
Modeling and Execution of Coordinated Missions
in Reconfigurable Robot Ensembles

Martin Schörner1, Constantin Wanninger2, Alwin Hoffmann3, Oliver Kosak4, Hella Ponsar5, Wolfgang Reif6
Institute for Software and Systems Engineering, University of Augsburg, Germany

Email: {schoerner1, wanninger2, hoffmann3, kosak4, ponsar5, reif6}@isse.de

Abstract—Unmanned aerial vehicles (UAV) can support vari-
ous scenarios, e.g., serve as measuring instruments for climate
research, help rescue forces in disaster scenarios or autonomously
inspect critical infrastructure. To accomplish their respective
tasks, UAVs are often equipped with different sensors and in some
scenarios used in ensembles to work together cooperatively. In
this paper, we present the Block Definition Language (BDL) for
modeling and executing UAV missions. The BDL supports both
the use of exchangeable sensors and appropriate coordination
mechanisms for robot ensembles. We demonstrate our plugin
mechanism in a proof of concept using the BDL in conjunction
with the robotic middleware ROS for hardware control and robot
synchronization.

I. INTRODUCTION

The range of applications for mobile robot ensembles, es-
pecially those consisting of unmanned aerial vehicles (UAVs),
has been steadily increasing during the last years and continues
to do so. Users deploy ensembles, e.g., for autonomous search
and rescue in major catastrophe scenarios [1], space explo-
ration [2], entertainment [3] and meteorological research [4],
[5]. Unfortunately, the amount of different approaches for
control and instruction of such ensembles grows as quickly
as new use-cases emerge. This entails some serious draw-
backs amplified by the diversification in hardware used for
robots, sensors, and actuators the ensembles are built with:
1) Ensemble designers redundantly design mechanisms that
they need for controlling ensembles. 2) Tools for flying
robots (UAV) are often tailored to fit one specific use case,
which makes them unflexible and hard to reuse in other
applications [6]. Applications based on the robot framework
ROS [7] requires interfacing with concretely implemented
hardware drivers making the approach inflexible [8]. We want
to overcome the aforementioned drawbacks with a flexible
and parameterizable approach: the Block Definition Language
(BDL) which we designed for reconfigurable, modular, and
mobile robot ensembles. Block definition language provides
the possibility to define relevant coordination patterns for
those systems, which we call multipotent ensembles [9]. The
deduction of abstract tasks using self organizing algorithms
for agent missions is covered in Kosak et al [9] and com-
bined capabilities in Eymueller et al [10]. While our previous
work [11] focuses on the coordination of whole ensembles,
the BDL covers the definition of robot programs, using the
robots’ sets of capabilities in a generic way. By using generic

This work is partly funded by the German Research Foundation (DFG)
under the COMBO grant.

specifications that can be instantiated at runtime, we need
no details on specific hardware implementations at design
time. Thereby, our domain specific language BDL enables the
modular reuse of program blocks for multipotent robots in
different applications. For the concrete definition, execution
and the deployment of missions for robots in an ensemble,
we propose the Dynamic Mission Definition and Execution
framework (DMDE) in the following. It implements the exe-
cution engine for the Block Definition Language (BDL) which
is based on elements of UML activity diagrams [12] and
petri nets [13]. Each mission in BDL consists of blocks that
are interconnected with each other and can be executed by
a mission player at runtime. BDL is agnostic to the used
hardware and the targeted middleware. By using an extension
mechanism, it can be tailored to the required middleware
and the robots. Summarized, the contributions of this paper
are the modeling language (BDL) for dynamic, sensor-based
missions for robot ensembles, a framework for an automated
distribution of modeled missions with plugin mechanisms and
a concrete implementation of our approach with a ROS plugin
on a mobile sensor platform.

II. RELATED WORK

Examples for traditional ground control software to de-
fine UAV missions are the APM Mission Planner [14] and
QGroundControl [15] for the Pixhawk flight controllers, the
DJI GCS Pro [16] for UAV of the manufacturer, or the ground
control station of the Paparazzi flight controller [17]. Each
one of these allow the user to perform useful interactions
with the respective flight controller, e.g., monitoring telemetry
data during flight, and defining simple missions. Missions in
current software usually only consist of waypoints the UAV
needs to approach containing simple additional commands,
e.g., for taking pictures or deploying payloads. Each of the
current software programs is usually bound to a certain flight
controller. One exception is UgCS [18], which supports the
flight controllers of several manufacturers. Another problem
is that the control of more than a few UAVs is impractical or
not possible with these tools [19]. Dousse et al. [19] try to
solve this problem with a plugin for QGroundControl, which
allows the control of more than 15 UAVs by creating a way
to perform actions on multiple UAVs. In Intel’s UAV light
shows [3] several hundred UAVs equipped with RGB LEDs
are controlled simultaneously to create a light show in the sky
using a proprietary software.



