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Abstract. Pandemics such as Covid-19 have posed a set of questions concerning safe space usage 
given the risk of virus transmission in confined and open spaces. In this context, this report 
presents a risk analysis methodology for the use of crowd modelling tools as an aid to assess safety 
in confined and open spaces. Crowd models can be used to investigate people movement in the 
built environment, thus they have a great potential for the performance of proximity analysis. The 
report presented here addresses first the psychological and physical aspects linked to physical 
distancing (also called social distancing). Given the limited current knowledge on human behaviour 
and space usage during pandemics, the changes needed in crowd modelling tools to appropriately 
represent people movement are listed. This includes issues associated with modifications of the 
fundamental relationships between the key people movement variables (speed/flow vs density), 
and issues linked with interactions between pedestrians (e.g. collision avoidance, queuing 
mechanisms, route choice). Suggestions for new crowd modelling outputs are provided in order 
to enhance their use during pandemics. In addition, practical solutions concerning space usage are 
presented in light of the assessment of human safety through a risk evaluation based on proximity 
analysis and/or exposure assessment. This is deemed to help identifying design and management 
solutions to decrease the risk of virus transmission. 
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1. Introduction 
How many people could safely access a given building or event? How do we ensure appropriate 
physical distancing between people in public spaces? What modifications are required in the space 
design and crowd management solutions to minimize the risk of virus transmissions? Those are 
just examples of questions generated by the Covid-19 pandemic which concern the safe usage of 
spaces. In fact, stakeholders from all over the world dealing with crowds have been greatly affected 
by Covid-19 pandemic and face issues in safely hosting and managing crowds. To date, events 
involving large crowds have been cancelled or postponed worldwide, restrictions have been posed 
to public gatherings and different prevention and/or mitigation measures have been adopted to 
decrease physical interactions among people (Anderson et al., 2020). In fact, the threats to a crowd 
which affect safety are indeed now including the risk of virus transmission. This risk should be 
considered along with other concurrent threats which may affect a crowd (e.g. a fire, antagonistic 
attacks, crowd crush). 
 
Several countries in the world (e.g. Italy, UK) have adopted drastic measures such as compulsory 
lockdowns which may have short- and long-term impact on how public spaces are used (Honey-
Roses et al., 2020). In addition, the absence of a vaccine for Covid-19 has led to recommendations 
on physical distancing provided by the World Health Organization (WHO, 2020) that were 
implemented (to a varying degree) in several national regulations. It should be noted that there is 
no consistency in the adopted measures worldwide (e.g., different recommendations for physical 
distancing are available (Movement Strategies, 2020)) and those change over time in light of the 
phase of the pandemic in which a given jurisdiction is operating. The term physical distancing is 
used here as the alternative term social distancing may be linked to social isolation. Physical distancing 
can be implemented in several manners, but its main aim is to keep people apart from each other. 
Lockdowns are the most stringent form of enforcing physical distancing. Common alternatives 
include providing recommendations on a certain minimum distance to be kept between people in 
crowded places. Physical distancing is overall designed to reduce the physical interactions between 
people and its implementation relies on the assumption that the risk of virus transmission increases 
with the decrease of distance between people. This issue is also associated with the use of personal 
protective equipment (e.g. face masks), for which inconsistent recommendations are provided 
worldwide as their use and consequences on physical distancing is object of an ongoing debate 
(Cheng et al., 2020; Desai and Aronoff, 2020; Howard, 2020) 
 
Modelling tools have been adopted in several instances to inform policy making and 
preventive/containing measures to prevent the spread of the SARS-CoV-2 virus. The main type 
of modelling findings used for this purpose are mostly obtained using macroscopic epidemiological 
models, among which the most used are different variations of the SIR model. The SIR model 
stems from early analytical approaches developed to study the spread of disease (Kermack and 
McKendrick, 1927) and is an epidemiological tool that estimates the evolution of the number of 
infected people in given conditions under a given set of assumptions. The SIR model divides the 
population into three groups: (1) susceptible, S; (2) infectious, I; and (3) recovered/removed, R. 
Differential equations can be used in mathematical epidemiology to consider also the (4) exposed 
class, E, to create the so-called SEIR model (Anderson et al., 1992). Over the years, several 
macroscopic epidemiological models have been developed, including stochastic transmission 
models (Kucharski et al., 2020) and mean-field epidemiological models (Giordano et al., 2020). 
 
The great benefit of macroscopic epidemiological models is their applicability to large scales which 
make them very suitable to inform policy making of regional and national governments. 
Nevertheless, their focus is the macroscopic scale, thus their use at a much smaller scale may suffer 
from their lack in resolution, i.e., they may not comprehensively take into account the movement 
of people and how their interactions may affect the risk of virus transmission. The pedestrian and 
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evacuation dynamics community is well aware of this issue, given a keynote presented on this topic 
back in 2012 (Johansson and Goscè, 2014) which initiated the discussion on the need to couple 
the field of crowd dynamics/modelling with mathematical epidemiology (Goscé et al., 2014). Even 
if the heterogeneity in population and movement patterns have been addressed at a macroscopic 
scale (especially in transport settings (Goscé and Johansson, 2018; Meloni et al., 2011; Saberi et al., 
2020)), current disease spreading models do not specifically address the space usage of pedestrians 
at a microscopic scale. This makes it difficult for a stakeholder involved in hosting or managing a 
crowd in a confined space or at an event to use epidemiological models. To address this issue, 
another type of modelling tools can help to identify suitable solutions aimed at minimizing the risk 
of virus transmission at a microscopic scale: crowd models. 
 
Crowd models, such as hydraulic models (Gwynne and Rosenbaum, 2016; Predtechenskii and 
Milinskii, 1978), microscopic continuous models (Helbing et al., 2000; Thompson & Marchant, 
1995) and discrete models (Lovreglio et al., 2015; Pelechano and Malkawi, 2008), can be used to 
represent the movement and behaviour of pedestrians at an individual (microscopic models) or 
aggregate (macroscopic models) level in open and confined spaces.  The term confined space is 
here used as it refers to several types of spaces in the built environment, such as buildings or 
transportation means (e.g. trains, bus, aircrafts, etc.). Crowd models have been used so far mostly 
to ensure comfort and safety of pedestrians (e.g. to investigate fire evacuation scenarios (Ronchi, 
2020)) and identify crowd management solutions to optimize movement flows and reduce waiting 
times (Bellomo & Gibelli, 2016; Johansson, 2008). Crowd models generally allow the assessment 
of the time to clear a given space based on a set of fundamental pedestrian movement variables, 
such as flowrates, walking speeds, occupant characteristics and behavioural rules. 
 
The simulation of people movement could provide a great help to decision makers as they could 
be used to perform a risk analysis related to disease spreading and in case of concurrent threats. 
During the Covid-19 pandemic, some of the most known and used crowd models (Lovreglio et 
al., 2019) have released new features aimed at performing proximity analysis, considering physical 
distancing or counting the interactions between pedestrians in a given physical distance radius. 
While these features are useful to evaluate space usage, given the lack of knowledge concerning 
the current spread of disease (with great uncertainty in the mechanism of virus transmission (Bahl 
et al., 2020; Lewis, 2020)), they do not allow a comprehensive quantitative understanding of the 
impact of different measures on occupant exposure. In addition, some of the fundamental 
assumptions adopted by crowd models would need to be re-evaluated in light of the possible 
changes in crowd dynamics and behaviour that could occur during a pandemic. In other words, 
crowd models cannot directly be applied to perform a proximity analysis or investigate occupant 
exposure without a careful evaluation of their assumptions. This is because crowd models have 
been developed and configured for another scope and make use of datasets which were collected 
prior to the surge of the pandemic. It should be noted that - to the time this report was written - 
no experimental data was available on crowd dynamics during pandemics, thus the authors discuss 
here a set of possible solutions to deal with this lack of information. 
 
For this reason, it is crucial to perform a review of the assumptions currently used by crowd models 
which may impact the crowd model outputs relevant for virus transmission risk analysis. This is a 
required step to ensure credibility of a proximity analysis or occupant exposure assessment. Given 
the current (limited) knowledge on crowd dynamics and behaviour during a pandemic, it is 
important to assess whether there is a need for retrofitting existing crowd models with a different 
set of underlying assumptions, input configurations or new model outputs. 
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1.1. Aim and objectives 
The overall aim of this work is to develop and present a risk analysis methodology for the use of 
crowd modelling tools during the Covid-19 pandemic. The use of crowd models during a 
pandemic requires a careful evaluation of the suitability of the assumptions they use given possible 
changes in crowd dynamics and human behaviour. This work investigates the key aspects 
concerning possible physical and behavioural changes linked to physical distancing and speculates 
on the subsequent modifications needed in the input calibration phase of crowd models. The 
guidance provided include both short-term and long-term solutions on crowd model use and 
development. In other words, guidance is provided both on the calibration of existing crowd 
models to represent crowd dynamics in times of pandemics (i.e. to attempt an appropriate 
calibration of crowd models relying on existing approaches/tools) as well as future changes needed 
at a more fundamental level. The end goal is to provide a methodology to perform a risk evaluation 
based on proximity analysis and occupant exposure assessment performed with a crowd model. 
This evaluation can be performed both to analyse the risk of virus transmission per se as well as the 
case of concurrent threats (i.e. multiple risks along with virus transmission, e.g. fire or antagonistic 
threats leading to evacuation scenarios). The risk analysis performed can eventually be used to 
assess the safety of a space (confined or open) to a given risk (or risks) and identify suitable design 
and management solutions aimed at improving human safety. 
 
The type of crowd models investigated here include macroscopic flow-based models (e.g. the 
hydraulic model of the Society of Fire Protection Engineering (Gwynne and Rosenbaum, 2016)) 
to microscopic agent-based models able to track people movement at an individual level (Adrian 
et al., 2019). The steps needed for the calibration of crowd model inputs and the associated 
modifications in the underlying assumptions to be adopted by the models are provided. This work 
also advocates for the identification of new crowd modelling outputs which can be used for the 
performance of risk analysis linked to the risk of virus transmission. An example of such new 
outputs is provided through a new model for the estimation of occupant exposure which is here 
presented.  
 

1.2. Report overview 
This report presents a methodology developed for the use of crowd models during the Covid-19 
pandemic. The report structure is here presented. The first chapter introduces the project (chapter 
I: Introduction) and the overall aim and objectives of the project. Chapter II (Method) introduces 
the general approach employed in the development of the methodology (considering virus 
transmission as a threat in isolation or in case of concurrent threats), including the domain of 
application of the methodology and the type of models under consideration. Chapter III 
(Psychological issues linked to physical distancing) presents a set of key crowd behaviour which 
are generally expected during people movement and how they may change in times of pandemics. 
Chapter IV (Physical issues linked to physical distancing) provides a critical analysis of the key 
aspects of space usage, route choice and movement that may change due to physical distancing. 
Chapter V describes the issues associated with proximity analysis and exposure assessment in light 
of the assumptions concerning the virus transmission mechanisms. Chapter VI (The methodology 
for crowd model usage) presents the steps that a crowd model user would need to undergo to 
make use of a crowd model in times of pandemics along with a checklist of aspects to be 
considered. This includes the analysis of possible changes needed to retrofit existing crowd models 
and input configuration. Chapter VI (Design and crowd management solutions) presents practical 
uses of the methodology to enhance safety in case of risk of virus transmission. Chapter VII 
presents an exemplary case study in which the methodology is applied to a stadium. Chapter VIII 
(Discussion and Conclusions) discusses the benefits of a systematic methodology for crowd model 
usage in times of pandemics, short-term and long-term needs for model developments and 
presents a set of final remarks concerning future research needs in this domain.  
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2. Method 
The general approach employed in the development of the risk analysis methodology for the use 
of crowd models in times of pandemics included different steps (see Figure 1). First, the crowd 
dynamics literature was reviewed to identify the key psychological and physical variables/factors 
which may impact crowd dynamics and behaviour during a pandemic. This was by no means 
intended to be a comprehensive review of the field of crowd dynamics, as this type of reviews is 
already available in the literature and covers the whole spectrum of empirical research methods, 
e.g., see (Haghani, 2020a, 2020b). Instead, the study of key crowd dynamics variables was made 
here to identify the most crucial aspects which might affect people movement during pandemics. 
Subsequently, the issues associated with people movement during pandemics were analysed in light 
of their implementation in two of the most commonly adopted approaches in crowd modelling 
(Bellomo et al., 2016; Duives et al., 2013). First, a macroscopic flow-based approach (Gwynne and 
Rosenbaum, 2016) in which an homogeneous group of people move through space. Second, an 
agent-based modelling approach in which individual behaviours are represented through 
movement modelling (e.g. the steering model (Reynolds, 1999)) and the parametric equations of 
each agent can be obtained. 
 
