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Obstructive sleep apnea (OSA) is characterized by apneas and hypopneas that result in hypoxia, cerebral
hypoperfusion, endothelial dysfunction, inflammation, and oxidative stress. These pathophysiologic
processes likely contribute to neuronal damage. Tau is a protein that stabilizes microtubules and, along
with amyloid beta (Ab), is associated with neurodegenerative processes. We sought to determine if tau
and other biomarkers of inflammation were related to OSA severity.

Concentrations of tau, Ab40, Ab42, c-reactive protein (CRP), TNF-a, interleukin (IL)-6, and IL-10 were
measured in blood and compared between participants with moderate-severe OSA (n ¼ 28), those with
mild OSA (n ¼ 22), and healthy controls (n ¼ 24). The cohort included relatively young, primarily male
active duty military personnel without a history of traumatic brain injury or neurodegenerative disease.
Total biomarker concentrations were determined from plasma samples using an ultra-sensitive detection
method, Simoa™, and CRP was assayed by ELISA. Total tau and IL-6 concentrations were elevated in
participants with moderate-severe OSA, with a mean apnea-hypopnea index (AHI) of 26.1/h, compared
to those with mild OSA (mean AHI 8.6/h) and healthy controls (mean AHI 2.1/h). Tau concentrations were
also significantly correlated with the AHI (r ¼ 0.342, p ¼ 0.004). Our findings show that tau is elevated in
the blood of young patients with moderate-severe OSA, suggesting that this degree of sleep-disordered
breathing is a contributing factor in the development of neurodegenerative disorders. The finding of
increased IL-6 further suggests that inflammatory biomarkers are present early in the course of this
chronic disease.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Obstructive sleep apnea (OSA) is a highly prevalent disorder, found
in up to 30% of males between the ages of 30 and 70 [1]. OSA is
characterized by repetitive episodes of partial or complete upper
airway obstruction during sleep [2] and can result in intermittent
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hypoxia and fragmented sleep [3]. These processes can cause micro-
structural vascular injuries and oxidative stress [4] that may increase
the risk for cognitive deficits, even in young patients [5,6]. Supporting
this, evidence of white matter changes are observed in patients with
OSA [7], suggesting that OSA may cause neuronal damage.

Tau is a microtubule-associated protein that functions as a
structural element in the axonal cytoskeleton and is necessary for
normal neuronal activity [8,9]. At low levels, amyloid-beta (Ab)
functions to maintain neuronal growth, synaptic activity, and sur-
vival [10]; however, at high enough levels, Ab forms aggregates and
eventually neurofibrillary plaques that have significant implica-
tions for cognitive deficits [11,12]. A recent study reported elevated
concentrations of phosphorylated-tau (p-tau) and Ab40, Ab42, and
total Ab levels in middle-aged cognitively normal OSA patients
(mean age¼ 44.31) compared to healthy controls [13]. Additionally,
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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in the cerebrospinal fluid (CSF), higher total tau/Ab42 levels were
associated with OSA and cognitive impairments in elderly patients
(mean age ¼ 67.96) [14]. In a study assessing healthy children and
children with a diagnosis of obesity, OSA, and obesity þ OSA,
children with a diagnosis of OSA and obesity þ OSA had signifi-
cantly elevated blood levels of Alzheimer's disease (AD)-related
proteins, Ab42, and presenilin-1 (PS1). Adenotonsillectomy in
children with OSA further resulted in significant reductions in
A3b42 and PS1 levels, suggesting that OSA may accelerate AD-
related processes [15]. These studies suggest that the activity of
tau and Ab is altered in OSA and may contribute to the future
development of neurodegenerative disorders.

Oxidative stress, as a result of repetitive hypoxia and re-
oxygenation during OSA [16,17], leads to the activation of pro-
inflammatory cascades [18]. Inflammatory biomarkers such as IL-
6 have recently garnered attention for their role in promoting
vascular inflammation [19] and contribution to OSA-related car-
diovascular morbidity [20,21]. Understanding the association be-
tween blood biomarkers of neuronal pathology (tau and Ab40/42)
and those of inflammation (TNFa, IL-6, IL-10, and CRP) in younger
patients with OSA could help establish an understanding of the
course of these chronic illnesses.

OSA is typically viewed as a disorder associated with middle-
aged males, and our previous research has shown that military
personnel are diagnosed with OSA at a mean age of 36.7 years [22].
However, instituting appropriate treatment at an earlier age could
potentially delay the development of neurodegenerative changes.
The purpose of our study was to determine whether peripheral
blood levels of tau, Ab, and other markers of inflammation (IL-6, IL-
10, CRP, and TNF-a) are elevated in relatively young patients with
OSA. An additional exploratory aim was to determine whether
peripheral tau was elevated in proportion to the severity of sleep-
disordered breathing (SDB). Determining the biological contribu-
tors of OSA-related health risks could lead a better understanding
of the pathophysiology of this complex disorder.