Fig. 1: Graphical representation of a BDL sample mission

The work of Kiener et al [20] focuses on mission modeling
of heterogeneous robot ensembles based on different capa-
bilities of the robots used. The missions are modeled with a
graph similar to a statemachine without transition semantics.
Exception handling is mentioned, but not modeled and also a
distributed deployment is not focused in this paper. MacKenzie
et al. [21] present a Mission Definition Language that summa-
rizes robots in associations and addresses the capabilities in a
strictly sequential manner. Brunner et al. created RAFCon,
a graphical tool for the creation and execution of robotic
tasks [22]. It uses hierarchical state machines to model these
tasks and provides a GUI with various built-in debugging
mechanisms. However, pseudo-states (e.g. fork) and orthog-
onal states are only handled implicitly and communication
between different robots is not the focus of this project.

Projects in the field of robotics today are often based on the
Robot Operating System (ROS) [7], a middleware for robot
applications. ROS also offers various ways to model tasks
or missions. Launch files in ROS2 are python scripts that
can react to events and changes in the lifecycle of respective
nodes [23]. The ROS-based framework smach [24] enables the
creation and coordination of applications for robots. It enables
the interconnection of the robots’ capabilities to hierarchical
state machines through python scripts. After creating and exe-
cuting a program the user can monitor its state graphically at
runtime. The missing multi-robot support as well as distributed
deployment mechanisms are part of this paper.

III. MODELING ROBOT MISSIONS WITH DMDE

In order to enable the definition of missions easily and
in a reusable way, we introduce the BDL that enables the
interconnection of blocks to form complete robot missions.
Blocks fulfill different tasks by each containing a simple
functionality, e.g., flying to a waypoint or closing a gripper.
Blocks are either control flow blocks or functional blocks.
Functional blocks contain the actual functionality of a mission

and actively contribute to the execution of the mission. Control
flow blocks instead manipulate the control flow of the mission,
e.g., express alternatives or parallelization.

To demonstrate the functionality of BDL, we illustrate
an example mission that can be deployed on multiple UAV
carrying sensors for measuring sensor data in flight (cf. Fig. 1).
Missions are designed for a specific robot, i.e., a system that is
composed of a physical network of reconfigurable hardware,
such as an UAV equipped with different sensors. In this
mission the UAV initializes itself before flying to multiple
waypoints and landing again. The UAV synchronizes itself
with other UAV in its ensemble at each waypoint. The mission
starts at a Start block (black circle). After that, we use a
parallelization block (upper black bar) to split the mission flow
into three parallel processes. These blocks initialize the UAV
and the ensemble synchronization. A third block waits for a
temperature sensor to be plugged in. In order to allow for
arguments to be passed to functional blocks, parameters like
the type of a required sensor can be defined. By allowing the
use of wildcards, we can specify a requirement for an arbitrary
sensor that supports the required variable to be measured. It
is also possible to specify a concrete type of sensor, e.g.,
a temperature sensor. By using this approach we allow for
dynamic reconfiguration of the robot in case of a hardware
failure and don’t require knowledge about the used sensors at
mission design time. After all three processes reach the join
block (lower black bar), the mission continues and reaches a
decision block.

This block works like a decision in UML Activity Diagrams
and picks the successor that matches the defined condition
on the edges. The particular decision BatteryLevel block
in Fig. 1 checks the UAV battery status and exits the mission
if the battery level is below 80% in order to avoid battery
problems mid flight. If the battery is sufficiently charged, the
mission continues to a Barrier block that stops further mission
execution until all other members of the ensemble also reach
the Barrier with the same id. After that, we use a series of
functional blocks to activate the motors of the UAV before
flying along a series of waypoints and finally land again. Note
that after flying to a waypoint, we use a barrier to pause
the mission flow to ensure that all other participants of the
ensemble have reached it before continuing. To enable the
definition of alternative behavior when an exception occurs, we
allow multiple successors for functional blocks. If a robot does
not reach a barrier due a problem, a timeout error is triggered
in the barriers of all other robots, resulting in an alternative
path causing the UAV to land directly. These alternative paths
can be defined for each block in each mission individually.
It is also possible to define different successors for different
types of errors that can occur in one block.

