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Abstract

This paper applies recently developed procedures to monitor and date so-called “financial market dis-

locations”, defined as periods in which substantial deviations from arbitrage parities take place. In

particular, we focus on deviations from the triangular arbitrage parity for exchange rate triplets from

a cointegration perspective. Due to increasing attention on and importance of mispricing in the mar-

ket for cryptocurrencies, we include the cryptocurrency Bitcoin in addition to fiat currencies. We do

not find evidence for substantial deviations from the triangular arbitrage parity when only traditional

fiat currencies are concerned, but document significant deviations from triangular arbitrage parities in

the newer markets for Bitcoin. We confirm the importance of our results for portfolio strategies by

showing that a currency portfolio that trades based on our detected break-points outperforms a simple

buy-and-hold strategy.
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1 Introduction

Many empirical studies demonstrate that pricing identities following from no-arbitrage conditions –

called arbitrage parities – often fail to hold exactly in real-world data. To explain such deviations,

the limits to arbitrage literature considers restrictions or constraints on trading such that no profitably

exploitable arbitrage opportunities exist (see, e.g., Shleifer and Vishny, 1997; Gromb and Vayanos, 2010).

Trading costs, illiquidity, and short-sale constraints are prominent examples of phenomena causing

such market imperfections (see, e.g., Gagnon and Karolyi, 2010). In extreme cases, such as during

periods of disaster or financial crisis, substantial arbitrage parity deviations can be observed for many

asset types (see, e.g., Veronesi, 2004; Barro, 2006; Barro, 2009; Bollerslev and Todorov, 2011). Such

periods of significant deviations from arbitrage parities are also referred to in the literature as “financial

market dislocations”, defined more precisely by Pasquariello (2014) as “circumstances in which financial

markets, operating under stressful conditions, cease to price assets correctly on an absolute and relative

basis” (p. 1868).

Given the omnipresence of deviations from arbitrage parities even under normal market conditions,

the empirical literature has turned to asking whether and under which circumstances these deviations

are large enough to represent market dislocations (see, e.g., Matvos and Seru, 2014; Fleckenstein et al.,

2014; Pasquariello, 2014). The typical empirical method for calculating arbitrage parity deviations is

to calculate them directly from prices and then check whether prevailing market conditions allow for

arbitrage profits. However, this method requires the availability of quotation-level data, along with

exact transaction costs, often for multiple markets – data that is notoriously difficult to obtain. One

part of the literature, such as Akram et al. (2008), Ito et al. (2012) and Foucault et al. (2016), use

high-frequency data to investigate deviations from the law of one price and the existence of arbitrage

profits. Our methodology is based on the simple idea that, under normal circumstances, prices should

share similar stochastic trends, i.e., should be (co)integrated, and observed arbitrage parity deviations,

i.e., deviations from the equilibrium, should be stationary. In particular we consider deviations from the

triangular arbitrage parity, which specifies a parity relationship between a triplet of currencies such that

agents cannot profit from an instantaneous transaction between these currencies. From an econometric

perspective, we consider a stochastic version of (the log-form of) the triangular arbitrage parity, with

integrated exchange rate series and, in case of cointegration, a stationary error term. Clearly, in this

case, the parameter values of the cointegrating relationship are fully specified by the no-arbitrage parity
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relationship.

Our empirical methodology is able to detect both changes in the time series properties of the

error terms (e.g., a transition from stationary to I(1) or explosive, typically considered to describe

so-called “bubbles”) and changes in the parameters. That is to say, our analysis tests whether market

forces result in significant deviations from a stochastic version of the triangular parity with stationary

innovations and/or parameters consistent with the exact parity. Our method for detecting financial

market dislocations therefore effectively monitors structural breaks in the joint properties of time series.

Specifically, we apply the monitoring tools of Wagner and Wied (2015) and Wagner and Wied (2017).

The monitoring procedure uses an expanding window detector to monitor residuals from a cointegrating

regression for either a break from a cointegrating to a spurious regression, or a break in the parameters

of the cointegration regression. The so-called detection time, i.e., the time point where the monitoring

procedure signals a break-point by becoming significant for the first time is, of course, the natural

estimate of a potential break-point. By examining historical circumstances around the break-point

dates, we are able to explore the variables and/or events that may have caused the financial market

dislocation. In addition, we use bid-ask spreads to proxy no-arbitrage bounds, effectively limits within

which the cost of an arbitrage trade is larger than its profit, to identify whether triangular arbitrage

parity deviations can be explained by spread-implied transaction costs.

While deviations from the triangular arbitrage parity have been shown to occur in the market for

fiat currencies (see, e.g., Lyons and Moore, 2009; Kozhan and Tham, 2012), they are usually rather

rare. On the other hand, there is increasing media attention towards the potential for arbitrage in the

market for cryptocurrencies (see, e.g., Osipovich and Jeong, 2018). We include Bitcoin, the most well-

known and liquid cryptocurrency, in our analysis in addition to traditional fiat currencies. Arbitrage

opportunities in the market for Bitcoin have also been examined by Dong and Dong (2014), who

document persistent deviations of Bitcoin exchange rates from those implied by fiat currency markets,

as well as Pieters and Vivanco (2017), who find evidence for substantial price deviations across Bitcoin

exchanges. Makarov and Schoar (2020) show that there is substantial price dispersion across Bitcoin

exchanges in different regions. Pieters (2016) and Yu and Zhang (2018) explore cross-country differences

in Bitcoin mispricings, and find that countries with stricter capital controls exhibit higher degrees of

mispricing. In order to explore the potential for mispricing in cryptocurrencies, we focus in particular

on a potential source of market dislocation in the market for Bitcoin: the February 2014 bankruptcy

and collapse of Mt. Gox, a Tokyo-based Bitcoin exchange that, at that time of its collapse, was handling
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around 70% of the world’s Bitcoin trades (see, e.g., Decker and Wattenhofer, 2014). The bankruptcy

resulted in the overnight loss of $473 million worth of Bitcoin, which substantially damaged investor

confidence in Bitcoin (see, e.g., Fink and Johann, 2014).

Our results show that break-points in deviations from the triangular arbitrage parity are rare when

only fiat currencies are included in the currency triplet. We find deviations in only two out of the

72 currency triplets that include only fiat currencies. On the other hand, we detect a break-point in

the majority of the 18 currency triplets that include Bitcoin. We document that our detected break-

points generally correspond to major market events, in particular the collapse of Mt. Gox. Our results

show that particularly this event led to significant deviations from the triangular arbitrage parity for

a wide range of currency triplets that include Bitcoin. Furthermore, while triangular arbitrage parity

deviations for fiat currency triplets are virtually never outside of our measures of no-arbitrage bounds,

deviations for Bitcoin currency triplets are often outside of no-arbitrage bounds implied by mean bid-ask

spreads. Overall, our results confirm the relative rarity of triangular arbitrage within the market for fiat

currencies, while highlighting financial market dislocations on the newer market for cryptocurrencies.

We confirm the potential implications of our results on portfolio strategies by showing that a currency

portfolio that trades based on our detected break-points outperforms a simple buy-and-hold strategy.

Our dataset is described in Section 2, while Section 3 defines and provides more details on the

triangular arbitrage parity. Section 4 describes the utilized approach to cointegration monitoring as

our tool to detect deviations from the triangular arbitrage parity. The empirical results are presented

and discussed in Section 5, and finally Section 6 concludes.

2 Data

The daily spot rates for fiat currencies used in this study are obtained from the Pacific Exchange Rate

Service, which provides nominal noon spot exchange rates as observed and reported by the Bank of

Canada. The data are available through http://fx.sauder.ubc.ca/. These exchange rates represent

averages of transaction prices and price quotes from financial institutions recorded between 11:59am

and 12:01pm Eastern time (ET). Since we are primarily interested in the behavior of currency markets

around the February 2014 collapse of Mt. Gox, our sample period ranges from 1 May 2013 to 31

December 2015.

Our sample includes all bilateral exchange rates between the seven most actively-traded currencies on
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foreign exchange markets, as well as – for comparison – with three relatively inactively traded currencies.

The considered currencies are given by the U.S. dollar (USD), the euro (EUR), the Japanese yen (JPY),

the British pound (GBP), the Australian dollar (AUD), the Canadian dollar (CAD), the Swiss franc

(CHF), the Swedish krona (SEK), the Mexican peso (MXN) and the South African rand (ZAR). The

trading shares, ranging from about 87.6% for the U.S. dollar to only about 1% for the South African

rand, as well as the abbreviations used are given in Table 1.

[Insert Table 1 about here.]

In addition, Bitcoin (XBT) exchange rates are obtained from bitcoincharts, a service that collects

historical trade data from a cross-section of Bitcoin exchanges. The complete trade history data is

available publicly at http://api.bitcoincharts.com/v1/csv/. In order to be listed on bitcoincharts,

Bitcoin exchanges – which typically operate 24 hours a day – voluntarily submit their complete trade

and orderbook history to bitcoincharts. Similar datasets are used in Fink and Johann (2014), Dong

and Dong (2014) and Pieters and Vivanco (2017). In order to match these data with our fiat currency

sample, we collect all exchange-reported transaction prices and volumes between 11:59am and 12:01pm

ET. Daily noon exchange rates are then calculated by taking the volume-weighted average transaction

prices across exchanges. In this way, our Bitcoin rates should reflect the prices available to Bitcoin

traders at relatively the same time as our fiat currency observations. We collect Bitcoin exchange rates

against all ten fiat currencies in our sample, as listed above. To limit the effects of “extreme” prices,

a minimum of three transaction prices is required to calculate the noon exchange rate. The sparser

nature of Bitcoin trading leaves us with missing values. To treat missing values, we proceed as follows:

If less than three transactions occur between 11:59am and 12:01pm ET, our algorithm processes the

next-closest observations to the target window in terms of time, until a minimum of three observations

are found. More details regarding this procedure and the resulting precision of Bitcoin exchange rates

is discussed in Appendix A.2. Throughout, our notation for exchange rates is that St,A/B denotes units

of currency A received for one unit of currency B in period t.

Figure 1 plots exchange rates relative to the USD during our sample time period from 1 May 2013

until 31 December 2015. Note that the XBT/USD exchange rate exhibits much higher volatility than

traditional fiat currency exchange rates. The largest peak corresponds to 29 November 2013, after

a surge in retailer announcements that they would soon be accepting Bitcoin as payment (see, e.g.,

Jopson and Foley, 2013), and after a hearing by the U.S. Senate demonstrated that they would take a
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more neutral position regarding digital currencies (see, e.g., Eha, 2013).

[Insert Figure 1 about here.]

We collect fiat currency bid and ask quotes provided by the exchange rate service WM/Reuters

for our sample time period. Bid and ask quotes are available for 60 out of 90 possible combinations

of fiat currencies. The quotes are downloaded from Thomson Reuters Datastream, and are originally

sourced from wholesale electronic currency platforms, including Thomson Reuters Matching, EBS, and

Currenex, to reflect an average of interbank quotes between 3:59:30pm and 4:00:30pm GMT (10:59:30am

and 11:00:30am ET). Based on the ask and bid quotes, Sa
t,A/B and Sb

t,A/B , the absolute spread is given

by their difference, Sa
t,A/B−Sb

t,A/B , and the percentage spread as the absolute spread relative to the ask

quote,
Sa
t,A/B−Sb

t,A/B

Sa
t,A/B

. Additionally, percentage bid-ask spreads for Bitcoin for the same time period are

downloaded from Bitcoinity (data.bitcoinity.org/); the data includes percentage bid-ask spreads

for all exchange rates except for against the Mexican peso (MXN) and the South African rand (ZAR).

Bid-ask spreads are provided separately for each Bitcoin exchange, so we take the median bid-ask

spreads across exchanges. Bitcoinity calculates percentage bid-ask spreads as the percentage difference

between the daily minimum ask quote and maximum bid quote; thus, these spreads do not represent

a spread that would be available to a trader at a particular time, but represent an upper bound on

bid-ask spreads in the Bitcoin market.