2. Materials and methods

2.1. Study design and participants

All 74 participants were active duty military personnel with no
prior diagnosis of traumatic brain injury (TBI) and/or were screened
negative for TBI on the Warrior Administered Retrospective Casu-
alty Assessment Tool [24]. Participants underwent a clinical sleep
medicine evaluation, which included a neurological examination
with mental status assessment [23]. All participants had no signs or
symptoms of neurodegenerative disease as determined from a
clinical interview, and a medical data review of their records was
performed to exclude individuals with a diagnosis suggestive of
cognitive impairments.

All patients in the study underwent an attended in-laboratory
diagnostic polysomnogram (PSG) using standardized techniques
(Polysmith 5.0, Neurotronics, Gainesville Florida) with 16 chan-
nels including electrooculogram, electroencephaologram, elec-
trocardiogram, electromyogram (submental and bilateral tibial)
air flow measurements using both oronasal thermal sensors and
nasal air pressure transducers, tracheal sounds using microphone,
rib cage and abdominal movement by inductance plethysmog-
rahpy using thoracoabdominal belts, and continuous pulse ox-
imetry. Note that no patients in the study underwent a split-night
PSG. Participants were classified as having moderate-severe OSA
(n ¼ 28) if the apnea-hypopnea index (AHI) was �15/h and mild
OSA (n ¼ 21) if the AHI was �5/h and <15/h. For PSGs prior to July
2013, hypopneas were scored using the American Academy of
Sleep Medicine (AASM) alternate scoring criteria [25], and after
August 2013, hypopneas were scored in accordance with the
AASM revised scoring criteria [26]. Healthy controls had an
AHI < 5/h and no clinically significant sleep disorders. Blood
samples were processed following standard protocols within
30 min of the blood draw. Biometric parameters of age, gender,
race, and BMI were obtained from each participant. The height
and weight of each participant were measured during their
evaluation, which was used to calculate their BMI. The presence or
absence of the diagnosis of hypertensionwas ascertained from the
patient's medical record.

The Neurobehavioral Symptom Inventory (NSI) is a 22-item self-
report questionnaire. The tool was administered by trained research
assistants to measure neurological symptom severity and rates the
presence/severity of each symptom on a five-point scale (none,
mild, moderate, severe, and very severe). The NSI has a high internal
consistency (total alpha ¼ 0.95; subscale alpha ¼ 0.88e0.92) and
reliability (r ¼ 0.88e0.93) [27]. Additionally, the Quick Inventory of
Depressive Symptomatology (QIDS) measured total symptoms of
depression. QIDS scores range from 0 to 27 [28]. This study was
approved by the Madigan ArmyMedical Center Institutional Review
Board.

2.1.1. Biochemical procedures
Blood was collected between the hours of 9 am and 12 pm.

There were no differences within the groups for the time of blood
draw. Blood was then processed within 60 min and was frozen
at �80 �C until batch assays were undertaken. Total tau, IL-6, TNFa,
IL-10, Ab40, and Ab42 concentrations from plasma were measured
with a digital array technology using single molecule, enzyme-
linked immunoarrays (Simoa™) [29]. C-reactive protein (CRP)
concentrations were assayed by ELISA from R & D Systems. The
limits of detection for tau, IL-6, TNFa, IL-10, Ab40, and Ab42 were
0.019, 0.0055, 0.011, 0.0022, 0.196, and 0.045 pg/mL, respectively, a
200- to 1000-fold increase in sensitivity compared to conventional
immunoassay analysis methods. The limit of detection for CRP was
0.8e50 ng/mL. The reported coefficients of variation for intra- and
inter-plate values were below 10% for all analytes.

2.1.2. Statistical analysis
Statistical analysis was conducted using SPSS Statistics version

23 (IBM Corporation, Chicago, IL). Figures were developed using
GraphPad Prism. Clinical variables were compared using analysis of
variance (ANOVA) for continuous variables and chi-square (c2) for
categorical variables. ANOVA was used to compare the three
groups. Biomarker concentrations were treated as continuous data,
and the ShapiroeWilk test was used to test the assumption of
normality. In ANOVA models, covariates including comorbid
depression and insomnia were controlled for using ANCOVA
models. Bonferroni corrections adjusted for multiple comparisons
and Pearson correlations determined relationships between
continuous measures [30].

