
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Funded by Naval Postgraduate School

2013-06-28

Multipersona Hypovisors: Securing Mobile
Devices through High-Performance
Light-Weight Subsystem Isolation

Krishnan, Neelima; Hitefield, Seth; Clancy, T. Charles;
McGwier, Robert W.; Tront, Joseph G.
Virginia Tech

Krishan, Neelima, et al. Multipersona Hypovisors: Securing Mobile Devices through
High-Performance Light-Weight Subsystem Isolation. Department of Computer
Science, Virginia Polytechnic Institute & State University, 2013.
http://hdl.handle.net/10945/60056

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Multipersona Hypovisors: Securing Mobile Devices
through High-Performance Light-Weight Subsystem

Isolation

Neelima Krishnan

Computer Science, Virginia Tech
Blacksburg, USA

Seth Hitefield

ECE, Virginia Tech
Blacksburg, USA

T. Charles Clancy

ECE, Virginia Tech
Blacksburg, USA

Robert W. McGwier
ECE, Virginia Tech
Blacksburg, USA

Joseph G. Tront
Computer Science and ECE, Virginia Tech

Blacksburg, USA

Abstract— We propose and detail a system called multipersona
Hypovisors for providing light-weight isolation for enhancing

security on Multipersona mobile devices, particularly with

respect to the current memory constraints of these devices.

Multipersona Hypovisors leverage Linux kernel cGroups

and namespaces to establish independent process container, al-

lowing isolation of the Multipersona process tree from other

simultaneous instances of Multipersona and the hypovisor

which is an underlying Angstrom-based embedded Linux

distributions designed to add additional security to the system.

The system incorporates a wide range of data integrity tools in

the embedded hypovisor, and an SE Linux-enabled kernel for

mandatory access control and integrity tools for transparent

auditing of running Multipersona instances.

 A prototype is presented which uses integrity tools external to

the Multipersona container to audit it for malicious activity,

and also has the ability to support a multipersona environment

with multiple encrypted personas existing individually or

simultaneously on the device. Two versions are demonstrated,

one which allows cold-swapping of personas for high-assurance

scenarios and also one that supports hot-swapping.

Analysis shows that the hypovisor has a 40-50 MB impact on

the overall memory footprint for the system.

Keywords— Mobile Device, Light-Weight Virtualization,
SE Linux, Security, Access Control, System Policy,
Multipersona

I. INTRODUCTION

Mobile optimized applications and cloud services have

transformed the computing market from desktop based

legacy applications to an entirely new environment of apps

that access data stored in the cloud. There has been an

explosion of low-cost mobile devices that have

revolutionized the computing ecosystem. Mobile devices

have become indispensable, convenient tools because they

offer increasingly large capacity in fast, easy to use,

compact, portable form factors.

Application markets provide central points for application

distribution and discovery. Markets such as Apple's App

Store and Google's Play remove barriers of entry for

developers by simplifying sales and distribution. Combined

these platforms with relatively easy to use application

programming interfaces, the markets are lush with millions

of applications. On the consumer front, markets simplify

discovery, purchase, and installation of applications. This

process is self-contained on the handset.

While these mobile devices offer tremendous opportunity

to enhance connectedness and productivity, they also

introduce a broad new range of security challenges to

enterprise networks, personal networks, and broadly to the

Internet. Mobile devices far exceed desktop PCs as

endpoints, and offer much less sophisticated infrastructure

for providing device security. Many enterprises rely heavily

on secure end-points to bootstrap the security of their entire

network, and these mobile devices lack the required security

controls to operate securely in a variety sensitive domains.

A wide variety of research, development, and commercial

products seek to address fundamental gaps in mobile

security. In this paper we focus specifically on the security

of the underlying mobile operating system and seek to

improve its fundamental integrity. We focus on the

Multipersona mobile operating system (OS) because it has

the largest market share among mobile multipersona

operating systems, and its open source nature allows for

easier experimentation than a variety of its competitors. In

this paper, we develop a variety of kernel and OS layer

security features for Multipersona.

Our contribution focuses on improving core operating

system (OS) security for Multipersona through a number of

novel components:

1. Linux cGroups are used to run Multipersona inside a

container (i.e. isolated process namespaces) that provides

isolation between Multipersona and an underlying

embedded Linux distribution that uses a variety of open

source integrity tools to audit the running Multipersona

instances, known as the hypovisor.

2. A multipersona application is described where an

operating Multipersona container is shut down and a

secondary secure container boots up from an encrypted file

system stored on a removable SD card. While this cold-

swap scenario offers some usability issues, it sup-ports a

high assurance environment where simultaneous execution

of code at different security levels is generally not

permissible.

3. An architecture based on the Cells project [2] is presented

for multipersona scenarios where simultaneous instances of

Multipersona in parallel containers are able to operate on a

single device using a variety of virtual hardware

multiplexers.