The mission definition in BDL is generic with regard to the
usable blocks in order to be agnostic to specific frameworks,
tools, and hardware. However, we allow the addition of new
functions with a plugin system, e.g., to bind a robot middle-
ware or other frameworks into the block definition language. A
ROS plugin for BDL can, e.g., implement blocks for starting



nodes or calling services.
To allow for synchronization of several robots in the en-

semble, we provide a plugin which enables the use of barriers
in the missions. In the initialization phase of the mission, a
master detects all robots in the ensemble by listening for their
heartbeat messages. After initialization the participants of the
ensemble are known by every participant and the barriers can
be used for synchronization of the individual missions. Each
barrier has a unique ID that makes it distinguishable from
others. In its individual missions the robot stays in the block
for the respective barrier until all other robots have reached
it as well. Once all robots reach the barrier, they leave their
barrier blocks at the same time. This procedure synchronizes
the robot’s missions after leaving the barrier block.

IV. REFERENCE IMPLEMENTATION IN PYTHON

We implemented the concepts from Section III with Python
scripts and JSON files to realize the Dynamic Mission Def-
inition and Execution (DMDE) framework. The work flow
therefore is as follows: The user defines a mission in JSON
which the DMDE then parses for the mission player which
represents the core of the framework. A mission consists of a
sequence of blocks which can be parameterized by arguments.
A mission can be executed with the mission player. A mission
player only contains some basic functionality like start and
end blocks or Forks and Joins. By loading plugins with the
mission player, we can extend the missions with additional
blocks (i.e., functional and logic blocks) to increase the default
functionality and logic.

In order to not limit the functional range of the mission
player to a single use case, we include the possibility of
extending the mission player via plugins. To make use of
the extensive functionality of the ROS Framework, a plugin
for interfacing with it is needed. The extension enables our
approach to use ROS1 as well as ROS2 as underlying mid-
dleware. To provide basic functionality for interfacing with
ROS, blocks are available to call services, wait for activity in
a topic and to start nodes and the logging of sensor data. In
addition to interfacing with ROS, a method for synchronizing
the ensemble is needed. For this purpose we implemented a
simple synchronization plugin that uses the ROS2 messaging
system to implement barriers as way of synchronizing multiple
missions like described in III.

One problem when dealing with ensembles containing lots
of robots is the deployment of the missions to the individual
robots. In our framework, we distribute individual missions to
the robots via a git repository [25] in which we are able to
store missions for all devices centrally. After the start, the on-
board computer of each UAV downloads the latest missions.
The association between mission files and devices is achieved
trough IDs stored on the UAV and the missions. Providing the
required internet connection can be challenging especially on
outdoor experiments. However, due to their small size, mission
files can be downloaded via a mobile internet connection or,
if no mobile internet is available, from a locally operating git
server.

V. PROOF OF CONCEPT

To demonstrate the functionality of our system, we tested
it with a measurement flight scenario. Three UAVs syn-
chronously ascended to specified altitudes in different places
of a field while carrying temperature sensors.

Each of these UAVs carried a mission controller in the form
of a Raspberry Pi 3B equipped with DS18B20 and DHT22
sensors to measure the temperature and humidity. We used
a laptop in combination with a Spektrum DX9 radio remote
control to realize the ground control station (GCS). This
allowed us to monitor the mission and record the telemetry
and sensor data sent by the robots. The laptop was also used
for creating, modifying and distributing the mission files for
the robots in the ensemble. It was running ROS and was
responsible for handling the deployment of missions, starting
missions and monitoring the flight of the UAVs. The remote
was used to disarm the UAVs in case of an emergency. Up to
two sensors could be connected to each of the UAVs which
were connected to the GCS via a WiFi network. The sensors
automatically published their data to the ROS2 messaging
system. For acquisition of robot positions and sensor values,
the laptop used the logging system rosbag2. The centralized
collection of logged data made the subsequent collection of
the data of the individual UAVs superfluous. This approach
also enabled us to store the collected data in a format that
allows the joint plotting and evaluation of collected data from
several UAVs without requiring any manual merging efforts.

