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ABSTRACT
This paper presents a robotic piano tutor which aims to support
and motivate students with gamification, hints and feedback. It
uses a screen for displaying the musical score, a MIDI keyboard for
monitoring the user’s play and a social robot for providing feedback.
Musical pieces are divided into four categories with different de-
grees of difficulty. An adaptation approach based on reinforcement
learning is used to optimize the hints for the individual user.

1 INTRODUCTION
Social robots become increasingly popular, both for entertainment
and education. This includes first commercial domestic companions
in general but also research exploring robotic tutors in the context
of music. For example, Han et al. [5] use a robot in elementary
school music class as a teaching assistant in order to enhance the
students’ motivation and learning effects. Robots are also studied
to act as music teachers in the context of autism patients [21] and
as music therapists for people with cognitive impairments [23].

When it comes to playing instruments, recent work by Bagga et
al. [1] presents the instruMentor, which acts as a robotic musical
instrument tutor for teaching the recorder. 3D-printed hands show
the correct finger positions on the robot’s recorder while the user
plays his own instrument. Microphones allow analyzing the user’s
performance during a lesson. Instructions and feedback in terms of
smileys are shown on a touchscreen.

Playing the piano is subject of research by Jig and Lin [6], who
present a robot for engaging children from low-income families in
out-of-class practicing. It is built from every-day objects and does
not provide a traditional piano keyboard but uses the robot’s five
pressure sensitive feet as input. The included game aims to improve
both hands’ dexterity and rhythmic precision.

There exist also many commercial apps without robots for pi-
ano practicing, either in combination with a MIDI keyboard or on
the smartphone touchscreen. Typical features include displaying
and following the score and feedback with regard to the user’s
performance. Open source implementations for PC include e.g. Pi-
anoFromAbove1, which does not require the ability to read sheet
music, and PianoBooster2. The latter also features a visualization of
the player’s timing per note in the score, which makes it easy to
recognize which notes were rhythmically inaccurate. There is also
work on automatic key detection based on image processing from
a camera [3] for displaying suggested fingering and highlighting
individual keys in augmented reality style.

While embodied agents offer the opportunity to support creative
processes and increase motivation, learning and practicing is an
individual process for each student. For example, such an agent

1https://github.com/brian-pantano/PianoFromAbove
2http://pianobooster.sourceforge.net/

Figure 1: Hardware setup including a robot, a screen and a
small MIDI keyboard.

should be able to personalize its assistance to the user, e.g. based
on the learning pace. In recent years, many experiments include
some kind of adaptation process, e.g. with Reinforcement Learning
(RL). This autonomous machine learning approach has in general
become very popular for the adaptation of robots’ behaviors, such
as in the context of post-stroke rehabilitation therapy [24], second-
language learning [4], playing games [7], intervention for children
with autism spectrum disorder [8], exercising and sportive activities
[18], to adapt a robot’s linguistic style [9–11, 14–17] or humor [26],
only to name a few. In the context of music, Tapus and Mataric [22]
use a RL approach for a socially assistive robotic music therapist
which aims to maintain attention of older adults with cognitive
impairments.

Inspired by aforementioned research and experiments we present
an interactive and adaptive robotic piano tutor which supports
the user in practicing songs and piano pieces on a keyboard. It
provides functionality typically found in piano teaching apps and
gives feedback to the player. A RL approach, which is driven by the
user’s performance, selects hints on how to proceed with practicing.

2 AN ADAPTIVE ROBOTIC PIANO TUTOR
Figure 1 illustrates the scenario: the user sits in front of a screen
and practices piano music with different level of difficulty on a
keyboard. Sheet music is displayed on the screen, which is also
used for interaction with the piano tutoring application. Besides
notes, additional help is provided: a virtual keyboard and a cursor in
the score highlights the next notes to play. Moreover, the graphical
user interface includes a metronome, settings, score selection and
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Figure 2: Overview of the adaptive robotic piano tutor.

playback. A social robot supports the human during practice: when-
ever the user finishes the performance it provides advice on how
to proceed and which tools or strategies might be of advantage.

One core aspect of the robotic piano tutor is an adaptation pro-
cess, which is illustrated in Figure 2. The user’s performance is
monitored based on the data from the keyboard. The played keys
and – optionally – rhythm are evaluated in order to detect errors.
This information serves as input for the adaptation process. RL
is used as a machine learning framework for exploring different
hints which are presented by the robot. After each performance,
the robot gives feedback to the user and – when necessary – sug-
gests e.g. to use the metronome, to repeat the piece or to proceed
with another one. The robot uses language to present the hints,
underlined with facial expression. Hint selection is based on the
learning agent’s former observations and experience. Initially, hints
are selected based on trial & error, but the user’s performance is
used to improve the hint selection over time.