The identification of the key crowd dynamics variables which may be impacted by pandemics was 
followed by the identification of the relevant crowd modelling outputs for the study of virus 
transmission risk. Two main domains were analysed: 1) Proximity analysis and 2) Occupant 
exposure assessment. Although apparently similar, these two domains have a significant 
conceptual difference. A risk assessment based on proximity analysis assumes that risk increases 
with the decrease of distance between people. The study of occupant exposure does not instead 
necessarily rely on this assumption, i.e. different mechanisms could be used to estimate the risk of 
virus transmission, and those may not necessarily be based on distance criteria. Given the current 
uncertainty in understanding the mechanisms of the SARS-CoV-2 virus transmission (Lewis, 2020) 
and future possible applications of this methodology to other viruses with different transmission 
mechanisms, both domains are here included. 
 

 
Figure 1. Steps for the development of the methodology for the use of crowd models in times of pandemic. 
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3. Psychological issues linked to physical 
distancing 

Social identity theory (Tajfel and Turner, 2004) has been used in crowd dynamics research to 
investigate the behaviour of groups and individuals in a crowd. A common distinction is made 
between physical crowds and psychological crowds. Physical crowds are generally intended as 
groups of moving individuals that are co-present in a given space. In contrast, a psychological 
crowd include members of a group which share a social identity (Reicher, 2011). This is an 
important distinction during a pandemic as it may influence the sense of responsibility that people 
may take towards maintaining physical distance.  
 
Crowds tend to self-organize themselves while moving in space, with a set of non-verbal cues 
which can influence crowd behaviour. Visual stimuli are known to be one of the key cues affecting 
crowd movement (Gibson, 1986; Warren, 2018). In normal situations, visual attention is estimated 
to occur primarily within a 2 m range and the likelihood to respond to a visual stimulus depends 
on spatial features (Gallup et al., 2012). Nevertheless, many aspects concerning how people 
monitor their environment strongly depend on the social context, and crowd dynamics alone 
cannot be used to interpret the processes associated with visual attention (Fotios et al., 2015; 
Gallup et al., 2012). This will likely have an impact on visual perception of individuals in a crowd 
during a pandemic, as the social context would differ significantly. 
 
Researchers in the field of proxemics investigated the psychological factors associated with choices 
of interpersonal distances and personal spaces since the 50ies and 60ies (Hall, 1982; Sommer, 1962) 
through a number of research methods, including naturalistic and experimental studies (Hayduk, 
1978). Several findings relevant to physical distancing in times of pandemics can be obtained from 
this field. For instance, individuals with high credibility are generally more accepted when they 
move closer to other individuals compared to individuals with low credibility (Burgoon and Jones, 
1976). This information could be linked to the behaviour of a crowd towards staff members or 
emergency personnel.  
 
Personal space is a common concept used in proximity analysis to study the willingness of people 
to get closer to other members of a crowd (Hecht et al., 2019). Personal space of an individual has 
been considered as rather stable over time (at least within a given instance of use of a space). 
During pandemics, personal space can be interpreted as a buffer zone, in which a person might 
see others as potential intruders, thus feeling potentially threatened by the presence of others. An 
important limitation of the concept of personal space is that it mostly relies on the analysis of a 
single individual rather than investigating the behaviour of collective groups. Psychological crowds 
do not move as individuals, and they tend to maintain closer proximity to others regardless of the 
number of people present in an areas (Templeton et al., 2018).  These issues should be considered 
when studying physical distancing of a crowd. 
 
Apart from the approach based on the analysis of personal space, it is here recommended to study 
physical distancing through the analysis of crowd identification and social identity (Tajfel and 
Turner, 2004). Approaches suggesting that crowding is inherently aversive have been in fact 
contradicted by recent studies (Novelli et al., 2013) which found out that, in normal situations, 
crowds may naturally tend to stay together in contexts in which social identification is present. In 
other words, people may tend to naturally go towards more crowded places. This means that there 
are conditions in which situations of high crowdedness can actually be enjoyed rather than being 
inherently aversive. 
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The psychological issues associated with physical distancing might get even more complex in case 
of concurrent threats (e.g. a pandemic plus a fire or antagonistic attack). To the authors knowledge, 
no data are currently available on the psychological factors impacting crowd movement and 
behaviour during concurrent threats. In this case, conflicting crowd needs would have to be taken 
into consideration, including the need to reach a safe place as soon as possible and the need to 
keep physical distancing while moving.  
 
Pandemics such as Covid-19 have posed a great challenge for the stakeholders involved in 
managing crowds as they need to actively identify measures to provide an enjoyable crowded 
environment while ensuring a continuous monitoring of crowd safety. This highlights the 
importance of enhancing the feeling of being part of psychological crowd and promote responsible 
behaviour which leads to physical distancing. Different methods have been used to promote 
physical distancing measures, including education campaigns, persuasion, incentives, coercion, 
environmental modifications and restrictions (Bavel et al., 2020; Van Assche et al., 2020). 
Behavioural scientists (Bonell et al., 2020) advice on the use of instructions which aim at the feeling 
of being part of a psychological crowd (i.e., the protect each other message) while instructing people 
on keeping physical distance during pandemics. In fact, a psychological crowd with a shared social 
identity linked to the Covid-19 threat would likely follow more responsibly the physical distancing 
provisions received and attempt to coordinate movement to diminish the risk for themselves and 
for others. A physical crowd would instead likely be focused on the individual risk rather than the 
collective resilience.  
 
The choice to keep physical distance in a crowd depends on group behaviour. In this context, 
consensus decision making in crowds has been largely investigated in the literature (Dyer et al., 
2009). Different contrasting aspects are crucial when considering physical distancing. First, a 
known issue is that the collective behaviour concerning navigation may be influenced by a small 
proportion of individuals, i.e., small informed groups may steer decision-making of entire groups 
(Dyer et al., 2008). Conflicting information has also been investigated, showing that social 
influence can negatively affect movement behaviour in case of passive conflict (Kinateder et al., 
2014a). In other situations, groups may tend to decide in favour of the majority, i.e. decision 
making always involve some form of designated or emergent leadership (Dyer et al., 2009). This is 
linked to informative and normative social influence (Deutsch and Gerard, 1955), which explains 
that people may tend to gather information from others and conform to the mass and “stick to 
the norm”. In the context of physical distancing, this practically means that the choice of the 
distance kept of each individual would also be influenced by the distance kept by others. This 
would not be linked merely on physical proximity, but also to the tendency of people to 
conforming to the norm. In other words, a crowd including a given proportion of people 
maintaining (or not) physical distance would likely encourage the others in doing the same. To 
encourage a crowd in maintaining physical distancing, it is therefore crucial to ensure that an 
influential portion of the crowd intends to do so and that there is a leadership group which would 
exhibit exemplary behaviour. In this way, the rest will be encouraged to follow the norm. 
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4. Physical issues linked to physical distancing 
Recommendations on physical distancing are deemed to have a significant impact on the physical 
aspects linked to the movement of people in normal and emergency situations. This section 
investigates these issues in light of the core components included in crowd models (International 
Standards Organization, 2020; Society of Fire Protection Engineers, 2019), considering aspects 
related to space usage, route choice, and movement.  
 

4.1. The impact of physical distancing on space usage 
Provisions on physical distancing between people can be given for a static or moving crowd and 
are prone to interpretation, including when they are implemented in a crowd model. This depends 
on several factors, among which it is important to note: 

1. Crowd models may adopt different assumptions in the representation of people, i.e., their 
ability to represent their characteristics in terms of shape, size and grouping of the 
individuals may vary 

2. Different reference points can be used when calculating physical distancing  
3. Physical distancing provisions should generally be interpreted for dynamic implementation 

in crowd models (i.e. not for static positioning of the agents) 
 
The assumptions on the dimensions of body size and their modelling representation can affect the 
impact of physical distancing. Crowd models generally calculate movement in bi-dimensional 
spaces which are connected with vertical elements (e.g. stairs, ramps, elevators). For this reason, 
people are generally represented in 2D for the calculations and then visualized in 3D for pure 
visualization purposes. In addition, while macroscopic crowd models may represent people as an 
homogenous crowd having the same characteristics (Gwynne and Rosenbaum, 2016), microscopic 
crowd models may be able to represent individual body shapes (e.g. generally an ellipsis or a circle 
with a given diameter, see the diameters c in Figure 2). It should be noted that this is currently 
possible mostly in continuous models, while most network-based models assume crowds of 
homogenous characteristics corresponding to the type of network elements in use (Ronchi, 2020). 
For this reason, microscopic continuous crowd models are likely more suitable for the study of 
the impact of physical distancing. 
 
The reference points for physical distancing estimations may also be different. An example is 
provided in Figure 2, in which the same physical distancing provision may be interpreted 
differently in relation to the assumption adopted for the reference points from which the distance 
is considered. Reference points could be the centre of the person or different parts of the body, 
e.g., noses, arms or feet. As crowd models generally represent people as two-dimensional elements, 
the same physical distancing can therefore be calculated between the centre points (a in Figure 2) 
or between the closer points between people (b in Figure 2).  

  
Figure 2. Possible interpretation of physical distancing considering distance between the centre point of people (a) or 

between the closest point between people (b). (c) indicates the diameter of the body size, which is generally 
represented in a continuous microscopic crowd model as an ellipse or a circle. 

 



13 
 

Crowd models may represent the variability of individual dimensions of the agents, thus their users 
should decide if taking this into consideration in a physical distance calculation which refers to the 
closer point between people. 
 
Provisions on physical distancing (and their interpretation) can have a direct impact on global and 
local density, thus affecting occupant loads in a given space. A first clear impact regards how many 
people are allowed in a given area or building, but also how maximum density may change in a 
specific part of the area under consideration (maximum local density). Also in this case, the 
provisions themselves can be interpreted differently during their application for the analysis of 
space usage.  
 
Since physical distancing provisions may relate to static or moving crowd, a physical distance that 
could be kept for a static crowd does not necessarily imply that it can be kept for a crowd in 
motion, as additional space may be required for movement. The implementation of a target 
physical distance might indeed require a higher physical distance provision when considering the 
movement of a crowd. This is particularly important for crowd modelling applications, as they 
generally refer to scenarios in which the crowd is in motion.  
 