Table 2 presents summary statistics for percentage bid-ask spreads for the nine fiat exchange rates

against the USD, as well as the eight exchange rates against Bitcoin. From the table, it is clear that

Bitcoin spreads tend to be much higher than those of fiat currencies. For example, the percentage

spread for trading EUR against XBT is more than 40 times larger than the spread for trading EUR

against USD. Our estimates of Bitcoin spreads tend to be larger than those in the existing literature

(see, e.g., Kim, 2017; Brauneis et al., 2019), for several reasons. First, most studies only consider

highly liquid Bitcoin pairs, such as USD/XBT, while we additionally consider other, less liquid, pairs.

Secondly, our data only extends until 2015, so other studies using more recent data may show lower

spreads as liquidity in Bitcoin markets has grown over time.

Figure 2 plots the average percentage bid-ask spreads for exchange rates involving fiat currencies

only and the average percentage bid-ask spreads for Bitcoin exchange rates over our sample time period.

The plot again highlights the difference in magnitude between the two groups of spreads, and also shows

that they tend to follow different dynamics. Spreads for Bitcoin begin to rise in early February 2014,
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i.e., right around the Mt. Gox bankruptcy, spiking at 8.1% several weeks later on 31 March 2014.

Interestingly, both Bitcoin and fiat currency spreads peak in January-February 2015, likely a result of

the Swiss National Bank’s abrupt announcement on 15 January 2015 that it would end its cap on the

CHF/EUR exchange rate (see, e.g., Jolly and Irwin, 2015).

[Insert Table 2 and Figure 2 about here.]

3 The Triangular Arbitrage Parity

A consequence of no-arbitrage pricing, which is a cornerstone in modern financial theory, is that there

are strong theoretical predictions concerning the relationships between the prices of financial assets. In

this paper, we consider no-arbitrage prices between triplets of exchange rates. Consider three currencies

A, B, and so-called “vehicle currency” V , that trade in a foreign exchange market that is absent trading

constraints and costs, in which agents are perfectly informed and have no market power. In the absence

of arbitrage, for any triplet of spot exchange rates St,A/B , St,A/V and St,V/B , we obtain the triangular

arbitrage parity:

St,A/B = St,A/V St,V/B or, equivalently, lnSt,A/B = lnSt,A/V + lnSt,V/B . (1)

In a hypothetical frictionless and arbitrage-free market, we therefore should always observe lnSt,A/B −

lnSt,A/V − lnSt,V/B = 0 exactly. However, for our empirical exchange rate data described in Section 2,

we observe lnSt,A/B − lnSt,A/V − lnSt,V/B ̸= 0 for all periods t and all currency triplets in our sample.

Under “normal” market conditions, small deviations from arbitrage parities are, of course, expected

to persist, for example, due to transaction costs. The presence of transaction costs creates so-called “no-

arbitrage bounds”, within which the cost of an arbitrage trade is larger than its profit and thus these

deviations persist in the market (see, e.g., Modest and Sundaresan, 1983; Klemkosky and Lee, 1991;

Engel and Rogers, 1996). Therefore, such deviations do not necessarily constitute tradable arbitrage

opportunities in practice.

Therefore, in a first step, we explore whether our observations that lnSt,A/B−lnSt,A/V −lnSt,V/B ̸=

0 can be explained by transactions costs implied by bid-ask spreads. Specifically, we investigate whether

the deviations from the triangular parity stay within no-arbitrage bounds implied by transaction costs

as measured using bid-ask spreads. As the difference between bid and ask prices represents the profit
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earned by brokers to facilitate the market between buyers and sellers, the bid-ask spread represent a

significant cost for a “round-trip” trade, and therefore the bid-ask spread is often used as a measure of

transaction costs.

To calculate no-arbitrage bounds, we follow equation (6) of Kozhan and Tham (2012) and consider

the following “bid-ask adjusted” no-arbitrage conditions, given 0 < Sb
t,A/B ≤ Sa

t,A/B :

Sa
t,A/B ≥ Sb

t,A/V S
b
t,V/B and Sb

t,A/B ≤ Sa
t,A/V S

a
t,V/B . (2)

Assuming that the midquote (i.e., the mean bid and ask quote) represents the true underlying value

of the exchange rate, and assuming non-zero spreads, the implied cost of a transaction is equal to the

half-spread, e.g., Ct,A/B :=
Sa
t,A/B−Sb

t,A/B

2 ≥ 0. Define the implied transaction costs relative to the

midquote for the three currency pairs by ct,A/B , ct,A/V and ct,V/B . Then, S
a
t,A/B = St,A/B +Ct,A/B =

St,A/B

(
1 + ct,A/B

)
and Sb

t,A/B = St,A/B −Ct,A/B = St,A/B

(
1− ct,A/B

)
. By using these equations and

the no-arbitrage conditions in (2), we obtain the no-arbitrage bounds:

(
1− ct,A/V

) (
1− ct,V/B

)(
1 + ct,A/B

) ≤
St,A/B

St,A/V St,V/B
≤
(
1 + ct,A/V

) (
1 + ct,V/B

)(
1− ct,A/B

) . (3)

By taking logarithms we get:

ct,L ≤ lnSt,A/B − lnSt,A/V − lnSt,V/B ≤ ct,R, (4)

where the lower bound ct,L is given by ln
(
1− ct,A/V

)
+ ln

(
1− ct,V/B

)
− ln

(
1 + ct,A/B

)
and the upper

bound ct,R is given by ln
(
1 + ct,A/V

)
+ ln

(
1 + ct,V/B

)
− ln

(
1− ct,A/B

)
.

To obtain conservative no-arbitrage bounds, we consider the minimum of the lower bound ct,L,

denoted c̄L, and the maximum of the upper bound ct,R, denoted c̄R in the following. In addition,

we obtain the 10% percentile, the mean, the median and the maximum of the lower bound (denoted

cL,10%, cL,mean, cL,median and cL), and the minimum, the mean, the median and the 90% percentile

of the upper bound (denoted cR, cR,mean, cR,median and cR,90%). Since the Bitcoin bid-ask spreads

are obtained from various exchanges and include some extreme realizations, the 10%/90% percentile

measures are calculated in order to exclude possible effects arising from such spikes in the bid-ask

spread.

Table 3 presents relative frequencies at which the deviations of lnSt,A/B − lnSt,A/V − lnSt,V/B
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from zero exceed our bid-ask spread-implied measures of no-arbitrage bounds. For all fiat currency

triplets, we find that the deviations stay well within the no-arbitrage bounds implied by bid-ask spreads.

Interestingly the deviations remain within the interval [cL, cR]. One caveat to this result might be the

different time windows use for the calculation of spot rates (12pm ET) and bid and ask quotes (4pm

GMT/11am ET). Studies such as Marsh et al. (2017) and Evans (2018) have focused on the fact that

fiat currency markets display vastly different market microstructure dynamics during the “4pm London

Fix”, as large banks flood the market with liquidity in attempts to influence this benchmark spot rate.

However, these studies show that spreads during the 4pm GMT window are much lower than at other

times during the trading day. This would therefore bias our results towards finding more deviations

outside the bounds.

On the other hand, Bitcoin currency triplets are shown to exceed the no-arbitrage bounds much

more often. Whenever the currency Bitcoin is included a modest proportion of the deviations lnSt,A/B−

lnSt,A/V − lnSt,V/B does not meet the conservative no-arbitrage bounds described by c̄L and c̄R. This

is particularly striking, considering that the maximum spread measure is much higher for Bitcoin (see

Table 2). By using the percentile based no-arbitrage bounds we observe that a substantial proportion

of the deviations is outside the interval [cL,10%, cR,90%].

The tendency of fiat currency non-zero deviations of lnSt,A/B−lnSt,A/V −lnSt,V/B to stay within no-

arbitrage bounds can also be seen by plotting these deviations over time. Figure 3 presents deviations,

along with the no-arbitrage bounds implied by the 10%/90% percentiles of spreads, for a representative

sample of currency triplets including only fiat currencies, in which the U.S. dollar is used as the vehicle

currency. Deviations for fiat currency triplets in which the euro is used as the vehicle currency look very

similar. These deviations are quite small in magnitude, remaining in the interval [−0.0001, 0.0001] or

even smaller, and are fluctuating around zero with no clear episodes of being positive or negative only.

Emphasizing the results from Table 3, the deviations remain far way from the no-arbitrage bounds.

This holds even for currencies such as the Mexican peso and South African rand, which likely have

higher transactions costs due to their relatively low trading volumes.

[Insert Figure 3 about here.]

For comparison, Figure 4 presents all deviations for triplets including Bitcoin, in which USD is used

as the vehicle currency, along with our measures of no-arbitrage bounds implied by the 90% percentiles

of spreads. It is clear that including Bitcoin into the currency triplets leads to both higher magnitudes
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and higher volatility of the deviations. These deviations are often shown to exceed the no-arbitrage

bounds. Furthermore, we observe time spans in which the deviations remain systematically positive or

negative, pointing to persistent over- and underpricing in the market for Bitcoin. Such mispricings may

persist, for example, due to the relatively low rate of informed institutional trading on Bitcoin exchanges.

Anecdotal evidence puts the amount of Bitcoin held by institutional investors at about 1% as of 2017

(see, e.g., Lielacher, 2017). Furthermore, the most recent data from the Bitcoin trading services provider

itBit shows that institutional investors make up a majority of OTC Bitcoin transactions, implying that

when they do trade, they may prefer to do so off-exchange (see Hamilton, 2016). Interestingly, most

Bitcoin triplets experience a spike in their deviations around the Mt. Gox bankruptcy on 24 February

2014 (marked by the blue dotted line in the plots), showing the impact that this event had on the

market for Bitcoin. By contrast, for fiat currency triplets we do not observe spikes around this date.

Therefore, it may be that profitable arbitrage opportunities exist in the market for Bitcoin. However,

it may also be that there are additional trading costs or frictions for Bitcoin that are not captured by bid-

ask spreads, which limit the profitability of correcting deviations from the triangular arbitrage parity.

Such trading costs may come, for example, from high exchange fees; Kim (2017) estimates a maximum

Bitcoin exchange fee of about 0.5%, while Fink and Johann (2014) document Bitcoin exchange fees up

to 2%. Another factor is the high latency of Bitcoin trading; Courtois et al. (2014) show that Bitcoin

transactions can take up to ten minutes, making it difficult to engage in simultaneous transactions

with lower latency fiat currency markets. Bitcoin traders can opt for more speed, but this requites

the payment of a so-called “mining fee”, which Fink and Johann (2014) estimate as about 1%-4% for

Bitcoin. There are also a number of additional risks that are relatively unique to Bitcoin – such as

higher risks of exchange insolvency and theft (see, e.g., Moore and Christin, 2013), or its association

with illegal activity (see, e.g., Foley et al., 2019).

After examining deviations from the log-form of the triangular arbitrage parity, i.e., of lnSt,A/B −

lnSt,A/V − lnSt,V/B from zero, and a brief comparison of these deviations to the no-arbitrage bounds

implied by bid-ask spreads, the next section will analyze whether these deviations are connected to sig-

nificant market dislocations, in terms of deviations from a stochastic version of the triangular arbitrage

parity with cointegrated exchange rates and stationary errors and with parameter values as implied by

the exact parity.
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4 Monitoring Market Dislocations

In this section we discuss the logarithmic form of the triangular arbitrage parity from a cointegration

perspective, as a basis to identify market dislocations as breakdowns of the prevalence of a cointegrating

relationship with parity-implied values of the parameters. To be precise, we consider:

lnSt,A/B = µ+ β⊤

⎛⎝ lnSt,A/V

lnSt,V/B

⎞⎠ + ut,

yt = µ+ β⊤xt + ut , (5)

in which the three involved exchange rates St,A/B , St,A/V and St,V/B are integrated and the errors ut

stationary. The I(1) properties of the exchange rates are discussed and confirmed in Appendix A.1.

