overestimates optimal 
facility capacity by 25%, optimal volume of business 
by 45 96, expected profits by 68 % . Clearly the NAIVE 
solution would be impossible to implement and would, 
at a minimum, require disruptive adjustment to obtain 
a feasible solution were implementation attempted. 

Implementation and Extensions 

For many real problems, the M/M/1 model may be 
inadequate in representing the actuaI cost functions con- 
fronted, and a more general model of the form (1) is 
required. For example, flowcosts may be a non-linear 
hnction of time in system, or contribution and capacity 
cost functions may not be adequately represented by 
simple power functions. The prduction system may 
be far more cornplex than the assumptions of M/M/l  
allow, requiring, for example, a queueing network 
model to adequately capture its detail. Ln this case, flow 
costs would be modeled using the expected throughput 
for the network. Analytic expressions are available for 
many examples of such networks, making such an ex- 
tension viable. In these more complex cases, optimiza- 
tion of the resulting model may require either numerical 
solution or solution by simulation analysis. Even in such 
settings, the single server model we have considered 
here may be useful for determining the approximate ag- 
gregate level of capacity and demand. Furthermore, the 
principal results of our analysis are unchanged in these 
more complex situations: (1) joint optimization of de- 
mand volume and production capacity is preferrg to 
sequential optimization, and (2) there exists an optimal 
utilization of capacity which is less than unity. 

We turn now to implementation issues and possible 

extensions of the general model (1). First we consider 
changes in the structure of underlying demand. Demand 
volume is one of the decision variables of our general 
model, so that, in theory, demand can be maintained 
at desired mean steady-state level A' by appropriate ma- 
nipulation of pricing, advertising, and sales policies. 
Demand of course will vary stochastically on a period- 
by-period basis, but its long-run mean is assumed to 
k constant. However, if the underlying structure of 
contribution fiznction changes due to competitive 
pressures, changes in the prices of factor inputs, or 
changes in consumer demand preferences, then demand 
volume X' may change over time and the model may 
eventually need to be reoptimized. 

Given a revised contribution function A', how the 
model is reoptimized will depend on the capacity cost 
function 3Y. At one extreme, capacity may fixed and 
unchangeable so that p is no longer a decision variable. 
Reoptimization then becomes the simpler problem of 
optimizing profits I3 with respect to X with fixed fi  and 
3Y = 0. At the other extreme, if capacity is completely 
flexible and transitory, then *remains unchanged from 
the original model and p and X are solved jointly, as 
before. In the intermediate case with some fixed and 
some flexible capacity, a modified cost function X' must 
be constructed to reflect the fixed portion of capacity. 
The model can then be reoptimized using uCd ' and N'. 
Similar balyses can be performed if there are changes 
in underlying cost functions 3Y or g. 

Our results suggest several directions for further in- 
vestigation. First, instead of a profit maximizing objec- 
tive, a return on investment (ROI) objective could be 
used, since many finns use ROI measures to evaluate 
capacity expansion and other capital investment deci- 
sions. Second, the preceding discussion suggests how 
the voldcapaci ty  decision can be adjusted over time 
to accommodate changing demand and capacity struc- 
tures. The model does not directly incorporate uncer- 
tainty regarding mean steady -state demand or capacity, 
perhaps as might arise in the growth stage of a product- 
line's life cycle. One extension then would be to incor- 
porate this additional uncertainty into the model, per- 
haps using a news vendor inventory type of analysis. 
A related extension would be to add seasonally variable 
demand to the model - the model would then be re- 
quired to trade-off the costs and benefits of low utili- 
zation during slack seasons with those of the high 
utilizations during busy seasons. Another extension 
would be to extend our analysis to networks of queues 
in which multiple demand streams and multiple work- 
center capacities must be coordinated. Finally, our 
model assumes a strict upper bound on capacity repre- 
sented by variable p. In practice, capacity is often flex- 
ible and can be adjusted through the use of overtime 
and subcontracting, usually at additional expense. An 
interesting extension would be the incorporation of this 
flexibility into our model. 
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Summary 

In this paper we have addressed the joint facilities 
design problem of simultaneously determining demand 
volume and production capacity under conditions of st* 
c hastic demand arrivals and processing throughput. Us- 
ing a simple M/M/l  model of a production facility, we 
have demonstrated that coordinating demand volume 
and production capacity decisions provides results which 
are superior to sequential decisions. This provides an- 
alytic support for the current interest in functional co- 
ordination and team decision-making . Furthermore, the 
growing importance of WJP reduction and manufactur- 