During the process of pedestrian navigation, collision avoidance mechanisms take place between 
pedestrians. Existing models are programmed and calibrated to represent collision avoidance 
(Kitazawa and Fujiyama, 2010) based on behaviour in which no pandemic was present.  Depending 
on several variables, such as local crowd density (Plaue et al., 2012), modelled body size and 
personal space (Hayduk, 1978; Hecht et al., 2019), pedestrians may steer their direction of 
movement to a lower or greater extent when interacting with other individuals during a pandemic 
(or objects/obstacles (Alhawsawi et al., 2020)).  This could be made in an attempt to minimize 
face-to-face interaction by changing the orientation of movement. This can be implemented in 
different manners in microscopic crowd models, including force-based approaches (Helbing and 
Molnár, 1995) or modifying steering behaviour (Ben Amor et al., 2006). The rules for local physical 
interactions between people may be greatly affected by a pandemic, in an attempt to keep higher 
physical distance than usual. Crowd models may be programmed to force pedestrians in keeping 
a given physical distance (e.g. 2 m) while in motion. This may have subsequent effects on crowd 
movement (affecting variables such as speed, acceleration, route choice, etc.) and during queuing, 
as people may be forced to wait until a space gets free from the presence of other people (or 
groups of people) before proceeding in a giving direction, or decide to re-route in another direction 
with lower congestion. While modelling capabilities of this kind are already available, real life data 
are lacking, thus there is still a limited understanding on how the actual crowd would behave in 
such situation.   
 
An important aspect to highlight is that, regardless of the physical distancing provisions, grouping 
may substantially affect space usage (Moussaïd et al., 2010; Zanlungo et al., 2014). This is because 
established groups are generally not required to keep physical distancing, thus affecting the whole 
crowd dynamics and behaviour. Crowd models may allow the simulation of groups of different 
sizes and the priority they have during their movement (i.e. if the rules for collision avoidance can 
be weighted in relation to group characteristics such as their size). The selection of the size of the 
established groups and their behavioural characteristics (i.e. if they are likely to stick together 
during their movement and to which extent) is deemed to have an important impact on the density-
related variables, among which, the maximum achievable local densities, the maximum achievable 
global densities and occupant load. It should be noted that estimations of local densities in crowd 
models may also change in relation to the type of assumptions adopted for the reference area 
assumed in the density calculations (Plaue et al., 2012). These issues are reflected in the dependent 
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variables that crowd model users want to investigate (either the needed capacity of a space or the 
maximum number of people allowed in a given area). 
 
In summary, different assumptions can be made for the calculation of the number of people 
allowed in a given area using a crowd model (or the space needed for a given crowd) in relation to 
the physical distancing provision provided. The final estimation can therefore depend on:  

1) Static or moving crowd (e.g. extra space needed between people for movement of other 
people) 

2) Space taken up by each individual, i.e. their shape (i.e., a virtually infinitively small dot, a 
fixed or varying space, type of shape, etc.) 

3) Reference point for the calculation of physical distancing (centre or closer points between 
people) 

4) Reference area for density estimations (e.g., with or without obstacles, approach in use for 
density calculations) 

5) Positioning of people (e.g. uniform or not, individual vs presence of established groups) 
6) Free area assumed around each pedestrian (e.g., circular, square, offset of represented 

person, etc.) 
 

4.2. The impact of physical distancing on route choice 
Route choice is currently represented in crowd models making use of different assumptions. Those 
are generally categorized into four types of modelling algorithms 1) Shortest distance, 2) Quickest 
time, 3) User-defined, 4) Conditional (Ronchi, 2020). A route choice algorithm based on shortest 
distance calculates the route which leads to the shortest travelled path walked by each agent. A 
quickest time algorithm modifies the routes of a shortest distance algorithm with some sort of 
optimization algorithm (Bladström, 2017) which represents the impact of congestions and queuing 
on movement time and yields the paths which lead to the shortest time. Crowd models may also 
give the opportunity to script the behavioural itineraries adopted by the agents; this method is 
often called as user-defined. Conditions may also be implemented in crowd models in order to 
modify the adopted routes of the agents (conditional method); these may include environmental 
conditions (e.g. smoke) or interactions between agents (e.g., social influence, collision avoidance).  
 
The underlying route choice algorithm adopted by a crowd model is not explicitly designed to 
account for the behaviour which may occur during a pandemic. In fact, overall navigation in space 
generally does not consider the proximity to other people in itself as a deterrent for selecting a 
given route. For this reason, models should be re-calibrated (when possible) to represent possible 
re-routing due to the will of people to avoid congested areas.  In this context, users should question 
the assumptions adopted by crowd models when representing queuing. As mentioned, current 
crowd models are not originally designed to account for proximity as a deterrent for queuing in a 
given space. Crowd models may implement direct or indirect variables to represent the patience 
levels of pedestrians (Heliövaara et al., 2013), intended here as their likelihood to change their 
route. Therefore, crowd model users may need to review their models to check if modifications of 
such inputs may lead to a more realistic representation of queuing in a given space. In fact, 
pedestrians may decide to not wait in a crowded queue, but to re-route towards a less congested 
space. This could generally be performed in microscopic agent-based models by scripting the 
behavioural itineraries adopted by the agents, which often make use of so-called way-points (i.e. 
intermediate points which the agents have to pass by before reaching their target destination).  
 
An implicit representation of behavioural itineraries may become more cumbersome when 
performed manually by a user with increasing complexity of the underlying scenario and a higher 
number of agents. For instance, a circulation scenario may already require the representation of 
behavioural itineraries (to represent a set of actions, i.e. people navigating a supermarket while 
shopping), thus making it difficult for the crowd model users to represent appropriate route choice 
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decisions aimed at keeping physical distancing on top of the underlying behavioural itineraries to 
be represented. In addition, given the uncertainty in route choice decisions, it is generally advisable 
to represent route choice adopting a stochastic approach. This leads to the need to investigate the 
impact of the variability in route choice decisions simulating multiple possible behavioural 
itineraries and evaluate their impact on results (Ronchi et al., 2014b). Given the complexity of 
those interactions, the number of scenarios required to perform a comprehensive assessment of 
the possible situations that may occur would rapidly grow.  
 
In this context, the decision-making process concerning route choice in case of concurrent threats 
(i.e. a pandemic and a fire/antagonistic threat) is unknown. This means that we currently do not 
know under which conditions, people may choose a given route and what they would set as priority 
between reaching a safe place or staying away from a congested area due to the risk of virus 
transmission. 
 

4.3. The impact of physical distancing on movement 
Physical distancing can have a significant impact on the manner a crowd moves. This is linked to 
the attempts that a crowd can make to keep a given physical distance with other people or 
obstacles. This issue may relate to other people for a single individual moving or a group of people 
in case an already established group is moving in a given space. 
 
In scenarios in which a pandemic is not present, crowds tend to follow a set of self-organising 
rules while moving, including shock waves in very dense crowds, lanes of uniform walking 
directions in counterflows, circulating flows at intersections or clogging effects at bottlenecks 
(Helbing et al., 2005). In this context, there are currently no experimental data to confirm if such 
self-organizing behaviour would occur as well during a pandemic. For this reason, crowd model 
users may need to review the assumptions adopted by a given model as certain assumptions on 
self-organizing rules might be questioned. An example is lane formation (Feliciani and Nishinari, 
2016) (i.e. the tendency to follow people ahead when moving in a relatively dense crowd), as this 
behaviour might go against the principle of maximizing physical distance while walking. 
 
The modifications in the physical distance kept between people may have a significant impact on 
crowd movement. Since no experimental data are currently available on this subject, and the 
possible great variability in pedestrian behaviour in response to physical distancing provision, it is 
recommended here to modify the fundamental relationships between speed/flow and density in 
relation to the assumed density range in which speed is deemed to be affected by others. The 

maximum density 𝑑𝑚𝑎𝑥 will be a function of the physical distancing and it can be calculated in 
relation to the assumptions adopted concerning space usage (see section 4.1).  
 
An example of a calculation method to perform a modification of the speed-density relationship 
is presented here, considering the starting assumptions and modelling approach presented in the 
hydraulic model of the Society of Fire Protection Engineers (SFPE) Handbook (Gwynne and 
Rosenbaum, 2016) to represent movement in a corridor. This has been chosen as it is currently 
implemented in evacuation models (Thunderhead Engineering, 2020) and sometimes used as 
benchmark testing for them (Ronchi et al., 2014a). Considering that in the original hydraulic model, 
a theoretical maximum density corresponding to an impeded speed equal to 0 m/s corresponds to 

3.8 people/m2, the new maximum density 𝑑𝑚𝑎𝑥 depending on the physical distancing 𝑃𝑑 will be 
equal or below that threshold value (see Equation 1).  
 

𝑑𝑚𝑎𝑥 = 𝑓(𝑃𝑑) ≤ 3.8 
𝑝𝑒𝑜𝑝𝑙𝑒

𝑚2
    

[Equation 1] 
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Similarly, the minimum density 𝑑𝑚𝑖𝑛which corresponds to the start of a decrease in the unimpeded 
speed is 0.54 people/m2 in the original hydraulic model, thus the new density to start the impeded  
speed can be assumed to be a number between 0 and 0.54 people/m2 (see Equation 2). The speed 
reduction in relation to density 1) might be kept unimpeded until the same value of density adopted 
in the SFPE hydraulic model, 2) might start decreasing linearly from the value of unimpeded speed 
corresponding to density equal to 0 people/m2 (the unimpeded speed is assumed 1.19 m/s in the 
SFPE model) or 3) might start decreasing from a given intermediate value between these two 
thresholds. 
 

0 ≥ 𝑑𝑚𝑖𝑛 ≥ 0.54  
𝑝𝑒𝑜𝑝𝑙𝑒

𝑚2
 

[Equation 2] 
 

The range of densities in the fundamental relationships between speed and densities in which 
speed is impeded is therefore according to Equation 3. 
 

𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥  
[Equation 3] 

 

Considering the two known points in the speed-density relationship A=( 𝑑𝑚𝑎𝑥 ,0) and 

B=(𝑑𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥), it is therefore possible to calculate the speed based on the assumed physical 
distancing affecting density (see Equation 4). 
 

𝑣 = 𝑣𝑚𝑎𝑥    IF 𝑑 < 𝑑𝑚𝑖𝑛  [unimpeded speed] 

𝑣 = 𝑣𝑚𝑎𝑥 (
𝑑−𝑑𝑚𝑎𝑥

𝑑𝑚𝑖𝑛−𝑑𝑚𝑎𝑥
)  IF 𝑑 ≥ 𝑑𝑚𝑖𝑛  [impeded speed] 

[Equation 4] 
 

In case the assumption that 𝑑𝑚𝑖𝑛=0 is made (i.e. there is no unimpeded speed when densities are 
higher than 0), then Equation 4 becomes Equation 5. 
 

𝑣 = −𝑣𝑚𝑎𝑥 (
𝑑

𝑑𝑚𝑎𝑥
− 1)  

[Equation 5] 
 

Similarly to movement and the fundamental speed-density relationships, also flowrates may need 
to be updated in accordance with the implications of physical distancing. The specific flow can be 
simply obtained by multiplying the speed obtained in Equation 4 with the corresponding density 
(see Equation 6). 
 

𝐹𝑠 = 𝑣𝑑  
[Equation 6] 

 
It should be noted that the shape of the flow-density relationship accounting for physical 
distancing might be different than the pre-pandemic one, as the limit for the so called capacity 
drop (Cepolina, 2009) might not be reached due to the lower achievable density levels. Given the 
lack of experimental data, the assumption adopted in the presented hypothetical relationships is 
that they follow a similar trend to the ones for pre-pandemic conditions. An alternative approach 
would be to consider just the left-hand side of the flow-density relationship, i.e., this will not be a 
quadratic curve but a monotonic function. 
 