3. Results

3.1. Demographics and clinical characteristics

The healthy control (n ¼ 24), mild OSA (n ¼ 22), and moderate-
severe OSA (n ¼ 28) groups did not differ significantly in age,
gender, race, BMI, or number diagnosed with hypertension. The
mean age of the participants was 30.9 in the control group and 34.0
and 35.6 in the mild OSA and moderate-severe OSA groups,
respectively. The moderate-severe OSA group had the highest
arousal index (mean score 26.34) and the lowest oxygen nadir of
82.48% compared to healthy controls and patients with mild OSA
(Table 1).



Table 1
Demographic and clinical characteristics of participants.

Control (n ¼ 24) Mild OSA (n ¼ 22) Moderate-Severe OSA (n ¼ 28) Significance

Demographics and clinical characteristics
Age, mean ± SD 30.9 ± 7.77 34.0 ± 8.19 35.6 ± 7.77 F2,66 ¼ 0.126, p ¼ 0.882
Gender, male (%) 22 (91.7%) 21 (95.5%) 28 (100%) Х2 ¼ 2.327, p ¼ 0.312
Race, no. (%) Х2 ¼ 11.274, p ¼ 0.506
White 14 (58.3%) 16 (72.7%) 15 (53.6%)
Native American 0 (0.0%) 0 (0.0%) 2 (7.1%)
Asian 1 (4.2%) 1 (4.5%) 0 (0.0%)
Black 4 (16.7%) 2 (9.1%) 4 (14.3%)
Native Hawaiian/Pacific Islander 3 (12.5%) 0 (0.0%) 2 (7.1%)
Other/Unknown 0 (0.0%) 1 (4.5%) 3 (10.7%)
Mixed race 1 (4.2%) 1 (4.5%) 1 (3.6%)

BMI, mean ± SD 28.6 ± 3.81 30.5 ± 4.80 31.1 ± 3.75 F2,68 ¼ 2.272, p ¼ 0.111
NSI scores, mean (SD) 29.37 (18.55) 27.89 (10.85) 32.67 (14.64) F2,62 ¼ 2.83, p > 0.05
QIDS score for depression, mean (SD) 9.54 (5.18) 8.78 (4.17) 10.01 (4.00) F2,71 ¼ 2.54, p > 0.05
Self-reported measures
Epworth Sleepiness Scale, mean ± SD 10.20 ± 4.72 12.35 ± 4.32 12.52 ± 4.72 F2,63 ¼ 1.279, p ¼ 0.285
Pittsburgh sleep quality index, mean ± SD 5.29 ± 2.14 5.76 ± 2.78 7.32 ± 4.73 F2,67 ¼ 2.472, p ¼ 0.092
PSG variables
Sleep onset latency, min 7.88 ± 6.0 9.9 ± 7.9 7.5 ± 9.0 F2,67 ¼ 0.650, p ¼ 0.526
Rapid eye movement latency, min 18.92 ± 4.5 20.28 ± 5.6 17.7 ± 5.9 F2,67 ¼ 0.608, p ¼ 0.547
Total sleep time, min 415.08 ± 49.4 419.02 ± 49.6 392.49 ± 72.3 F2,67 ¼ 1.454, p ¼ 0.241
Sleep efficiency, % 92.68 ± 5.4 92.63 ± 5.5 89.83 ± 7.3 F2,67 ¼ 1.725, p ¼ 0.186
Stage N1, % 8.85 ± 5.0 7.08 ± 2.4 14.13 ± 9.9 F2,67 ¼ 7.083, p ¼ 0.002
Stage N2, % 42.80 ± 10.9 43.59 ± 9.3 40.71 ± 12.1 F2,67 ¼ 0.467, p ¼ 0.629
Stage N3, % 25.91 ± 15.7 26.37 ± 9.7 19.53 ± 13.6 F2,67 ¼ 2.124, p ¼ 0.127
Stage REM, % 18.92 ± 4.5 20.28 ± 5.6 17.67 ± 5.9 F2,67 ¼ 0.608, p ¼ 0.547
Wakefulness after sleep onset, min 30.23 ± 22.2 29.80 ± 23.9 40.88 ± 32.1 F2,61 ¼ 1.230, p ¼ 0.299
AI 13.22 ± 6.4 15.47 ± 6.7 26.34 ± 21.7 F2,67 ¼ 5.639, p ¼ 0.005
AHI 2.12 ± 1.3 8.56 ± 2.5 26.09 ± 21.3 F2,67 ¼ 20.358, p ¼ 0.000
Oxygen saturation nadir, % 90.00 ± 3.7 86.38 ± 5.4 82.48 ± 7.4 F2,67 ¼ 9.528, p ¼ 0.000

