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Abstract

The photon density in solar cells is usually optimized through tailored antireflection

coatings (ARCs). We develop an analytical model to describe metal hybrid

nanoparticles (NPs)-based ARC, where metal NPs are embedded in a standard ARC

on a Si-substrate. A point dipole approach is implemented to calculate diffuse reflec-

tance by NPs, while transfer matrix method is used for specular reflectance from

front surface. We found that embedding metal NPs in SiN ARC enhances the anti-

reflection property of the former at non-normal angles of incidence (AOI) of light.

Electric field distribution patterns of radiation in the substrate by NPs are calculated

for various AOI, which support the improvements in the antireflection property.

Weighted solar power transmittances from ARCs are calculated, which show that

Ag-NPs (radius = 35 nm) embedded in SiN (thickness = 70 nm) performs better than

SiN for AOI over 74�, whereas Al-NPs (radius = 35 nm) embedded in SiN

(thickness = 70 nm) performs better for AOI over 78�.

K E YWORD S

antireflection coating, metal nanoparticles, plasmonics, silicon, solar cells, transfer matrix

method

1 | INTRODUCTION

Solar cells suffer loss from front surface reflection of incident sun-

light. To reduce this loss, an antireflection coating (ARC) is typically

used.1-9 As an alternative, metal nanoparticles (NPs), which show

plasmonic effect and scatter the sunlight efficiently at resonance

wavelength, have been suggested.10-15 The scattering and absorp-

tion properties of such NPs have been studied and modeled exten-

sively in previous years.16-23 Gold NPs (Au-NPs) at front side of Si

solar cells10 and silver NPs (Ag-NPs) at front side of GaAs solar

cells11 have been demonstrated with improved performance in effi-

ciency of the solar cell device. In this configuration, metal NP layers

act as an ARC. Lesina et al have modeled and characterized ARCs

based on Ag-NPs embedded in a SiO2 dielectric matrix on silicon

solar cells.24 They used finite-difference time-domain (FDTD)

simulation and have stated that Ag-NPs within SiO2 gives promis-

ing results, although the broadband performance of SiO2-based

ARC remains unbeaten at normal incidence. They also suggested

that to complete the analysis, other metal NPs such as Al, Cu, and

another ARC material such as SiN should be explored with thin-

film solar cells. Thus far, most studies have been performed only

for normal incidence, since commercially available solar cells are

usually coated with an ARC, which is such that the reflectance is

minimal for a wavelength near the maximum of the solar spectrum

under normal incidence. But in reality, a fixed solar cell on a house

roof receives the sunlight throughout the day at various angles of

incidence (AOI) of a wide range of wavelengths. Thus, it is impor-

tant to compare the performance of standard (pure dielectric-based

ARC) and hybrid ARC (NPs embedded in the dielectric-based ARC)

at various AOI.
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In this paper, we present an analytical model that combines trans-

fer matrix method (TMM)25,26 with Mie theory27,28 to model the opti-

cal properties of NPs-based ARCs on a Si-substrate. When the

sunlight incident on a rough interface (the hybrid ARC layer in our

case), reflectance from interface divides into two parts—specular

reflectance (Rs) and diffuse reflectance (Rd), similarly for transmittance

as shown in Figure 1.29 The specularly reflected light is obtained by

efficient TMM method of multilayer structures, whereas for the dif-

fusely reflected light, angular power distribution of radiation by an NP

in the substrate is calculated.30 It is assumed in the current study that

the specular and diffuse reflectance occurrences are independent of

each other and do not interfere.