A set of examples of fundamental speed-density and flow-density relationships corresponding to 

different assumptions for 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 for movement in a corridor are presented in Figures 3 
and 4.  
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In these examples, it is here presented: 

1) Green curve: The existing SFPE relationships for corridors in which 𝑑𝑚𝑖𝑛 =0.54 

people/m2 and 𝑑𝑚𝑎𝑥=3.8 people/m2 

2) Purple curve: hypothetical relationships for corridors in which 𝑑𝑚𝑖𝑛=0 people/m2 and 

𝑑𝑚𝑎𝑥=1.9 people/m2 (half of the maximum density in the hydraulic model of SFPE) 

3) Cyan curve: hypothetical relationships for corridors in which 𝑑𝑚𝑖𝑛=0 people/m2 and 

𝑑𝑚𝑎𝑥=1.0 people/m2 

4) Orange curve: hypothetical relationships for corridors in which 𝑑𝑚𝑖𝑛=0.54 people/m2 and 

𝑑𝑚𝑎𝑥=1.0 people/m2 
 

 
Figure 3. Examples of speed-density relationships in a corridor impacted by social distance and considering 

different assumptions for minimum and maximum density for impeded speeds. 
 

 
Figure 4. Examples of flow-density relationships in a corridor impacted by social distance and considering different 

assumptions for minimum and maximum density for impeded speeds. 
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Similar curves can be obtained for different staircase configurations using the same methodology. 

The curves can be obtained substituting in the equations the value of 𝑣𝑚𝑎𝑥 as presented in Table 
59.4 of the SFPE handbook chapter on the hydraulic model (Gwynne and Rosenbaum, 2016). The 
values are also reported in Table 1. 
 
 

Table 1. Maximum unimpeded exit flow speeds for different stair configurations reported in the hydraulic model 
presented in the SFPE handbook (Gwynne and Rosenbaum, 2016). 

Riser (inches) Tread (inches) Max speed (m/s) 

7.5 10 0.85 

7.0 11 0.95 

6.5 12 1.00 

6.5 13 1.05 
 

 
The resulting relationships for the same examples early presented are plotted in Figures 5-12. 
Similar to the previous examples, it is here presented: 

1) Green curve: The existing SFPE relationships for different staircase configurations in 

which 𝑑𝑚𝑖𝑛=0.54 people/m2 and 𝑑𝑚𝑎𝑥=3.8 people/m2 
2) Purple curve: hypothetical relationships for different staircase configurations in which 

𝑑𝑚𝑖𝑛=0 people/m2 and 𝑑𝑚𝑎𝑥=1.9 people/m2 (half of the maximum density in the SFPE 
relationships) 

3) Cyan curve: hypothetical relationships for different staircase configurations in which 

𝑑𝑚𝑖𝑛=0 people/m2 and 𝑑𝑚𝑎𝑥=1.0 people/m2 
4) Orange curve: hypothetical relationships for different staircase configurations in which 

𝑑𝑚𝑖𝑛=0.54 people/m2 and 𝑑𝑚𝑎𝑥=1.0 people/m2 
 

Any other relationship can be obtained defining the values for 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 and  𝑣𝑚𝑎𝑥 . It should 
be noted that crowd models may adopt different simulation approaches to represent these 
fundamental relationships. They may either be emergent, i.e. the result of underlying rules of 
interactions between pedestrians or they can be directly implemented within a given model. It 
should also be noted that the SFPE relationships are intended for design, i.e. they were designed 
making use of a conservative approach rather than directly reflecting experimental observations. 
In addition, these relationships were defined with demographics which may not fully reflect an 
ageing and less fit population of today (Spearpoint and MacLennan, 2012). 
 
 

This simple calculation method of the fundamental relationship between speed-density and flow-
density based on the hydraulic model can also be modified to directly implement the calculated 

value of 𝑑𝑚𝑎𝑥 as a function of physical distancing 𝑃𝑑 . 
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Figure 5. Examples of speed-density relationships in a staircase 7.5x10 inches impacted by social distance and 

considering different assumptions for minimum and maximum density for impeded speeds. 
 
 

 
Figure 6. Examples of flow-density relationships in a staircase 7.5x10 inches impacted by social distance and 

considering different assumptions for minimum and maximum density for impeded speeds. 
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Figure 7. Examples of speed-density relationships in a staircase 7.0x11 inches impacted by social distance and 

considering different assumptions for minimum and maximum density for impeded speeds. 
 
 

 
Figure 8. Examples of flow-density relationships in a staircase 7.0x11 inches impacted by social distance and 

considering different assumptions for minimum and maximum density for impeded speeds. 
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Figure 9. Examples of speed-density relationships in a staircase 6.5x12 inches impacted by social distance and 

considering different assumptions for minimum and maximum density for impeded speeds. 
 
 

 
Figure 10. Examples of flow-density relationships in a staircase 6.5x12 inches impacted by social distance and 

considering different assumptions for minimum and maximum density for impeded speeds. 
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Figure 11. Examples of speed-density relationships in a staircase 6.5x13 inches impacted by social distance and 

considering different assumptions for minimum and maximum density for impeded speeds. 
 

 
Figure 12. Examples of flow-density relationships in a staircase 6.5x13 inches impacted by social distance and 

considering different assumptions for minimum and maximum density for impeded speeds. 
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(Rimea, 2016) or Test 13 in the protocol for testing crowd evacuation models provided by the 
international standards organization (ISO) (International Standards Organization, 2020), which 
could be modified to consider this issue. An example is provided here by modifying ISO Test 13 
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aiming at exploring the relationship between flow rate, density and walking speeds in a corridor 
considering physical distance. 
 
In the test, the ability of crowd models to represent a uni-directional flow including physical 
distance shall be verified by showing the relationship between walking speed, flows, and densities. 
This test can help evaluating if the model results are implemented with enough accuracy given the 
intended use of the model. An example is provided here. 

 

Test name Relationship between walking speed, uni-directional flow and density 
considering physical distance 

Objective Assess qualitative consistency between the relationship between walking speed, 
uni-directional flow and density assignment and model representation in case of 
physical distance provisions.  

Geometry A corridor is represented in accordance to the following Figure 13 and it is 
divided in two zones, namely zone 1 (white), zone 2 (light grey) and zone 3 
(white). 

 
Figure 13. Schematic geometric layout of the test (top view). 

 

Scenario(s) Fill in the entire corridor (zone 1, 2 and 3 in Figure 13) with the maximum allowed 
number of people in accordance with your assumed starting physical distance 
(people can be placed at random in the space). They have pre-evacuation time equal 
to 0 s and a walking speed of 1 m/s is assigned to the entire crowd. 
Step 1: The occupants move to the right towards the exit of the corridor. Place the 
last occupant in zone 2 near line A and measure the time that it takes from line A 
to line B and estimate the associated walking speed. Measure the average occupant 
flows in line B (with a time interval decided by the tester) starting from the 
beginning of the simulation until the last occupant in zone 2 arrives to Line B. 
People densities in Zone 2 are recorded when the last occupant in zone 2 reaches 
the centre of zone 2. 
Step 2: Step one is repeated with a number of occupants equal to the double of the 
original number (i.e. to verify if the model allows an initial density higher than the 
physical distance provision in use and how people adjust their position to maintain 
the physical distance), three quarter of occupants, half the occupants, one quarter 
of occupants, and one eight of the occupants. 

Expected 
result 

The relationship between walking speeds and people densities in Zone 2 as well as 
the flows in line A vs people densities in Zone 2 are plotted and compared with the 
underlying assumptions used in the evacuation model.  

Test 
method 

The test method is a qualitative verification of the crowd movement. 

User’s 
actions 

The tester may show results in relation to different time intervals adopted for the 
estimation of flows, people densities and walking speeds. Different methods for 
implementation of physical distance in the model can be used (e.g. enforcing 
distance between agents, setting up the speed/density relationship within the 
model). Further testing can be made by modifying this test to consider the impact 
of people with movement disabilities (i.e., some evacuees may have a slower speed 
and/or occupy a larger space) and attempting modifying the initial number of 
people further and their initial location. 
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5. Proximity analysis and exposure assessment  
The use of crowd models in times of pandemics should take into consideration the risk of virus 
transmission. To date, there is no clear understanding on the mechanisms of transmission of 
SARS-CoV-2 (Lewis, 2020). While studies performed at the beginning of the Covid-19 outbreaks 
seemed to indicate that the disease spread was mostly linked to droplets (Bahl et al., 2020), more 
recent studies tend to indicate that airborne transmission may be considered as well (Morawska 
and Cao, 2020; Yu et al., 2004) 
 
The main mechanisms to be considered for the SARS-CoV-2 virus transmissions are (1) physical 
contact, (2) droplets, and (3) airborne routes (Yu et al., 2004). This can be translated into different 
assumptions for the assessment of virus transmission. These are presented graphically in Figures 
14 and 15. The transmission mechanisms in Figure 14 can be applied for both open spaces as well 
as confined spaces. The transmission mechanism in Figure 15 mostly relates to confined spaces 
(i.e. buildings or transportation means), as it is mostly linked with airborne transmission. The study 
of the risk of virus transmission would require at least the tracking of their individual trajectories 
in space over time. Therefore, macroscopic crowd models in which individual 
movement/behaviour cannot be tracked may not be suitable for this type of analysis. 
 

Transmission by physical contact Transmission considering distance radius 

 

or 

  

 

Transmission by face-to-face contact within a 
distance radius 

Transmission by being in the same area 

  
Figure 14. Possible assumptions on risk of virus transmission considering the simulated pedestrians in an open 

space or a confined space. 
 

Transmission by physical contact (top left in Figure 14) can be considered in an open or confined 
space and is here accounted for when people are in direct physical contact to each other (i.e. 
pedestrians “touch each other”) or they touch an object which could potentially transmit a virus 
(e.g. a door handle in the example in Figure 14). It should be noted that most microscopic crowd 
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models generally assume rigid bodies representing only the head and shoulders of people (Duives 
et al., 2013), i.e. non-deformable pedestrian bodies (without any hand to hand contact) allow a 
simplified detection of collision and contacts between agents. Three-dimensional representations 
of the agents are generally for purely visual purpose and no use of upper extremities is generally 
simulated (Ronchi, 2020). Similarly, the resolution of existing crowd models generally does not 
include the representation of small objects or provide too many details on the elements in a given 
area. Therefore, this transmission mechanism is practically implemented considering the 
representation of the agents within the model (often represented in crowd models as circles or 
ellipses) and assuming contact with other people once their coordinate in space overlap with others 

or the assumed location of certain objects. The example in Figure 14 shows one agent 𝑖 and one 

agent 𝑗 that are in physical contact within a space or an agent 𝑖 which is close to a door handle 
(this could similarly be assumed for other objects which agents could touch during their 
movement). This assumption requires from a crowd model the information concerning the 
pedestrian trajectories over time and the dimension of the agents.  
 
The transmission by physical distance radius assumes the number of people in a given radius 
defined by the user (e.g., 1 or 2 m). The centre of the physical distance radius can be assumed to 
be the centre of the modelled pedestrian, its nose or the outer border of the shoulder. This is 
implemented by checking the coordinate in spaces of the pedestrians and evaluating if they are 
within the given radius of interaction. This can conservatively consider that if one agent has at 
least one part of its body within the social distance radius, it is assumed to be within that radius. 