The triangular arbitrage parity implies that µ = 0 and β = (1, 1)
⊤
. With the parameter values

implied by the parity, the unobserved errors ut become in fact observed quantities. The idea of the mon-

itoring procedure of Wagner and Wied (2015) and Wagner and Wied (2017) is to assess the stochastic

properties of the residuals ût,m, defined as:

ût,m = yt − µ̂m − (1, 1) xt, t = [mT ] + 1, . . . , T, (6)

with µ̂m := 1
[mT ]

∑[mT ]
t=1 (yt − (1, 1) xt), the OLS estimate of µ for the given value of β = (1, 1)

⊤
over

the calibration period 1, . . . , [mT ] for some 0 < m < 1. The calibration period t = 1, . . . , [mT ] is known

to be or assumed to be free of structural breaks. Note that we estimate the intercept µ rather than

setting it equal to µ = 0, as implied by the triangular arbitrage parity. This is to allow for rounding

errors, as the convention of quoting exchange rates at only four decimals places (two decimal places in

the case of the yen) typically leads to small non-zero means in (6). Note also that the variant of the

monitoring procedure we use is treated in full detail only in Wagner and Wied (2015), since we monitor

a cointegrating relationship with known, i.e., given from the arbitrage parity condition, parameters

rather than estimated parameters.

As long as the relationship in (5) continues to hold after the calibration period, the residuals ût will

continue to be stationary. Should the relationship break down, however, either because the parameters

change (away from the parity-implied values) or because cointegration breaks down altogether, the

residuals will become “big”. This suggest to consider, e.g., a stationarity test statistic as the basis for a

11



monitoring statistic. Wagner and Wied (2017) consider as starting point the Kwiatkowski et al. (1992)

test statistic, which is transformed into a monitoring statistic given by:

Ĥm(s) :=
1

ω̂2
m

1

T

[sT ]∑
j=[mT ]

(
1√
T

j∑
t=1

ût,m

)2

, (7)

withm ≤ s ≤ 1 and ω̂2
m is an estimator of the long-run variance of ut, i.e., of 0 < ω2 =

∑∞
j=−∞ Eut−jut <

∞, calculated over the calibration period 1, . . . , [mT ]. In our application we estimate ω2 non-parametrically,

using the Bartlett kernel and the bandwidth rule of Andrews (1991). The test statistic has to be nor-

malized by the long-run variance to take into account potential serial correlation in ut. Under the null

hypothesis of no structural change, it holds that:

Ĥm(s) ⇒ Hm(s) :=
1

ω2

∫ s

m

ω2W̃ (r)2dr =

∫ s

m

W̃ (r)2dr , (8)

with W̃ (r) = W (r)− r
mW (m) and W (r) standard Brownian motion. The monitoring statistic Ĥm(s)

is calculated for all [mT ] + 1 ≤ [sT ] ≤ T and a weighted version of it is compared with critical values

obtained from Wagner and Wied (2015). A structural break is identified when a weighted test statistic,

Ĥs(m)
g(s) , exceeds, in absolute value, the corresponding critical value, i.e.:

τm :=

{
min

s: [mT ]+1≤[sT ]≤T

⏐⏐⏐⏐⏐Ĥm(s)

g(s)

⏐⏐⏐⏐⏐ > c(α, g(s),m)

}
, (9)

where τm, referred to as the detection time, is a natural estimator of the break-point. In our case we

use the weighting function g(s) = s3 as in Wagner and Wied (2017). The critical values c(α, g(s),m)

depend upon the significance level α, the weighting function g(s) and the length of the calibration period

m. They are constructed such that P
(
supm≤s≤1

⏐⏐⏐⏐ ∫ s
m

W̃ (r)2dr

g(s)

⏐⏐⏐⏐ > c(α, g(s),m)

)
= α. Throughout our

empirical analysis we use a significance level of α = 5%. The functioning of the monitoring procedure

is illustrated in Figure 5, with a break-point detected at time point tτm := [τmT ].

[Insert Figure 5 about here.]

Looking at (6) is informative for understanding why the monitoring procedure has power against

both a change in the stochastic behavior of the errors as well as against changes in the parameters oc-

curring in the monitoring period. Consider for brevity the omnibus case that potentially all parameters
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change at some time point [rT ], with the new parameters from [rT ] + 1 onward equal to µ1 ̸= µ0, with

µ0 the true value in the calibration period, and β1 ̸= (1, 1)
⊤
. This implies that, for the residuals, the

partial sum process:

1√
T

T∑
t=[rT ]+1

ût =
1√
T

T∑
t=[rT ]+1

ut −
T − [rT ]√

T
(µ̂m − µ1)−

1√
T

T∑
t=[rT ]+1

((1, 1) − β⊤
1 )xt (10)

will diverge. In case ut changes its behavior from I(0) to I(1) or to an explosive process, the partial

sum process 1√
T

∑T
t=[rT ]+1 ut diverges, and in case the intercept changes to µ1, the corresponding term

will diverge as µ̂m − µ1 will in this case not converge to zero due to µ̂m converging to the true value

prior to the change, µ0. The same argument applies if the slope parameter vector β changes, since in

that case ((1, 1)−β⊤
1 ) is not equal to zero and the corresponding term involving xt diverges. Thus, in

either case of structural change, the partial sum process 1√
T

∑T
t=[rT ]+1 ût, which converges under the

null hypothesis, will diverge, being either an integrated or explosive process or including a deterministic

trend or both.

Of course, the first step in assessing whether the posited parity relationship in (5) is supported by the

data is to estimate the parameters µ and β and to verify whether the estimated parameters are in line

with the no-arbitrage values µ = 0 and β = (1, 1)
⊤
. When estimating the parameters in (5) one has to

resort to estimators that have limiting distributions that allow for asymptotic standard inference. These

estimators correct for the effects of error serial correlation and regressor endogeneity that contaminate

the limiting distribution of the OLS estimator. In our analysis, we use the so-called fully modified OLS

(FM-OLS) estimator of Phillips and Hansen (1990). In particular, we perform rolling estimation of the

parameters with FM-OLS to assess the stability of the parameters visually in the following Section 5.

A detailed discussion of modified least squares estimators in cointegrating regressions is contained, e.g.,

in Wagner (2018). Since the limiting distribution of the FM-OLS estimator allows for asymptotically

valid inference, we also use the FM-OLS estimates over the full sample period to test several hypotheses

related to whether the parameters are equal to the parity-implied values. This is, of course, nothing

but an additional way to assess whether the parameters are close to the parity-implied values. Neither

of these tools, however, allows for asymptotically valued detection of break-points, the reason being

that monitoring is inherently a multiple testing problem and this has to be taken into account in the

construction of a valid monitoring procedure, not least in the construction or simulation of valid critical

values that allow for asymptotic size control. See Chu et al. (1996) for a detailed discussion of these
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issues.

5 Results

This section describes the results from our empirical investigation of the triangular arbitrage parity in

the foreign exchange and Bitcoin markets. Recall that the triangular arbitrage parity examines the

relationship between a triplet of exchange rates. Like Pasquariello (2014) we include only currency

triplets in which either USD or EUR serve as vehicle currency. Furthermore, each currency triplet is

only included once, irrespective of the ordering. This leaves us with 72 fiat currency triplets and 18

currency triplets involving Bitcoin. Furthermore, we choose a calibration period of m = 0.2. As our

sample period ranges from 1 May 2013 until 31 December 2015, this means that our calibration time

period lasts from 1 May 2013 until 8 November 2013, which corresponds to a relatively stable period

for exchange rates.

First, we want to see whether estimates of the parameters µ and β from (5) correspond to the values

implied by the triangular arbitrage parity, µ = 0 and β = (1, 1)
⊤
. We estimate the parameters over

the full period, 1 May 2013 to 31 December 2015, using fully modified least squares (FM-OLS), which

corrects for possible serial correlation as well as endogeneity in a cointegration regression (see Phillips

and Hansen, 1990). We subsequently analyze Wald-type tests to separately test the parameters for

µ = 0, β1 = 1, and β2 = 1. The results for these Wald tests are presented in Table 4.

[Insert Table 4 about here.]

We are much more likely to find deviations from µ = 0 in the currency triplets that include Bitcoin,

For the USD triplets, the Wald-type test rejects (at a 5% confidence level) the null hypothesis that

µ = 0 for only 4 out of 36 (11%) of the fiat-only currency triplets, but for 7 of the 9 (77%) of the

currency triplets that include Bitcoin. Similarly, for the EUR triplets, we reject the hypothesis that

µ = 0 in only one (2.7%) of the fiat-only triplets, and in seven of the Bitcoin triplets. Meanwhile, we are

also more likely to find deviations from β = (1, 1)
⊤

in Bitcoin triplets, though there are overall fewer

deviations than for µ. Combining both the USD and EUR triplets, we reject the hypothesis β1 = 1

only twice (2.7%) out of the possible 72 fiat-only triplets, and in 6 (33%) of the Bitcoin triplets. The

hypothesis β2 = 1 is never rejected for the fiat-only triplets and is reject for 4 (22%) of the Bitcoin

triplets. Therefore, in all cases, we are more likely to see deviations from the parity-implied parameter
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values for currency triplets that include Bitcoin.

Next, we examine the stability of the parameter estimates over time, using rolling window regressions

to visually inspect whether the parameter estimates are close to the values implied by the triangular

arbitrage parity. We consider rolling window parameter estimates for the regression model (5), using

a window size m = 0.2 as a proportion of the total time series length, and abbreviate the estimated

parameters by µ̂m and β̂m =
(
β̂1m, β̂2m

)⊤
.

Representative results for the estimates µ̂m and β̂m are provided in Figures 6 and 7. Figure 6 shows

rolling window estimates for currency triplets in which only fiat currencies are included, and reveals

that the estimated parameters hardly deviate from their theory-implied values over our sample period,

and that the variation of the estimates is small. On the other hand, the rolling window estimates for

currency triplets involving Bitcoin, shown in Figure 7, show high variation in the estimates and large

deviations away from the theory-implied parameter values.

[Insert Figures 6 and 7 about here.]

In a next step, we perform stationarity monitoring as described in Section 4, which will also allow us

to identify dates around which structural breaks-points are more likely to have occurred. Overall, given

the frequent observation of deviations outside of no-arbitrage bounds for currency triplets involving

Bitcoin (see Figure 4), as well as deviations of parameter estimates away from their theory-implied values

from the rolling window regressions (see Figures 6 and 7), we might expect that our monitoring tool will

be more likely to reject the null hypothesis of “no structural breaks” in the cointegrating relationship

for Bitcoin currency triplets. In our stationary monitoring procedure, we fix β = β∗ = (1, 1)⊤ and

monitor the OLS residuals ût := yt− µ̂m−β∗⊤xt. The detected break-points are presented in Table 5.

[Insert Table 5 about here.]

The results indeed indicate that we are much more likely to detect a break-point in the triplets

that include Bitcoin. With the USD as the vehicle currency, we observe six break-points in the triplets

that include Bitcoin (XBT) (i.e., in two-thirds of the Bitcoin triplets), and only two break-points when

the triplet is composed of fiat currencies only (5.5% of the fiat-only triplets). Interestingly, the two

breaks in the fiat-only triplets both include the Mexican peso (MXN), with break-point dates in October

2014. The Mexican peso experienced a rapid decline at the end of 2014 due to a drop in oil prices and

strengthening of the U.S. dollar, which might have generated these deviations (see, e.g., Bain, 2013).
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Similarly, using the EUR as the vehicle currency leads to seven break-points in the Bitcoin triplets, and

to zero breaks in the fiat-only triplets.

As we have shown that a high number of break-points are detected in the Bitcoin triplets, the next

question is whether the detected break-points tend to be clustered in time. Figure 8 plots the Bitcoin

exchange rates, with dashed vertical lines representing the detected break-points for currency triplets

using either the USD or EUR as vehicle currencies. The detected break-point of 26 February 2014 for

the triplet JPY-XBT-USD comes just days after the Mt. Gox bankruptcy. That the bankruptcy should

hit the market for JPY/XBT the hardest is no surprise; the shut-down of the Tokyo-based exchange

represented a massive disruption to the market for Bitcoin against the yen, as Bitcoin dropped 17.41%

against the yen within a single day. Furthermore, as Mt. Gox is the only exchange in our dataset that

offered JPY/XBT transactions at the time, its bankruptcy meant a virtual halt on exchange-based

trading of yen for Bitcoin. However, it’s important to note that there may have been more exchanges

offering JPY/XBT that have chosen not to self-report in the bitcoincharts dataset, and furthermore

that traders could search for counterparties in JPY/XBT via OTC markets.