2 | DEVICE STRUCTURE AND THEORY

A hybrid ARC made of nanocomposite (NPs and host medium), in

which NPs are in a two-dimensional (2-D) array of equal period in a

dielectric SiN matrix bounded with air and the substrate, is investi-

gated. A schematic of the simulated device structure is shown in

F IGURE 1 Schematic of the simulated device structure [Colour
figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 AM1.5D solar spectrum. Only shaded area is available
for a Si absorber [Colour figure can be viewed at wileyonlinelibrary.
com]

F IGURE 3 (a) Scattering, (b) absorption, and (c) radiative
efficiencies of nanoparticles (NP) (radius = 35 nm) versus the light
operating wavelength [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 1. The optical properties of NPs have been calculated in terms

of dimensionless quantities such as scattering efficiency (Qsca) and

absorption efficiency (Qabs). The sum of both efficiencies is called

extinction efficiency (Qext) of NPs. Radiative efficiency (Qrad) of NPs

equals to Qsca/Qext, which tells how much light get scattered from and

absorbed in the NP.

The TMM, also called 2 × 2 matrix method, is generally applied

to determine reflection, transmission, and absorption in a multilayer

thin film.25,26 A plane wave incident on the proposed device is

assumed. The SiN layer has a thickness of d1 with refractive

index n1. Therefore, a transmission matrix for the SiN layer can be

written as

Mjk =
1
tjk

1 rjk
rjk 1

� �
, ð1Þ

where tjk and rjk are the Fresnel transmission and reflection coeffi-

cients at an interface jk. A propagation matrix for the wave propagat-

ing through the SiN layer is given by

P1 =
e− i: 2π=λð Þ:d1 :n1 :cos θ1ð Þ 0

0 ei: 2π=λð Þ:d1 :n1 :cos θ1ð Þ

" #
, ð2Þ

where λ and θ1 are wavelength of the incident wave and angle of

refraction in the SiN layer, respectively. By using the transmission

matrix and the propagation matrix, the total transfer matrix, M, for the

device is given by

M=M01:P1:M1s =
M11 M12

M21 M22

� �
: ð3Þ

The transmission and reflection coefficients can be expressed from

Equation (3) as t= 1
M11

;r = M21
M11

.

F IGURE 4 Reflectance from Ag-
NPs/SiN layer versus the light operating
wavelength. Bottom layer is Si-substrate

as shown in Figure 1. AOI = 00�

corresponds to normal incidence.
Ag(40%)/SiN refers that 40% surface
cross section is covered by Ag-NPs and
the rest is SiN. AOI, angle of incidence;
NPs, nanoparticles [Colour figure can be
viewed at wileyonlinelibrary.com]

684 SINGH ET AL.

http://wileyonlinelibrary.com


From above results, the specular reflectance is expressed as Rs = |

r|2 and the specular transmittance is expressed as Ts =
nscos θsð Þ
n0cos θ0ð Þ : tj j2 ,

where s and 0 are corresponding to the substrate and incident

medium (air).

Mie27, 28 obtained a solution for the interaction of a plane elec-

tromagnetic wave by homogeneous spheres of arbitrary index of

refraction embedded in a homogeneous dielectric medium. The solu-

tions are expressed in infinite series as extinction (Qext) and scattering

efficiency (Qsca) of a homogeneous sphere:

Qext =
2
x2

X∞

n =1
2n+1ð ÞRe an + bn½ �, Qsca =

2
x2

X∞

n=1
2n+1ð Þ anð Þ2 + bnð Þ2

h i
,

ð4Þ

where an =
mψn mxð Þψ 0

n xð Þ−ψn xð Þψ 0
n mxð Þ

mψn mxð Þξ0n xð Þ−ξn xð Þψ 0
n mxð Þ , bn =

ψn mxð Þψ 0
n xð Þ−mψn xð Þψ 0

n mxð Þ
ψn mxð Þξ0n xð Þ−mξn xð Þψ 0

n mxð Þ , and size

parameter x is 2πn1r/λ. m is ratio of refractive index of NP (nr) to that

of surrounding medium (n1); ψn and ξn are Riccati-Bessel functions;

and r is radius of the sphere.