The example in Figure 14 (top-right) shows one agent 𝑖 and one agent 𝑗 that are within a given 

social distance radius 𝑅𝑖 . This assumption requires from a crowd model the information 
concerning the pedestrian trajectories over time (e.g. the parametric equations of pedestrian 
trajectories) and the reference point (i.e. centre, nose, outer boundary of an ellipse) for which the 
trajectories are provided. 
 
Transmission can be assumed when people are in face-to-face contact to each other within a given 
angle of interaction in a physical distance radius defined by the user. To facilitate implementation, 

the polar coordinates 𝛼𝑖𝑗(𝑡) and 𝜌𝑖𝑗(𝑡) can be used for defining the position of the agent 𝑗 in the 

polar space in relation to each agent 𝑖 (see the bottom-left in Figure 14), where 𝜌𝑖𝑗 changes over 

time. Zero is the case in which people physically touch each other, the max value for 𝜌𝑖𝑗 = 𝑅𝑖 

within the assumed distance radius, so 𝜌𝑖𝑗 = [0, 𝑅𝑖]. 𝛼𝑖𝑗(𝑡) changes over time and it can vary 

from zero when the agent 𝑗 is in front of the agent 𝑖 to ±𝜋 when the agent 𝑗 is right behind the 

agent 𝑖. 𝛽𝑖𝑗(𝑡) is the orientation of the agent 𝑗 in the polar space defined by the agent 𝑖. It can vary 

from zero when the agent 𝑗 is facing the agent 𝑖 to ±𝜋 when the agent 𝑗 is turning its back on the 

agent 𝑖. As such, 𝛽𝑖𝑗(𝑡) can be used to evaluate how many agents are at face-to-face contact within 

a distance radius at a given time. This can conservatively assume that if one agent has at least one 
part of its body within the distance radius, it is assumed to be checked for the face-to-face contact 
criteria. This assumption requires from a crowd model the information concerning both the 
pedestrian trajectories over time (considering a given position within the simulated agent, e.g., the 
centre of the agent), as well as the direction of movement of each pedestrian (in order to know the 
face orientation). The user would then need to make assumptions concerning the angles leading 
to face-to-face contact between pedestrians. 
 
Transmission in an open or confined space can also be assumed when agents are in the same area 
or room/compartment (see bottom-right in Figure 14). This assumption requires the information 
from a crowd model concerning the number of people in a given area/room/compartment at each 
time-step.  
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Transmission by being in the same structure 

 
Figure 15. Possible assumption on virus transmission considering the simulated pedestrians in the same structure. 

 
The last mechanisms for virus transmission (applicable only to a confined space) is when agents 
are in the same structure (see Figure 15). This is the simplest assumption from a crowd modelling 
implementation standpoint, as it only requires the information concerning how many people are 
in the structure in a given time-step. Nevertheless, a risk assessment based on this assumption 
would require information concerning the HVAC technology installed in the confined space under 
consideration along with its usage.  
 
The information provided by a crowd model concerning the risk of virus transmission can then 
be used to perform different types of analysis. Two types of analysis are currently performed, 
namely 1) proximity analysis and 2) exposure assessment. 
 
A proximity analysis is the study of the relationship between a selected element (a person in this 
case) and its neighbours (e.g., other people). The overall assumption used by this type of analysis 
is that the risk of virus transmission increases with lower distances. An exposure assessment is 
apparently similar, but it does not necessarily rely on the assumption of proximity as mechanism 
of virus transmission. For this reason, an exposure assessment could be considered as a more 
general method to address disease spread if compared with a proximity analysis. The latter could 
also make use of a deeper understanding on the physics of aerosol and droplet dispersion 
(Vuorinen et al., 2020). 
 
Different variables can be considered in a proximity and exposure assessment, mostly related to 
time and space. Given an assumed mechanism of virus transmission (as mentioned above), the 
user would identify the interactions between people (and/or between people and objects), count 
them and obtain information concerning their duration. The needed information are the 
trajectories of people over time (generally available as parametric equations for each person in the 
simulation) and possibly (for the case of face-to-face transmission) the angle of direction of 
movement (representing the direction in which the face is pointing). A risk analysis can then be 
performed based on a set of metrics which quantify proximity or exposure.  
 
Examples of metrics (based on different mechanisms of virus transmission) are provided below 
and they can be at individual or aggregate level: 

1) Maximum number of people to which each individual is in proximity with/exposed to 
2) Maximum number of objects to which each individual is in proximity with/exposed to 
3) Time spent by each individual in proximity with/exposed to at least one other person 
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4) Longer time spent by each individual in proximity with/exposed to at least one other 
person 

5) Time spent by each individual in proximity with a given object/objects 
6) Longer time spent by each individual in proximity with a given object/objects 
7) Distribution (including average and variance) of number of people to which each 

individual is in proximity with/exposed to 
8) Distribution (including average and variance) of time spent in proximity with/exposed to 

a given number of people and how those times are spread among contacts with different 
people 

9) Distribution (including average and variance) of time spent in proximity with a given 
object/objects 

10) Total aggregated number of people to which all individuals are in proximity with/exposed 
to during the whole simulation time 

11) Total aggregated time spent by all individuals in proximity with/exposed to others during 
the whole simulation time 

12) Total aggregated time spent by all individuals in proximity with objects during the whole 
simulation time 

 
These metrics are examples of outputs which can be obtained by a microscopic crowd models 
which is retrofitted to perform a proximity analysis or exposure assessment.  They may be used in 
isolation or in conjunction with each other to derive information concerning the safe usage of a 
given space. 
 
It should be noted that apart from the assumptions for the mechanism of virus transmission, 
crowd model users would also need to assess the possible impact of groups prior accessing the 
area under consideration. In fact, it is necessary to perform an assessment concerning the people 
who were already moving as a group. The people-to-people interactions within those groups may 
be removed (or given a lower weight) from the calculations of the metrics as those people would 
likely already be in contact (i.e. groups of family members, friends, etc. who access an open or 
confined space together). Another important aspect to take into consideration is that different 
types of interactions may be weighted differently. Examples of this issue may be interactions with 
a higher number of people, interactions occurring with different face-to-face angles, interactions 
with people wearing personal protective equipment (e.g. face masks) or interactions with people 
vs interactions with objects. The assumptions performed by the crowd model user should be 
clearly reported in order to be able to clearly interpret the results of the analysis performed. 

 

5.1. Example of a model for exposure assessment 
An example of a model which can be used to retrofit existing microscopic crowd models to 
perform an exposure assessment is presented. The model discussed here is called EXPOSED and 
it is designed to take into account of different mechanisms of virus transmission. It has been 
primarily designed for use in confined spaces, although the principles adopted could be extended 
to open spaces. Further information about the model can be found in the paper detailing its 
development and use (Ronchi and Lovreglio, 2020). 

 
EXPOSED aims at estimating a set of metrics concerning occupant exposure in confined spaces. 
Considering that there is no information available on the initial number of agents who are 
susceptible, infected, or recovered, the model aims at quantifying the exposure of the pedestrians 

in a confined space. Assuming that each agent 𝑖 can be exposed to a certain number of people 
based on the exposure assumption in use, it is possible to obtain the information concerning 

number of agents to which the agent 𝑖 is exposed to at each time-step 𝒕=[ 𝑡0, 𝑡1, … , 𝑡𝑞 , … , 𝑡𝑓] until 
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it has left the confined space at the final time 𝑡𝑓. In this formulation we assume that the time-steps 

have the same magnitude (i.e., 𝑡𝑞+1 − 𝑡𝑞 = ∆𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∀𝑞) . This information can be 

represented as a set 𝑬𝒊 (see Equation 7) representing the number of people each agent is exposed 

to at each time-step 𝑡𝑞. 

 

Ei = {et0, et1, … , etq, … , etf}    ∀ i  
[Equation 7] 

where 𝑒𝑡𝑞 is the 𝑘 number of agents 𝑗 to which each individual agent 𝑖 is exposed at the time-step 

𝑡𝑞. 

 
The information concerning each occupant exposure at each time-step can be represented in the 

form of the matrix 𝑬𝒕
𝒊 in Equation 8. 

 

𝑬𝒕
𝒊 =

(

 
 

𝐸1

⋮
𝐸𝑖

⋮
𝐸𝑛)

 
 
=

(

  
 

et0
𝟏 … etq

𝟏 … etf
𝟏

⋮ ⋱ ⋮ ⋱ ⋮
et0
𝒊 … etq

𝒊 … etf
𝒊

⋮ ⋱ ⋮ ⋱ ⋮
et0
𝒏 … etq

𝒏 … etf
𝒏
)

  
 

 

[Equation 8] 
 
Since 𝑬𝒕

𝒊 presents the number of people each agent is exposed to at each 𝑡𝑞, it is therefore possible 

to obtain the information on the time 𝑇𝑘
𝑖  each 𝑖 agent has been exposed to a given number of 

agents 𝑘 (i.e. the exposure time to 0 occupants, 1 occupant, …, m occupants) by summing 𝑡𝑞
𝑖 , i.e., 

the number of time-steps 𝑡𝑞  in which each agent 𝑖 was interacting with a discrete number of 

people 𝑘, see Equation 9. The model user could assume that the exposure is considered either for 

any 𝑡 or only counting the time-steps in case of a minimum exposure time (e.g. counting the 𝑡𝑞
𝑖  if 

the exposure last at least for a given number of seconds/minutes, i.e. a certain number of 

consecutive 𝑡𝑞
𝑖  are required). The maximum number of occupants that agents are exposed to 

correspond to a maximum of 𝑛 − 1 if the number of people in the confined space is restricted 
(i.e. if a maximum number of people is allowed in the confined space at the same time) or to a 

generic number of people 𝑚 if we assume a transient space.  

 

𝑇𝑘
𝑖 =∑𝑡𝑞

𝑖

𝑡𝑓

𝑡0

 ∀ 𝑖, 𝑘 

[Equation 9] 

 
Considering the total time 𝑡𝑓 spent by all 𝑛 agents in the confined space, it is therefore possible to 

obtain a set of distributions 𝑇𝑘 of exposure times corresponding to a given discrete number of 

agents 𝑘 ≥ 0 . Using a distribution from the two-parameter family of continuous probability 

distributions, 𝑇𝑘 can be defined by its mean (µ𝑘) and standard deviation (𝜎𝑘) as shown in Equation 
10. 

 
𝑇𝑘  (µ𝑘 , 𝜎𝑘

2) 
[Equation 10] 
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The values reported in these distributions - corresponding to each  𝑘 - range from a minimum 
possible value corresponding to no exposure (i.e. zero exposure) to a maximum time of exposure 

𝑡𝑘,𝑚𝑎𝑥
𝑖  for each simulated agent 𝑖 to each number of 𝑘 agents they are exposed to. The summation 

over the data-points available for each of the values obtained ∀ 𝑘  (see Equation 11) helps 

performing an assessment of the cumulative exposure 𝐶𝑘 to a given number of people 𝑘. The 

higher is the value of the summation, the greater is the occupant exposure for 𝑘 > 0. The value 

of the summation for 𝑘 = 0 is an indicator of how long people have not been exposed to other 

agents in the confined space; this is called here 𝐶0.  

 

𝐶𝑘 =∑𝑇𝑘
𝑖

𝑛

𝑖=1

 

[Equation 11] 

 
The sum of all 𝐶𝑘 with 𝑘 > 0 provides a global assessment of exposure 𝐺 for the total time 𝑡𝑓 

spent by all 𝑛 agents in the confined space (see Equation 12). To obtain 𝐺, each 𝐶𝑘 is multiplied 

by a factor 𝛾𝑘 which increases the exposure in relation to the value of 𝑘. For instance, 𝛾𝑘 can be 

assumed equal to 1 for 𝑘 = 1 and with increasingly higher values when 𝑘 > 1. The choice of the 

values for 𝛾𝑘 is left to the model user. 