4. SE Linux policies are developed to provide integrity to

the Linux kernel and hypovisor, further extending the SE

Multipersona project [21].

The reminder of this paper is organized as follows.

Section 2 provides background information on

Multipersona, its security challenges, and prior work in the

field. Section 3 details the Multipersona Hypovisors

architecture. Section 4 details the system implementation

and gives an analysis the memory footprint impact. Sections

5 outline ideas for future work and conclude.

II. BACKGROUND

In this section we provide an overview of the

Multipersona security ecosystem, including an introduction

to the Multipersona security model and an outline of

different security threats to that model. We then provide a

summary of major research in OS-layer security for

Multipersona to put our contributions into context.

A. Security in the Multipersona Ecosystem

Multipersona is best described as a middleware running

on top a Linux kernel and set of non-GNU shared libraries.

It pro-vides a common infrastructure and Java-based virtual

ma-chine for apps to execute. When compared to the other

leading multipersonas, Multipersona multipersonas are

generally less expensive. There is an active community of

developers and multipersona enthusiasts who develop and

distribute their own version of the OS. There are millions of

applications freely available from the Internet, which makes

the market place quite broad.

This convenience bears with it some associated risks.

Mobile devices can easily be stolen or misplaced. Either

misfortunes result in breaches of confidential information

whether or not the information contained in them is

accessed. Beyond this, privacy breaches can also occur as a

result of utilizing unsecured wireless networks, installing

apps that harvest information, or users sharing credentials

with untrusted services.

Significant research is being conducted in the area of

mobile security, to ensure the privacy of both a user and

their data. Research progress in personal information

management on mobile devices, specifically multipersonas,

is growing at exponential rate in the area of human

computer interaction. This enables user to have their

confidential information available in various personal

devices simultaneously [11].

Multipersona security solutions have been proposed and

implemented up and down the hardware/software stack,

from hardware roots of trust to application layer antivirus

and Data-loss prevention tools. The growing consensus is

that any integrated device will leverage layers of security for

a defense in depth strategy.

In general, we seek to achieve security goals of

confidentiality and integrity for data stored on a mobile

device (note that confidentiality is distinct from privacy, as

many users intentionally choose to share potentially

sensitive information through social networking apps). We

seek to mitigate threats to confidentiality and integrity, to

include more advanced usurpation threats. The threat model

assumes an adversary is able to execute arbitrary code on

the device as a standard user, and may potentially leverage

privilege escalation attacks to gain administrative access.

The most likely vector for running hostile code on the

mobile device is through malicious apps masquerading as

legitimate software on an app market.

Our contribution focuses at the OS level, and includes

aspects of the kernel, OS, and Multipersona middleware.

These tools generally need to be baked in "when the device

firmware is developed, and therefore are not generally

viable as after-market security tools installable by a typical

user.

B. Multipersona Security Model

Security in the Multipersona OS is implemented using the

concept of a secure sandbox [5]. In the context of computer

security, sandboxing refers to a method of separating

running programs. That is, no application by default has

permission to perform any operation that would impact

another application, the OS, or the user. This includes

actions such as writing or reading private data (e.g. contacts,

e-mails, and home screen), network access, affecting the

device sleep state, or accessing another application's files.

Separating running programs creates a confined execution

environment, which helps isolate problems and with

individual applications.

Multipersona is a fully multitasking OS and uses the

inherent Linux model of groups, users, and signature

verification for executable files. The Multipersona

framework accomplishes sand-boxing by assigning each

application a distinct Linux user ID (UID) and group ID

(GID). The Linux kernel, which is the foundation of the

Multipersona system, uses the separate UID/GID to provide

isolation between applications.

Since each application and its corresponding data have

unique UID/GIDs, other applications cannot gain access to

them unless explicitly stated. Any application that wants

access to another's data or global resources, such as net-

work access, must request the corresponding permissions

from the system at install time through the

MultipersonaMan-ifest.xml file. It is the user's responsibility

to evaluate the application's requested permissions and

approve or deny its installation onto the device.

The developer uses a unique certificate to digitally sign

the installation file package. During installation, the system

displays the application's requested permissions to users

who can either proceed or cancel the install. If these

permissions change at any point after installation, the app's

digital signature will no longer match, and the application

will be blocked. If an application attempts to access

resources without the corresponding permission, whether by

a bug or a user with bad intentions, it will be force-closed

and the security breach which recorded in the system log.

C. Security Issues

A problem with Multipersona's security framework is the

lack of built-in, fine grained control over an application's

access capabilities. An excellent example of this issue with

the An-droid permission scheme is a known malicious

application, iCalendar [19]. The iCalender app is used to

record daily events and also synchronize them with the

user's inbox in order to send reminders. Thus, iCalendar will

need access to both the Internet and the coarse location. The

app requests the corresponding INTERNET and ACCESS

COARSE LOCATION permissions, and in addition it

requests RECEIVE SMS and SEND SMS. Closer

examination of its source code shows that iCalendar

covertly sends a text message to a number on the fifth click

on the phone. It also blocks all incoming messages

originating from the destination number. By intercepting

incoming messages, iCalendar can conceal itself and the

user will never know that anomalies had occurred on their

phone.