, ing cycle-time improvement demands that congestion 
costs be recognized when making demand volume and 
production capacity decisions. We have shown that these 
congestion costs link demand volume and production 
capacity decision variables, thus requiring their joint 
optimization. Failure to include relevant congestion ef- 
fects significantly distorts the assessment of profitable 
volurne/capacity options, obscures the need for coordina- 
tion, and leads to potentially costly errors. 
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Appendix 

Optirnality Conditions 
First, we determine conditions under which there is 

an optimal profit solution by analyzing properties of 
the function 4 and a related function 0 which pertain 
to the optmd p and X, respectively. The fmt-order con- 
dition for X (6) may be written as: 

Denote the left side of (21) by 8a). We now show 
that for ar < 1 there is a unique solution, X*(p), to 0 0  
= 0. Since a! < 1, we have 8(0) = --, and 8 ( 0 0 )  

= a. Furthermore, 

Thus, since 0 is strictly increasing, continuous, and has 
values of both signs, it must have a unique zero. 

Next, consider the function 4 (see Equation (8)). From 
(6), we have 

Furthermore, considering both first order conditions 
(6) and (7), we have MIL + flj, = 0, since both II, 
= 0 and IIx = 0. Thus, Map = KBPB and 
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Substituting (24) into (23), 

Dividing through by (KB/M~)'" p("-&+m and re- 
arranging, we get 

Since $(p) is the left side of (26), the optimal capacity, 
p', is a solution to ~ ( J L )  = 0. 

Next, consider II(x*(p), p), where A*@) is the solu- 
tion to Be) = 0 for given p. The optimal p, if it exists, 
is a solution of' II,(X*(p), p) = 0, since 

= Qfi'b), PI *  
since nx(X'(p), p) = 0. Now we show that the sign of 
+(ji) is the opposite sign of Q(X*(p),p). Since ),*Or) 
solves the first order condition for X, we have 

Substituting (27) into II,(X*(p), p), we have 

= (McYX*(~)~  - K6pB)Ip. (28) 
Now, 

Thus, if 401) < 0, then X*(p) > (K@/Ma) lJa,  and hence 
MarA*(p)" - K@~ia > 0, in which case n,(A'(p),p) > 0 
from (28). On the other hand, if +Or) < 0, then X'h) < 
(K@/Mu) ' la,  McuX*h)" - K&fl < 0, and &@"Or), p) 
< 0. 

We will now consider, in order, each of the three 
cases in the section Solution With Congestion. 

Ca~e 1: (Y < PI@+ I). In this case, a/3-B+a < 0, so 
4(0) = -00. Siricea~+/9-cr >0,  #(m) = a, so$(p) 
= 0 has at least one solution. Since 

there is a uniquc solution p* to $01) = 0. Also, since 

#b) < 0 for p < p' and 6Oc) > 0 for p > p', n(x*b), p) 
is increasing on [O,p? and decreasing on Or', 00). Thus, 
@*Or?, p 3  is the global maximum of n(X, p). From 
M c ~ ( l 3 ~  = KB(p36, the optimal solution may also be 
written ((KB/Mu) lla(pv/a, pa). 

Case 2: u = j3/(43+ 1). Here, we have 

Thus, if 
Ma (w) (6)')'" 

then there is no positive solution to +(p) = 0, whereas if 
Mdl lnU (w) > (&rn 

then there is a unique solution pa given by 

Since in this case #(O) < 0 and 4 is strictly increas- 
ing, II(X*(p),p) is increasing for p < p' and decreas- 
ing for p > I('. Thus, (A*@), Cr) is a global maximum 
of H a ,  p). 

Case3: ar > BI(/3+1). Forthiscase, botha/3+/3-& 
and ar@-/3+u are positive. Hence, 4(O) > 0 and $(m) 
> 0 . Furthermore, on (0 ,oo)  there is a unique min- 
imum ji of 4 ,  which can be seen by noting that 4 "(ji) 
< 0. From the expression for 4'  in (29), we can solve 
for ji to obtain (1 1). 

Now, if $(p) 0, then there is no positive optimal 
solution, since n(x'(p), p) is decreasing on (0, m) (ex- 
cept at fi  in the case of equality). On the other hand, if 
$( is )  < 0, then (X*(p9,p3 is a local maximum of II, 
where p* is the larger of the two solutions of $(p) = 
0. If in addition n(x'(p3, p 3  > 0, then (X'(p3, p 3  is . 
the global maximum of n. To see this, denote the 
smaller solution to 4(p) = 0 by &, and note that $(p) 
< 0 on the interval p 3  and @(p) > 0 on the inter- 
vals (OlP9 and (p", 00) .  Thus, II(Xe(p),p) is decreas- 
ing on (0, C(S3, increasing on (p:, p3,  and decreasing 
again on (p', a), and p* is a local maximum. Since 
n(0,O) = 0, the point (0,O) is a maximum of ll(x'(p), p) 
on (0, pa .  Thus, if n(h*Or3, p 3  > 0, then fi'(p3, p 3  
is the global optimum. 