 

𝐺 = ∑𝛾𝑘

𝑚

𝑘=1

𝐶𝑘 

[Equation 12] 

 
The model user can therefore obtain different values for 𝐺 in relation to the assumptions adopted 
for exposure. It should be noted that the matrix in Equation 8 can also be weighted considering 
the vulnerability of each individual occupant (e.g. considering their individual properties, such as 
age, physical abilities, etc. which can often be represented within a microscopic crowd model).  
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6. The risk analysis methodology for crowd model 
usage 

A methodology for the usage of crowd models in times of pandemic is proposed and presented in 
accordance to Figure 16. This methodology could potentially be used either for the assessment of 
virus transmission risk in isolation or the case of concurrent threats (e.g. an evacuation scenario 
due to a fire during a pandemic).  A set of steps are suggested, which would need to be repeated 
in an iterative way until an adequate level of safety is reached. These steps are followed by a 
checklist for crowd model users on the aspects which need to be taken into consideration. 
 

 
Figure 16. Steps to be followed for the methodology for the usage of crowd models in times of pandemic. 

 
Step 1. Definition of goals, objectives and type of analysis 
The first step consists in the assessment of the overall goal of the analysis performed with a crowd 
model, e.g. what is worth protecting and from which type of threats (and relative priorities in case 
of concurrent threats). The objectives provide specifications on how the given goal will be 
achieved, i.e., by identifying acceptance criteria or comparing different scenarios/solutions against 
each other. This is needed to identify scenarios to be represented within the crowd model. This 
includes the identification of the type of analysis (i.e., risk analysis of virus transmission or case of 
concurrent threats) and the subsequent implications on the scenarios. Therefore, the type of 
analysis to be performed (proximity analysis or exposure assessment) and the virus transmission 
mechanism assumed is also defined at this stage. 
 
Checklist: 

1. What is the goal of the safety analysis? (virus transmission risk alone or concurrent threats) 
2. What types of analysis are going to be performed? (e.g., performance-based design of fire safety, study of 

pedestrian flows, proximity analysis, exposure assessment, etc.) 
3. Define the assumptions on virus transmission mechanism 
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Step 2. Definition of the area(s) of interest  
The crowd model user would also have to identify the area of interest given the goal and objectives 
of the overall analysis, and the area which is the object of the risk analysis on virus transmission 
(these may not necessarily overlap). This will be imported from an external model (e.g. a 2D/3D 
CAD or BIM) or directly represented within the crowd model. Depending on the mechanism of 
virus transmission assumed, the user may also take into consideration the need to modify the area 
under consideration (e.g. if airborne virus transmission is assumed, a given area under 
consideration might have air coming from an HVAC system in common with another area). 
Permanent or temporary design solutions adopted to keep physical distancing should be identified 
so that they can implicitly or explicitly be represented within the model. 
 
Checklist: 

4. Define the area of interest for the safety analysis 
5. Define the area of interest for the given assumption on virus transmission mechanism 
6. Represent/Import the areas of interest in the crowd model 
7. Identify design solutions for physical distancing  

 
Step 3. Definition of the population 
In relation to the type of space under consideration (e.g. building use, type of event), possible 
people categories and their characteristics are identified. These will relate to physical and 
behavioural characteristics linked to the goal of the analysis (i.e. virus transmission alone or 
concurrent threats). In fact, on top of the considerations made concerning typical population 
characteristics determined for crowd modelling studies (e.g. body types, walking speeds, etc.), the 
crowd model users need to identify the behaviour (and possibly vulnerability) of people associated 
with the risk of virus transmission (e.g. the likelihood of keeping a certain physical distancing). 
This means that the definition of the occupant profiles might involve not only the features needed 
for crowd modelling, but also for the assessment of the risk of virus transmission. The possibility 
to practically implement the behaviour of people in relation to the risk of virus transmission would 
depend on the tool employed for the proximity analysis or exposure assessment to be performed. 
After the definition of people in the space under consideration, the crowd model users would have 
to identify the occupant load. This analysis could be performed differently in relation to the 
representation of a transient space (e.g. a metro station, an airport terminal) or a space with a fixed 
number of people (e.g. a residential building with a given number of people inside). While in a 
space with a fixed number of people the occupant load is defined up-front, occupant load 
assessment in a transient space would also need the assessment of the flows in the entry systems. 
The size and types of groups which are present in the population should also be assessed. This is 
particularly important as it will affect the overall physical distancing that can be achieved in the 
scenario (i.e. people moving in groups would not keep physical distance). 
 
Checklist: 

8. Define people categories (who will be in the scenarios), including physical and behavioural aspects which 
may be linked to virus transmission and/or concurrent threats 

9. Define people profiles (how to represent people in the crowd model), including features like walking speeds, 
body sizes, aspects linked to physical distancing, etc. 

10. Define the type and size of established (or possibly emerging) groups 
11. Define how many people are initially present (occupant load) in the scenarios, entry points (if present) and 

where they are initially located  
 

Step 4. Definition of crowd movement and behavioural scenarios 
The overall use of the space and type of threat will influence crowd movement. In relation to the 
goal and objectives of the analysis (e.g. assessment of virus transmission or concurrent threats), 



32 
 

crowd movement and behavioural scenarios may include normal circulation or an emergency 
scenario. In addition, the movement may take place in a transient space or in a space with a fixed 
population number, thus affecting the behavioural itineraries and the target locations to be reached 
by people (e.g. a safe place in case of a fire or entering/exiting a building after shopping in a 
supermarket). Flows in entry and exit systems are identified along with any other components, 
features and procedural interventions that might impact crowd movement and behaviour. These 
aspects would have to be taken into account when defining the crowd movement scenarios. The 
aspects related to physical distancing (see Sections 3 and 4) that might impact crowd movement 
should be identified and their impact on crowd movement and behaviour assessed. In fact, when 
defining the movement and behavioural scenarios, the crowd model user also needs to decide the 
degree to which the crowd will follow the instructions provided on physical distancing during their 
movement (e.g. if the target physical distance is maintained, if chosen routes are according to the 
information given) in relation to the type of scenarios. 
 
From the perspective of movement modelling linked to physical distancing, this may include the 
need to consider modifications on the fundamental relationships between speed/flow and density, 
collision avoidance, behavioural itineraries and route/exit choice (e.g., re-routing to avoid 
congested areas), queuing mechanisms (i.e. queuing involving spatial distances), impact of groups 
(groups of different sizes may not keep physical distance or may separate), maximum achievable 
densities, procedural solutions (e.g. only uni-directional movements allowed), etc. Concerning 
behavioural aspects, the crowd model user would have to identify the behavioural characteristics 
of the crowd which may impact their likelihood of maintaining physical distance and identifying a 
range of credible behaviour while moving in space and interacting with other people or objects.  
 
The identified physical and psychological factors affecting crowd movement and behaviour would 
have to be implicitly or explicitly modelled through the process of model input calibration in which 
the methods available in the array of tools in use. In case the impact of a certain aspect cannot be 
(explicitly or implicitly) implemented within a model, appropriate conservative safety margins 
should be applied to take into account this limitation. Probabilistic approaches may be used to 
consider the variability in human behaviour. 
 
Checklist: 

12. Define detailed scenarios (e.g., circulation, evacuation) and associated use of entry/exit points 
13. Define components available for movement for each people type 
14. Define behavioural profiles (e.g., responses to the threat(s)), behaviour in light of physical distancing) 
15. Define behavioural itineraries, routes and exit usage in relation to physical distancing 
16. Define impact of design and procedural solutions and likelihood of compliance in the given scenario (possibly 

with a probabilistic approach) 
17. Define movement on each component, including issues related to physical distancing (e.g., fundamental 

speed-density and flow-density relationships, queuing mechanisms, collision avoidance, impact of groups) 
18. Identify contrasting needs during movement in case of concurrent threats and subsequent priorities in 

behaviour exhibited by the agents  
 
Step 5. Simulation of people movement and behaviour with crowd modelling tool(s) 
The crowd modelling tool(s) adopted for the analysis (crowd models and/or external models for 
importing inputs, post-processing, etc.) are identified in this step. The implementation of the 
modelling assumptions is refined in relation to the crowd modelling tool(s) in use. Subsequently, 
the simulations are conducted and crowd modelling outputs are obtained. The selection of the 
outputs to be analysed depends on the goals of the analysis (e.g., virus transmission or concurrent 
threats) and the specific methods adopted to achieve it (e.g. proximity analysis, exposure 
assessment, performance-based design for fire safety, etc.). The crowd modelling outputs include 
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typical outputs obtained for performance-based design as well as outputs needed for proximity 
analysis or exposure assessment such as:  

- Required Safe Egress Time (RSET) in fire safety engineering applications,  
- Space usage (e.g., local and global densities, level of service (Fruin, 1987) queuing times, 

chosen routes, etc.) 
- Parametric equations of agent movement 
- Angles of interactions between agents 

 
Checklist: 

19. Identify suitable crowd modelling tool(s) 
20. Perform input calibration including issues associated with physical distancing based on crowd movement 

and behavioural scenarios 
21. Run the simulations (using a probabilistic approach when needed) 
22. Identify and obtain the crowd modelling outputs 

 
Step 6. Post-processing of outputs from crowd modelling 
The crowd modelling outputs are now processed. In case of a probabilistic approach in use, the 
crowd model user would have to evaluate the convergence of the outputs and assess their 
variability. The crowd modelling outputs are therefore post-processed (e.g., with an external tool 
or spreadsheet) to obtain the metrics needed for the goals of the analysis.  
 
Checklist: 

23. Post-process outputs obtained by the crowd modelling tool(s) in use and obtain the metrics needed for the 
goal of the analysis (e.g. proximity analysis, exposure assessment, fire safety engineering assessment, 
movement flow metrics, space usage metrics, etc.) 

24. Analyse the variability in outputs in case of use of probabilistic approach 
 
Step 7. Risk assessment based on metrics 
The metrics obtained are now used to perform a risk assessment in relation to the goal of the 
analysis. For example, results can be compared against acceptance criteria or used to compare 
different scenarios/solutions against each other. The crowd model user will then evaluate if the 
solutions performed are sufficient to meet the goal of the analysis or if changes are necessary to 
improve the safety conditions of the area under consideration. This is performed using an iterative 
process, i.e. performing modifications aimed at improving safety, returning to step 5 and 
continuing until step 7 and re-evaluate if an adequate safety level is achieved. 
 
Checklist: 

26. Perform a risk assessment based on metrics 
27. Check if an adequate safety level is reached. If this is met, the process is completed. If this is not met, 

perform modifications aimed at improving safety and return to step 5. The process ends when the target 
safety level is met. 
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7. Design and crowd management solutions 
Crowd modelling can be a useful tool to identify suitable solutions aimed at improving safety in 
times of pandemics. In particular, considering a virus transmission mechanism in which proximity 
leads to higher risks, solutions can be tested with crowd models aimed at increasing physical 
distancing and comparing different design and crowd management solutions. Design solutions and 
crowd management solutions may be environment-specific as for instance a confined space might 
have space constrictions which are stricter than in an open area. Crowd models are a powerful tool 
to evaluate the impact of a given solution on safety, its feasibility of implementations and possibly 
identify additional critical side effects which may be overlooked (e.g. a solution aimed at improving 
physical distancing that might decrease evacuation safety). Crowd models may or may not have 
the capabilities to implement detailed aspects concerning people movement. In any case, 
microscopic models often present enough flexibility to be able to represent such aspects implicitly 
(e.g. customizing a behavioural itinerary or a mechanism of interactions between people or 
between people and the environment). 
 