[Insert Figure 8 about here.]

Other break-points for USD triplets do not seem to be clustered in time, although all take place after

the Mt. Gox bankruptcy. It is not clear whether these later detection dates are due to a lagged reaction

of our detector, or reactions to other market events. For example, it is likely that the break-point of 19

January 2015 for the triplet CHF-XBT-USD is a result of the Swiss National Bank’s abrupt ending to

its cap on the CHF/EUR exchange rate just a few days earlier.

For the triplets using EUR as a vehicle currency, depicted in Figure 8b, interestingly we see that

the break-points indeed tend to be clustered in time, with most break-points clustered around the

bankruptcy of Mt. Gox and the subsequent recovery. The only exception is JPY-XBT-EUR; for this

triplet, we already detect a break-point on 29 January 2014, before the Mt. Gox bankruptcy. Mt.

Gox was experiencing problems throughout early 2014 in the lead-up to its bankruptcy, as customers

complained about withdrawal delays and poor service (see, e.g., Weisenthal, 2014). Meanwhile, the

break-points for almost all remaining Bitcoin triplets occur during the weeks and months after the Mt.

Gox bankruptcy, when trading was likely much more restricted due to the collapse of the major ex-

change. Our results imply that these trading restrictions may have led to deviations from the triangular

arbitrage parity for Bitcoin traders in a variety of currencies. However, given difficulties in trading, it is
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possible that Bitcoin traders were not able to take advantage of these potential arbitrage opportunities.

Figure 9 plots the OLS residuals ût := yt − µ̂m −β∗⊤xt as described in Section 4, for two examples

of triplets: one in which a break-point is detected (JPY-XBT-USD, Figure 9a), and one in which

no break-point is detected (JPY-SEK-USD, Figure 9b). In the figures, the solid lines correspond to

the cut-off between the calibration and monitoring time periods, and the dashed lines correspond to

the detected break-point (if any) for the currency triplet shown. In Figure 9a, the break-point of 26

February 2014 corresponds to a downward spike in the residuals; furthermore, after the detected break-

point, the residuals remain consistently negative. For comparison, Figure 9b shows a triplet for which

no break-point is found. These residuals remain clustered around zero.

[Insert Figure 9 about here.]

Note that break-point detected by means of our monitoring tool does not automatically imply

that exploitable arbitrage opportunities exist. The deviations from triangular arbitrage could be due

to costs and trading constraints that would prevent a profitable trade based on the deviations. For

example, as mentioned above, small deviations in µ from zero can be justified by rounding errors or

measurement effects. However, a break-point detected by our monitoring tool implies a break down

in the cointegrating relationship between exchange rates, and thus indicates a substantial dislocation

between the markets for these currencies.

5.1 Portfolio Trading Strategy

In a final step, we check whether our results could be used to construct a profitable trading strategy. The

idea is to compare two portfolios: one based on a simple buy-and-hold strategy, and one that trades once

a break in triangular arbitrage parity deviations is detected according to the Wagner and Wied (2017)

monitoring procedure. If detected break-points indeed represent market dislocations, then a break may

signal higher expected uncertainty in currency markets. Thus, it may be profitable to re-balance the

portfolio away from the implicated currencies and back into their domestic currency. This strategy

is similar to those explored in Wied et al. (2012) and Wied et al. (2013), and is furthermore similar

to the portfolio re-balancing channel of Hau and Rey (2006), in which investors shift their portfolios

away from foreign currencies and into their domestic currency when their exposure to exchange rate

risk increases. We consider either USD or EUR as the domestic currency. Furthermore, the initial and

liquidation dates for both portfolios are defined as the first and last dates of the monitoring period in
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our sample, such that the total duration of both portfolios is from 11 November 2013 until 31 December

2015, i.e., t = [mT ] + 1, ..., T . We further assume that any trade can be executed at the noon spot

exchange rates described in Section 2.

The first portfolio (denoted by Portfolio A) consists of a simple buy-and-hold strategy that divides

100 units of the domestic currency equally between the eleven currencies in our sample (USD, EUR,

JPY, GDP, AUD, CAD, CHF, SEK, MXN, ZAR, and XBT), and never trades the currencies after

the initial purchase. We assume that currencies are deposited and earn the local risk-free rate, taken

as the local one-month deposit rate, as collected from Thomson Reuters Datastream and transformed

to a daily interest rate such that daily returns can be compounded. As there is no risk-free Bitcoin-

denominated asset, we assume that the risk-free rate for Bitcoin is zero. We assume that the units

of foreign currency are exchanged for the domestic currency only on the liquidation date, leading to

buy-and-hold return RA, which denotes the return of Portfolio A over the entire portfolio duration.

Note that changes in the value of the buy-and-hold portfolio are, in addition to compound interest,

driven by currency revaluations over the portfolio duration. Hence, Portfolio A captures the mean

performance of a domestic currency against the other ten currencies considered, after accounting for

compound interest.

The second portfolio (denoted by Portfolio B) similarly divides 100 units of the domestic currency

equally between the eleven currencies, but trades on the day(s) on which our monitoring procedure

detects any break-point in the triangular arbitrage parity deviations. Specifically, it exchanges those

holdings in the foreign currencies involved in the triangular arbitrage triplet implicated by the break-

point to the domestic currency. For example, let USD be the domestic currency. From Table 5, the first

breakpoint is experienced by the triplet JPY-XBT-EUR on date τ1=29 January 2014. On this date, the

spot rates were Sτ1,USD/JPY = 0.0098, Sτ1,USD/XBT = 834.9783 and Sτ1,EUR/USD = 0.7320. Given

the yen-denominated risk-free rate, the initial units of 905.8119 JPY will be worth 905.9270 JPY by time

τm,1. The trading strategy will then exchange the 905.9270 units of JPY for 905.9270×Sτ1,USD/JPY =

8.8659 units of USD. The strategy will also convert the units of XBT and EUR into units of USD.

For all subsequent breaks, if one of the implicated foreign currencies was already involved in any prior

break, the investor already converted the corresponding holdings into the domestic currency and so

does not trade in that currency. Finally, at the liquidation date, all remaining foreign currency holdings

are converted to the domestic currency. A summary of the dates on which Portfolios B trades can be

found in Table 6, for both the USD and EUR as the domestic currency. The return earned by Portfolio
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B is denoted by RB .

[Insert Table 6 about here.]

In addition to portfolio returns, we also consider the Sharpe ratio as a risk-adjusted measure of

portfolio performance. For portfolio P , the Sharpe ratio is calculated as the ratio of mean daily

portfolio excess returns to the standard deviation of portfolio daily returns:

SharpeRatioP =
√
T − [mT ]− 1

1
T−[mT ]−1

∑T
t=[mT ]+1

(
RP

t−1:t −RDOM
f,t−1:t

)
σ̂(RP

t−1:t)
, (11)

where σ̂(·) denotes the sample standard deviation of the daily portfolio returns, RP
t−1:t denotes the

return for portfolio P over the period t− 1 to t, and RDOM
f,t−1:t is the domestic risk-free rate.

It is important to note that both trading strategies exclude trading costs. However, note also that

each portfolio trades a given currency exactly once: at the liquidation date in the case of Portfolio A,

or at either a break-point date or the liquidation date in the case of Portfolio B. If trading costs are

assumed to be constant over time, the total number of trades is thus the same for both portfolios, such

that they will experience the same trading costs.

Table 7 compares the returns and Sharpe ratios of the two portfolios, for the different domestic

currencies USD (Panel I) or EUR (Panel II). In both panels, Portfolio B is shown to significantly

outperform Portfolio A, both in terms of returns and in terms of the Sharpe ratio. In fact, Panel I

shows that, when the USD is the domestic currency, the buy-and-hold Portfolio A earns a strongly

negative return, while Portfolio B achieves a positive return. We perform additional robustness checks

in which the portfolios do not earn interest, i.e., pure cash portfolios are held, and in which the JPY

or CHF are used as the domestic currency. The result that Portfolio B outperforms Portfolio A both

in terms of returns and Sharpe ratios remains qualitatively unchanged.

[Insert Table 7 about here.]

It could be that the higher profits of Portfolio B simply reflect general movements and appreciations

in currency markets, rather than a result of optimally-timed market trades. Therefore, as a robustness

check, we next perform a stability analysis in which we compare the performance of our Portfolio B with

a portfolio that trades on randomly chosen dates. In these “placebo” portfolios, the number of break-

points is chosen from a Poisson distribution with mean equal to the observed number of break-points,

λ = 15. Break-point dates and are chosen from a uniform distribution on the grid [mT ] + 1, . . . , T , and
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associated currency triplets are chosen from a uniform distribution without replacement. For the two

domestic currencies considered, the portfolios are simulated a total of 5,000 times; the distributions

of resulting portfolio returns and Sharpe ratios are shown in Figure 10. In each figure, the vertical

line corresponds to the return or Sharpe ratio from the portfolio that trades based on the break-points

as detected by our monitoring procedure. It is clear that the portfolios that apply the monitoring

procedure significantly outperform those portfolios that trade based on randomly assigned dates, further

strengthening the argument that our monitoring procedure indeed detects periods of instability in which

it is optimal to exit currency markets.

[Insert Figure 10 about here.]

Overall, this exercise is meant as a simple illustration that our methodology could lead to portfolio

strategies that outperform, e.g., a simple buy-and-hold strategy. The fact that our portfolio consistently

outperforms the buy-and-hold portfolio supports the idea that our monitoring tool indeed detects

financial market dislocations, which represent instances of heightened uncertainty in foreign exchange

markets. This characteristic of the monitoring tool should allow its use for constructing profitable

investment strategies. Finally, note that, once a foreign currency is sold, we do not allow the trader

to buy back the currencies afterwards. A trading strategy based on an econometric tool would require

estimating the particular duration of a financial market dislocation, for example by monitoring the

triangular arbitrage parity deviations for a break from no cointegration to cointegration.

6 Summary and Conclusions

This paper uses new econometric tools to investigate deviations from the triangular arbitrage parity in

foreign exchange markets. To examine this issue, we collect spot exchange rates for ten fiat currencies,

and use transaction data to construct spot rates for the cryptocurrency Bitcoin. Using the stationarity

monitoring tool from Wagner and Wied (2017), which monitors the stability of a cointegrating rela-

tionship over time, our results confirm that non-zero deviations from the triangular arbitrage parity for

fiat currencies tend to stay inside no-arbitrage bounds calculated from bid-ask spreads. Furthermore,

from a total of 72 different triplet permutations of traditional fiat currencies, we find a structural break

in the relationship implied by the triangular arbitrage parity in only two cases.

On the other hand, for currency triplets involving Bitcoin, we find that deviations exceed no-
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arbitrage bounds in the majority of cases. Furthermore, we detect break-points in the majority of

cases. Most of the detected break-points closely correspond to market events, most notably to the

bankruptcy of and the resulting trading halt on Mt. Gox, which at the time of its bankruptcy was the

largest Bitcoin-trading platform in the world. This perhaps reflects the finding as in Baur et al. (2018)

that Bitcoin is more a speculative asset than it is a currency.

In a final step, we compare a simple buy-and-hold strategy to a portfolio strategy that trades once a

break in triangular arbitrage parity deviations is detected, and show that the latter strategy outperforms

in all cases. This confirms that, by detecting periods of instability in which it is optimal to exit currency

markets, our results could be used to construct a profitable trading strategy.