Note: SD, standard deviation; BMI, body mass index; NSI, Neurobehavioral Symptom Inventory; QIDS, Quick Inventory of Depressive Symptomatology; PSG, poly-
somnography; REM, rapid eye movement; AI, arousal index; AHI, apnea-hypopnea index.
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3.1.1. Proteomic biomarker concentrations
We observed significant differences between the three groups in

concentrations of tau (F2,70 ¼ 12.734, p ¼ 0.000) and IL-6
(F2,70 ¼ 6.844, p ¼ 0.002). Patients with severe OSA had higher
mean tau and IL-6 concentrations (tau: 5.39 ± 2.57 pg/mL; IL-6:
2.93 ± 1.74 pg/mL) than patients with mild OSA (tau:
2.95 ± 2.02 pg/mL; IL-6: 1.74 ± 0.71 pg/mL) and controls (tau:
2.48 ± 1.94 pg/mL; IL-6: 1.72 ± 1.21 pg/mL) (Fig. 1), and these dif-
ferences remained significant even when BMI was controlled for.
Moreover, we independently included covariates in these models,
which may be linked to these findings, including demographics
(age, race, and gender) and clinical variables (total sleep time, BMI,
and hypertension); yet none of these variables changed the sig-
nificance of the findings.
Fig. 1. Comparison of total peripheral tau and IL-6 concentrations between controls and pa
with a Bonferroni post hoc test.
There were no significant differences found in the other
biomarker proteins, ie, TNFa, IL-10, Ab40, Ab42, and CRP (data not
shown, p > 0.05 for all). Increased tau concentrations were corre-
lated with higher AHI (r ¼ 0.342, p ¼ 0.004) (Fig. 2), and maximum
desaturation (0.293, p ¼ 0.02) (data not shown) in the OSA groups.
No other biomarker was significantly related to AHI or any of the
other PSG sleep measures (p > 0.10 for all).

4. Discussion

Our results show that relatively young patients with moderate-
severe OSA have elevated concentrations of tau and IL-6 in pe-
ripheral blood samples, compared to patients with mild OSA
and healthy controls. Additionally, we report that peripheral tau
tients with mild and moderate-severe OSA. p-values were calculated using an ANOVA,



Fig. 2. Significant positive correlation between tau concentrations (pg/mL) and AHI
(r ¼ 0.342, p ¼ 0.004) in participants with OSA (mild and moderate-severe). Multiple
comparisons were corrected by Bonferroni post hoc test.
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concentrations are correlated with AHI, suggesting that this
biomarker may be associated with OSA severity. Given that our
sample of young patients did not have comorbidities, the most
likely etiology of these findings may be attributed to OSA. Our
findings are based on a study in elderly patients showing that
higher CSF total tau levels are associated with OSA and cognitive
impairments [14]. However, they do not support findings linking Ab
to OSA [13,14]. In contrast to these prior studies, we employed a
more sensitive assay detection method, Simoa™, which uses single
molecule counting technology, compared to traditional ELISA
methods, allowing for the use of plasma instead of CSF [31], which
increases the clinical applicability of the study findings.

Developing the temporal relationship between tau and OSA is
important as tau-related neuronal degeneration, according to our
findings, andmay begin early in the course of this chronic illness. In
a recent study, even one week of disturbed sleep in a middle-aged
cohort was related to elevations in Ab40 and worse sleep quality
associated with increased CSF tau, suggesting an association be-
tween sleep disruption and the risk for neurodegenerative disease
later in life [32]. There is some evidence of the impact of age on the
relationship between SDB and tau. Specifically, moderate-severe
SDB was associated with greater tau and p-tau in elderly patients
(mean age ¼ 68.95 years) compared to those with mild SBD and
healthy controls, indicating that SDB may shape tau pathology and
contribute to AD-associated cognitive impairments and dementia
[33]. In OSA, reductions in the volume of the hippocampus, caudate,
and cortical gray matter (GM) relate to poor performance on neu-
rocognitive tasks [34]. Furthermore, a PET study of patients with
OSA revealed significant cerebral changes, with GM reductions and
decreases in brain metabolism, compared to healthy controls,
suggesting that OSA contributes to lasting neuronal changes [35].
Together these studies suggest that tau relates to neuronal
impairment in OSA; however, additional long-term studies in
representative samples are needed to confirm these associations.
Developing biomarkers related to OSA and neuronal changes is
important as there is a demonstrable association between neuro-
degeneration and OSA, but temporal relationships remain elusive
[36]. Our study builds on these findings by reporting increases in
peripheral tau in a cohort of younger patients than previously
studied, thereby providing key insights into the potential inflam-
matory and neurodegenerative processes that may begin early in
the course of this chronic disease.
We also report that IL-6 is elevated in this young cohort with
moderate-severe OSA, supporting previous findings in older pa-
tient groups [37e41]. As hypertension was infrequent in these pa-
tients, the most likely etiology for increased IL-6 was SDB. These
peripheral elevations likely result from oxygen desaturations that
cause diffuse hypoxia-related injury, which aggravates existing
inflammatory responses or induces new responses in damaged
tissue [42]. Excessive inflammation is a potential contributing fac-
tor to the development of cardiovascular and cerebrovascular
complications that patients with OSA are at risk of [43e46].

