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Three-Dimensional Ray Acoustics: New 
Expressions for the Amplitude, 
Eikonal, and Phase Functions 

Abstract-New three-dimensional ray acoustics’ expressions for the 

Keywords-Three-dimensional ray acoustics, amplitude, eikonal, and 

is the constant, reference speed of sound at the source position 
ro = (XO, YO, ZO). Note that the wave number amplitude, eikonal, and phase along a ray path are derived. 

phase functions. k (  r )  = 2n f / c (  r )  (7) 

I. INTRODUCTION 

HE main purpose of this paper is to derive new T expressions for the amplitude, eikonal, and phase along a 
ray path based on three-dimensional ray acoustics. The new 
expressions clearly indicate the numerical calculations that 
must be performed in order to evaluate these functions. The 
Ocean medium is characterized by a three-dimensional random 
index of refraction which is decomposed into deterministic and 
random components. 

11. ANALYSIS 

The propagation of small-amplitude acoustic signals in the 
ocean can be described by the following linear, homogeneous 
wave equation: 

1 a 2  
V 2 p ( t ,  r ) - -  - p(t, r)=O 

c2 ( r )  a t 2  

where p ( t ,  r )  is the velocity potential in square meters per 
second at time t and position r = (x ,  y,  z ) ,  and c(r) is the 
speed of sound in the ocean in meters per second. If we assume 
a time-harmonic dependence for the velocity potential, that is, 
if 

can be expressed as 

k(r )  = #ton(/+) (8) 

and that k(r0) = ko since n(ro) = 1 .  
The index of refraction is commonly written as El], [2] 

n(r)=nD(r) + nR(r) (9) 
or 

n ( r )  = nD(r) + U(r)nNR(r) (10) 

where nD(r) is the deterministic component and is sometimes 
referred to as the deterministic or background sound channel, 
n ~ ( r )  is the random, zero-mean component, a(r)  is the 
standard deviation of nR(r), and 

n N R ( r )  = nR(r)/u(/+) (1 1)  

is the normalized random component with zero mean and 
variance equal to unity. Note that the expected (average) value 
of n ( r )  is equal to nD(r) .  

An approximate solution of the Helmholtz wave equation 
given by (3), based on the method of three-dimensional ray 
acoustics, is given by 

p(r) = a ( r )  exp [ - jko W ( r ) ]  = a(r )  exp [ + j e ( r ) ]  (12) (2) 

then substituting (2) into (1) yields the following linear, 
homogeneous, time-independent Helmholtz wave equation: 

where 

V 2 p ( r )  + k i n 2 ( r ) p ( r )  = 0 (3) 
where 

is the real amplitude function, a(ro) is the amplitude at the 
source, and So and S are the very small wavefront surface 
areas at the ends of the ray-tube segment specified by the 
position vectors ro and r ,  respectively [3]-[5]. In addition, 

(4) 

is the constant, reference wave number in radians per meter, 

ko = 27rf/co = 2 ~ / &  

n(r )  = co/c(r)  ( 5 )  
is the random, three-dimensional dimensionless index of 
refraction, and 

(6) is the eikonal in meters, W(ro) is some initial value of the 

finally, 

CO = c(r0) = f  x, 
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is the real phase function in radians, O(r0) is some initial value 
of the phase at ro, and where it is understood that x = x(s) ,  y 
= y(s ) ,  and z = z(s) in the arguments of the index of 
refraction and the wave number in (14) and ( 1 5 ) ,  respectively 
[ 7 ] ,  [8]. With respect to wave propagation in random media, 
the method of ray acoustics is valid only for problems 
involving weak scatter and when the scale sizes of the medium 
are large compared with the sound wavelength [ 2 ] ,  [9 ] .  

Equations ( 1 3 )  through ( 1 5 )  are the most common three- 
dimensional ray acoustics’ expressions for the amplitude, 
eikonal, and phase, respectively. The disadvantage of these 
common expressions is that there is no additional information 
given on how to actually solve for the cross-sectional areas SO 
and S in ( 1  3 )  and how to evaluate the integrals appearing in 
(14) and (15) .  However, new expressions for these quantities 
can be derived that clearly indicate the numerical calculations 
that must be performed. 

substituting (23)  into (21)  yields 

V 2  W ( r )  1 d  

n(r )  n ( r )  ds 
(24) -- - V - fi(r)  + - - n(r) .  

Substituting (24) into ( 1 8 )  yields 

n( r )  1 
a (r )=a(ro)  exp [ -f Jn(ro) dn(r1-J 

1 exp [-; v f i ( r )  ds 

=a(ro) exp [In In(r)/n(ro)l -1’21 

‘0 

- exp [-: S‘ V ds] (26) 
’0 

A .  The Amplitude Function and, noting that the real index of refraction is always positive 
An alternate, new expression for the amplitude a@) along a and that n (ro) = 1, we obtain the following expression for the 

ray path can be obtained as follows. We begin with the amplitude along a ray path: 
transport equation as given by [lo] 

d V 2  W ( r )  
-In a ( r ) =  -~ . 
ds W r )  

The solution of (16) can be expressed as or, upon substituting (5) into (27), 

and, as a result [81, [ l l ] ,  (28) 

V2W(r)  Next, in order to make (27) and (28) more amenable to 
numerical calculations, we must try to simplify the integral [ -: s ~ ‘’1 (18)  a ( r )  = a(ro)  exp 

‘0 n(r)  

Equation (1 8) can be simplified further. 
Since [6],  [ 121 

!lo V * f i ( r )  ds. 