Acknowledgements

The authors appreciate helpful comments from Alexander Brauneis, Lin William Cong, Thomas Jo-

hann, Igor Pozdeev, Christian Wagner, Gloria Yu, Jinyuan Zhang and from conference and seminar

participants at the University of Cologne, the 11th International Conference on Computational and

Financial Econometrics (CFE 2017), the 2nd Vienna Workshop for High-Dimensional Time Series in

Macroeconomics and Finance, the 30th Workshop of the Austrian Working Group on Banking & Fi-

nance (AWG), the 2017 ECDA Conference, the 2018 Bergen Fintech Conference, the XXVI Finance

Forum, and the 2018 Meeting of the German Finance Association. We thank Etienne Theising for his

help in collecting and compiling the Bitcoin data used in this study. Furthermore, we thank Dominik

Wied for discussions and the suggestion to perform the portfolio comparison. The authors gratefully
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A Appendix

A.1 Times Series Properties of Exchange Rate Data

The econometric analysis of the paper commences from treating the triangular arbitrage parity in its

logarithmic form – under the null hypothesis at least – as a cointegrating relationship. This necessitates

as a pre-requisite that the logarithms of the exchange rates are integrated processes of order one, i.e,

I(1).

To investigate the integration properties we use two unit root tests – the augmented Dickey-Fuller

(ADF) test of Dickey and Fuller (1979) and the PP test of Phillips and Perron (1988) – as well as

the KPSS stationarity test of Kwiatkowski et al. (1992), with the results reported in Table 8. Panel

A shows that, as expected, the augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests fail to

reject the null hypothesis of a unit root when testing all log exchange rates in levels. Likewise, the

Kwiatkowski et al. (1992) (KPSS) test rejects the null of stationarity for all log exchange rates. On the

other hand, the test results from Panel B show that the first-differences of all log exchange rates exhibit

stationarity. Therefore, evidence from these tests affirms that log exchange rates are indeed I(1).

[Insert Table 8 about here.]

A.2 Precision of Bitcoin Data

Table 9 shows summary statistics for the precision of our Bitcoin noon exchange rates with respect to

the target window of 11:59am and 12:01pm ET. As expected, USD/XBT and EUR/XBT are the most

precise: 88% and 65% of our noon exchange rates capture only observations within the target window,

and typically more than three observations are found within the window (an average of 65 observations

for USD/XBT, and 13 for EUR/XBT). The Bitcoin rate against the Mexican peso, MXN/XBT, is the

least precise: results show that a MXN/XBT observation never occurs during the target window, and

the median time distance of observations away from the target window is about ten hours. All-in-all,

the results show that our methodology captures rates that on average occur at least within a 12-hour

window around the target window. Figure 11 plots the histogram of observations used to calculate

Bitcoin noon exchange rates that fall outside of the target window. Observations are binned according

to hours away from the target window. As expected, USD/XBT and EUR/XBT are clustered around

0, while other currencies have wider tails. Interestingly, most currencies see a spike around 12 hours
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after the target window; this might be because of Bitcoin exchange operating hours, or due to time

zone effects of the countries in which the paired fiat currency is traded.

[Insert Table 9 and Figure 11 about here.]

We believe that this approach is superior to using daily averages of Bitcoin prices. Using only the

Bitcoin prices that are within or closest to the same two-minute window as our fiat currency spot rates

allows us to more accurately capture prices that would be present in the market at approximately the

same time, and thus be available simultaneously to traders looking to engage in triangular arbitrage.

However, there are a few drawbacks. First, given the 24-hour nature of Bitcoin exchange trading and

the dominance of non-U.S. exchanges (Fink and Johann (2014) find that, of the top five most liquid

Bitcoin exchanges, none are based in the United States), a 11:59am-12:01pm ET time window may not

necessarily be a representative time period for Bitcoin markets. Secondly, Bitcoin transactions have a

much higher latency than transactions in fiat currencies, due to the need to verify and confirm Bitcoin

transactions within the blockchain network (see, e.g., Courtois et al., 2014). Therefore, traders may

only be able to exploit arbitrage opportunities with some amount of lag in Bitcoin markets that is

longer than the two-minute window.
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B Tables and Figures

Figure 1: Time Variation in Exchange Rates

The figure plots exchange rates for ten currencies against the U.S. dollar
(USD) over the sample period 1 May 2013 – 31 December 2015. The vertical
dotted line corresponds to the cut-off between the calibration time period
and the monitoring time period.

M
ay

13
Ju

l13
Sep

13
Nov

13
Ja

n1
4

M
ar

14
M

ay
14

Ju
l14

Sep
14

Nov
14

Ja
n1

5
M

ar
15

M
ay

15
Ju

l15
Sep

15
Nov

15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

F
X

 R
at

e

USD/EUR
USD/JPY*100
USD/GBP
USD/AUD
USD/CAD
USD/CHF
USD/SEK*10

USD/MXN*10-1

USD/ZAR*10

USD/XBT*10-3

29



Figure 2: Percentage Bid-Ask Spreads: Fiat Currencies vs. Bitcoin

The figure plots the average percentage bid-ask spread for fiat currencies
(left axis), as well as average percentage bid-ask spreads for Bitcoin (right
axis) over the sample period 1 May 2013 – 31 December 2015.
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Figure 3: Deviations of lnSt,A/B − lnSt,A/V − lnSt,V/B from Zero for USD-Fiat Currency Triplets

The subfigures plot the deviations of lnSt,A/B − lnSt,A/V − lnSt,V/B from zero for a variety of currency triplets that only include fiat
currencies, in which the U.S. dollar (USD) is used as the vehicle currency. The time period spans from 1 May 2013 to 31 December
2015. Horizontal black dashed lines correspond to the no-arbitrage bounds calculated from implied transaction costs: the upper bound
corresponds to cR,90% and the lower bound corresponds to cL,10% as described in Section 3. The horizontal gray dashed line is positioned
at 0.

M
ay

13
Ju

l13
Sep

13
Nov

13
Ja

n1
4

M
ar

14
M

ay
14

Ju
l14

Sep
14

Nov
14

Ja
n1

5
M

ar
15

M
ay

15
Ju

l15
Sep

15
Nov

15

-8

-6

-4

-2

0

2

4

6

8

ln
 S

t,A
/B

- 
ln

 S
t,A

/V
 -

 ln
S

t,V
/B

10-4

(a) EUR-AUD-USD

M
ay

13
Ju

l13
Sep

13
Nov

13
Ja

n1
4

M
ar

14
M

ay
14

Ju
l14

Sep
14

Nov
14

Ja
n1

5
M

ar
15

M
ay

15
Ju

l15
Sep

15
Nov

15

-8

-6

-4

-2

0

2

4

6

8

ln
 S

t,A
/B

- 
ln

 S
t,A

/V
 -

 ln
S

t,V
/B

10-4

(b) EUR-CAD-USD

M
ay

13
Ju

l13
Sep

13
Nov

13
Ja

n1
4

M
ar

14
M

ay
14

Ju
l14

Sep
14

Nov
14

Ja
n1

5
M

ar
15

M
ay

15
Ju

l15
Sep

15
Nov

15

-1

-0.5

0

0.5

1

ln
 S

t,A
/B

- 
ln

 S
t,A

/V
 -

 ln
S

t,V
/B

10-3

(c) EUR-CHF-USD

M
ay

13
Ju

l13
Sep

13
Nov

13
Ja

n1
4

M
ar

14
M

ay
14

Ju
l14

Sep
14

Nov
14

Ja
n1

5
M

ar
15

M
ay

15
Ju

l15
Sep

15
Nov

15

-6

-4

-2

0

2

4

6

ln
 S

t,A
/B

- 
ln

 S
t,A

/V
 -

 ln
S

t,V
/B

10-4

(d) EUR-GBP-USD

M
ay

13
Ju

l13
Sep

13
Nov

13
Ja

n1
4

M
ar

14
M

ay
14

Ju
l14

Sep
14

Nov
14

Ja
n1

5
M

ar
15

M
ay

15
Ju

l15
Sep

15
Nov

15

-6

-4

-2

0

2

4

6

ln
 S

t,A
/B

- 
ln

 S
t,A

/V
 -

 ln
S

t,V
/B

10-4

(e) EUR-JPY-USD

M
ay

13
Ju

l13
Sep

13
Nov

13
Ja

n1
4

M
ar

14
M

ay
14

Ju
l14

Sep
14

Nov
14

Ja
n1

5
M

ar
15

M
ay

15
Ju

l15
Sep

15
Nov

15

-6

-4

-2

0

2

4

6

ln
 S

t,A
/B

- 
ln

 S
t,A

/V
 -

 ln
S

t,V
/B

10-4

(f) EUR-MXN-USD

M
ay

13
Ju

l13
Sep

13
Nov

13
Ja

n1
4

M
ar

14
M

ay
14

Ju
l14

Sep
14

Nov
14

Ja
n1

5
M

ar
15

M
ay

15
Ju

l15
Sep

15
Nov

15

-1

-0.5

0

0.5

1

ln
 S

t,A
/B

- 
ln

 S
t,A

/V
 -

 ln
S

t,V
/B

10-3

(g) EUR-SEK-USD

M
ay

13
Ju

l13
Sep

13
Nov

13
Ja

n1
4

M
ar

14
M

ay
14

Ju
l14

Sep
14

Nov
14

Ja
n1

5
M

ar
15

M
ay

15
Ju

l15
Sep

15
Nov

15

-1

-0.5

0

0.5

1

ln
 S

t,A
/B

- 
ln

 S
t,A

/V
 -

 ln
S

t,V
/B

10-3

(h) EUR-ZAR-USD

M
ay

13
Ju

l13
Sep

13
Nov

13
Ja

n1
4

M
ar

14
M

ay
14

Ju
l14

Sep
14

Nov
14

Ja
n1

5
M

ar
15

M
ay

15
Ju

l15
Sep

15
Nov

15

-1.5

-1

-0.5

0

0.5

1

1.5

ln
 S

t,A
/B

- 
ln

 S
t,A

/V
 -

 ln
S

t,V
/B

10-3

(i) JPY-CHF-USD

31



Figure 4: Deviations of lnSt,A/B − lnSt,A/V − lnSt,V/B from Zero for USD-Bitcoin Triplets

The subfigures plot the deviations of lnSt,A/B − lnSt,A/V − lnSt,V/B from zero for a variety of currency triplets that only include fiat
currencies, in which the U.S. dollar (USD) is used as the vehicle currency. The time period spans from 1 May 2013 to 31 December
2015. Horizontal black dashed lines correspond to the no-arbitrage bounds calculated from implied transaction costs: the upper bound
corresponds to cR,90% and the lower bound corresponds to cL,10% as described in Section 3. The horizontal gray dashed line is positioned
at 0. The vertical dotted line corresponds to the bankruptcy of Mt. Gox on 24 February 2014.
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Figure 5: Graphical Illustration of the Monitoring Procedure

This figure shows a graphical representation of the monitoring procedure of Wag-
ner and Wied (2017). The time period t = 1, . . . [mT ] denotes the calibration
time period. The time period t = [mT ] + 1, ...T is the monitoring time period, for

which a monitoring test statistic Ĥm(s) is constructed at each point in time [sT ],
s ∈ (m, 1]. The figure illustrates a detected break-point at time tτm = [τmT ], i.e.,

at the first point in time at which
⏐⏐⏐ Ĥm(s)

g(s)

⏐⏐⏐ exceeds a critical value.

