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ABSTRACT

We developed an approach for estimating river discharge and water depth from measurements of surface

velocity and water surface elevation, based on analytical velocity–depth and velocity–slope relationships

derived from the steady gravity–friction momentum balance andmass conservation. A key component in this

approach is specifying the influence of bottom friction on the modeled depth-averaged flow. Accordingly, we

considered two commonly used bottom friction parameterizations—a depth-independent Darcy friction

coefficient and a depth-dependent friction coefficient based on the Manning’s roughness parameter. As-

suming that the bottom friction coefficient is known, the unknown discharge was determined by minimizing

the difference between the measured total head profile and the one determined from the velocity–slope

relationship. The model performance and its sensitivity to key assumptions were evaluated using existing

bathymetry data, and surface velocity and elevation observations obtained during field experiments on the

Kootenai River near Bonners Ferry, Idaho, and the Hanford reach of the Columbia River. We found that the

Manning’s friction parameterization provided superior depth and discharge estimates, compared to theDarcy

friction law. For both steady and moderately unsteady flow, inversions based on the Manning’s friction

provided discharge and thalweg depth estimates with relative errors not exceeding 5% and 12%, respectively.

1. Introduction

Recent interest in river depth estimation from remote

sensing measurements of surface velocity or water sur-

face elevation has resulted in a number of different

hydrodynamic inversion methods (Zaron 2017). The

inversions typically require knowledge of the discharge

and the bottom friction, since the flow is inherently de-

pendent on these parameters. While it is often assumed

that the discharge and the friction are known a priori,

these parameters cannot be easily sampled in situ or

estimated from remote sensing measurements. Thus, for

practical applications, it is important to develop ap-

proaches that simultaneously estimate depth, discharge,

and bottom friction.

Currently, there are three main approaches to solving

the depth inversion: 1) employ empirical relationships,

2) solve only the 1D dynamics of cross-stream averaged

quantities, or 3) solve the full 2D depth-averaged shal-

low-water equations. Empirical Manning’s resistance

relationships between discharge, width, mean depth,

and water slope were used successfully to estimate the

discharge (Bjerklie et al. 2003) from remote sensing

measurements of water surface elevation. This approach

requires topography measurements and relies on in situ

data to calibrate the unknown coefficients in the em-

pirical relationships. Recently, Johnson and Cowen

(2016) used particle image velocimetry (PIV) measure-

ments of two-point correlations of surface velocity to

demonstrate the existence of an empirical relationship

between the integral length scale of turbulent eddies and

the channel depth, thereby providing another means to

remotely estimate the main channel depth.

Methods based on the 1DSaint-Venant equationswere

recently applied byYoon et al. (2012; alsoGarambois and

Monnier 2015) for estimation of discharge, the hydraulic

depth, and the Manning friction coefficient from remote

measurements of the water surface elevation; essen-

tial for this approach is time variation of the discharge.
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These inversion approaches were motivated by an on-

going NASA effort to deploy a new Surface Water and

Ocean Topography (SWOT) altimeter (Desai 2018) for

global measurements of water surface elevation with

an estimated 100-m resolution and 1-cm vertical accuracy.

An early 2D depth inversion approach was based on

variational optimization and the adjoint method to effi-

ciently minimize an error function between observations

and predictions from a model based on the depth-

averaged shallow-water equations (Honnorat et al. 2009).

The approach was applied to determine joint topography

and initial condition from Eulerian depth measurements

and Lagrangian tracer trajectories using idealized ba-

thymetry and simulated data. The assumed observation

input in the above study consists of water depth mea-

sured in situ with drifters. Zaron et al. (2011) also used the

adjoint method for variational assimilation of remotely

sensed surface currents into the depth-averaged 2D

shallow-water equations in order to predict bathymetry.

Recently, several image-tracking techniques have been

developed to estimate surface currents in riverine envi-

ronments with 10–30-m spatial resolution from airborne

IR imagery (Dugan et al. 2013) or satellite-borne multi-

spectral imagery (Chen and Mied 2013). Using such sur-

face velocity measurements for Haverstraw Bay on the

Hudson River, Zaron et al. (2011) estimated the depth

with rms errors of about 17% of the maximum depth.

Almeida et al. (2018) also used the adjoint method and

remote sensing measurements of the surface velocity

to estimate the water depth over a 95-km length of the

Columbia River at the Hanford reach with rms errors of

about 11% of the maximum depth.

A different 2D depth estimation approach was based

on a minimization of surface velocity errors using for-

ward simulations over an ensemble of test bathymetries

(Landon et al. 2014). Using drifter velocity measure-

ments collected on the Kootenai River, Landon et al.

(2014) estimated the river depth with 30% relative rms

error for the maximum depth. Finally, we should note

the approach of Gessese and Sellier (2012) that ex-

ploited the symmetry between bottom and surface ele-

vation fields in the 2D shallow-water equations. In this

approach, the equations are reformulated such that the

forward model predicts depth and currents given the

surface elevation field and boundary conditions con-

sisting of upstream discharge and stage. Good results

were obtained from identical twins forward and inverse

numerical experiments. The approach has not been at-

tempted with real observations of water surface eleva-

tions, which typically include measurement errors as

well as spatial and temporal variability from 3D pro-

cesses that are not included in the 2D model. As shown

below, instantaneous surface elevation observations

may contain regions where the total head downstream

gradient is positive in the downstream direction and is

therefore locally inconsistent with steady momentum

balance.