Anyone can upload an application in the Multipersona

market by simply paying a fee of $25 USD, with his own

digital certificate. There is no code inspection [13]. The

application developer digitally signs his app. There is no

Certificate Authority who verifies the authenticity of the

app's signature. Applications can be downloaded and

installed from non-market place like piratebay.org, eBay,

fileshare.org, etc.

Many malicious applications find their way into smart-

phones through these vectors. A more insidious class of

applications are able to execute privilege escalation attacks

[6, 9]. By obtaining administrative privileges on the

underlying OS, apps can gain access to the environment of

any other apps, by breaching the sandbox environment.

Another attack scenario is maliciously colluding

applications [17]. Users rarely evaluate an application name

and decide if it appears legitimate. Some users assume the

downloaded application is a well know application, without

reading the permission list. Examples are Facebook,

Google+, Yahoo Mail, and Gmail which are downloaded

from non-trusted marketplaces.

D. Previous Work

Here we investigate previous approaches to providing

security to the underlying Multipersona OS and its services.

They range from kernel-level tools to those that integrate

within the Multipersona middleware itself to provide a

variety of security services.

At the kernel level, integration of SE Linux into the An-

droid offers the ability to significantly improve OS integrity.

Early work [18] demonstrated that the Linux kernel sup-

porting Multipersona could be rebuilt with SE Linux

enabled, and that user space tools could be cross-compiled

using existing tool chains. This work was further extended

to develop a broad range of security policies for

Multipersona and released open-source by the National

Security Agency as the SE Multipersona project [21]. The

SE Linux work performed under this project has been

ongoing for nearly two years, was contemporaneous to the

development and release of the SE Multipersona project,

and has since been merged with the open-source distribution

for consistency.

Use of independent namespaces for process isolation was

first introduced by Cells [2]. Cells is a virtualization

architecture for enabling multiple, virtual multipersonas to

run simultaneously on the same physical device in an

isolated manner, but did not seek to formally address device

security. Cells introduce a usage model of having one

foreground virtual phone and multiple background virtual

phones. This model uses a device namespace mechanism

and device proxies that integrate with OS virtualization to

multiplex hardware while providing native hardware device

performance. Virtual phone features include fully

accelerated 3D graphics, complete power management

features, and full telephony functionality with separately

assignable telephone numbers and caller ID support. A

prototype implementation supports multiple Multipersona

virtual phones on the same phone. Performance test results

demonstrate that Cells imposes only modest runtime and

memory overhead, works seamlessly across multiple

hardware devices including Google Nexus 1 and Nexus S

phones, and transparently runs Multipersona applications at

native speed without any modifications.

A wide variety of research projects and deployed products

seek to provide threat detection and mitigation at either the

middleware-layer or application layer on Multipersona

devices. One example is TaintDroid [8] which marks

memory and storage locations as sensitive information

propagates through the system to identify privacy leaks.

Another example is XMmultipersona [4] which monitors

inter-process communication to identify potential privilege

escalation attacks.

Our approach leverages the prior work from the SE An-

droid and Cells projects as building blocks for creating an

OS with true defense in depth. We focus on the

development of the hypovisor which provides the extended

integrity tools, and layer in the isolation, SE Linux, and

multipersona tools for an integrated solution.

III. MULTIPERSONA HYPOVISORS

Figure 1 shows the Multipersona architecture.

Multipersona utilizes the open-source Linux kernel that

permits customization for virtualization, security policy

enforcement, and other hardening techniques. Our solution

seeks to improve mobile device security focused on the

threat to information confidentiality and integrity. The

solution supports a variety of use cases:

1. A single persona exists on the device, is instantiated

Figure 1: Basic Multipersona Architecture

within an isolated container, and secured using the

hypovisor and SE Linux;

2. Multiple encrypted personas exist but only one is

active at a time, for high-assurance environments,

and are secured using the hypovisor and SE Linux;

3. Multiple simultaneous personas operate on the device

in independent containers, and are secured using the

hypovisor and SE Linux.

The integrity of the simultaneous multipersona system is

based entirely on the ability to break out of one namespace

and swim upstream to a parent namespace. To accomplish

this, the ability for an adversary to obtain root permissions

and exploit the underlying kernel in any of the container

must be mitigated. SE Linux helps greatly by minimizing

the kernel accesses available to a root user in a specific

namespace. However, zero-day vulnerability may exist that

allows an adversary to exploit the container. Consequently

for high assurance environment where we assume an

adversary is able to obtain root on a non-secure container,

the cold-swap approach is preferred, as its integrity of the

secure profile is cryptographically protected.