1 [mT ] [mT ] + 1 [sT ] [sT ] + 1 [τmT ] T

Calibration Monitoring

Stationary

Break
Detection

Time

Non-Stationary

Figure 6: Rolling Window Regressions: Fiat Currency Triplets

The subfigures show fully modified OLS (FM-OLS) parameters estimates from rolling FM-OLS estimation of lnSt,A/B = µ +
β1 lnSt,A/V + β2 lnSt,V/B + ut, with vehicle currency USD. The full sample period is given by 1 May 2013 to 31 December 2015.
The estimates are based on rolling windows of length m = 0.2, such that the first coefficients estimates are on 11 November 2013.
The first column presents estimates of the intercept, denoted by µ̂m, the second and third column presents the estimates β̂1m and
β̂2m, respectively. Vertical dashed lines show the values of the parameters implied by the triangular arbitrage parity, i.e., µ = 0 and
β1 = β2 = 1. The y-axis for µ̂m is scaled to the interval [−0.001, 0.001]; for β̂1m and β̂2m it is scaled to [0.999, 1.001].
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Figure 7: Rolling Window Regressions: Bitcoin Triplets

The subfigures show fully modified OLS (FM-OLS) parameters estimates from rolling FM-OLS estimation of lnSt,A/B = µ +
β1 lnSt,A/V + β2 lnSt,V/B + ut, with vehicle currency USD. The full sample period is given by 1 May 2013 to 31 December 2015.
The estimates are based on rolling windows of length m = 0.2, such that the first coefficients estimates are on 11 November 2013.
The first column presents estimates of the intercept, denoted by µ̂m, the second and third column presents the estimates β̂1m and
β̂2m, respectively. Vertical dashed lines show the values of the parameters implied by the triangular arbitrage parity, i.e., µ = 0 and
β1 = β2 = 1. The y-axis for µ̂m is scaled to the interval [−1, 1]; for β̂1m and β̂2m it is scaled to [0, 2].
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Figure 8: Break-Point Dates

The figure plots exchange rates for nine currencies against Bitcoin (XBT) over the sample period 1 May 2013 – 31 December 2015. The
solid line corresponds to the cut-off between the calibration time period and the monitoring time period. The dashed lines correspond
to a detected break-point (if any) in the deviations from triangular arbitrage parity for a currency triplet, as listed in Table 5. Figure
8a plots break-points for currency triplets in which the USD is used as a vehicle currency; Figure 8b plots break-points for currency
triplets in which the EUR is used as a vehicle currency.

Ju
l13

Sep
13

Nov
13

Ja
n1

4
M

ar
14

M
ay

14
Ju

l14
Sep

14
Nov

14
Ja

n1
5

M
ar

15
M

ay
15

Ju
l15

Sep
15

Nov
15

0

2

4

6

8

10

12

14

16

18

F
X

 R
at

e

104

USD/XBT
EUR/XBT

JPY/XBT*10-2

GBP/XBT
AUD/XBT
CAD/XBT
CHF/XBT

SEK/XBT*10 -1

MXN/XBT*10-1

ZAR/XBT*10-1

(a) USD Triplets

Ju
l13

Sep
13

Nov
13

Ja
n1

4
M

ar
14

M
ay

14
Ju

l14
Sep

14
Nov

14
Ja

n1
5

M
ar

15
M

ay
15

Ju
l15

Sep
15

Nov
15

0

2

4

6

8

10

12

14

16

18

F
X

 R
at

e

104

USD/XBT
EUR/XBT

JPY/XBT*10-2

GBP/XBT
AUD/XBT
CAD/XBT
CHF/XBT

SEK/XBT*10 -1

MXN/XBT*10-1

ZAR/XBT*10-1

(b) EUR Triplets

Figure 9: Residuals ût,m

The subfigures plot the OLS residuals ût,m with m = 0.2 as discussed in Section 4. The solid line corresponds to the cut-off between
the calibration and monitoring time periods, and the dashed line corresponds to the detected break-point (if any) in the deviations from
triangular arbitrage parity for the currency triplet shown.
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Figure 10: Placebo Tests: Portfolio Returns and Sharpe Ratios

The figures show histograms of portfolio returns and Sharpe ratios calculated using randomly assigned break-point dates for the four
domestic currencies USD, EUR, JPY and CHF. The number of break-points for the placebo portfolios is randomly drawn from a Poisson
distribution with λ = 15. Break-point dates are chosen from a uniform distribution to be between 11 November 2013 and 31 December
2015, i.e., the stationarity monitoring period in our analysis. The currency triplets are randomly assigned to each break-point with a
uniform distribution without replacement. The portfolios are similuated a total of 5,000 times. The solid vertical lines indicate the
returns or Sharpe ratios of portfolios B that trade based on detected break-points using the monitoring procedure as described in the
main text.
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Figure 11: Histograms of Bitcoin Observations

The figures show the histograms of the observations used to calculate Bitcoin noon exchange rates that fall outside of (before or after)
the target window of 11:59am to 12:01pm. Histograms are presented separately for each currency.
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Figure 11: Histograms of Bitcoin Observations (Cont.)
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Table 1: Definitions and Trading Shares of Currencies

The table lists the currencies used in this analysis, along with their ISO 4217
Currency Codes, common symbols (in parenthesis), and percentage share of av-
erage daily turnover. The data represents currency turnovers from April 2016
and is sourced from the Bank for International Settlement’s Triennial Central
Bank Survey (see http://www.bis.org/publ/rpfx16fx.pdf). Note that, as multi-
ple currencies are involved in a transaction, the sum of the average daily turnover
rates sum to greater than 100%.

Currency Code %
(Symbol) Daily Share

United States Dollar USD ($) 87.6%
Euro EUR (e) 31.3%

Japanese Yen JPY (¥) 21.6%
Pound Sterling GBP () 12.8%

Australian Dollar AUD ($) 6.9%
Canadian Dollar CAD ($) 5.1%

Swiss Franc CHF (Fr) 4.8%
Swedish Krona SEK (kr) 2.2%
Mexican Peso MXN ($) 1.9%

South African Rand ZAR (R) 1.0%
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Table 2: Summary Statistics of Percentage Bid-Ask Spreads

The table shows summary statistics for percentage bid-ask spreads for fiat currency exchange rates against the U.S. dollar (Panel A),
and for percentage bid-ask spread for exchange rates against Bitcoin (Panel B) over the sample period 1 May 2013 – 31 December 2015.
Included are the mean, minimum, median (Q(50)), 90% percentile (Q(90)), and maximum percentage bid-ask spreads.

(A) Fiat Currency Percentage Bid-Ask Spreads

EUR/USD JPY/USD GBP/USD AUD/USD CAD/USD CHF/USD SEK/USD MXN/USD ZAR/USD
Mean 0.023 0.030 0.029 0.043 0.030 0.062 0.058 0.019 0.090
Min 0.014 0.024 0.022 0.031 0.021 0.031 0.047 0.007 0.064
Q(50) 0.023 0.029 0.029 0.042 0.028 0.056 0.057 0.018 0.092
Q(90) 0.028 0.039 0.033 0.055 0.038 0.094 0.065 0.028 0.101
Max 0.032 0.042 0.035 0.058 0.060 0.136 0.130 0.041 0.113

(B) Bitcoin Percentage Bid-Ask Spreads

USD/XBT EUR/XBT JPY/XBT GBP/XBT AUD/XBT CAD/XBT CHF/XBT SEK/XBT
Mean 0.184 0.953 9.031 2.05 2.487 2.369 5.152 3.732
Min 0.04 0.125 0.714 0.269 0.467 0.361 0.894 0.895
Q(50) 0.181 0.746 10.155 1.514 2.467 2.254 3.618 3.399
Q(90) 0.299 1.816 15.129 3.291 3.431 3.392 10.036 4.371
Max 1.688 6.470 20.175 16.833 8.471 18.041 35.271 16.833
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Table 3: Deviations and Implied Transactions Costs

This table presents the relative frequencies at which the deviations ut = lnStA/B − lnStA/V − lnStV/B exceed transaction costs as
estimated by the bounds based on the largest implied trading costs c̄L, c̄R, the percentile based bounds cL,10%, cR,90%, the smallest
implied cost cL, cR and mean and median estimates of implied cost cL,mean, cR,mean, cL,median and cR,median, during the period 1
May 2013 to 31 December 2015. Results are presented separate for currency triplets that only include fiat currencies, and for the seven
currency triplets for which Bitcoin (XBT) bid-ask spreads are available.

Vehicle Currency USD
Fiat EUR JPY GBP AUD CAD CHF SEK

Triplet XBT XBT XBT XBT XBT XBT XBT
USD USD USD USD USD USD USD

ut ≤ c̄L or ut ≥ c̄R 0.00% 19.94% 14.84% 11.09% 34.93% 8.25% 1.80% 14.99%
ut ≤ cL,10% or ut ≥ cR,90% 0.00% 56.37% 19.04% 71.36% 64.17% 55.62% 35.98% 75.71%
ut ≤ cL,mean or ut ≥ cR,mean 0.00% 72.86% 29.54% 79.76% 71.66% 65.52% 60.42% 79.46%
ut ≤ cL,median or ut ≥ cR,median 0.00% 77.21% 27.14% 85.01% 71.66% 66.42% 71.21% 81.56%
ut ≤ cL or ut ≥ cR 0.00% 94.60% 85.46% 97.30% 91.75% 91.90% 91.45% 95.20%

Vehicle Currency EUR
Fiat USD JPY GBP AUD CAD CHF SEK

Triplet XBT XBT XBT XBT XBT XBT XBT
EUR EUR EUR EUR EUR EUR EUR

ut ≤ c̄L or ut ≥ c̄R 0.00% 19.94% 12.14% 6.75% 26.69% 9.15% 1.80% 13.04%
ut ≤ cL,10% or ut ≥ cR,90% 0.00% 56.37% 15.89% 57.57% 51.27% 52.77% 26.99% 63.72%
ut ≤ cL,mean or ut ≥ cR,mean 0.00% 72.71% 23.24% 70.31% 59.52% 61.62% 49.48% 70.61%
ut ≤ cL,median or ut ≥ cR,median 0.00% 77.21% 22.34% 73.91% 60.57% 62.97% 61.17% 72.26%
ut ≤ cL or ut ≥ cR 0.00% 94.60% 76.31% 91.45% 86.66% 89.21% 79.76% 88.31%
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Table 4: Full Sample Parameter Estimates

This table presents parameters estimates of µ, β1, and β2 using the FM-OLS estimation procedure, along with Wald-type tests for
whether the estimated parameters are significantly different from the theoretically implied values using separate Wald-type tests µ = 0
and β1 = β2 = 1. The sample period is from 1 May 2013 until 31 December 2015. Also reported are the corresponding p-values of the
parameter estimates.

(A) Vehicle Currency USD (B) Vehicle Currency EUR
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Currency Triplet µ p-val β1 p-val β2 p-val Currency Triplet µ p-val β1 p-val β2 p-val