Several design solutions can be implemented in crowd models. The first type of modifications 
relates to the geometrical space, i.e. attempting to modify it to improve distance between people. 
This can include footway widening, or modifications of entry and exit systems aimed at reducing 
queuing (by for instance improving flows). It should be noted though that any solution aimed at 
improvements in flow needs to consider if the modification has an actual impact on the ability of 
people passing through a given space (i.e., the need to keep physical distance might undermine the 
effect of the modification). Similarly, dedicated queuing areas might be designed to provide enough 
space for people to wait before reaching a given space. Temporary barriers or physical obstacles 
aimed at partitioning space and optimize flows can also be represented to study the interactions of 
people with the changed space (Alhawsawi et al., 2020; Helbing et al., 2005). This type of 
modifications can generally be explicitly represented within a crowd model in order to evaluate 
their impact on results. 
 

While the impact of signage cannot often be explicitly implemented in crowd models (Filippidis et 
al., 2008; Ronchi et al., 2012), its impact may be represented implicitly. The use of signage 
(including marking/tapes) to instruct way-finding or to inform people on distance to be maintained 
in static or moving conditions can indeed have an important impact on crowd movement and 
behaviour.  
 

From a crowd management perspective, an interesting set of solutions that can be tested with 
crowd models regard the implementation of phased movement or phased access strategies. These 
strategies can be aimed at minimizing the interactions between people in a given space (or between 
people at a given environment). Phased access would have the direct consequence of decreasing 
the number of people in a given space, thus directly impacting the metrics concerning proximity 
analysis and exposure assessment. Phased movement is a strategy generally adopted in evacuation 
(Ronchi and Nilsson, 2013) and circulation scenarios to minimize congestions and give priority to 
certain people or categories of people. Among other issues, its successful implementation relies on 
the level of training of people and staff in a given space and adequate means of communication. 
Another crowd management solution that can impact physical distancing is the use of one-way 
routes. Compared to two-way routes, counterflows would not take place, thus potentially minimize 
face-to-face interactions and increase physical distancing. Crowd models may allow to explicitly or 
implicitly model the direction of usage of a given movement component. 
 

Both design and procedural solutions should be modelled taking into account the behavioural 
response of people. This means that crowd model users cannot always assume that people will 
strictly follow the instructions provided and that it is advisable to simulate different scenarios 
considering varying levels of compliance. 
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8. Case study 
A case study is here presented to demonstrate the use of the risk analysis methodology for crowd 
model usage. The chosen setting is a European stadium with >40,000 seats distributed on two 
levels simulated with the crowd model Pathfinder (Thunderhead Engineering, 2020). As the 
methodology is deemed to be applicable for all types of facilities, the specific location of the case 
study under consideration is left deliberately anonymous. 
 

8.1. The stadium layout 
A schematic representation of the stadium is presented in Figure 17. A metal fence encloses the 
external areas of the stadium; gates are here available for the access of people. Once crossed the 
metal fence, people have to pass through the metal detectors to access the internal areas of the 
stadium. After passing the metal detectors, people are inside the stadium, and they can decide to 
which level are aiming for (upper or lower level). Finally, people have to pass through the turnstiles 
to access large corridors and the area in which toilets and food/beverage facilities are located. 
These areas are connected to the stands by means of vomitories. To sum up, people have to pass 
through three consecutive barriers, namely 1) a gate, 2) a metal detector and 3) a turnstile (see 
Figure 17). The stadium is split into portions served by different groups of gates/metal 
detectors/turnstiles, in order to keep different groups of people (e.g. different team supporters) 
separated.  
 

 
Figure 17. Schematic representation of the stadium. 

 

8.2. Application of the methodology 
The methodology for the use of crowd models is here applied listing each checklist bullet for each 
step along with the work performed 
 
Step 1. Definition of goals, objectives and type of analysis 
Checklist: 

1. What is the goal of the safety analysis? (virus transmission risk alone or concurrent threats) 
2. What types of analysis are going to be performed? (e.g., performance-based design of fire safety, study of 

pedestrian flows, proximity analysis, exposure assessment, etc.) 
3. Define the assumptions on virus transmission mechanism 

 
1. The goals of the analysis are: (i) to estimate the ingress phase duration in case of a pandemic 
scenario (this involves temperature checks at the entrance, physical distancing along ingress routes 
and stands), compared with the pre-pandemic situation using a microscopic agent-based model; 
(ii) estimate the interactions between people during the ingress phase using a microscopic agent-
based model. 
 
2. The analysis is based on the study of pedestrian flows inside the stadium, from the entrance 
gates to the stands, and on the proximity analysis.  
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3. It is assumed that virus transmission is triggered by proximity between people in a given distance 
radius. 
 
Step 2. Definition of the area(s) of interest  
Checklist: 

4. Define the area of interest for the safety analysis 
5. Define the area of interest for the given assumption on virus transmission mechanism 
6. Represent/Import the areas of interest in the crowd model 
7. Identify design solutions for physical distancing  

 
4. The stadium can be accessed through different accesses in relation to the stadium portion under 
consideration. This is made to keep different groups of people (e.g. different team’s supporters) 
separated. Ingress paths of different portions of the stadium are similar to each other, thus only a 
quarter of the stadium is analysed, including 3 entrance points (called here A, B, C) and their 
associated ingress paths. Table 2 shows the main features of this area, including number of seats 
and gates, metal detectors, and turnstiles for each entrance point considered in the analysis. In 
both the pre-pandemic and pandemic scenarios, each gate lets in 1 person every 15 s (240 
persons/hour), each manual metal detectors lets in 300 persons/hour, each automated metal 
detector lets in 400 persons/hour, each turnstile lets in 750 persons/hour. 
 

Table 2. Summary of the features of the area of interest under consideration in the stadium. 

Entrance 
point 

Number of 
seats 

Number of 
gates 

Number of metal 
detectors 

Number of 
turnstiles 

A 6398 16 10 (automated) 10 

B 2099 8 4 (manual) 4 

C 7519 24 10 (automated) 14 

 
The analysis takes into account the stadium area included in the metal fence, so both external and 
internal areas, while the external area beyond the metal fence (public area) is not included in the 
analysis. 
 
5. The stands are placed outdoor. The internal areas where toilets and other facilities are located 
are naturally ventilated by the openings on the walls. There are no HVAC systems, excluding toilets 
and other small enclosures (storage rooms, technical rooms), that are assumed here to be not 
relevant for the analysis. 
 
6. The area of interest is reproduced in the crowd model, starting from a 2D CAD file. The crowd 
model permits to reproduce the stadium as a set of rooms, doors and stairs. 
 
7. To keep physical distancing, the number of available seats (as reported in Table 2) is reduced to 
42% of capacity in one scenario (this value was back-calculated assuming a 50% capacity in the 
stands of the tribune and 33% capacity in the tiers), while the full capacity is assumed in the baseline 
scenario. Further design solutions are evaluated by means of the analysis.  

 
Step 3. Definition of the population 
Checklist: 

8. Define people categories (who will be in the scenarios), including physical and behavioural aspects which 
may be linked to virus transmission and/or concurrent threats 

9. Define people profiles (how to represent people in the crowd model), including features like walking speeds, 
body sizes, aspects linked to physical distancing, etc. 

10. Define the type and size of established (or possibly emerging) groups 
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11. Define how many people are initially present (occupant load) in the scenarios, entry points (if present) and 
where they are initially located  

8. Since the analysis is related to a stadium, the population is assumed rather homogeneous, and it 
is made of individual sport supporters aiming at the stands to watch the event.  
 
9. Typical profiles involve young men. Families with children and elderly people are possible users 
but, for the sake of simplicity, they have not been considered in the current analysis. Specific areas 
of the stadium are dedicated to people with disabilities, considering dedicated ingress paths (i.e. 
elevators are available rather than ramps). These areas are therefore excluded from the analysis 
domain. The assumed desired velocity of the agents is equal to 1 m/s. Since a continuous model 
has been adopted, the agent dimensions have to be defined by the user. These were assumed equal 
to a diameter equal to 0.45m, and a reduction factor (to resolve congestion and allow people to 
modify their size) equal to 0.25 with a minimum diameter equal to 20cm (to move through narrow 
geometries). 
 
10. Groups are not explicitly modelled. This assumption was made to account for the conservative 
hypothesis of people walking alone.  
 
11. The stadium is assumed empty at the beginning of the simulation. Stadium entrances are 
assigned as gates in the external metal fence. In the crowd model, occupant sources are located in 
correspondence of the entrance gates. The rate of agents’ entrance is equal to the gate rate (240 
person/hour), and the agents introduction in the domain is stopped as soon as their number have 
reached the number of available seats. 
 
Step 4. Definition of crowd movement and behavioural scenarios 
Checklist: 

12. Define detailed scenarios (e.g., circulation, evacuation) and associated use of entry/exit points 
13. Define components available for movement for each people type 
14. Define behavioural profiles (e.g., responses to the threat(s)), behaviour in light of physical distancing) 
15. Define behavioural itineraries, routes and exit usage in relation to physical distancing 
16. Define impact of design and procedural solutions and likelihood of compliance in the given scenario (possibly 

with a probabilistic approach) 
17. Define movement on each component, including issues related to physical distancing (e.g., fundamental 

speed-density and flow-density relationships, queuing mechanisms, collision avoidance, impact of groups) 
18. Identify contrasting needs during movement in case of concurrent threats and subsequent priorities in 

behaviour exhibited by the agents  
 
12. The analysis involves an ingress scenario. Entry points are defined as occupant sources in 
correspondence of metal fence gates. People destination are the stands. When those are reached 
the agents are assumed stopping their movement. Table 3 summarizes the key characteristics of 
the scenarios under consideration: (i) pre-pandemic scenario (100% seats, no physical distancing); 
(ii) pandemic emergency scenario (42% of available seats, reduced number of entrance gates, 
physical distancing equal to 1m which is enforced in the model). It should be noted that the gates 
that were excluded were next to other gates in use (i.e., since they are closely located, it would not 
be possible to ensure physical distancing if using adjacent gates). This means that it was assumed 
that despite increasing costs (as they are run by stewards), adding such gates would potentially 
create issues in ensuring physical distance from the side. (iii) An additional pandemic scenario was 
also conducted, in which additional measures reduced the ingress time to a value lower than the 
pre-pandemic scenario. This consisted in a procedural intervention in which trained stewards are 
placed at each vomitory to control the access to the stairs and the number of people in the stairs. 
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Trained stewards are placed in correspondence of each vomitory, in order to limit the access to 
the stairs, keeping the number of people in the stairs under a certain safety threshold, as shown in 
Figure 18.  
 

 
Figure 18. Schematic representation of the procedural intervention to improve safety. 

 
Table 3. Summary of the features of the area of interest under consideration in the stadium in the pre-pandemic 

and pandemic scenarios. 

Entrance 
point 

Pre-pandemic scenario Pandemic emergency scenario 

Number of 
seats 

Number of 
gates 

Number of 
seats 

Number of 
gates 

A 6398 16 2783 7 

B 2099 8 661 4 

C 7519 24 3279 10 

 
13. Ingress paths include ramps and stairs. The stands are the destinations of the simulated agents. 
 
14. People are directly aiming at their target destinations and are forced to maintain a physical 
distance equal to 1m, calculated from the centre of their body. People were assigned to different 
routes in relationship to their assigned seat and vomitory.  
 