A. Containers Infrastructure

This section further details the components of the overall

containers infrastructure necessary to implement the overall

system architecture, which is depicted in Figure 2.

1) Linux Containers

The cGroup and namespaces features of the Linux kernel

are used as mechanisms for high-performance, multipersona

container virtualization. This allows multiple, simultaneous,

isolated instances of Multipersona on a single device to

support multiple independent security domains. When

combined with chroot, they allow booting multiple

simultaneous init processes from independent root

filesystems that are isolated from each other, all operating

on top of the same Linux kernel. However, given the dev

entries will likely share the same major/minor numbers,

there may be contention for hardware resources if multiple,

simultaneous instances are booted without resolving

hardware drivers.

This mitigates a large portion of potential attack vectors

against the system, making it nearly as effective as bare-

metal virtualization approaches. Current approaches to

devices supporting multiple simultaneous security domains

Figure 2: Proposed Multipersona Architecture

require full bare-metal virtualization, meaning that for N

simultaneous security domains, the device must execute N

simultaneous Operating Systems and N simultaneous

middleware instances. This seriously affects device

performance in resource constrained mobile devices

designed to support only a single OS instance. By using

containers, common device functions can be shared by a

meta-domain, requiring only a single shared instance to be

executing at a time.

As long as root privileges can be sufficiently restricted, it

should not be possible to break out of a container and

access data and processes from another container. However

if the integrity of the kernel is compromised, an attacker can

cross security domains. To combat this, we pair containers

with SE Linux and author SE Linux security policies that

protect the light-weight virtualization subsystem and kernel

from attack.

2) Light-Weight Hypervisor

A current constraint of mobile devices is that a user can

disable any security software with administrative access to

the device. A hypervisor is a subsystem that allows for

external auditing of system integrity, executing below the

main OS. In typical desktop and server environments, this is

implemented by first booting a barebones Linux instance

(which becomes the hypervisor), and then booting fully

featured Linux instances on top.

By using containers, we are able to significantly reduce

the overhead footprint by not requiring multiple instances of

the kernel. We first boot an embedded Linux kernel tailored

for a mobile OS. In particular, the Multipersona variant of

the Linux kernel includes a variety of Multipersona specific

patches, to include extended power management features.

Once the embedded distribution loads, the user OS is booted

using virtualization provided by containers (e.g. cGroup,

namespace, and chroot). This completely isolates the main

system from the embedded Linux hypervisor.

To distinguish the role of our management plane from a

traditional virtualization hypervisor, we term our embedded

Linux instance a hypovisor, because it sits under the various

booted Multipersona instances, rather than the over notion

conveyed by traditional supervisor/hypervisor terminology.

Our hypovisor architecture is depicted in Figure 3, where

the process tree for a variety of independent containers is

shown.

Hypovisors have major advantages over traditional

virtualization approaches since the hypovisor distribution is

transparent to the mobile OS, and no special device drivers

are required. Within the hypovisor we are able to implement

a large range of device integrity tools, including kernel

integrity, OS integrity, mobile middleware integrity,

firewalls, intrusion detection systems, and intrusion

prevention systems. In addition, administrators could use the

hypervisor to easily manage virtual instances either locally

or remotely, and with or without the user's knowledge or

permission. In order to provide a layer of security,

Multipersona is not used as the hypervisor and virtual

machine host for several reasons.

First, in a typical OS virtualization implementation, the

root OS can be used as one of the virtual instances. This

could be a possible vulnerability for security oriented

devices if the root instance were to be compromised.

Compromising the host instance would, in effect,

compromise all of the guest instances. To protect against

this attack, the root instance is abstracted from the guests

into a small embedded system that functions similarly to a

traditional hypervisor. This system allows for features such

as additional monitoring and enforcement of both incoming

and outgoing network traffic. More importantly, the

embedded hypovisor would not interact with the user

(excluding switching the active virtual instance), which adds

an additional layer of security to the system.

Secondly, the Multipersona system is not a typical GNU-

based Linux distribution like Ubuntu or Fedora.

Multipersona uses its own custom Bionic libc and Dalvik

Java virtual machine. This makes porting existing embedded

security tools more complicated if Multipersona is used as

the host system. Also, the use of a custom embedded system

reduces both the memory and storage overhead of the

embedded hypovisor on the device.

3) Memory Optimization

An important aspect of working on mobile devices is

recognizing the limits they present. Currently, these devices

resemble embedded systems more than the traditional

personal computer. The majority of devices on the market

use an ARM Cortex A8 or A9 processor, 512 to 2048 MB of

memory and anywhere from 1 GB to 16 GB of internal

storage. In addition, they have limited supplies of power.

Because of this, it is important to remove as much over-

head from the system as possible. Avoiding running

multiple instances of the Linux kernel provides an

opportunity to decrease the memory footprint, and is

achieved by the hypovisor architecture.