The application requires prior knowledge from the user with
regard to piano playing and music. This includes the ability to read
sheet music, i.e. basic knowledge about notes and note values, rests,
scales and accidentals. The robot cannot replace a piano teacher, but
aims to provide support and increase motivation when practicing
alone. It is not able to teach piano playing in general but to provide
advice on how to practice the provided scores.

2.1 Gamification
Deterding et al. [2] define gamification as “the use of game design
elements in non-game contexts”. Eight different forms of rewards
are identified by Wang and Sun [25], including “unlocking mecha-
nisms” or “access”. This type of reward is used by the robotic piano
tutor as follows. Musical pieces are divided into four different levels
of difficulty: training, easy, medium and hard. The first one consists
of ascending one-handed and two-handed major scales for practic-
ing black and white keys. Easy pieces include one-handed melodies
for the left and right hand as well as two-handed songs (e.g. Happy
Birthday, folk songs, etc.) with basic accompaniment (e.g. chords in
the left hand, see Figure 4). Pieces with medium difficulty are longer,
may use polyphony in one hand (two voices playing in parallel) or
require larger leaps in the left hand (e.g. Kalinka). They also make
more use of rests and dynamics. In the last category, pieces are
more complex or train e.g. melody takeover between hands (e.g.

Für Elise). Easier pieces have a smaller tonal range, more difficult
ones require a larger keyboard with several octaves.

Initially, the user is restricted to practicing pieces with the lowest
difficulty and a lock icon is used for more difficult ones. As soon as
all pieces in the current category are mastered, the next difficulty
level is unlocked. This aims to ensure that the user is able to proceed
with advanced challenges and to increase motivation. Moreover, a
plot of the user’s performance error (see Section 2.3) is provided as
additional feedback and control of the user’s practicing progress.

2.2 Hints
Siebenaler [19] analyzed piano lessons with expert piano peda-
gogues for children and adults. Different teacher behaviors were
identified, such as clapping or singing, playing or talking, giving
different directives, asking, showing different kinds of (dis)approval,
music talk and off-topic talk. While their results show that students
of relatively active piano teachers learn more effectively, the robot
at hand is not able to react to errors in the user’s performance in
real-time. Thus, after each performance the robot is able to suggest
a hint depending on the overall errors during playing the score.

Inspired and adapted from Siebenaler, the robot can suggest to (1)
use the metronome, which corresponds to the teacher’s clapping.
A similar suggestion is to (2) listen to the song (playback) as a
equivalent to the teacher’s playing. Hints with regard to the tempo
include (3) playing slower. Moreover, it might also be beneficial to
(4) play another piece. Finally, there are also suggestions specifically
addressing the application’s virtual score and keyboard, which aims
to replace a teacher’s ability to point at notes or keys directly with
the hand. For example, one opportunity is to (5) focus on the score
following cursor, which highlights the notes to play, to (6) focus on
the virtual keyboard, which highlights the keys to play, and to (7)
hide keys on the virtual keyboard which are not used in the piece.

The application does not enforce the suggestion automatically,
the decision to apply the intervention is up to the user. The graphical
user interface provides buttons and controls, e.g. to manipulate
the tempo, to activate the metronome or to change the virtual
keyboard’s visualization. The robot gives feedback after each of the
user’s performances independently of the hints, e.g. “There are still
some errors! Keep practicing.” or “That was awesome!”

Since the robot’s embodiment provides the opportunity to com-
municate with gaze [13], facial expression or sound [12], too, more
options for feedback can be explored in the future. For example, its
face could either reflect the player’s accuracy or encourage the user
with friendly expression or funny grimaces in real-time. Robots
with arms and hands could further directly point at wrong notes or
keys to play.

2.3 Adaptation
The adaptation process aims to optimize the hints for the individual
user based on the player’s performance. It is modeled as a 𝑘-armed
bandit problem [20], which is a reduced form of RL. The agent’s
goal is to find the best of 𝑘 actions (here: set of hints) by estimating
each action’s actual, unknown value 𝑞∗. This value is approximated
iteratively based on a scalar feedback, the so-called reward signal
𝑅. In contrast to full RL, 𝑘-armed bandit problems do not have a
notion of state.
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Figure 3: Overview of the technical implementation.