Each UAV received the mission file depicted in 1. We
defined relevant information, e.g., the coordinates including
altitudes of each waypoint and the type of sensor required
for the flight, in the parameters of the respective blocks.
To validate our synchronization concept, in their missions
the UAVs performed a climb with several intermediate stops
realized by barriers at different heights in the UAVs’ missions.
The GCS also executed a mission to guarantee safety mea-
sures for takeoff, start the logging of all telemetry data and
coordinate the synchronization. After the start of the mission,
the management node for the synchronization of the ensemble
was started immediately. The UserBreakpoint block after the
ensemble initialization halted the mission and displayed a
message box on the screen. After all UAVs were registered
in the ensemble, the user closed the message box to continue
the program. In addition, the GCS started the logging of
relevant parameters with a StartLogging block in the GCS’s
mission, wich recorded all ROS2 messages i.e., sensor data
and UAV positions in the entire ensemble. The GCS behaves
like a participant in the ensemble. It must therefore also
reach all the barriers that the UAVs must reach. After the
mission flow arrived at the last barrier in the GCS mission all
running blocks with logging functionality were stopped and
the mission ended.

The proof of concept was executed on the described hard-
ware. However, the actual flight movements of each UAV
were simulated. Therefore, we set up the three UAVs in
a row and installed the batteries at the beginning of the



mission. For illustration we provide a screen capture1 of the
execution of the mission. After switching on the copters, they
automatically established a connection to the Wi-Fi network
and obtained their mission from the git repository set up for
this purpose. The operator checked the UAV’s connection to
the emergency remote control and connected the sensors to
the UAV. The mission controllers automatically recognized the
sensors and started the software to integrate the sensors into
ROS2. The current mission was also downloaded and started
on the telemetry laptop. A console output on the laptop made
it possible to track which UAVs had already completed their
initialization and were ready for the mission. After the launch
release by confirming the message box on the screen of the
telemetry laptop, the actual mission was executed on the UAVs
and the telemetry laptop. It was possible to follow the progress
of the mission on the telemetry laptop via the command line
output of the mission player and the UAV positions could
be monitored graphically via RViz [26]. Parameters such as
sensor values and the position of the UAV were available by
using the ROS command line interface. These values were also
collected and stored centrally on the telemetry laptop with the
rosbag2 framework. After landing, the mission ended on the
UAV’s mission controllers and on the telemetry laptop.

VI. CONCLUSION

In this work, problems of systems for distributed and mobile
measuring devices in ensembles were first identified. In addi-
tion, we illustrated the great need for an appropriate mission
definition framework for such applications by highlighting the
lack of such in current literature on mission control in robot
ensembles and modular hardware. To fill this gap, we then
introduced our approach for a mission definition framework
for robot ensembles in which we also provided the possibility
to include other types of sensors. We further demonstrated our
exemplary implementation and realization with actual hard-
ware which we tested in the form of a proof of concept during
a partially simulated measurement flight with an ensemble
consisting of three UAVs and a ground control station. For
this purpose we developed a modular hardware platform as
an adapter for easy integration of sensors into the system. In
addition, a mission definition framework was developed, which
allows the definition and execution of missions and can be
extended via plugins. In the future, work needs to be invested
in the semantic annotation of the language and blocks. This
way a coherence check of missions at ensemble level and a
validation of the JSON file could also be accomplished.

REFERENCES

[1] Swarmix: Synergistic interactions in swarms of heterogeneous agents.
http://www.swarmix.org/. [Online]. Available: http://www.swarmix.org/

[2] R. D. Lorenz, E. P. Turtle et al., “Dragonfly: a rotorcraft lander concept
for scientific exploration at titan,” Johns Hopkins APL Technical Digest,
vol. 34, pp. 374–387, 2018.

[3] Intel shooting star drone project page. Accessed on: 2020-01-
12. [Online]. Available: https://www.intel.co.uk/content/www/uk/en/
technology-innovation/aerial-technology-light-show.html

1https://video.isse.de/bdl

[4] B. Wolf, C. Chwala et al., “The scalex campaign: Scale-crossing
land surface and boundary layer processes in the tereno-prealpine
observatory,” Bulletin of the American Meteorological Society,
vol. 98, no. 6, pp. 1217–1234, 2017. [Online]. Available: https:
//doi.org/10.1175/BAMS-D-15-00277.1

[5] O. Kosak, C. Wanninger et al., “Decentralized coordination of hetero-
geneous ensembles using jadex,” in IEEE 1st Int. Workshops on Found.
and Appl. of Self* Systems (FAS*W), 2016, pp. 271–272.

[6] P. Ulbrich, R. Kapitza et al., “I4copter: An adaptable and modular
quadrotor platform,” in Proceedings of the 2011 ACM Symposium on
Applied Computing. ACM, 2011, pp. 380–386.

[7] M. Quigley, K. Conley et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3. Kobe,
2009, p. 5.

[8] M. A. Ma’Sum, G. Jati et al., “Autonomous quadcopter swarm robots
for object localization and tracking,” in MHS2013. IEEE, 2013, pp.
1–6.