There are a number of difficulties associated with the

inversion of the unsteady shallow-water equations. It is

well known (Bennett 2002) that the formal inversion of the

shallow-water equations based on variational optimization

leads to singular solutions because forcing observational

solution values at interior points results in an ill-posed

boundary value problem. To deal with the ill-posed

boundary values, Gaussian weight functions and ad hoc

regularization terms are introduced in the cost function to

impose spatial correlations and to smooth the solution.

As a result, the inverse solution is not unique but depends

on the choice of somewhat arbitrary regularization pa-

rameters. Another difficulty with the inversion of the un-

steady equations is that the spatiotemporal minimization

of the cost function requires prohibitive amounts of syn-

optic velocity and surface elevation data inputs.

To avoid such difficulties, we pursue an analytical

inversion approach based on the steady shallow-water

equations. A distinct aspect of our approach is the

utilization of stream-following coordinates, which

provides the crucial simplification of the governing

equations needed for analytical progress. Addition-

ally, our approach provides simultaneous prediction of

discharge and water depth, which should be contrasted

with previous approaches that require the discharge as

an input parameter. Among the previous works dis-

cussed above, there were only three studies (Landon

et al. 2014; Zaron et al. 2011; Almeida et al. 2018) that

used field observations to estimate real bathymetry; all

of these studies used only velocity observations for the

inversions. Here, we provide new bathymetry in-

version results for the Kootenai River and the

Columbia River that utilize both water surface eleva-

tion and surface currents observations. These obser-

vations are discussed in section 2. The simplified

equations are presented in section 3a, where we also

obtain an analytical inversion solution. The numerical

implementation of the stream-following grid and the

analytical inversion method is described in section 3b.

The results of the test inversions and their sensitivity to

data resolution and model assumptions are discussed

in section 4.

2. Field sites and test data

a. Kootenai River

One of the field sites that will be used to test the in-

version model is a 3-km region of the braided reach of

the Kootenai River upstream of Bonners Ferry, Idaho
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(Fig. 1). This reach of the river is characterized with

gravel- and cobble-bed substrate with a median grain

size D50 5 39.9mm and a mean bed slope of 0.0046

(Barton 2004). The inversion tests for this site will use

in situ and remote sensing hydrographic measurements

collected by the Naval Research Laboratory (NRL), the

Naval Postgraduate School (NPS), and Areté Associ-

ates as part of a field experiment conducted during 12–

17 August 2010. NRL collected in situ velocity and

discharge data with a towed ADCP at several transects

shown in Fig. 1 (blue dots). The water surface elevation

measured by temporary gauges and at the Leonia USGS

station varied by less than 2 cm during the same period,

indicating steady flow conditions. The average daily

discharge measured by the ADCP was about 213m3 s21

with a typical uncertainty of about 5% (;10m3 s21).

NPS collected instantaneous water surface elevation

measurements using a drifting boat equipped with ki-

nematic GPS (Fig. 1, red circles). The profile of the

water surface elevation shown in Fig. 2 indicates a se-

quence of riffles and pools. Airborne IR imagery col-

lected by Areté was used to derive surface currents on

an 8m3 8m grid (Fig. 1, black dots). An example of the

derived currents is shown in Fig. 3. The vertical velocity

profiles measured with the ADCP were used to estimate

the ratio of the surface velocity to the depth-averaged

velocity [see Simeonov et al. (2013) for further details].

The estimated ratio of 0.79 was then used to convert the

remotely sensed surface velocity to depth-averaged ve-

locity that is needed for the inverse model. We should

note that similar ADCP measurements in the meander

reach of the Kootenai River downstream of Bonners

Ferry (not shown) yielded a ratio of 0.86 that was much

closer to the theoretical value 0.85 suggested by Rantz

(1982). The predicted water depths will be compared to

depths inferred from the in situ water surface elevation

and multibeam echo sounder bathymetry collected in

2009 by the U.S. Geological Survey (G. Barton 2010,

personal communication). These bathymetry measure-

ments were verified at multiple locations using single-

beam sonars during the 2010 experiments to establish

accurate water depths to be used in our analysis.

b. Columbia River

The second field site is an 80-km reach of the

Columbia River (Fig. 4), located about 24 km down-

stream of the Priest Rapids Dam. NRL and Areté As-

sociates conducted extensive in situ and remote sensing

velocity measurements at this site during 5–8 October

2011. In situ measurements of the velocity vertical pro-

files were gathered on 5–7 October with a towed ADCP

along 28 transects (Fig. 4, blue dots) by NRL. It was

found that the ADCP data conform to a ratio of the

surface velocity to the depth-averaged velocity equal to

0.84 with an R2 value of 0.97. This value is also close to

the theoretical value of 0.85.

The primary test data again consist of remotely mea-

sured surface currents (Fig. 4, black dots) collected by

Areté between 0300 and 0610 PDT 8 October 2011 and

water surface elevation recorded continuously at seven

gauges (red circles) by the Pacific Northwest National

Laboratory (PNNL). An offset of 1.038m was used to

change the water surface elevation data from the Na-

tional Geodetic Vertical Datum of 1929 (NGVD29) to

FIG. 1. A map of data points at the Kootenai River field site: remotely sensed surface velocity (black dots), ADCP

velocity transects (blue), andwater surface elevation (red circles) fromupstream(T1) todownstream(T7).The coordinates

are for Universal Transverse Mercator (UTM) zone 11, and the gray shading indicates area covered by water.
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the North American Vertical Datum of 1988 (NAVD88).