V W ( r )  = n(r)f i (r)  ( 1  9) Since (see (22) )  

and 

V 2  W ( r )  = V V W ( r )  

a a a 
ax ay az 

V - i ( r ) d s = -  u ( r )ds+-  u(r)ds+- w(r)ds (29) 
(20) 

substituting (19) into (20) yields [6] 

V2W(r )=V * n(r)fi(r)=n(r)V 

and [ 1 3 ]  

f i ( r )+ f i ( r )  - Vn(r) 

(21) 

ds= dx/u(r )  

ds=dy/u(r) 

and 
where 

(32)  ds = dz /w ( r )  
f i ( r ) = u ( r ) P + u ( r ) p +  w ( r ) f  (22) 

w(r)  are the direction cosines with respect to the X ,  Y, and Z 

substituting (30) through (32)  into (29) yields 
is the unit vector in the direction of V W(r)  and U@), u(r),  and 

axes, respectively. And, since [61 
i a  i a  

u(r )  ax u(r) ay 
V * f i ( r )ds=-  - U(r)dX+- - u(r)dy 

d 
- n(r)  = Vn(r) . fi(r)  
ds 

i a  

w ( r )  az 
+- - w(r)dz.  (33 )  
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Therefore, with the use of (33), yields 

d dx dY dz 
- W ( r ) = n ( r ) u ( r )  -+n(r)u(r )  - + n ( r ) w ( r )  - 
ds ds ds ds 

which is the desired result. Therefore, either (27) or (28), in 
conjunction with (34), represent new expressions for the 
amplitude along a ray path. By comparing (13) and (27), it can 

evaluating the integral of the divergence of the unit vector 
along a ray path; that is, 

be seen that the task of computing So and S is equivalent to + 11, n(x,  Y ,  t )w(x ,  Y ,  t) d t .  (43) 

Equation (43) is the new expression for the eikonal and, since 

(44) 

substituting (43) into (44) and using (8) yields the following 
new expression for the phase function: 

e ( r )  = - ko ~ ( r )  [ $1 ‘ I2 = exp [ --: V - f i ( r )  ds 

where the integral is given by (34). It can be shown that when 
the index of refraction (speed of sound) is an arbitrary function 
of depth y only, the new amplitude function, which was 
derived based on three-dimensional ray acoustics, reduces to e ( r ) = e ( r o ) -  
the amplitude function that one obtains via the WKB method: 

‘0 

kx(” y’ ‘) dt -  s’ ky(x’ ” dt 
XO yo 

that is, 

where 

and ky( y )  is 
direction [ 141, 

a( r )  = a ( y ) = A / I ky ( y ) I (36) 
where 

A = a h ) l  ~ , ( Y o ) I  ‘I2 (37) 

the propagation vector component in the Y 
r151. and 

B. The Eikonal and Phase Functions kAr)  = k ( r ) w ( r )  (48) 
An alternate, new expression for the eikonal can be obtained 

as follows. We begin by computing the directional derivative 
of the eikonal; that is, 

are the propagation vector components in the x, y, and z 
directions, respectively. When the index of refraction (speed 
of sound) is an arbitrary function of depth y only, the 
propagation vector components k,(r) = k, and kz(r) = k, are 
constants and ky(r) = k,( y )  [15]. As a result, (45) reduces d a dx a dY a dz 

- W ( r ) = -  W ( r )  -+- W ( r )  -+- W ( r )  - . 
ds ax ds ay ds az  ds to 

(38) e o ,  Y ,  z)=ecxO, yo ,  zo) -kx(x-x0)  
Since [13], [16] 

- ky(t) d t -  &(z  - ZO).  (49) 

The phase integral appearing in (49) is identical with the phase 
integral obtained via the WKB method [ 141, [ 151. 

In order to determine the amplitude along a ray path 
according to (28) and (34), and in order to determine the phase 
along a ray path according to (45) through (48), the direction 
cosines u(r) ,  U@), and w(r)  must first be determined by 
solving the ray equations [ 171, [ 181. This is not necessarily a 
shortcoming, since in order to draw ray diagrams for a three- 
dimensional sound-speed profile, the ray equations must be 
solved anyway. And, finally, note that if the index of 

a s:, 
- W ( r )  = n(r)u(r )  (39) ax 

a 
(40) - W ( r )  = n(r)u(r)  

ay 

a 
- W ( r )  = n(r)w(r)  (41) 

substituting (39) through (41) into the right-hand side of (38) 

az  

and 
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refraction is random, the direction cosines will be random as 
well. However, for problems dealing with wave propagation 
in a random, inhomogeneous medium, amplitude and phase 
calculations are performed by carrying out integrations along 
deterministic unperturbed ray paths [ 191, that is, using the 
deterministic components of the direction cosines in (34), 
(43), and (45) through (48). 
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