15. Ingress paths are the same of the pre-pandemic situation. 
 
16. It is assumed that all people maintain the physical distance. In scenario (iii) a procedural 
intervention was introduced  
 
17. The fundamental speed-density relationships are not explicitly modified, but they are deemed 
to change compared to the default due to the enforced physical distancing. In particular, the high-
density part of the speed-density relationship is not reached due to physical distancing. Queuing 
and collision avoidance mechanism are left as default although they are affected by the enforcing 
of the 1 m physical distancing. This implies that the resulting flow-density relationship is also 
deemed to not reach the high-density part and only the part on the left-hand side of the flow-
density relationship is used (i.e. the descending part of the curve is not reached). No impact of 
groups is considered. 
 
18. Since the analysis involves only the ingress phase, no concurrent threats are taken into account. 
 
Step 5. Simulation of people movement and behaviour with crowd modelling tool(s) 
Checklist: 

19. Identify suitable crowd modelling tool(s) 
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20. Perform input calibration including issues associated with physical distancing based on crowd movement 
and behavioural scenarios 

21. Run the simulations (using a probabilistic approach when needed) 
22. Identify and obtain the crowd modelling outputs 

 
19. The crowd modelling tool used for the analysis is Pathfinder 2020.2.0520.  
 
20.  The input calibration was performed by first observing the ingress phase duration in the pre-
pandemic scenario. Empirical observations were used to estimate the order of magnitude of the 
ingress time (this time is approximately 2 hours). As in this type of scenarios the ingress is mostly 
driven by the flow restrictions, this was the variable likely having the higher impact on results. The 
procedural interventions in the pandemic scenario (iii) were implemented modifying the flowrates 
to access the vomitories. 
 
21. No probabilistic approach was used, because the main driving factor was assumed to be the 
people flowrate. The desired velocity of agents was assumed as homogenous, no groups were 
considered, and it is assumed that people go from the entrance to the stands, neglecting possible 
deviations to the toilet or food and beverage facilities. This approach is due to the fact that no data 
were available on how many people use these facilities and for how long and it is deemed to be 
reasonable given the comparative scope of the analysis. 
 
22. Crowd model outputs are the ingress phase duration (see Table 4), social usage vs time (see 
Figure 18), and jam time (see Figure 19).  
Table 4 shows the ingress time in different scenarios. This includes pre-pandemic and pandemic 
scenarios. It includes an estimation of the ingress time based on empirical observation. This was 
measured in pre-pandemic conditions during an event with a typical turnout in the stadium. It can 
be seen that the simulation of pre-pandemic provides a slightly over-estimation of the ingress time. 
An ingress time larger than the one of pre-pandemic conditions can be observed considering the 
simulation results corresponding to the pandemic emergency scenario. The pandemic scenario 
with additional measures provided an ingress time comparable to the pre-pandemic scenario.  
 

Table 4. Ingress time in different scenarios. 

Scenario Type of result Ingress time [minutes] 

Pre-pandemic Estimation 
based on 
empirical 

observations 

≈120±10 

Pre-pandemic Simulation 135  

Pandemic emergency Simulation 148 

Pandemic emergency with additional measure*  Simulation 110 

*Additional measure consists in the presence of trained stewards placed at each vomitory, with the 
aim of keeping the number of people in the stairs under a certain safety threshold. 

 

The social usage output is a metric for proximity analysis defined as follows: For every point on 
the mesh (conceptually a spot on the floor), the number of people within a 3D radius (equal to 1 
m in this case) are calculated and assigned to that mesh point. The mesh of all values is then 
contoured. This corresponds to the highest values considering all occupants rather than evaluating 
the number of people within the radius of a single occupant.  
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Figure 19 presents an example of the social usage vs time in the stair that connects one vomitory 
with the stands. Social usage is the number of occupants within the 3D radius R= 1 m around a 
specific point in the middle of the stair. Figure 19 shows that the pandemic scenarios correspond 
to a social usage lower than in the pre-pandemic conditions due to the physical distancing. The 
additional measures introduced in the last pandemic scenario further reduce the social usage. 
 

 
Figure 19. Social usage vs time for the pre-pandemic and pandemic scenarios under consideration. 

 
The jam time output is defined as the total time people spend moving at less than the specified 
jam velocity (this is set in this case equal to 0.25m/s, the default value). Figure 20 shows the 
distribution of jam time in the scenarios under consideration. It can be seen that the pre-pandemic 
case is the one in which users experience the larger jam time. This is due to the fact that a larger 
number of people is allowed in the stadium if compared to the pandemic cases. Figure 20 also 
shows that the additional measures adopted in the pandemic scenario lead to a further reduction 
in the jam time. It is known that in pre-pandemic conditions, queuing people - especially for long 
and broad queues - tend to reduce their distance to others since this create the impression of 
progress (Helbing and Mukerji, 2012).  
 

  
Figure 20. Jam time distributions for the pre-pandemic and pandemic scenarios under consideration. 
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Step 6. Post-processing of outputs from crowd modelling 
Checklist: 

23. Post-process outputs obtained by the crowd modelling tool(s) in use and obtain the metrics needed for the 
goal of the analysis (e.g. proximity analysis, exposure assessment, fire safety engineering assessment, 
movement flow metrics, space usage metrics, etc.) 

24. Analyse the variability in outputs in case of use of probabilistic approach 
 
23. A proximity analysis was done taking into account the social usage output. 
 
24. Not applicable 
 
Step 7. Risk assessment based on metrics 
Checklist: 

26. Perform a risk assessment based on metrics 
27. Check if an adequate safety level is reached. If this is met, the process is completed. If this is not met, 

perform modifications aimed at improving safety and return to step 5. The process ends when the target 
safety level is met. 

 
26. A risk assessment is made taking into account ingress time, social usage plots and jam time 
distributions. The ingress time estimation of pre-pandemic conditions based on empirical 
observations is comparable to the pandemic emergency scenario with additional measures, while 
it is approximately 19% lower than the pandemic scenario without measures. This means that it is 
deemed appropriate to adopt such measures to ensure that ingress times are comparable between 
pre-pandemic and pandemic conditions. Similarly, the social usage is decreased in the pandemic 
scenarios with additional measures compared to the pre-pandemic and pandemic scenarios. This 
indicates that the suggested procedural solution contributes to reduce the risk of virus transmission 
considering the proximity analysis method in use. In addition, the suggested measures also 
contribute to reduce the jam time. This is an important issue as it is assumed that - in the absence 
of empirical data related to pandemic situation - avoiding long jam time can prevent the people to 
move closer to each other and help keeping the physical distancing. 
 
27. Social usage plots showed that the proximity is rather high (social usage > 4) in the pandemic 
conditions without measures along the stairs that connect vomitories with stands. Hence, the 
procedural intervention was evaluated to improve safety. The proximity analysis demonstrates that 
this additional measure reduces the proximity of people on the stairs. Furthermore, the percentage 
of people experiencing a jam time larger than 5 minutes is reduced (from 27% to 13%) between 
the pandemic scenarios without and with measures.  
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9. Discussion 
This work analysed the usage of crowd modelling tools in times of pandemic (particularly focusing 
on aspects related to physical distancing) and presented a methodology which is deemed to guide 
crowd model users. 
 
Several aspects have been identified as critical during the present work. First of all, given the 
current status quo of crowd models which are not originally designed for the study of the impact of 
physical distancing, it appears evident that users may not be able to use crowd models as they are. 
The process of input calibration would require a careful evaluation of the assumptions adopted by 
a given crowd model and the consequence that such assumptions may have on movement. In 
other words, users would need to perform a careful evaluation of the modelling assumptions to 
check that those hold also in times of pandemic. Modifications may be needed at different levels 
of the crowd modelling process, starting from the definition of the goals of the analysis (which 
include the risk of virus transmission) and ending with the methods to use crowd modelling 
outputs to perform risk assessment. During the process of scenario identification and input 
calibration, crowd model users may need to perform significant adjustments in the assumptions in 
use in order to consider the behavioural aspects linked to people movement modelling in times of 
pandemics. In this work, an example has been presented considering the modifications that can 
be performed in the fundamental relationships between speed/flow and densities and how those 
can vary in relation to the assumptions on minimum and maximum density for the calculations of 
the impeded speeds. Several other aspects should be investigated concerning pedestrian navigation 
behaviour at macroscopic (e.g. route choice, people re-routing to avoid congested areas) and 
microscopic (e.g., collision avoidance, people attempting the navigation around other people or 
obstacles keeping larger distances) scale. Similarly, the whole process of queuing may be affected 
by the willingness of people to keep physical distancing. 
 
The situation is complicated even further by the fact that provisions on physical distancing (and 
subsequent instructions given to people) are prone to interpretation, thus crowd model users 
should review them in light of the assumptions adopted by the model in use for representing the 
simulated agents. 
 
The use of crowd modelling tools in times of pandemic is also strictly linked to the assumptions 
adopted concerning the virus transmission mechanisms. To date, since no conclusive 
understanding exists on this matter (Bahl et al., 2020; Lewis, 2020), crowd model users may need 
to perform several types of analysis in relation to the assumption in use. In this context, the 
limitations of the models in representing particular mechanisms of interactions should be taken 
into consideration. A clear example of this issue is the currently inability of crowd models in 
predicting people interaction with objects.  
 
The crowd modelling outputs themselves may need to be re-evaluated and new outputs may be 
needed. Currently, microscopic crowd models may give the opportunity to calculate the parametric 
equations of people trajectories (i.e. coordinate in space and time of the agents in the simulation). 
This information is surely useful to perform a proximity analysis or an exposure assessment, as 
they allow the obtainment of relevant metrics for risk assessment (as shown with the model 
EXPOSED (Ronchi and Lovreglio, 2020)). In relation to the mechanism of virus transmission 
assumed, additional needed outputs may include the tracking of the orientation of the agents, as 
this information could be used to study the face-to-face interactions between them or the 
likelihood of agents touching certain objects (e.g. a door knob). In other words, brand new outputs 
may be needed to be obtained using crowd modelling tools, so that proximity analysis and exposure 
assessment can be performed in a more accurate way. Nevertheless, the obtainment of these 
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outputs would need to be based on experimental data for the development of dedicated sub-
models addressing the behaviour to be modelled. 
 
Limited research is currently available concerning the behavioural aspects affecting crowd 
movement in times of pandemic. For this reason, users may consider adopting conservative 
assumptions in their applications of crowd models and possibly evaluate different scenarios in 
which different levels of compliance to the instructions provided (either by design or procedural 
solutions). In this context, the impact of (established and emerging) groups cannot be neglected, 
as social influence is known to play a significant role in emergency scenarios, including issues 
related to route choice (Kinateder et al., 2014b). Physical distancing preferences may indeed vary 
both at an individual and group level and they can be influenced by the context in which movement 
is occurring. Also in this case, given the absence of experimental data concerning group behaviour, 
users are recommended to investigate the impact of group behaviour performing the simulation 
of different scenarios in which different group dynamics occur.  
 
Future research efforts should focus on collecting experimental data concerning different aspects 
concerning people movement in times of pandemic. The first aspect to investigate is the space 
usage itself, i.e. how pandemics affect the number of people present in a given open or confined 
space. Subsequently, the movement dynamics of people should be studied by looking at behaviour 
at individual and group level, in a variety of contexts (both in terms of the type of space in which 
they take place as well as the type of people or groups of people involved). Until this type of 
information is not available, crowd model users should be very cautious in adopting crowd 
modelling assumptions developed in times in which no pandemic was present. For this reason, the 
methodology presented in this work along with a checklist of issues to be considered is deemed to 
be of help for crowd model users and stakeholders involved in the study of crowd movement in 
times of pandemic. 
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