The time variation of the water surface elevation

(Fig. 5) at five of the gauges shows O(1)-m fluctua-

tions, which are the largest at a USGS gauge, and they

tend to dampen further downstream. These surface

elevation fluctuations were caused by power plant op-

erations at the Priest Rapids Dam. The river discharge

measured at the USGS gauge (Fig. 6) shows that the

river flow at that location decreased from 2050 to

1200m3 s21 during the 0300–0600 PDT collection of

FIG. 2. The observed Kootenai River water surface elevation (NAVD88).

FIG. 3. Example of airborne IR-derived velocity measurements developed by AretéAssociates from the Kootenai

River field site (Fig. 1). The velocity estimates are computed on 8m 3 8m tiles.
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the surface velocity data. We should point out that as a

result of the unsteady nature of the flow, the local dis-

charge throughout our 80-km reach would be signifi-

cantly different from the one measured at the USGS

gauge. While detailed measurements of the spatiotem-

poral variability of the discharge are not available,

such information (Fig. 7) was provided by Marshall

Richmond (PNNL, 2011, personal communication),

who ran hindcast simulations with the Modular Aquatic

Simulation System in Two Dimensions (MASS2) for

conditions at 0300 and 0500 PDT 8 October 2011. The

results in Fig. 7 indicate large discharge fluctuations in

the upper half of the domain and less dramatic discharge

variation farther downstream, where the discharge ap-

proaches some longer-term mean value in the range of

1500–1700m3 s21.

Both, the water surface elevation fluctuations and the

discharge fluctuations are less pronounced in the lower

half of the experimental site (Figs. 5 and 7). Therefore,

our inversions for the Columbia River will be limited to

the lower half of the field site, using an upstream

boundary near ADCP transect 16. We further split the

surface velocity data into two sets—0300–0415 and

0445–0610 PDT—to approximate the river conditions at

0300 and 0500 PDT, respectively. To account for the

islands that are present in this reach, we augmented the

Areté velocity dataset with zero-velocity data points

over the islands. The 0500 PDT velocity data were es-

timated on a square grid with a grid size of about 96m.

The 0300 PDT velocity data were estimated on a 96-m

grid upstream of transect T15 and a 65-m grid down-

stream of T15. For the purpose of inversions with our

depth-averaged flow model, the Areté surface veloc-

ity data were converted to depth-averaged velocity us-

ing the above ADCP measured ratio of 0.84. We also

used linear interpolation to estimate the water surface

FIG. 4. A map of data points at the Columbia River field site: remotely sensed surface velocity (black dots in the

two insets), ADCP velocity transects (blue), and water surface elevation (red circles) from upstream (T27) to

downstream (T5). The coordinates are for UTM zone 11, and the gray shading indicates area covered by water.
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elevation between gauges. The depth estimation results

presented in section 4 below were compared to a recent

bathymetric dataset (Coleman et al. 2010) consisting of

lidar and single-beam echo sounder measurements.

3. Methods

a. Analytical inversion of depth and discharge

The starting point for our inversion approach is the

streamwise momentum balance for gradually varying

open channel flow:

hgS52C
D
U2 , (1)

where h is the depth; U is the depth-averaged stream-

wise velocity component;

S5
›

›h

�
U2

2g
1 z

S

�
(2)

is the streamwise gradient of the total head zT5 zS1U2/2g;

zS is the surface elevation; g is gravity; h and z are the local

downstream and cross-stream coordinates, respectively;

and CD is the bottom drag coefficient. Note that the depth

could be easily estimated from (1) if we had reliable esti-

mates of the steady-state total head slope from the

measurements of the water surface elevation and velocity.

Unfortunately, real data contain noise and other unsteady

processes that lead to regions with S$ 0 that violate (1).

Here, we pursue an approach where the steady-state total

head slope is considered unknown, is spatially variable, and

is determined as part of the inversion.

The feasibility of analytical inversion relies upon a num-

ber of simplifications to the model equations. The selection

of a local reference frame (h, z) alignedwith the streamlines

is the primary simplification. Another simplification in the

momentum balance equation, (1), results from neglecting

momentum transfer by secondary flows and lateral mixing

by turbulence,which are expected tobe important only near

the channel lateral boundaries. The small dynamic contri-

butionU2/2g to the total head can also usually be neglected

in low steepness channels, but it is retained, since the

Kootenai River test case is a steeper stream characterized

with riffle-pool series. A related simplifying assumption is

that the total head is cross-channel uniform, in which case a

simple finite difference estimate of the total head slope,

S(h, z)5
Dz

T
(h)

Dh(z,h)
, (3)

implies that the z variation of the local total head slope is

just the result of the z variation of the downstream

FIG. 5. Water surface elevation at five gauges: USGS (circles), 100B (diamonds), 100D (tri-

angles), 100F (plus signs), 300 area (squares).
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distance Dh between the two total head levels separated

by DzT (i.e., the total head slope is reduced near the

outer bank of a bend). The z average of (3) then allows

us to express S in terms of its z average S, defined as

S(h, z)5
S(h)

Dh
0
(z,h)

, (4)

and a simple factor,

Dh
0
(z,h)5

Dh

Dh
, (5)

that is a known function of the local channel curvature/

geometry. In the following, we will use zR and zL to

denote the coordinates of the right and left shorelines,

respectively.