In a dipole model, the NP is assumed as a dipole oscillating at its

resonant frequency. The dipole generally excites in the direction of

polarization of the incident light (regardless of front and back illumina-

tion). Therefore, the excitation angle changes with the AOI of light.

Mertz30 has formulated a dipole radiating at a distance near a sub-

strate and found an expression for the angular power distribution of

scattered light from the NP in air and in the neighboring substrate,

which is as follows:

Lϕ θð Þ= Ls,p θð Þ sin2 ϕð Þ+ Lp⊥ θð Þ cos2 ϕð Þ+Re LpX θð Þ� �
sin2ϕ, ð5Þ

where θ is the observation angle and ϕ is the inclination of the dipole

from vertical. The derivation of Equation (5) and explanations of Ls,p ,

Lp⊥, and LpX can be found in Mertz.30

F IGURE 5 Reflectance from Al-
NPs/SiN layer versus the light operating
wavelength. Bottom layer is Si-substrate

as shown in Figure 1. AOI = 00�

corresponds to normal incidence.
Al(40%)/SiN refers that 40% surface cross
section is covered by Al-NPs and the rest
is SiN. AOI, angle of incidence; NPs,
nanoparticles [Colour figure can be
viewed at wileyonlinelibrary.com]
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The diffused reflectance and transmittance can be given from

above equations as

Rd =Qsca*
1
π

ðπ
0
Lϕ θð Þ reflectedð Þdθ andTd =Qsca*

1
π

ðπ
0
Lϕ θð Þ transmittedð Þdθ:

ð6Þ

The sum of both reflectance (specular and diffuse) is the total reflec-

tance from the front surface of device such as

R= f*Rd + 1− fð Þ*Rs, ð7Þ

where f is fraction of cross section area covered by NPs at the front

surface. The dipole approximation is valid when distance between the

NPs are of the order of or more than their diameters such that

f < 0.75.

Optical constants of metal NPs and refractive indices of SiN for

the calculations are taken from Palik.31 Linear interpolation is used to

fit the optical constants to desired step size. The solar spectrum used

in calculation is taken from Buie et al7 and is shown in Figure 2. An

angular dependent solar spectrum is ignored as it has no effect on

reflectance calculation. The study has been done on four different

NP densities in the nanocomposite. The nomenclature of the

nanocomposite layer: Ag(40%)/SiN refers that 40% surface cross

section is covered by Ag-NPs and the rest is SiN. In the simulations,

the SiN layer thickness is kept at 70 nm and NP radius at 35 nm.

3 | SIMULATION RESULTS

Figure 3 shows the scattering, absorption, and radiation efficiencies of

NP. Ag- and Au-NP show strong dipole resonance scattering peak in

visible range at 589 and 666 nm, respectively. Cu-NP have lower peak

than Ag- and Au-NP in the same range at 643 nm. A higher order res-

onance mode is visible in the absorption of Ag-NP at 472 nm. Al-NP

has a relatively weak resonance peak. Localized surface plasmon reso-

nance in metals is predominantly due to behavior of free electrons in

conduction band, whereas interband transitions damp or prohibit this

transition. The noble metals (Ag, Au, and Cu) are distinguished by a

threshold below which the optical properties of metals are dominated

F IGURE 6 Electric field distribution patterns of light (λ = 510 nm) radiated from Ag-NP (radius = 35 nm) in Si substrate. AOI = 00�

corresponds to normal incidence. AOI, angle of incidence; NPs, nanoparticles [Colour figure can be viewed at wileyonlinelibrary.com]
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by the interband transition. This transition occurs at wavelengths

468, 477, and 539 nm for Ag-, Au-, and Cu-NP, respectively, in our

case (Figure 3c). Al has a weak interband region near 875 nm.16 The

most useful quantity of NP for the ARC application is Qrad. The

Qrad graph shows that Ag-NP has high radiation at 575 nm where the

solar spectrum is at maximum. Al-NP also follows the solar spectrum

graph. This makes them promising to incorporate in conventional

SiN ARC.