Positive Profits. We see that the condition for which 
profits are positive are important in determining the ex- 
istence of an optimal positive solution. We will now 
examine some conditions on the parameters for which 
this will hold and, since flow costs are probably the 
most difficult to determine accurately, focus on condi- 
tions on F that will ensure a positive solution. 

As shown above, in Case 1 there will always be a 
positive solution. In Case 2 there will be a (positive 
profit) solution providing (32) holds. Equivalently, for 
Case 2 there will be a positive solution iff (10) holds. 
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For Case 3 the situation is a bit more complicated due 
to the two conditions required. First, p' is a local op- 
timum iff +(ji) < 0. Substituting the expression for ji 
in Equation (11) into this inequality and simplifying, 
we have a local optimum iff (12) holds. 
Finally, we determine whether profits are positive 

for (A', p 3 .  From the k t  order conditions for X and p: 

Solving (41) and (42) simultaneously, using the fact that 
a&/aM = C Y X ~ - ~  and a&/aM = 0, we have, using 
(37)-(40) for the signs: 

ax* - ~ r x a - l n ,  - =  aiu nunw-n:p > 0 

Similarly, we have, using aIIk/aK=O and aI&/dK = 
- f l p @ - ' :  

ax* - =  - 8 ~ ' R p  , 0 
aK nxxnw-~, ,  

Thus, Il(X*, p 3  > 0 iff A*  > p* (aB- B + a) /cY/~. NOW, 

Finally, for F we have 

which is negative iff ' 

Thus, 
ax* (p-),)2 - = aF f l w  +m~r Thus, if (36) holds for P*, then B(pf(ar/3 -B+a)/a/3) 

< 0, which in turn implies X' > p*(cyB - /3 + cr)/ap. 
From this, (1 5) immediately follows. 

Comparative Statics 
We turn to the comparative statics results in (1 6)-(18), 

assuming throughout that the conditions for a finite posi- 
tive optimal solution are satisfied. The second order 
conditions are (dropping the *'s for ease of exposition) : 

= -KVpB-' < 0. 
Similarly, 

To determine the sensitivity of the optimal capacity 
utilization q* ,  we use the fact that Q* = X*/p* and 

ae* ax* 
- a~ = (P- - hK)lp2, aM aM The fact that (A*, p 3  is a maximum implies that 

n,nw - n$ > o. (4) with similar expressions for K and F. Substituting (43) 
.and (44), into (49) we have From the first order conditions at (A*, p3, we have, dif- 

ferentiating both sides of (6) and (7), 
ax* a'* + an, -, 

+ "h. aM (41) 
In a similar manner, 
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Finally, since aX*/aF < 0 and alrW/aF > 0 

Returns to Scale 
We will demonstrate the impact of returns to scale 

on the results. Our discussion will not be comprehen- 
sive, but will give an indication of the role played by 
returns to scale in either volume or capacity. 

First, consider the case of linear returns to scale for 
both volume (a = 1) and capacity (B = 1). From the 
second order conditions (37) and (38), we see that nu 
< 0 and Il, < 0, so Il is marginally concave in X 
and in p. However, from (39), we also have 

= -- < o .  Or -N4 
Thus, the solution to the first order conditions, while 
unique in this case, is in fact a saddle point. Indeed, 
as is intuitively clear, with linear return, the scale of 
operations could be increased indefinitely with every- 
increasing profits . Clearly the situation remains the same 
if there are increasing returns for both volume and ca- 
pacity. Now, it is clear that there will eventually be de- 
creasing returns to scale in any real process due to 
situations associated with extremely large-scale opera- 
tions: saturating markets, large unwieldy production sys- 
tems, etc. Consequently, it is our implicit assumption 
that the firm has exploited whatever economies of scale 
that exist at low levels of operation and have reached 
the point of decreasing returns in one or both of vol- 
ume and capacity. W e  we have dealt with the case 

in which there are declining returns in both volume and 
capacity, it is enough to have reached declining returns 
in only one of the two. 

To analyze the cases in which there are linear or in- 
creasing returns in one and decreasing returns in the 
other would require a case by case analysis for each 
situation. We will not delve into all the various possi- 
bilities, but briefly sketch two. For Case 3 above, all 
the conditions for a fdte positive optimal solution hold 
as long as /3/(B+ 1) < a < 1, regardless of the (psi- 
tive) value of 8. Thus, even if there are increasing re- 
turns for capacity, decreasing returns in volume may 
be sufficient for a finite optimum. Likewise, for Case 
1 the results hold so long as the basic condition cr < 
/3/(B + 1) is satisfied, regardless of the value of B. 
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