EUR-JPY-USD 0.000 0.014 1.000 0.015 1.000 0.503 USD-JPY-EUR 0.000 0.599 1.000 0.906 1.000 0.998
EUR-GBP-USD 0.000 0.897 1.000 1.000 1.000 1.000 USD-GBP-EUR 0.000 0.784 1.000 0.794 1.000 0.980
EUR-AUD-USD 0.000 0.696 1.000 0.752 1.000 0.816 USD-AUD-EUR 0.000 0.112 1.000 0.234 1.000 0.372
EUR-CAD-USD 0.000 0.392 1.000 0.813 1.000 0.935 USD-CAD-EUR 0.000 0.091 1.000 0.334 1.000 0.531
EUR-CHF-USD 0.000 0.707 1.000 0.859 1.000 0.972 USD-CHF-EUR 0.000 0.356 1.000 0.551 1.000 0.921
EUR-SEK-USD 0.000 0.448 1.000 0.919 1.000 1.000 USD-SEK-EUR 0.000 0.110 1.000 0.515 1.000 0.958
EUR-MXN-USD 0.000 0.189 1.000 0.749 1.000 0.996 USD-MXN-EUR 0.000 0.068 1.000 0.297 1.000 0.478
EUR-ZAR-USD 0.000 0.796 1.000 0.949 1.000 0.997 USD-ZAR-EUR 0.000 0.117 1.000 0.191 1.000 0.371
EUR-XBT-USD 0.064 0.000 0.941 0.000 0.989 0.001 USD-XBT-EUR -0.049 0.000 0.952 0.004 1.009 0.044
JPY-GBP-USD 0.000 0.031 1.000 0.118 1.000 0.945 JPY-GBP-EUR 0.000 0.582 1.000 0.691 1.000 0.756
JPY-AUD-USD 0.000 0.006 1.000 0.020 1.000 0.738 JPY-AUD-EUR 0.000 0.689 1.000 0.690 1.000 0.690
JPY-CAD-USD 0.000 0.075 1.000 0.173 1.000 0.818 JPY-CAD-EUR 0.000 0.142 1.000 0.144 1.000 0.165
JPY-CHF-USD 0.000 0.077 1.000 0.142 1.000 0.988 JPY-CHF-EUR 0.000 0.074 1.000 0.256 1.000 0.439
JPY-SEK-USD 0.000 0.471 1.000 0.739 1.000 0.999 JPY-SEK-EUR 0.000 0.820 1.000 0.898 1.000 0.909
JPY-MXN-USD 0.000 0.244 1.000 0.750 1.000 0.774 JPY-MXN-EUR 0.000 0.838 1.000 0.953 1.000 0.957
JPY-ZAR-USD 0.000 0.814 1.000 0.835 1.000 0.847 JPY-ZAR-EUR 0.000 0.562 1.000 0.592 1.000 0.939
JPY-XBT-USD -5.266 0.047 2.361 0.142 0.782 0.649 JPY-XBT-EUR 18.121 0.106 -2.651 0.308 0.944 0.628
GBP-AUD-USD 0.000 0.361 1.000 0.726 1.000 0.855 GBP-AUD-EUR 0.000 0.753 1.000 0.760 1.000 0.999
GBP-CAD-USD 0.000 0.286 1.000 0.590 1.000 0.953 GBP-CAD-EUR 0.000 0.496 1.000 0.496 1.000 0.958
GBP-CHF-USD 0.000 0.251 1.000 0.293 1.000 0.942 GBP-CHF-EUR 0.000 0.419 1.000 0.419 1.000 0.632
GBP-SEK-USD 0.000 0.701 1.000 0.773 1.000 0.766 GBP-SEK-EUR 0.000 0.309 1.000 0.630 1.000 0.719
GBP-MXN-USD 0.000 0.896 1.000 0.905 1.000 0.907 GBP-MXN-EUR 0.000 0.257 1.000 0.468 1.000 0.896
GBP-ZAR-USD 0.000 0.941 1.000 0.943 1.000 0.996 GBP-ZAR-EUR 0.000 0.173 1.000 0.401 1.000 0.967
GBP-XBT-USD 0.018 0.000 0.883 0.648 0.994 0.964 GBP-XBT-EUR -0.002 0.000 1.040 0.636 1.007 1.000
AUD-CAD-USD 0.000 0.544 1.000 0.585 1.000 0.838 AUD-CAD-EUR 0.000 0.586 1.000 0.590 1.000 1.000
AUD-CHF-USD 0.000 0.809 1.000 0.980 1.000 0.988 AUD-CHF-EUR 0.000 0.983 1.000 0.988 1.000 0.991
AUD-SEK-USD 0.000 0.556 1.000 0.709 1.000 1.000 AUD-SEK-EUR 0.000 0.503 1.000 0.580 1.000 0.644
AUD-MXN-USD 0.000 0.433 1.000 0.463 1.000 0.539 AUD-MXN-EUR 0.000 0.950 1.000 0.973 1.000 0.977
AUD-ZAR-USD 0.000 0.601 1.000 0.654 1.000 0.930 AUD-ZAR-EUR 0.000 0.914 1.000 0.941 1.000 0.954
AUD-XBT-USD 0.048 0.000 0.891 0.000 1.000 0.210 AUD-XBT-EUR -0.038 0.000 1.059 0.500 1.006 0.798
CAD-CHF-USD 0.000 0.787 1.000 0.820 1.000 1.000 CAD-CHF-EUR 0.000 0.153 1.000 0.359 1.000 0.563
CAD-SEK-USD 0.000 0.655 1.000 0.735 1.000 0.753 CAD-SEK-EUR 0.000 0.281 1.000 0.616 1.000 1.000
CAD-MXN-USD 0.000 0.095 1.000 0.460 1.000 0.479 CAD-MXN-EUR 0.000 0.622 1.000 0.756 1.000 0.981
CAD-ZAR-USD 0.000 0.739 1.000 0.742 1.000 0.796 CAD-ZAR-EUR 0.000 0.438 1.000 0.860 1.000 0.878
CAD-XBT-USD -0.045 0.241 1.032 0.250 1.007 0.369 CAD-XBT-EUR -0.100 0.000 0.879 0.010 1.024 0.043
CHF-SEK-USD 0.000 0.964 1.000 0.981 1.000 0.988 CHF-SEK-EUR 0.000 0.041 1.000 0.098 1.000 0.290
CHF-MXN-USD 0.000 0.163 1.000 0.765 1.000 0.809 CHF-MXN-EUR 0.000 0.319 1.000 0.477 1.000 0.705
CHF-ZAR-USD 0.000 0.810 1.000 0.837 1.000 0.935 CHF-ZAR-EUR 0.000 0.623 1.000 0.702 1.000 0.710
CHF-XBT-USD 0.080 0.000 0.715 0.080 0.988 0.270 CHF-XBT-EUR 0.007 0.000 1.023 0.956 1.002 0.998
SEK-MXN-USD 0.000 0.330 1.000 0.851 1.000 0.995 SEK-MXN-EUR 0.000 0.781 1.000 0.850 1.000 0.964
SEK-ZAR-USD 0.000 0.307 1.000 0.311 1.000 0.866 SEK-ZAR-EUR 0.000 0.792 1.000 0.794 1.000 0.997
SEK-XBT-USD -0.073 0.000 1.074 0.010 0.995 0.654 SEK-XBT-EUR -1.073 0.000 1.514 0.004 0.995 0.007
MXN-ZAR-USD 0.000 0.363 1.000 0.684 1.000 0.998 MXN-ZAR-EUR 0.000 0.791 1.000 0.958 1.000 0.970
MXN-XBT-USD 0.358 0.000 0.965 0.065 0.964 0.515 MXN-XBT-EUR 0.591 0.000 0.850 0.320 0.980 0.826
ZAR-XBT-USD -1.327 0.146 1.374 0.483 1.088 0.655 ZAR-XBT-EUR -1.805 0.441 1.556 0.666 1.072 0.927
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Table 5: Detected Break-Points

The table shows all detected break-points found in our sample of currency triplets
using the monitoring procedure described in Section 4.

Vehicle Currency USD Vehicle Currency EUR

Triplet Break Date Triplet Break Date
JPY-XBT-USD 2014/02/26 JPY-XBT-EUR 2014/01/29
EUR-XBT-USD 2014/05/27 AUD-XBT-EUR 2014/04/08
CHF-MXN-USD 2014/10/01 CAD-XBT-EUR 2014/04/25
JPY-MXN-USD 2014/10/30 CHF-XBT-EUR 2014/05/13
CAD-XBT-USD 2014/11/13 GBP-XBT-EUR 2014/05/26
CHF-XBT-USD 2015/01/19 USD-XBT-EUR 2014/05/27
SEK-XBT-USD 2015/07/27 SEK-XBT-EUR 2014/06/25
AUD-XBT-USD 2015/10/06

Table 6: Break-Point Portfolio Trading Dates

This table shows the dates on which a portfolio that invests equal units of a
domestic currency into eleven currencies, and trades on the day(s) on which the
Wagner and Wied (2017) monitoring procedure as described in Section 4 detects
any break-point in triangular arbitrage parity deviations. Specifically, it exchanges
those holdings in the foreign currencies involved in the triangular arbitrage triplet
implicated by the break-point to the domestic currency. The portfolio is initiated
on 11 November 2013 and liquidates any remaining currencies by exchanging them
for the domestic currency of 31 December 2015. Panel I reports the trading dates
when USD is defined as the domestic currency, while Panel II reports the trading
dates when USD is defined as the domestic currency.

(I) Domestic Currency: USD (II) Domestic Currency: EUR
Date Converted to USD Date Converted to EUR

USD - 2014/02/26
EUR 2014/01/29 -
JPY 2014/01/29 2014/01/29
GBP 2014/05/26 2014/05/26
AUD 2014/04/08 2014/04/08
CAD 2014/04/25 2014/04/25
CHF 2014/05/13 2014/05/13
SEK 2014/06/25 2014/06/25
MXN 2014/10/01 2014/01/01
ZAR 2015/12/31 2015/12/31
XBT 2014/01/29 2014/01/29
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Table 7: Comparison of Portfolio Performances

Portfolio performance comparison of the equal share buy-and-hold portfolios A
and the break-point trading portfolios B over the period 11 November 2013 – 31
December 2015. The four panels display the results for domestic currencies USD
and EUR. Both returns and Sharpe ratios refer to the whole portfolio period.

(I) Domestic Currency: USD (II) Domestic Currency: EUR
Portfolio A Portfolio B Portfolio A Portfolio B

Return −13.32% 11.61% 7.41% 9.28%
Sharpe Ratio -0.6421 0.8406 0.4247 0.7019
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Table 8: I(1) Behavior of Logarithms of Exchange Rates

he table shows the p-values and test statistics from performing the augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root
tests as well as the KPSS stationarity test. The test results are based on the full sample period 1 May 2013 to 31 December 2015 and
are performed for the logarithms of the bilateral exchange rates in Panel A and the first difference of the logarithms in Panel B. For the
ADF tests, we include a constant term and the number of lags is chosen as

⌈
4 ∗ (T/100)2/9

⌉
= 6, where T is the length of our sample

period. In KPSS test, we include a constant term and use the Newey-West estimator with 6 lags to estimate the long-run covariance.
In the PP test, we likewise include a constant term and the Newey-West estimator with 6 lags. Note that ”>” and ”<” indicate that
the p-values are above or below the indicated level.

(A) Logarithms (B) First Differences of Logarithms
ADF PP KPSS ADF PP KPSS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val