Figure 4 shows the reflectance spectra of the simulated device

structure with Ag-NPs in SiN at various AOI. At normal incidence

(AOI = 00�), SiN shows the best performance. The reflectance mini-

mum in this case is obtained at 536 nm. Ag(70%)/SiN shows the worst

performance at normal incidence and reflects 10% to 20% of the inci-

dent light on average from the entire solar spectrum. As AOI of the

light changes from normal to non-normal angle, we obtained increase

in the reflection of SiN ARC. At 60� AOI, the reflectance curves of

SiN ARC and NPs-based ARC become almost equal. And after this,

NPs-based ARC outperform SiN ARC. Ag(70%)/SiN shows better per-

formance among all the ARCs at higher AOI. SiN ARC shows around

40% reflection at 75� AOI. When SiN ARC reaches near to its critical

angle at higher AOI, the reflectance becomes higher, whereas NPs do

not show this behavior and performs better at higher AOI. Al-NPs also

exhibits improvement in ARC performance at higher AOI. Figure 5

shows the reflectance spectra of the simulated device structure with

Al-NPs at various AOI. The difference in reflectance between Ag-NPs

and Al-NPs can be seen only at higher AOI, where the reflectance

curves of NPs-based ARC shows the same behavior as the radiative

efficiency curves of NP.

The electric field distribution profile of the light radiated from

Ag-NP in the substrate is shown in Figure 6. At higher AOI, the

Ag-NP radiates with the same order of intensity as at normal inci-

dence, which is the reason that the NPs-based ARC performs

F IGURE 7 Transmittance from Ag-
NPs/SiN layer into Si-substrate versus the

light operating wavelength. AOI = 00�

corresponds to normal incidence.
Ag(40%)/SiN refers that 40% surface
cross section is covered by Ag-NPs and
the rest is SiN. AOI, angle of incidence;
NPs, nanoparticles [Colour figure can be
viewed at wileyonlinelibrary.com]
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relatively better than SiN ARC at higher AOI. The figure at normal

incidence looks same as reported in Schmid et al.22 The angular

distribution of radiation in the substrate also benefits in waveguide-

based trapping of the incident light. Soller and Hall reported that

more than 80% of light radiated from dipole directs into the wave-

guide mode.32 And Catchpole and Pillai measured experimentally

enhancement in absorption by a factor of 7.5 due to the waveguide

mode coupling.33

The ARCs in solar cells are designed to minimize the reflectance

and maximize the transmittance across the wavelength range of inter-

est. Since the transmittance needs to be maximized where the solar

spectrum has maximum intensity, we have calculated weighted solar

power transmittance (Tw):

Tw =

Ð λ2
λ1
T λð ÞS λð ÞdλÐ λ2
λ1
S λð Þdλ

, ð8Þ

where T(λ) and S(λ) are the transmittance and intensity of the AM1.5D

solar spectrum at wavelength λ. λ1 and λ2 are the minimum and maxi-

mum allowed wavelengths.

Figure 9 shows the Tw curves of SiN ARC and metal NPs-based

ARC. SiN ARC shows more than 90% transmittance at normal inci-

dence as expected (Figure 9a,b). At 74� AOI, Ag-NPs/SiN and SiN

have equal values. After 74� AOI, Ag-NPs–based ARC shows better

performance than SiN ARC. In Al-NPs–based ARC, this happens at

around 78� AOI. Therefore, 74� AOI plays a barrier for Ag-NPs–based

ARC and 78� AOI for Al-NPs–based ARC. Before this barrier, SiN ARC

performs better, and after this barrier, NPs-based ARC performs

better. Between Ag-NPs and Al-NPs, Ag-NPs performs better than

Al-NPs at any AOI. The reflectance curves of Ag-NPs/SiN (Figure 4)