However, there are many additional opportunities for

memory optimization realizing that simultaneous instances

of Multipersona involve significant shared infrastructure.

For example, Multipersona uses the zygote process to

launch apps, rather than launching each one as an

independent process. The reason is because the Dalvik

virtual machine loads a large footprint of shared Java

libraries, and rather than every app duplicating those

libraries in memory, zygote allows them to all be loaded

into memory once and used among all applications.

While not demonstrated in this implementation, the

ability to spawn from a shared zygote process across

multiple containers would offer a novel way to further

decrease the memory footprint between Multipersona

instances. Implementing this would require significant

extensions to Multipersona itself, ensuring sufficient

rewalling between Multipersona instances leveraging a

single zygote operating in a shared namespace.

B. Access Control

This section outlines access control methodologies and

describes how SE Linux is used in the hypovisor

architecture to achieve a higher level of assurance.

1) DAC vs. MAC

In a traditional Linux/UNIX system, access control is

implemented using a discretionary access control (DAC)

model. DAC is an access policy that restricts access to files,

and other system objects such as processes and devices,

based on the identity of users and groups to which they

belong. The MAC security model differs from the DAC

model in that subject's access to objects is regulated by a

security policy. Mandatory access controls use sensitivity

labels to determine who can access what information in the

system.

2) SE Linux

SE Linux is a mechanism for enforcing fine grained MAC

within the Linux kernel [21]. SE Linux is not a Linux

distribution, but rather a set of kernel modifications and

userspace tools that can be added to various Linux

distributions. Multipersona systems built on version 2.6 and

above of the Linux kernel can be protected using SE Linux.

The kernel modifications make it possible to make

appropriate modifications to the Multipersona baseline in

order to activate SE Linux.

SE Linux enforces MAC by checking the security

attributes of the object and subject against the given

system's security policy. In the iCalender application

example previous mentioned, the security policy of the

system could be configured such that the app cannot send an

SMS to an unidentified numbers over the network. Also, the

SE Linux policies can be configured to prevent iCalender

from gaining access to unique phone information, such as

contact information or any confidential information, and

sending it as the content of an SMS.

Figure 3: Process hierarchy showing Multipersona Hypovisor namespace relationships

 While this example illustrates a potential application of

MAC, in general it is not feasible to implement app specific

SE Linux policies. MAC policies are treated as invariants

across all modes of system operation, and apps involve a

wide variety of context-driven access control requirements.

An appropriate use of SE Linux is in the development of

policies unique to the Multipersona middleware and

hypovisor functions, and run all apps within a single

security context.

SE Linux stores the security attributes of objects and

subjects as extended attributes within the Linux kernel and

file system. Extended attributes are a file system feature that

enables users to associate files with metadata not interpreted

by the file system. Extended attributes are natively

supported by many file systems, including ext3, ext4, JFS,

etc.

However, by default Multipersona utilizes the yaffs2 file

sys-tem, which does not natively support extended

attributes. Some open source patches have been developed

in order to enable extended attribute support for yaffs2 [18].

The key features supported by the SE Multipersona

distribution are per-file security labeling support for yaffs2,

file system images labeled at build time, kernel permission

checks controlling Binder IPC, labeling of service sockets

and socket files created by init, labeling of device nodes

created by ueventd, exible/configurable labeling of

applications and app data directories, user space permission

checks controlling use of the zygote socket commands, and

use of MLS categories to isolate applications.

3) Integrity and Auditing Tools

One of the key purposes of the hypovisor is the ability to

provide integrity and auditing capabilities. Through its

position in the root namespace, sitting outside of but able to

see into the Multipersona instances running on the device,

the tools within the hypovisor can provide a broad range of

security services.

It is impossible for malware to compromise a system, and

attributes achieve persistence through a reboot, without

altering system files. As a result, file integrity checkers are

an important capability in intrusion detection. A file

integrity checker computes and stores a checksum for every

guarded file and during periodic verifications it recomputes

checksum and compares it against the stored value to

determine if the file has been modified.

For our implementation, we used the Tripwire file

integrity tool [12]. Porting native Linux/UNIX applications

to Multipersona can be difficult due to Multipersona's lack

of the typical libc environment and other Linux utilities. In

addition, installing Tripwire directly into an instance of

Multipersona system would make it difficult to protect. If a

malicious application were to get root access, then it could

simply delete the Tripwire binaries, configuration and

database.

By leveraging Hypovisors, Tripwire can be installed out-

side Multipersona and within the embedded Angstrom

distribution. Here it benefits both from a standard GNU

build environment, in addition to isolation from malware

potentially operating within subordinate Multipersona

namespaces. Such malware would be unable to detect the

Tripwire installation, its processes when running, or the fact

it is accessing files within its filesystem.