For constant depth-independent bottom friction CD

and constant discharge Q, mass conservation

Q5

ðzR
zL

hU dz5 const (6)

and (1) and (4) yield the following velocity–slope

relationship:

S(h)52
C

D

gQ
I , (7)

where

I(h)5

ðzR
zL

Dh
0
U3 dz (8)

is a 1D function that is completely determined by the

velocity observations and the channel geometry. In-

tegrating (7), the depth-independent bottom friction

(also known as Darcy) model results in the following

prediction for the total head:

z
mod

(h)5 z
mod

(h
up
)2

C
D

gQ

ðh
hup

I dh . (9)

When (7) and (4) are used to eliminate the slope S from

(1), we obtain the following velocity–depth relation-

ship, where the only unknown parameter is the

discharge

h5
Dh

0
QU2

I
. (10)

It is also commonly assumed that the bottom friction

depends inversely on the one-third power of the water

depth,

C
D
5

gn2

h1/3
, (11)

FIG. 6. Discharge measured at the Columbia River USGS gauge station (Fig. 4, red dots). The shaded interval

corresponds to the time of the airborne IR imagery collection.
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where n is the Manning’s roughness coefficient. For this

Manning’s friction model, the momentum balance

equation, (1), becomes

h5

�
2
n2

S

�3/4

U3/2 . (12)

Using the momentum balance equation, (12); mass

conservation equation, (6); and the slope estimate

equation, (4), we obtain the following velocity–slope

relationship for the Manning’s friction model:

S(h)52
n2

Q4/3
I4/3n , (13)

where

I
n
(h)5

ðzR
zL

Dh3/4
0 U5/2 dz . (14)

Integrating (13), theManning’s friction model yields the

following prediction for the total head:

z
mod

(h)5 z
mod

(h
up
)2

n2

Q4/3

ðh
hup

I4/3n dh . (15)

Finally, using (13) and (4), the momentum balance

equation, (12), yields the following explicit velocity–

depth relationship for the Manning’s friction model:

h5
Dh3/4

0 QU3/2

I
n

. (16)

Assuming that the bottom roughness (given byCD or n)

is known, the equations for velocity–depth, (10) and

(16), and velocity–slope, (7) and (13), indicate that

the inverse solution depends on the unknown dis-

charge Q. Here, we adopt an approach that esti-

mates the unknown discharge by fitting the predicted

mean total head, (9) or (15), to the respective z

average of the measured total head field zobs(h)5Ð zR
zL
zT(z, h) dz.

Three different discharge fitting schemes are con-

sidered, depending on whether the predicted total head

elevation is forced to match the observed one at the

upstream and downstream endpoints. The simplest

scheme, referred to as fixed endpoints, is obtained by

setting the predicted total head equal to the observed

one at both the upstream and downstream endpoints.

Equations (9) and (15) then give the following simple

estimates for the discharge:

Q5

2C
D

ðhdown

hup

I dh

g[z
obs

(h
down

)2 z
obs

(h
up
)]

(17a)

and

FIG. 7. Local discharge along the Columbia River site at 0300 and 0500 PDT predicted by PNNL with the

MASS2 model. The shading denotes the region with quasi-steady discharge suitable for our steady-state

inversion model.
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Q4/3 5

2n2

ðhdown

hup

I4/3n dh

z
obs

(h
down

)2 z
obs

(h
up
)
, (17b)

respectively. A downside of the fixed endpoints scheme

is that it gives too much weight to the endpoint

values of the total head and ignores its interior var-

iations. To account for interior variations, we also use

a least squares (LS) approach that minimizes [zobs(h)2
zmod(h)]

2. We refer to this scheme as fixed upstream LS if

we also enforce the condition zmod(hup)5 zobs(hup). Al-

ternatively, the modeled upstream and downstream total

head is assumed to be unknown and is determined as part

of the LS minimization; we refer to this scheme as free

endpoints LS.

b. Numerical implementation

The hydrodynamic equation, (1), and the analytical

approach described in the previous section require a

streamline-following grid. We therefore need the shore-

line coordinates to confine the numerical grid. The

shorelines can be determined using feature extraction

from images or using the intersection of the measured

bathymetry with the known water surface elevation. In

our results below, we have used the latter approach,

which avoids the introduction of additional uncertainties

associated with the shoreline determination from imag-

ery. We construct a maximum velocity streamline (Fig. 8,

squares) by choosing a starting point near the velocity

maximum at the upstream end. The coordinate vector

ri 5 (zi, hi) of subsequent points on the streamline is

determined by integrating the measured velocity field

uobs (Fig. 8, gray dots) as follows:

r
i11

5 r
i
1Dh

uobs(r
i
)

juobsj , (18)

where Dh is a fixed distance increment comparable to

the resolution of the measured velocity. Triangle in-

terpolation of the measured data is used to estimate the

velocity field at the location of the streamline points.

Special care is used to increase the value of Dhwhen the

streamline integration encounters a small data gap. We

construct the curvilinear grid (Fig. 8, bottom) by di-

viding the segment between the two shorelines into Nz

equal intervals for each streamline point. The number of

cross-channel nodes is the same for each downstream

location, but the resulting cross-stream grid step varies

in the downstream direction proportional to the river

width. Once the streamline curvilinear grid is generated,

the scattered velocity data points are interpolated onto

the streamline grid and the cross-channel integrals in (8)

and (14) are estimated using trapezoidal quadratures.