USD/EUR -0.236 0.931 8.007 < 0.010 -0.239 0.931 -9.679 < 0.001 0.205 > 0.100 -26.357 < 0.001
USD/JPY -0.867 0.798 8.839 < 0.010 -1.032 0.725 -9.351 < 0.001 0.081 > 0.100 -25.875 < 0.001
USD/GBP -1.123 0.685 3.188 < 0.010 -1.041 0.721 -9.439 < 0.001 0.220 > 0.100 -24.724 < 0.001
USD/AUD -1.091 0.699 8.336 < 0.010 -1.163 0.667 -9.712 < 0.001 0.089 > 0.100 -28.282 < 0.001
USD/CAD 0.013 0.958 8.868 < 0.010 0.171 0.971 -8.718 < 0.001 0.113 > 0.100 -26.718 < 0.001
USD/CHF -2.532 0.109 4.288 < 0.010 -2.632 0.087 -11.007 < 0.001 0.041 > 0.100 -22.894 < 0.001
USD/MXN -0.194 0.936 8.537 < 0.010 -0.106 0.947 -10.104 < 0.001 0.105 > 0.100 -26.254 < 0.001
USD/SEK -0.492 0.889 8.835 < 0.010 -0.517 0.885 -10.126 < 0.001 0.135 > 0.100 -28.309 < 0.001
USD/ZAR 0.252 0.976 8.433 < 0.010 0.213 0.973 -10.091 < 0.001 0.151 > 0.100 -26.948 < 0.001
USD/XBT -1.906 0.339 1.489 < 0.010 -1.639 0.457 -8.300 < 0.001 0.172 > 0.100 -29.383 < 0.001
EUR/USD -0.236 0.931 8.006 < 0.010 -0.239 0.931 -9.681 < 0.001 0.205 > 0.100 -26.366 < 0.001
EUR/JPY -2.345 0.159 1.159 < 0.010 -2.384 0.147 -8.793 < 0.001 0.164 > 0.100 -24.477 < 0.001
EUR/GBP -0.889 0.788 9.112 < 0.010 -0.986 0.745 -10.758 < 0.001 0.073 > 0.100 -25.985 < 0.001
EUR/AUD -3.531 0.008 1.393 < 0.010 -3.426 0.011 -9.932 < 0.001 0.185 > 0.100 -26.410 < 0.001
EUR/CAD -2.183 0.216 1.040 < 0.010 -2.023 0.287 -9.834 < 0.001 0.126 > 0.100 -26.722 < 0.001
EUR/CHF -1.482 0.526 7.502 < 0.010 -1.394 0.565 -10.581 < 0.001 0.052 > 0.100 -21.731 < 0.001
EUR/MXN -2.988 0.037 1.182 < 0.010 -2.600 0.094 -9.497 < 0.001 0.067 > 0.100 -24.303 < 0.001
EUR/SEK -2.219 0.200 8.300 < 0.010 -2.247 0.191 -11.453 < 0.001 0.108 > 0.100 -28.971 < 0.001
EUR/ZAR -1.744 0.410 1.906 < 0.010 -1.499 0.519 -9.213 < 0.001 0.188 > 0.100 -26.037 < 0.001
EUR/XBT -2.071 0.265 1.844 < 0.010 -1.750 0.408 -8.223 < 0.001 0.136 > 0.100 -32.466 < 0.001
JPY/USD -0.866 0.798 8.839 < 0.010 -1.032 0.725 -9.348 < 0.001 0.081 > 0.100 -25.859 < 0.001
JPY/EUR -2.344 0.159 1.159 < 0.010 -2.385 0.147 -8.787 < 0.001 0.164 > 0.100 -24.476 < 0.001
JPY/MXN -1.990 0.302 1.588 < 0.010 -1.918 0.333 -9.481 < 0.001 0.097 > 0.100 -24.124 < 0.001
JPY/SEK -1.918 0.333 4.857 < 0.010 -1.942 0.323 -9.689 < 0.001 0.057 > 0.100 -26.774 < 0.001
JPY/ZAR -0.859 0.801 2.006 < 0.010 -0.638 0.859 -9.344 < 0.001 0.201 > 0.100 -25.671 < 0.001
JPY/XBT -2.085 0.259 1.751 < 0.010 -2.050 0.275 -7.366 < 0.001 0.103 > 0.100 -24.384 < 0.001
GBP/USD -1.123 0.685 3.188 < 0.010 -1.041 0.721 -9.438 < 0.001 0.220 > 0.100 -24.745 < 0.001
GBP/EUR -0.889 0.788 9.112 < 0.010 -0.986 0.745 -10.753 < 0.001 0.073 > 0.100 -25.986 < 0.001
GBP/JPY -1.711 0.425 8.236 < 0.010 -1.870 0.355 -9.089 < 0.001 0.183 > 0.100 -24.665 < 0.001
GBP/MXN -1.687 0.436 8.053 < 0.010 -1.344 0.587 -9.797 < 0.001 0.040 > 0.100 -25.831 < 0.001
GBP/SEK -1.270 0.620 9.371 < 0.010 -1.272 0.619 -10.738 < 0.001 0.152 > 0.100 -28.532 < 0.001
GBP/ZAR -1.019 0.731 7.361 < 0.010 -0.892 0.787 -10.010 < 0.001 0.117 > 0.100 -27.043 < 0.001
GBP/XBT -1.942 0.323 1.495 < 0.010 -1.928 0.329 -9.695 < 0.001 0.120 > 0.100 -32.978 < 0.001
AUD/USD -1.092 0.699 8.336 < 0.010 -1.163 0.667 -9.710 < 0.001 0.089 > 0.100 -28.288 < 0.001
AUD/EUR -3.532 0.008 1.393 < 0.010 -3.426 0.011 -9.936 < 0.001 0.185 > 0.100 -26.406 < 0.001
AUD/JPY -2.658 0.082 1.789 < 0.010 -2.472 0.123 -9.206 < 0.001 0.063 > 0.100 -26.333 < 0.001
AUD/GBP -2.332 0.163 8.150 < 0.010 -2.317 0.167 -9.489 < 0.001 0.206 > 0.100 -27.154 < 0.001
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Table 8: I(1) Behavior of Logarithms of Exchange Rates (Cont.)

(A) Logarithms (B) First Differences of Logarithms
ADF PP KPSS ADF PP KPSS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val

AUD/CAD -2.356 0.155 1.966 < 0.010 -2.805 0.058 -10.543 < 0.001 0.182 > 0.100 -27.499 < 0.001
AUD/CHF -2.209 0.205 7.388 < 0.010 -2.114 0.247 -10.493 < 0.001 0.076 > 0.100 -24.396 < 0.001
AUD/MXN -3.410 0.011 0.379 0.086 -4.190 < 0.001 -10.635 < 0.001 0.119 > 0.100 -27.540 < 0.001
AUD/SEK -2.251 0.189 2.261 < 0.010 -2.336 0.161 -9.657 < 0.001 0.135 > 0.100 -28.279 < 0.001
AUD/ZAR -0.113 0.946 1.285 < 0.010 -0.431 0.901 -9.970 < 0.001 0.250 > 0.100 -26.462 < 0.001
AUD/XBT -1.905 0.339 1.822 < 0.010 -1.964 0.313 -8.647 < 0.001 0.179 > 0.100 -36.717 < 0.001
CAD/USD 0.011 0.958 8.868 < 0.010 0.170 0.971 -8.719 < 0.001 0.113 > 0.100 -26.709 < 0.001
CAD/EUR -2.183 0.216 1.040 < 0.010 -2.024 0.286 -9.841 < 0.001 0.126 > 0.100 -26.716 < 0.001
CAD/JPY -1.989 0.302 0.752 < 0.010 -1.756 0.405 -8.654 < 0.001 0.126 > 0.100 -24.994 < 0.001
CAD/GBP -1.483 0.526 7.832 < 0.010 -1.240 0.633 -8.957 < 0.001 0.080 > 0.100 -26.881 < 0.001
CAD/CHF -1.863 0.357 7.243 < 0.010 -1.658 0.448 -10.376 < 0.001 0.024 > 0.100 -23.553 < 0.001
CAD/MXN -2.955 0.040 1.813 < 0.010 -3.045 0.032 -10.367 < 0.001 0.027 > 0.100 -25.065 < 0.001
CAD/SEK -1.456 0.537 3.666 < 0.010 -1.481 0.526 -9.705 < 0.001 0.155 > 0.100 -27.814 < 0.001
CAD/ZAR -1.871 0.354 3.056 < 0.010 -1.949 0.319 -10.179 < 0.001 0.097 > 0.100 -25.764 < 0.001
CAD/XBT -1.887 0.347 1.908 < 0.010 -1.798 0.386 -8.754 < 0.001 0.151 > 0.100 -39.908 < 0.001
CHF/USD -2.532 0.109 4.288 < 0.010 -2.632 0.087 -11.008 < 0.001 0.041 > 0.100 -22.905 < 0.001
CHF/EUR -1.482 0.526 7.502 < 0.010 -1.395 0.565 -10.581 < 0.001 0.052 > 0.100 -21.737 < 0.001
CHF/JPY -1.905 0.339 7.745 < 0.010 -1.974 0.308 -11.209 < 0.001 0.077 > 0.100 -22.280 < 0.001
CHF/GBP -3.917 0.003 1.020 < 0.010 -4.077 0.001 -11.193 < 0.001 0.020 > 0.100 -22.650 < 0.001
CHF/MXN -1.803 0.384 7.494 < 0.010 -1.646 0.454 -11.463 < 0.001 0.024 > 0.100 -23.404 < 0.001
CHF/SEK -1.443 0.543 8.593 < 0.010 -1.341 0.588 -10.968 < 0.001 0.064 > 0.100 -23.804 < 0.001
CHF/ZAR -1.221 0.641 7.437 < 0.010 -1.156 0.670 -11.052 < 0.001 0.062 > 0.100 -24.840 < 0.001
CHF/XBT -1.997 0.298 1.439 < 0.010 -2.140 0.235 -9.216 < 0.001 0.130 > 0.100 -29.435 < 0.001
SEK/USD -0.491 0.890 8.835 < 0.010 -0.514 0.885 -10.124 < 0.001 0.135 > 0.100 -28.138 < 0.001
SEK/EUR -2.214 0.202 8.298 < 0.010 -2.249 0.190 -11.475 < 0.001 0.108 > 0.100 -28.950 < 0.001
SEK/MXN -2.020 0.288 2.625 < 0.010 -1.966 0.312 -9.517 < 0.001 0.100 > 0.100 -25.445 < 0.001
SEK/ZAR -1.116 0.688 1.029 < 0.010 -1.072 0.707 -9.037 < 0.001 0.241 > 0.100 -26.001 < 0.001
SEK/XBT -1.954 0.317 2.192 < 0.010 -1.778 0.395 -8.076 < 0.001 0.167 > 0.100 -33.463 < 0.001
MXN/USD -0.185 0.938 8.537 < 0.010 -0.093 0.948 -10.151 < 0.001 0.106 > 0.100 -26.243 < 0.001
MXN/EUR -2.986 0.037 1.184 < 0.010 -2.591 0.096 -9.486 < 0.001 0.068 > 0.100 -24.293 < 0.001
MXN/XBT -2.404 0.142 0.917 < 0.010 -1.943 0.322 -7.143 < 0.001 0.188 > 0.100 -30.748 < 0.001
ZAR/USD 0.249 0.975 8.432 < 0.010 0.212 0.973 -10.033 < 0.001 0.151 > 0.100 -26.958 < 0.001
ZAR/EUR -1.754 0.406 1.906 < 0.010 -1.509 0.514 -9.207 < 0.001 0.188 > 0.100 -25.837 < 0.001
ZAR/MXN -1.041 0.721 1.991 < 0.010 -1.560 0.491 -10.289 < 0.001 0.143 > 0.100 -25.597 < 0.001
ZAR/XBT -1.919 0.333 1.319 < 0.010 -8.024 < 0.001 -8.446 < 0.001 0.180 > 0.100 -34.347 < 0.001
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Table 9: Precision of Bitcoin (XBT) Exchange Rate Observations

The table shows summary statistics regarding the precision of our estimates of noon Bitcoin (XBT) exchange rates. The goal is to
capture the noon exchange rate as a volume-weighted average of transaction prices occurring between 11:59am and 12:01pm ET. To
limit the effects of extreme prices, a minimum of three transaction prices is required to calculate the noon exchange rate for each
day. If less than three transactions are found to occur between 11:59am and 12:01pm ET, our algorithm then takes the next-closest
observations to the target window in terms of time, until a minimum of three observations are found. Column 1 in the table shows the
percentage of daily noon rates for which all observations used in its calculation are observed within the target time window. Columns 2-3
show the mean and median number of observations used to calculate each noon rate. Columns 4-6 show the mean, median, and mode
number of observations outside the target window used to calculate the noon rate. Columns 7-9 show the median of three variables: the
furthest-away time before the target window, the median time away from the target window, and the further-away time after the target
window.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
% At #Obs(Mean) #Obs(Median) #Out(Mean) #Out(Med) #Out(Mode) Earliest Median Latest

USD/XBT 88.11% 64.90 35 0.24 0 0 -0.02 0.00 0.02
EUR/XBT 65.23% 12.93 6 0.80 0 0 -0.01 0.00 0.02
JPY/XBT 13.39% 3.47 3 2.31 3 3 1.33 7.49 10.08
GBP/XBT 24.58% 3.47 3 1.75 2 3 0.01 11.05 11.72
AUD/XBT 10.79% 3.18 3 2.41 3 3 8.65 10.94 11.57
CAD/XBT 6.59% 3.09 3 2.55 3 3 10.83 11.45 11.77
CHF/XBT 2.20% 3.04 3 2.85 3 3 -0.97 1.00 4.66
SEK/XBT 1.10% 3.02 3 2.83 3 3 7.43 9.27 10.63
MXN/XBT 0.00% 3.00 3 3.00 3 3 9.10 10.11 11.05
ZAR/XBT 1.30% 3.02 3 2.73 3 3 4.57 6.42 7.96

47


	Introduction
	Data
	The Triangular Arbitrage Parity
	Monitoring Market Dislocations
	Results
	Portfolio Trading Strategy

	Summary and Conclusions
	Appendix
	Times Series Properties of Exchange Rate Data
	Precision of Bitcoin Data

	Tables and Figures