Once Tripwire is installed, we can modify the

configuration to monitor the Multipersona container's data

and system directories and the init.rc boot script. Based

upon this setup, we can monitor the Multipersona file

system and detect the installation of different apps.

Compiling the Multipersona sources with build type as

“user” prevents us from having root access. This enables us

to effectively test with real malware.

4) Cold-Swap Personas

The cold-swap version of the system secures a persona by

encrypting the root file system of the secure personas with a

128-bit Advanced Encryption Standard (AES) key. Entering

a passphrase decrypts and starts the persona. Since

Multipersona separates its filesystem into several partitions,

only the system, user data, and cache partitions were

encrypted to optimize performance.

Three user instances were demonstrated: work use,

personal use, and family use. Both the work and personal

modes were encrypted. In this implementation the initial

ramdisk, which contains the root mount point was not

encrypted. When the user switches personas, that image's

partitions are unencrypted and mounted by a loopback de-

vice onto the original system, data, and cache folders. The

Multipersona system could then be restarted to load the

secure persona. This allows for encrypted storage of

sensitive documents, cryptographic material such as SSH or

GnuPG keys, confidential information, etc.

Using multiple personas provides the ability to separate

and secure data from possibly malicious applications. For

example, in the secure persona, the marketplace can be dis-

abled preventing the user from installing additional

applications, which could be malware. Any applications

added to the system would need to be from trusted sources.

This separation of data allows users to store sensitive

information, such as contact data, on the secure persona

without the fear of malware in the insecure persona gaining

access to that data. Also, the encryption provides another

level of security if the device were lost. Because of the

process and filesystem isolation provided by the hypovisor,

an adversary will not know that there is a secure encrypted

profile in the system.

The major disadvantage to this method is that encryption

and decryption are resource intensive. In order to switch to a

secure profile, the current profile must be aborted and the

new persona mounted, decrypted and booted. Depending

upon the strength and method of encryption used and the

amount of data to decrypt, this can cause an unacceptable

amount of time. In addition, keys can be lost or forgotten

which would render the associated data unrecoverable.

Encryption that is managed by the user can cause

problems in a managed network by rendering necessary files

inaccessible to the network managers. If you forget your

passphrase then there is no chance of recovering your data.

In addition, only data stored on the device is protected. Re-

mote wiping [16] of information and reset of the stolen

device is possible, depending on the awareness of the user.

A naive user need not be aware of the existence of such

options. Also, by the time one realizes the device is stolen,

and information could have been compromised.

5) Hot-Swap Personas

Use of containers allows for the concurrent execution of

multiple personas with disparate security levels. This

facilitates the isolation of sensitive information from

different security classifications. For example, a corporation

might tightly control the use of a corporate persona whereas

the user's persona is more versatile to allow for other

beneficial applications not adhering to corporate policy.

Figure 4: Device Namespace Multiplexing

With the use of multipersona virtualization, these personas

can execute concurrently, avoiding the unacceptable

switching costs.

IV. IMPLEMENTATION

The Cells [2] project demonstrated the power of using

containers to quickly swap between different simultaneous

personas. Our contribution is the addition of the hypovisor

that allows these simultaneous personas to be integrity

checked from below, and securing them with SE Linux.

This section details the system implementation and pro-

vides a variety of quantitative performance metrics

associated with Multipersona operating in a containerized

environment.

A. Container Implementation

The kernel namespaces were implemented using the LXC

container system for Linux. This system utilizes the built-in

cGroup and namespaces of the Linux kernel to provide re-

source management and process isolation between the host

system and the different virtualized instances [3]. The

cGroup feature provides resource management (process

containers) and the namespaces feature provides resource

isolation for the system. In addition, cGroups is used to

manage the amount of processing time each guest instance

uses.

The hypovisor running the LXC container system is based

on the Angstrom Embedded Linux distribution [1].

Angstrom was chosen for its foundation in the

OpenEmbedded project, and broadly supports a wide variety

of hardware platforms. In addition, the Angstrom

distribution website provides the Narcissus online builder

which allows a developer to quickly generate a custom root

filesystem. The online builder provides the ability to add

many packages to the root filesystem such as networking,

console, and development tools. In addition, the online tool

can build a toolchain used for cross compiling systems such

as LXC. In order to best support the Multipersona OS within

a container, Multipersona version of the Linux 3.0.8 kernel

was used for the underlying system kernel. Support was

added to the kernel for namespaces, cGroups, virtual

networking and Ethernet.

The kernel is the core or lowest level of the system which

is shared between the host and the container instances.

Table 1: Memory utilization for a variety of scenarios

The hypovisor includes an embedded version of the GNU

libc and busybox. Along with the generated cross compiling

toolchain, these tools were used to port many existing

applications to the host system.

In order to build Multipersona for the LXC container system

several changes were made to the standard Google source.