4. Results and discussion

Here, we present results of depth and discharge esti-

mation, beginning with the easiest case of the Kootenai

River, where the discharge was steady and the channel

geometry was simple. We then consider the more diffi-

cult case of the Columbia River, where the discharge

was temporally and spatially variable, and the channel

geometry included multiple islands. The discharge

FIG. 8. Example of curvilinear grid (bottom image) generation for the Kootenai River site using the shorelines (bold circles) and a

maximum velocity streamline (squares). The grid is shown with an easting and northing offsets of 200 and 2250m, respectively. The

streamline is generated by integrating the IR-image–derived velocity measurements (Fig. 1, black dots).
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estimation is evaluated using several different ap-

proaches to fit the predicted and the observed total

head. We also investigate the sensitivity of the re-

sults to grid resolution, the geometric correction to

the surface slope, and the assumed bottom friction

parameterization.

a. Kootenai River: Constant discharge

We first consider inversions using depth-dependent

bottom friction parameterization based on theManning’s

roughness and a curvilinear grid with Nz 5 10 cross-

channel steps and along-channel grid step Dh 5 14.5m.

The Manning roughness value n 5 0.0275 for the con-

sidered reach of the Kootenai River was determined

from a friction coefficient CD 5 0.005 calibrated for the

observed discharge Q 5 213m3 s21 (Simeonov et al.

2013) and an estimate of the mean thalweg depth hTW5
3.29m [see (11)] from the measurements. The predicted

total head from the fixed endpoints scheme and the two

LS schemes is compared in Fig. 9 against the observed

total head. The figure shows that the two LS schemes

provide much better approximation to the observed

total head compared to the fixed endpoints scheme.

Nevertheless, all three schemes were found to perform

quantitatively well, with bias and rms errors less than

4 cm and R2 values larger than 0.97 (Table 1). Table 1

shows that the two LS schemes slightly overestimate (by

about 5% and 7%, respectively) the observed discharge

of Q 5 213m3 s21, while the discharge from the fixed

endpoints scheme is very close to the observed one.

The predicted spatial distribution of the water depth

using the fixed endpoints scheme is compared in Fig. 10

against the measured depths. The figure demonstrates

that the model is able to capture the observed patterns

of shallow and deep areas of the river channel. Very

similar water depth patterns (not shown) were obtained

with the LS schemes. The 2D depth error statistics for

all three total head minimization schemes (Table 1)

indicate a negligible bias of about 10 cm, an rms error of

about 80 cm, and an R2 value of 0.59. For comparison,

Landon et al. (2014) obtained a twice-smaller rms depth

error for the same region using forward 2D simulations

over an ensemble of test topographies. In addition to

assuming that the discharge is known, the latter study

used a different bottom friction coefficient CD5 0.0035,

included turbulent horizontal mixing with an eddy vis-

cosity coefficient of 0.02m2 s21, and used regularization

parameters such as a correlation length scale and a

magnitude of the weight functions that forced the dy-

namical model toward the observations. The knowledge

of such regularization parameters would be unrealistic

for operational applications of bathymetry inversion.

While the overall prediction of the depth patterns in

our model is good, there are notable deficiencies near

the two bends where the predicted maximum depth is

not as close to the bank as the observedmaximum depth

FIG. 9. Predicted and measured total head for the Kootenai River, offset by the measured

total head at the upstream end.

78 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 36



(see Fig. 10). One possible reason for this deficiency is

that the steep banks (i.e., large gradients in the depth)

are not resolved in the velocity data because of the rel-

atively large gaps near the banks (e.g., Fig. 3). The ve-

locity data gaps near the banks resulted from the

presence of tree shadows in the imagery.

To exclude the errors resulting from the bank data

gaps, we also considered how the predicted thalweg

depth compares to the observed one. Figure 11a shows

that the three minimization schemes predict a very

similar streamwise variation in the difference between

the predicted and observed thalweg depths. The model

skill of predicting the thalweg depths is further illus-

trated in Fig. 11b. All three minimization schemes

have an rms thalweg depth error of about 60 cm and an

R2 value of about 0.73 (Table 1). The predicted thalweg

depth with the fixed endpoints scheme has a somewhat

larger negative bias of 16 cm compared to the O(4)-cm

bias of the two LS schemes. Overall, the above results

suggest that our inversion scheme is characterized with

very low bias errors and 9%–11% relative rms errors

(for a maximum depth of 7m) that compare to the

typical measurement errors in the velocity data (Dugan

et al. 2013; also Simeonov et al. 2013).

We also explored the sensitivity of these results to the

assumed bottom friction law, the geometric correction to

the surface slope, and the grid resolution. Using the same

grid withNz 5 10 cross-channel steps, Table 1 shows that

the inversions based on the Darcy friction law predict

discharges in the range of 179–194m3 s21, which signifi-

cantly underestimate the observed discharge. This de-

ficiency of the Darcy friction model translates into an

order of magnitude larger (negative) bias in the predicted

water depths (Table 1). We conclude that the Manning’s

friction model is essential to obtain unbiased estimates of

the water depth. An error analysis of (17a) and (17b)

further suggests the following expressions: dQ/Q5
dCD/CD and dQ/Q5 3dn/2n, which relate the discharge

error dQ to uncertainties in the friction coefficients dCD

and dn. The same relative error expressions also hold for

the depth, which is linearly proportional to the discharge

according to (10) and (16). Therefore, 10% uncertainties

in CD and n will result in 10% and 15% errors, re-

spectively, in the predicted depth.

TABLE 1. Inversion statistics for the Kootenai River data (12–17 Aug 2010) with average daily discharge Q 5 213m3 s21.