[9] O. Kosak, C. Wanninger et al., “Multipotent systems: Combining
planning, self-organization, and reconfiguration in modular robot
ensembles,” Sensors, vol. 19, no. 1, 2018. [Online]. Available:
http://www.mdpi.com/1424-8220/19/1/17

[10] C. Eymüller, C. Wanninger et al., “Semantic Plug and Play & Self-
Descriptive Modular Hardware for Robotic Applications,” in Interna-
tional Journal of Semantic Computing (IJSC), 2018.

[11] O. Kosak, F. Bohn et al., “Ensemble programming for multipotent
systems,” in 2019 IEEE 4th International Workshops on Foundations
and Applications of Self* Systems (FAS*W), June 2019, pp. 104–109.

[12] Version 2.5.1 of the UML specification. Accessed on: 2020-01-12.
[Online]. Available: https://www.omg.org/spec/UML/2.5.1/PDF

[13] J. L. Peterson, “Petri nets,” ACM Comput. Surv., vol. 9, no. 3, pp.
223–252, Sep. 1977. [Online]. Available: http://doi.acm.org/10.1145/
356698.356702

[14] APM Planner 2 official website. Accessed on: 2020-01-12. [Online].
Available: http://ardupilot.org/planner2/

[15] QGroundControl documentation: PlanView. Accessed on: 2020-01-
12. [Online]. Available: https://docs.qgroundcontrol.com/en/PlanView/
PlanView.html

[16] DJI GCS official website. Accessed on: 2020-01-12. [Online]. Available:
https://www.dji.com/de/ground-station-pro

[17] P. Brisset, A. Drouin et al., “The Paparazzi Solution,” in MAV 2006,
2nd US-European Competition and Workshop on Micro Air Vehicles,
Sandestin, United States, 2006.

[18] UgCS official website. Accessed on: 2020-01-12. [Online]. Available:
https://www.ugcs.com/

[19] N. Dousse, G. Heitz, and D. Floreano, “Extension of a ground
control interface for swarms of small drones,” Artificial Life and
Robotics, vol. 21, no. 3, pp. 308–316, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10015-016-0302-9

[20] J. Kiener and O. Von Stryk, “Cooperation of heterogeneous, autonomous
robots: A case study of humanoid and wheeled robots,” in 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2007, pp. 959–964.

[21] D. C. MacKenzie, J. M. Cameron, and R. C. Arkin, “Specification
and execution of multiagent missions,” in Proceedings 1995 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Human
Robot Interaction and Cooperative Robots, vol. 3. IEEE, 1995, pp.
51–58.

[22] S. G. Brunner, F. Steinmetz et al., “Rafcon: A graphical tool for
engineering complex, robotic tasks,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp.
3283–3290.

[23] ROS2 node lifecycle documentation. Accessed on: 2020-01-12.
[Online]. Available: https://design.ros2.org/articles/node lifecycle.html

[24] smach framework for ros documentation. Accessed on: 2020-01-12.
[Online]. Available: http://wiki.ros.org/smach

[25] L. Torvalds and J. Hamano, “Git: Fast version control system,” URL
http://git-scm. com, 2010.

[26] Rviz documentation for ROS2. Accessed on: 2020-01-12. [Online].
Available: https://github.com/ros2/rviz/blob/ros2/README.md

http://www.swarmix.org/
https://www.intel.co.uk/content/www/uk/en/technology-innovation/aerial-technology-light-show.html
https://www.intel.co.uk/content/www/uk/en/technology-innovation/aerial-technology-light-show.html
https://video.isse.de/bdl
https://doi.org/10.1175/BAMS-D-15-00277.1
https://doi.org/10.1175/BAMS-D-15-00277.1
http://www.mdpi.com/1424-8220/19/1/17
https://www.omg.org/spec/UML/2.5.1/PDF
http://doi.acm.org/10.1145/356698.356702
http://doi.acm.org/10.1145/356698.356702
http://ardupilot.org/planner2/
https://docs.qgroundcontrol.com/en/PlanView/PlanView.html
https://docs.qgroundcontrol.com/en/PlanView/PlanView.html
https://www.dji.com/de/ground-station-pro
https://www.ugcs.com/
http://dx.doi.org/10.1007/s10015-016-0302-9
https://design.ros2.org/articles/node_lifecycle.html
http://wiki.ros.org/smach
https://github.com/ros2/rviz/blob/ros2/README.md

	Introduction
	Related Work
	Modeling Robot Missions with DMDE
	Reference Implementation in Python
	Proof of Concept
	Conclusion
	References