Specifically, the Dalvik functions used to fork and spawn

new processes attempted to set the Linux capabilities for the

newly created thread. This function was disabled in order

work within the LXC system. In addition, some changes

were made to other files such as init and init.rc.

After the changes to Multipersona were made, the

Multipersona system was successfully booted in a container

on the Angstrom host. Since LXC uses the namespace and

cGroup features to isolate process, the Multipersona

instance was unable to view any processes belonging to the

host. However, the

Angstrom hypovisor host had full control over any

Multipersona processes.

This allows the virtual instance to remain separate from

the host or any other virtual instance. For multiple instances

of Multipersona to run concurrently, a demultiplexor must

be used to control each instance's access to the physical

hard-ware and also to facilitate switching between instances.

Figure 4 shows the how the switching can be done using a

virtual device namespace multiplexer. This swaps the

control of the instance and hardware devices as and when

we switch between the foreground and background

instances.

Summarizing, our design has the following features:

1. The kernel is the standard Multipersona kernel and device

drivers for the specific mobile device;

2. Hypovisor contains the user space tools to setup and

launch containers and virtual instances and supports the

GNU tools that are found on a typical Linux distribution;

3. Isolated virtual instances cannot detect the hypovisor's

presence, allowing the host instance to use additional

tools to silently monitor the virtual instances;

4. SE Linux incorporated in the kernel helps in writing

individual policies for the applications and makes sure

that no applications acquire more information than

needed;

5. Integrity auditing tools, e.g. Tripwire, help monitor the

filesystem for changes, and unauthorized changes are

informed to the user; and

6. Isolated instances of Multipersona do not communicate

with each other, thus, there is no transfer of information

between the instances.

The isolated namespaces are logical within the kernel,

which uses to separate the processes. As long as the kernel

and Angstrom's root user has not been compromised, a

process that is within a child namespace will be jailed to that

namespace

C. SE Linux Implementation

While originally based on a custom port of SE Linux to

Multipersona, the ultimate implementation draws heavily

from the SE Multipersona project. The key difference is that

the SE Linux userspace tools are ported to the hypovisor

instance of Angstrom, rather than as userspace tools for

Multipersona. In fact, the Multipersona containers need not

know SE Linux is present on the underlying system, as long

as the kernel does the necessary filesystem markings and

policy enforcement.

To develop policies for the hypovisor, SE Linux was run

in permissive mode, where policy violations are logged.

Using the audit2allow tool, appropriate policies for the

hypovisor were formulated. Key variations from a typical

embedded installation are the components necessary to

support LXC containers, which leverage a variety of unique

kernel features. Policies have been written for individual

applications to prevent them from accessing more

information than necessary. Setool was used for writing the

policies. Policies were written in mac_permissions.xml file

and multipersona source was recompiled.

The policies deployed for the subordinate Multipersona

in-stances are minor variants of the stock SE Multipersona

policies, with tweaks necessary to support some of the

containerized hardware resources.

D. Memory Impact

Measurement of the both the Angstrom hypervisor

running a container and native Multipersona were

completed to understand the impact the hypovisor has on

memory availability, which is important on a resource

constrained device.

Utilities like “TOP” and “Free” were used to do the

measurements. Free measures the virtual memory, allocated

memory and free memory. TOP measures the same

information and also gives information on how much

memory is consumed by each process. Three tests were

computed using a PandaBoard running three different

scenarios. In the first scenario, a stock instance of

Multipersona was running using a native root filesystem. In

the second scenario, the Multipersona hypovisor running

Angstrom Linux is booted, with no container instances

active. In the final scenario, an instance of Multipersona is

booted on top of the Hypovisor.

Table 1 presents the results, which depending on

interpretation demonstrate that the overhead for operating

 Used (kB)

Stock Multipersona 263,660

Hypovisor 37,768

Hypovisor + One Container 311,864

the hypovisor is approximately 40-50 MB of memory. The

numbers are not strictly additive due to changes required to

the kernel and Multipersona installation necessary to

support Hypovisors. Also, additional processes such as the

user-space container tools LXC are running within the

Angstrom system. Lastly, the native Multipersona used

(Linaro Multipersona) has additional memory optimization

techniques that the containerized Multipersona does not

utilize.

V. CONCLUSION AND FUTURE WORK

Key future work will focus on further memory

optimizations, allowing multiple, simultaneous instances of

Multipersona to share a common base of shared libraries.

Key challenges will center on developing SE Linux policies

to protect a common zygote operating across multiple

security domains. Additionally, the hardware multiplexer

shown in Figure 4 is rudimentary and needs further

extension to support a variety of advanced features, such as

3D acceleration supported by the Cells project [2].

Our architecture integrates three major tools for

improving Multipersona OS security: Linux containers,

integrity tools, and a custom adaptation of SE Linux.

Containers allow us to isolate instance(s) of Multipersona

from an underlying hypovisor. That hypovisor both

manages the multiple instances in a light-weight manner,

and also provides a location for running a variety of

integrity tools.