Minimization scheme Nz

Predicted discharge

(m3 s21)

Total head (m) Thalweg depth (m) 2D depth (m)

Bias rms R2 Bias rms R2 Bias rms R2

Free endpoints LS 10 223 0 0.03 0.99 20.04 0.60 0.73 20.08 0.81 0.59

Fixed endpoints 10 214 20.05 0.04 0.97 20.16 0.59 0.72 20.14 0.79 0.59

Fixed upstream LS 10 227 20.01 0.03 0.99 0.03 0.61 0.73 20.05 0.82 0.58

Free endpoints LSa 10 188 0 0.03 0.99 20.32 0.60 0.67 20.37 0.82 0.49

Fixed endpointsa 10 179 20.05 0.04 0.97 20.46 0.59 0.59 20.43 0.81 0.47

Fixed upstream LSa 10 194 20.01 0.03 0.99 20.23 0.60 0.70 20.33 0.83 0.50

Fixed endpointsb 10 214 20.05 0.04 0.97 20.17 0.61 0.71 20.14 0.81 0.58

Fixed endpoints 20 216 20.05 0.04 0.97 20.22 0.63 0.70 20.14 0.82 0.53

Fixed endpoints 5 214 20.05 0.03 0.97 20.16 0.60 0.70 20.10 0.76 0.68

aMinimization schemes using the Darcy friction model instead of the Manning friction.
bMinimization that did not use the geometric correction to the total head slope.

FIG. 10. Predicted and measured water depth map (blue shading) for the Kootenai River using the fixed-endpoint

method. The measured depth map has easting and northing offsets of 200 and 2250m, respectively.

JANUARY 2019 S IMEONOV ET AL . 79



The effect of the geometric correction was in-

vestigated by setting Dh0(z, h)5 1 in the inversion on

theNz 5 10 grid with the Manning’s friction law and the

fixed-endpoints scheme. Table 1 indicates that the sta-

tistics of the predicted water depth and total head

are virtually indistinguishable from the ones with the

variable Dh0. There is a very simple explanation for this

counterintuitive result. The reason is that the largest

deviation of the geometric factor from Dh0 5 1 occurs

near the banks, where it is multiplied by a power of

the velocity field [see (8), (10), (14), and (16)], that

is, a function that decreases very rapidly to zero near

the banks.

The inversion based on the fixed endpoints scheme

with the Manning’s friction was also repeated on finer

and coarser curvilinear grids with Nz 5 20 and Nz 5 5

cross-channel steps, respectively. The total head and

water depth statistics shown in Table 1 suggest that the

FIG. 11. (a) Difference between predicted and measured thalweg water depth for the Kootenai River site using different minimization

schemes. (b) Predicted thalweg depth (dots) vs measured depth and the 1:1 line corresponding to perfect prediction; only the free-

endpoints LS scheme is shown, since the other two schemes are similar.
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inversion results are robust and do not depend signifi-

cantly on the resolution for grids with cross-channel cells

in the range ofNz 5 5–20. The counterintuitive increase

of the R2 value for coarser grid Nz 5 5 reflects the fact

that the first interior node of the coarser grid is farther

away from the problematic bank regions.

b. Columbia River: Variable discharge

We now turn our attention to the Columbia River

data, where the assumption of steady flow is violated and

the discharge is no longer constant in time or space. The

main goal of this section is to investigate whether steady-

state dynamics could be used to estimate bathymetry

when the input data are unsteady.

We begin with the 0500 PDTdata for which the PNNL

hindcast simulations (Fig. 7) suggest that the discharge

decreases only slightly from 1800 to 1700m3 s21 along

the considered reach downstream of ADCP transect

T16. For the Columbia River tests, we used primarily a

curvilinear grid with an along-channel grid step of 100m

and Nz 5 20 steps in the cross-stream direction; the

latter results in a 40-m cross-stream grid step where the

river is the widest (;800m wide). These grid steps are

comparable with the grid size of the velocity data. For

the bottom friction, we used a Manning’s n5 0.026 that

was obtained in calibration simulations over a discharge

range 850 , Q , 8500m3 s21 (Richmond and Perkins

2009), consistent with the discharge conditions at the

considered reach (see Figs. 6 and 7).

The predicted total head with the Manning’s friction

model is compared to the observed total head in Fig. 12.

The two LS schemes (fixed upstream and free end-

points) again provided a much better approximation to

the observed total head compared to the fixed-endpoints

scheme. However, the best approximation to the ob-

served total head is provided by a third LS scheme that

fixes the predicted total head to the observed one at an

interior point corresponding to a downstream distance

of 15 km and leaves the upstream and downstream ends

free; this scheme will be referred to as fixed interior LS.

Other choices of the interior origin point (e.g., 10, 22,

and 30km) resulted in less accurate LS fits to the total

head. Unlike the previous LS schemes, which assume a

single discharge value for the entire domain, the fixed

interior LS scheme uses two discharge values to in-

dependentlyminimize the total head error upstream and

downstream of the interior origin point. The purpose of

this scheme is to test whether a piecewise constant dis-

charge profile would provide a better approximation to

the observed spatially variable discharge. Table 2 shows

that the fixed interior LS scheme provides the best fit to

the observed total head with an rms error of 39 cm and

R2 5 0.98. Unfortunately, this scheme grossly under

predicts the discharge downstream of the fixed interior

FIG. 12. Predicted and measured total head for the Columbia River at 0500 PDT 8 Oct 2011,

offset by the measured total head at the upstream end.
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point (h 5 15km), as the estimated Q 5 931m3 s21 is

significantly below the range of 1750.Q. 1700m3 s21

predicted in Fig. 7. The fixed interior LS scheme also

overpredicts the observed discharge in the upstream

part (h , 15km) by about 30%.