We observed no differences in Ab levels between any of the
three groups. This contrasts previous preclinical studies that have
observed associations between conditions of chronic hypoxia and
increased Ab production [47,48] and observed significant blood
elevations of Ab in patients with OSA [13,15]. Taken together, our
findings suggest that Ab pathological development may be at
subclinical levels of detection in these young individuals. Moreover,
Ab levels may be peripherally undetectable early in the course of
this chronic disorder because of sequestration of Ab directly in the
central nervous system. Thus, further studies are needed to further
elucidate the time course of this critical protein to mitigate the
development of cognitive deficits.

Clinically accessible biomarkers such as those reported here are
necessary to improve the timely diagnosis of OSA-associated
morbidity and to possibly ameliorate the risk of neurological
damage and cognitive deficits. While it has been recently observed
that peripheral tau concentrations are associated with cognitive
declines [49,50], undoubtedly, CSF analysis remains the most sen-
sitive assay method for the prediction of cognitive deficits because
the CSF is in direct contact with the brain [51]. However, peripheral
blood measurement remains a more clinically accessible and
feasible method for biomarker detection. There is a need for future
longitudinal studies to examine the temporal relationship of these
biomarkers, and their associations with cognitive impairments to
accurately characterize the progression of OSA. Findings from
future studies may lead to the identification of patients with OSA at
high risk for cognitive impairment and neuropathology and iden-
tify novel targets to prevent long-term morbidity.

Our study has limitations that merit discussion. As the time
period for recruitment of subjects extended over a revision in
scoring criteria by the AASM, two different scoring methods were
used. The hypopnea scoring criteria from 2012 and the alternative
criteria for scoring hypopneas from 2007 differ on the decrease in
the nasal pressure signal amplitude, from 30% of baseline in 2012 to
50% in 2007. Thus, patients in the cohort prior to the imple-
mentation of the 2012 criteria may have had a lower AHI on the
basis of this change. Our analysis of the biomarkers from the pa-
tients in the two time periods (specifically, those scored using the
2007 alternate versus the 2012 AASM criteria) did not show any
difference; thus, the scoring methodology change likely did not
affect our results for the biomarkers tau or IL-6. Hypoxia is related
to biomarkers of AD [33], but in our analysis, we did not evaluate
other indices of hypoxia, ie, oxygen desaturation index (ODI). While
patients with severe OSA likely have a higher ODI, we cannot make
an assessment about this parameter, which could have contributed
to our findings. Additionally, while no participant had signs or
symptoms of neurodegenerative disease on the basis of clinical
evaluation, formal neuropsychological testing was not performed.
The patients in our cohort have sleepiness, which is not necessarily
typical of all patients with OSA, asmostmilitary personnel sleep 6 h
per night. The effects of insufficient sleep may in part contribute to
our findings, but to date, no study has determined whether tau is
elevated solely because of insufficient sleep in humans [32,52e54].
Furthermore, insufficient sleep related to military service would
equally affect patients in the control group and the sleep apnea
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groups. Nevertheless, his study suggests that tau and IL-6 provide
insights into patients who may be at risk for irreversible neuronal
pathology due to OSA, helping to focus clinical efforts on those
patients who require definitive treatment for this disorder.

5. Conclusion

OSA is the most prevalent type of SDB and is characterized by
recurrent cycles of upper airway obstruction, hypoxia, and sleep
fragmentation. We found elevated levels of tau and IL-6 in a rela-
tively young cohort with moderate-severe OSA. These findings
suggest that inflammation and neuronal damagemay begin early in
the course of this chronic illness and that this degree of SDB may
contribute to the development of neurodegenerative disorders.
This knowledge could determine which patients require early
definitive therapy to potentially mitigate and prevent irreversible
neuronal damage.
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