SE Linux promotes the notion of least privilege across the

overall system and minimizes the probability with which

malware can exploit containerized instances of

Multipersona and compromise the underlying hypovisor. A

reference implementation was developed on the PandaBoard

running Multipersona 4.0 on Linux kernel 3.0.8. Tests

showed that there was a minimal memory footprint for the

hypovisor. The boot time is longer than a regular

Multipersona device, but rest of processes like IO and

startup time of applications is the same.

Overall, these tools remain a piece of a larger defense in

depth security strategy for mobile devices. Application layer

tools are still required to mitigate installation of malicious

apps. Hardware-layer tools are necessary in certain

environments to provide hardware roots of trust. Enterprise

mobile device management and mobile app stores are

necessary to better integrate mobile devices into an

enterprise network and improve manageability and policy

compliance.

ACKNOWLEDGMENT

Our thanks to Joe Tront, Ingrid Burbey, Michael Fowler,

Randy Marchany, Stephen Groat, Dennis Kafura, Sonya

Rowe, Philip Balister, Bob Lineberry, and Rick Cooper for

their support and timely guidance. This was supported by

the L-3 Communications National Security Solutions Center

and the Naval Postgraduate School under contract N00244-

11-P-2026.

REFERENCES

[1] The angstrom distribution. http://www.angstrom-

distribution.org, October 2012.

[2] Andrus J. Dall, C. Hof A V, O. Laaden and J. Nieh Cells: “A

virtual mobile multipersona architecture”. In ACM

Symposium on Operating System Principles (SOSP) (October

2011), pp. 173-187.

[3] S. Bhattiprolu, E. Biederman , S. Hallyn, and D. Lezcano
“Virtual servers and checkpoint/restart in mainstream linux”.
ACM SIGOPS Operating Systems Review 42 (July 2008), pp.
104-113.

[4] S. Bugiel, L. Davi, A. Dmitrienko, T. Fisher, and A.

Sadeghi, “XMmultipersona: A new multipersona evolution to

mitigate privege escalation attacks”. Tech. Rep. TR-2011-04,

Technische University Darmstadt, 2011.

[5] J. Burns “Mobile application security on multipersona”.

Black Hat USA (2009).

[6] L. Davi, A. Dmitrienko, A. Sadeghi, and W. Winandy
“Privilege escalation attacks on multipersona”. In Information
Security Conference (ISC) (2010).

[7] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel,
and A. Sheth “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on multipersonas”. In
USENIX Conference on Operating System Design and
Implementation (OSDI), 2010.

[8] W. Enck, M. Ongtang, and P. McDaniel, “On multipersona
mobile phone application certification”. In ACM Conference
on Computer and Communications Security (CCS) (2009).

[9] C. Fleizach, M. Liljenstam, P. Johansson, G. Moelker, and
A. Mehes. “Can you infect me now? Malware propagation in
mobile phone networks”. In ACM Workshop on Rapid
Malcode (WORM) 2007, pp. 61-68.

[10] D. Kafura, D. Gracanin , M. Perez-Quinones, and T.
DeHart, “An approach to community-oriented email privacy”.
In IEEE International Conference on Information Privacy,
Security, Risk and Trust (PASSAT) 2011, pp. 966- 973.

[11] G. Kim, and E. Spafford,”The design and implementation of
tripwire: A file system integrity checker”. Computer Science
Technical Reports 93-071, Purdue University, November
1993.

[12] Nils. “Building andriod sandcastles in multipersona's
sandbox”. In Blackhat Abu Dhabi 2010.

[13] J. Oberheide “Multipersona hax”. In Proceedings of
SummerCon 2010.

[14] M. Polychronakis, P. Mavrommatis, , and N. Provos, “Ghost
turns zombie: Exploring the life cycle of web-based
malware”. In USENIX Workshop on Large-Scale and
Emergent Threats (LEET) 2008.

[15] P. Ruggiero, and J. Foot, “Cyber threats to mobile devices”.

Tech. Rep. TIP-10-105-01, United States Computer

Emergency Readiness Team, April 2010.

[16] R Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia,
and X. Wang “Soundcomber: A stealthy and context-aware
sound trojan for multipersonas”. In Network and Distributed
System Security Conference (NDSS) 2011.

[17] A. Shabtai “Securing multipersona-powered mobile devices
using SE Linux”. IEEE Security and Privacy 8, 3 May 2010,
pp. 36-44.

[19] D. Shetty “Demystifying the multipersona malware”.

SecurityXploded: An Infosec Research and Development
Portal, September 2011.

[20] D. Sin, J. Ahn, and C. Shim, “Progressive multi gray-
leveling: A voice spam protection algorithm”. IEEE Network
20, 5, September 2006, pp. 18- 24.

[21] S. Smalley, “The case for SE Multipersona”. In Linux
Security Summit, 2011.