and of Al-NPs/SiN (Figure 5) show better performance than SiN, but

in transmittance curves, they show opposite behavior as shown in

Figures 7 and 8. This is because of the parasitic absorption in NPs,

F IGURE 8 Transmittance from Al-
NPs/SiN layer into Si-substrate versus the

light operating wavelength. AOI = 00�

corresponds to normal incidence.
Al(40%)/SiN refers that 40% surface cross
section is covered by Al-NPs and the rest
is SiN. AOI, angle of incidence; NPs,
nanoparticles [Colour figure can be
viewed at wileyonlinelibrary.com]
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when in fact there is almost no absorption in SiN. This emphasizes the

use of metal NPs with less parasitic absorption as an ARC. The NPs

with high scattering and absorption properties are good to use as a

rear side reflector.34-36 SiN(45) and SiN(75) curves in Figure 9a are

optimized for Tw at AOI = 45� and AOI = 75�, respectively.

4 | DISCUSSION

The scattering and absorption in the NPs are highly influenced by the

size and host medium of the NPs. The geometric cross section of a

metal NP is generally smaller than the optical cross section, which

means that smaller NPs absorb more than bigger ones.37 On the other

hand, the solar cell absorber layers have different absorption range.

Therefore, optimization of metal NPs with a solar cell absorber is the

primary task to reduce the absorption loss in NPs. Ag-NPs have small

absorption in the visible range, but it shows maximum radiation near

the maxima of solar spectrum. Al-NPs have absorption range in

near-infrared region, although Au- and Cu-NPs have poor radiative

efficiency in the visible range (Figure 3c). Considering these factors,

Ag-NPs simply outperform on the choice of metal NPs for ARC appli-

cation. The host medium also changes the optical properties of metal

NPs by shifting the resonance wavelength, which is further a way to

alleviate the parasitic absorption of desired wavelength in metal

NPs.16 In our study, we focused to SiN as a host medium to present

our idea, albeit it is not limited.

In this study, we have restricted ourselves to spherical NPs for

less complexity in NP structure and because these are easy to model

analytically. However, the shape of NPs plays a major role in the scat-

tering of sunlight to the neighboring substrate. Atwater and Polman

have published a review article and have shown that the cylindrical

shape of Ag-NP scatters more fraction of the incident sunlight in the

substrate than the spherical one.20 The fraction of radiation by a

dipole also varies with the position of NPs. It radiates more fraction of

light in the substrate when in contact with the substrate than when in

air.19 Therefore, NPs embedded in an ARC must be in contact with

the substrate.

Our study can be used to guide future experimental design. The

optimizations of experimental work such as the optimization of

nanoparticles size, the optimization of nanostructures etc. might lead

to even better performance than that predicted by the simulations.20

In this study, we performed the analysis to calculate the antireflection

property of metal NPs embedded in a SiN layer and weighted solar

power transmittance from the ARC layers into the substrate under

incidence of the AM1.5D solar spectrum. However, this model can be

extended to the analysis of net power gain in a device from 1 day to a

whole year for a specific location and orientation.

5 | CONCLUSIONS

We performed a theoretical study on metal NPs with a Si-substrate

over a wide AOI of the AM1.5D solar spectrum. An analytical model

was developed for the analysis of ARCs based on metal NPs embed-

ded in a SiN dielectric matrix in a 2-D array on the surface of sub-

strate. A point dipole approach with TMM method was implemented

to calculate the total reflectance by NPs-based ARC. We found that

metal NPs enhance the antireflection property of conventional SiN

ARC at non-normal AOI. At normal incidence, SiN ARC still performs

the best. Electric field distribution patterns of radiation by NPs in the

substrate support the improvements in antireflection performance.

We also obtained weighted solar power transmittance curves, which

shows that Ag-NPs in SiN performs better than SiN over 74� AOI,

whereas Al-NPs in SiN performs better over 78� AOI. Maximum sur-

face covered by metal NPs have shown high power transmittance at

higher AOI.
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