The predicted depth error along the thalweg plotted in

Fig. 13a shows that the single-discharge minimization

schemes tend to underestimate the depth upstream of

h 5 15 km and to overestimate downstream of that lo-

cation. This behavior of the single-discharge schemes

provided further motivation for attempting the piece-

wise constant discharge approximation. Figure 13a also

shows that the fixed interior LS scheme reverses the

behavior of the single-discharge schemes, but un-

fortunately themagnitude of the corrections is too large,

resulting in larger depth errors upstream and down-

stream of h5 15km. This result is reflected (Table 2) in

the much larger bias and rms thalweg depth errors and

the very poor R2 5 0.05. The thalweg depth statistics in

Table 2 suggest that, among all four inversions based on

the Manning friction law, the free-endpoints LS scheme

provides the most accurate depth prediction with a bias

of 256 cm, an rms error of 1.49m, and R2 5 0.64. The

same conclusion is also obtained from the scatterplots in

Figs. 13b–d, where the depths predicted with the free-

endpoints LS scheme are most tightly distributed

around the straight line. However, the scheme that most

closely matches the observed discharge while providing

similar thalweg depth error statistics is the fixed up-

stream LS. The spatial distribution of the water depth

predicted with the fixed upstream LS scheme is shown

in Fig. 14. The map indicates that the inversion

provides a good approximation to the observed water

depth patterns in most of the domain except in the deep

region located 10mi (;16 km) from the upstream

end (Easting5 319 000m). The 2D depth error statistics

of the predicted depth in Fig. 14 are found to have a bias

of 1.23m, an rms error of 2.2m, and R2 5 0.55. This rms

depth error is comparable to the 1.96-m error obtained

in adjoint-based inversions with the same velocity

measurements (Almeida et al. 2018). We should note

that the latter approach consistently underestimated the

maximum depth in the considered Columbia River

reach by almost 30%. No such bias was found in the

present approach, which slightly overestimates the

largest depths (see Fig. 13c). Our rms depth error is

about 15% of the maximum depth, which is also com-

parable to the Kootenai River error statistic found in

section 4a.

Next, we investigated the sensitivity of the Columbia

River inversions to the assumed bottom friction law, the

geometric correction to the total head slope, and the

resolution of the streamline-following grid. For the in-

versions with the Darcy bottom friction, we determined

CD from (11) using n 5 0.026 and the observed mean

thalweg depth hTW 5 6.42m. The data in Table 2 in-

dicate that the inversions based on the Darcy friction

model again significantly underpredict the discharge,

resulting in thalweg depths with much larger bias com-

pared to the respective inversions with the Manning’s

friction law. Table 2 also shows that setting the metric

factor Dh0(z, h)5 1 has little effect on the depth and

discharge statistics of the predictions of the fixed up-

stream LS scheme. Similarly, we found that using a

coarser grid withNz 5 10 did not significantly change the

results. We finally note that qualitatively similar results

are obtained for the 0300 PDT velocity and water sur-

face elevation data (Table 3). The main difference in the

TABLE 2. Inversion statistics for the 0500 PDT 8Oct 2011ColumbiaRiver data when the discharge rangewas 1700,Q, 1800m3 s21. For

the interior origin LS scheme the upstream discharge is followed by the downstream discharge.

Minimization scheme Nz

Predicted discharge

(m3 s21)

Total head (m) Thalweg depth (m) 2D depth (m)

Bias rms R2 Bias rms R2 Bias rms R2

Free endpoints LS 20 1395 0 0.90 0.89 20.56 1.49 0.64 0.77 2.26 0.59

Fixed endpoints 20 1368 21.66 0.90 0.52 20.67 1.48 0.63 0.72 2.27 0.60

Fixed upstream LS 20 1659 20.22 1.04 0.85 0.55 1.68 0.56 1.23 2.20 0.55

Fixed interior LS 20 2243 0.03 0.39 0.98 21.22 2.28 0.05 0.58 2.65 0.48

931

Free endpoints LSa 20 1045 0 0.76 0.92 21.60 1.50 0.32 0.09 2.47 0.57

Fixed endpoints 20 1025 21.47 0.76 0.63 21.70 1.50 0.28 0.05 2.49 0.56

Fixed upstream LSa 20 1288 20.21 0.90 0.88 20.48 1.55 0.63 0.49 2.32 0.60

Fixed interior LSa 20 1863 0.02 0.34 0.98 21.91 2.93 20.73 0.08 2.94 0.38

677

Fixed upstream LSb 20 1644 20.22 1.03 0.85 0.45 1.64 0.59 1.20 2.21 0.55

Fixed upstream LS 10 1779 20.21 1.03 0.85 0.94 1.72 0.47 1.36 2.14 0.54

aMinimization schemes using the Darcy friction model instead of the Manning friction.
b Minimization that did not use the geometric correction to the total head slope.
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0300 PDT inversion results was a larger bias in the es-

timated discharge. However, the predicted thalweg

depth with the fixed upstreamLS andManning’s friction

law had a smaller bias error of 225 cm and better R2 5
0.69 (Table 3). Examination of the 0300 PDT thalweg

depth predictions (not shown) reveals similar under-

prediction of the depth for h , 15km as in Fig. 13a but

much closer prediction of the depth for h . 15km.

The previous 2D depth inversion approaches and the

one developed here require as an input the reach-wise

average value of the ratio of the surface to depth-

averaged velocity in order to convert the measured

surface velocity into a depth-averaged one. Our ADCP

measurements for the Columbia River and the meander

reach of the Kootenai River suggest that the velocity

ratio typically does not deviate more than a few percent

from the theoretical value of 0.85, except in shallower

environments, such as the braided reach of the Kootenai

River. When measurements of the velocity ratio are not

available, the uncertainty in the predicted discharge and

depth can be related to the uncertainty in the velocity

ratio using the velocity–slope relationship in (12) and

(13). For example, a large 5% uncertainty in the depth-

averaged velocity would translate into a 12.5% un-

certainty in the respective discharge estimate. A further

reduction of the velocity ratio uncertainty can be

achieved by combining the present approach with

remote sensing measurements of the velocity ratio

(Johnson and Cowen 2017).

Another important issue for the practical applica-

tion of bathymetry inversion is identifying the spatial

boundaries of reaches where the bottom friction is uni-

form and can be represented by a single parameter. In

the examples considered here, the uniform bottom

FIG. 13. (a) Difference between predicted and measured thalweg water depth for the Columbia River site. (bottom) Predicted thalweg

depths (dots) vs measured depths for the different minimization schemes: (b) free-endpoints LS (fixed endpoints is similar to this one and

not shown), (c) fixed upstream LS, (d) fixed interior LS.
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roughness reaches of the Kootenai and ColumbiaRivers

were identified in previous forward calibration simula-

tions (e.g., McDonald et al. 2010; Richmond and Perkins

2009). However, such forward simulations require

knowledge of the bathymetry and cannot be used for

operational application of bathymetry inversion. In this

regard, we would like to point out that our velocity–

elevation relationships [see (9) and (15)] can also be

used to identify uniform friction reaches from the

measured velocity and surface elevation data when the

discharge is approximately steady. For example, when

themeasured surface elevation is plotted as a function of

the velocity integral in (9) and (15), reaches with uni-

form bottom friction will appear on the resulting graph

as straight lines with distinct slope proportional to the

local CD. An alternative method to identify hydrauli-

cally distinct reaches using only measurements of the

river sinuosity and the water surface elevation profile

was also recently developed by Frasson et al. (2017)

using simulated SWOT altimeter data for the Sacra-

mento and Po Rivers.

5. Conclusions

We developed an inverse modeling methodology to

estimate river discharge and water depth based on mea-

surements of the surface velocity and water surface ele-

vation, and analytical velocity–depth and velocity–slope

relationships derived from the steady momentum and

mass conservation equations in streamline-following

coordinates. The model skill and the limitations of the

steady-state assumption were tested using several

datasets with variable degree of unsteadiness—aKootenai

River dataset where the conditions were fairly steady and

two Columbia River datasets with moderately unsteady

discharge variation. The model results were found to be

fairly insensitive to varying the grid resolution in the range

of 5–20 grid steps across the channel width and to the

FIG. 14. Predicted andmeasuredwater depthmap (blue shading) for theColumbiaRiver at 0500 PDT 8Oct 2011,

using the fixed upstream LS method. The measured-depth map has an easting offset of 1600m. Upstream is at the

top-left corner of the left panel. The bottom-right corner of the left panel continues at the top of the right panel.
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geometric corrections of the water slope associated with

the channel curvature. In all tests (Tables 1–3), we found

that theManning’s friction parameterization of the bottom

drag resulted in significantly better estimates of the dis-

charge and water depth compared to the Darcy friction.

The latter would typically underestimate the measured

discharge by approximately 10% in the Kootenai River

tests and up to 45% in the Columbia River tests. Thus, the

conclusions made below pertain only to inversions using

the Manning’s friction parameterization. In the Kootenai

River case, all three total head minimization schemes re-

sulted in similar virtually unbiased thalweg depthswith rms

errors of about 0.60m and R2 5 0.60, total head profiles

with rms errors less than 0.04m, and predicted discharge

values thatmatched the observedQ5 213m3s21 towithin

5%.

Generally, we found larger discharge, total head, and

thalweg depth biases in the Columbia River tests where

the approximation of temporally and spatially uniform dis-

charge is not formally valid. The best results were obtained

for the 0500 PDT Columbia River data, with the fixed

upstream LS minimization scheme yielding a discharge es-

timate of 1659m3s21 that was close to the range of dis-

charge variations 1800. Q. 1700m3s21 predicted in the

PNNL forward simulations. The corresponding predicted

thalweg depth and the total head profile were characterized

with relatively low biases of 0.55 and 20.22m, and rms er-

rors of 1.68 and 1.04m, respectively. For the 0300 PDT

Columbia River data, the fixed upstream LS scheme pro-

vided thalweg depth and total head profile estimates with

similar biases and rms errors, but the predicted discharge

of 1260m3s21 was significantly smaller that the discharge

variations of 1800 . Q . 1600m3s21 predicted in the

corresponding PNNL simulation. We attribute this larger

mismatch to the inability of our steady-state model to cap-

ture the larger temporal and spatial discharge variability in

the 0300 PDT conditions. Future work should focus on ex-

tending the present analytical inversion approach by in-

cluding the time dependence and along-channel variability

in the mass conservation balance, and stage-dependent

Manning roughness in the momentum balance.
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