The learning loop is as follows. In each time step 𝑡 the agent
selects an action 𝐴𝑡 (see below), executes it, receives a reward 𝑅𝑡+1
and updates the action’s new value𝑄𝑡+1 to approximate 𝑞∗.𝑄𝑡+1 is
based on𝑅𝑡+1, the old value𝑄𝑡 and constant learning rate 𝛼 ∈ [0, 1]:

𝑄𝑡+1 (𝐴𝑡 ) = 𝑄𝑡 (𝐴𝑡 ) + 𝛼 [𝑅𝑡+1 −𝑄𝑡 (𝐴𝑡 )]
Action selection is an important aspect in RL: it must balance

both exploitation and exploration for acting effectively. The former
makes the agent greedy and uses the approximated values to pick
the most promising actions for maximizing the expected reward.
The latter addresses uncertainty with regard to the actual 𝑄 values
and is essential to react to changes. This balance can be realized e.g.
with the 𝜖-greedy approach, which selects a random action with a
small probability 𝜖 ∈ [0, 1] or the action with the highest estimated
𝑄-value (the greedy action) with probability 1 − 𝜖 .

In the context of Human-Robot Interaction (HRI),𝑘-armed bandit
problems are often modeled as a stationary problem, such as in
[7, 17]. The idea is that 𝑞∗ is fixed and does not change over time.
However, we expect that our problem at hand is non-stationary,
which means that the actual 𝑞∗-values may change over time. This
may occur due to fatigue when practicing the same over and over
again. Thus, a learning algorithm (as presented above) must be used
which is able to react to these changes dynamically.

Error Calculation & Reward. An error rate 𝑒𝑡 ≥ 0 is calculated based
on the user’s performance by comparing the notes in the score with
those played by the user and analyzing their rhythmic precision.
While the calculation is quite complex, the general idea is: the more
deviations in notes and timing, the bigger the error rate. This value
is used as a reward for the last action, depending on the note count
𝑛𝑡 > 0 of the score:

𝑅𝑡+1 = − tanh
(
𝑒𝑡

𝑛𝑡

)
3 IMPLEMENTATION
Figure 3 outlines the most important components of the application.
In terms of hardware, a keyboard, (touch)screen and the robot are
required. Most of the program is written in JavaScript as a browser
application.

3.1 Robot
Reeti3 is a robot with an expressive face. Its facial expression can
be controlled with several motors for the eyes, eyelids, upper and
3http://www.reeti.fr

Figure 4: Screenshot of the browser application including
menu, score and virtual keyboard.

lower lip as well as left and right cheek. Moreover, the head has
three degrees of freedom and the ears can be rotated upwards and
downwards, too. Each of Reeti’s cheeks contains one RGB LED.
Additionally, the robot has an inbuilt speaker and a Text-To-Speech
(TTS) module. The manufacturer provides an URBI server and APIs
for Java and C++ wrappers. We use a custom REST interface, which
generates and sends URBI commands over the network to the robot.

3.2 Browser Application
3.2.1 Score Rendering, Following & Playback. All musical scores
are provided as abc text files which are rendered by the abc.js4

JavaScript library. It allows rendering notes in the browser by gener-
ating a Scalable Vector Graphic (SVG) from textual input. In contrast
to other JavaScript note rendering libraries, abc.js is performant
enough to redraw the score after each keypress, which is required
for score following. This cursor allows the user to see the current
position in the score by highlighting the next note(s) with a bound-
ing box (see Figure 4). As soon as the correct keys are pressed,
the next note(s) are highlighted. This aims to avoid losing track
when looking at the (virtual) keyboard. Scores with multiple lines
automatically scroll as soon as the first note in the next line is
reached. Thus, there is no need to put the hands away from the
keyboard. In addition to the bounding box, the corresponding keys
are highlighted on the virtual keyboard (see lower part of Figure 4)
to find the keys more easily. Common performance instructions,
such as repetition marks, are considered.

Moreover, abc.js allows generating and playing back the score’s
audio with a SoundFont5. The user can listen to the score by pressing
the play button in the menu. During playback, the same score
following functionality is employed as during training.

3.2.2 MIDI keyboard. MIDI support differs between browsers. The
JZZ.js6 library is used for unified and asynchronous access to the
keyboard. In general, anyMIDI keyboard can be used for interfacing
with the application. However, small keyboards with only two
octaves, such as in Figure 1, only suffice for the easiest exercises.
Four octaves or more are recommended.

4https://www.abcjs.net/
5https://en.wikipedia.org/wiki/SoundFont
6https://jazz-soft.net/doc/JZZ/index.html
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4 CONCLUSION
This paper presented an interactive robotic piano tutor, which
supports the user during practicing songs and piano pieces with
different degrees of difficulty. The robot’s feedback and gamification
aim to support and motivate the player. The user’s performance is
monitored based on the input from the MIDI keyboard and used as
a reward for an integrated Reinforcement Learning approach. Its
goal is to adapt the robot’s supportive hints to the individual user
in order to optimize practicing.

Several aspects can be improved in the future, such as the error
detection. Hints could be complemented with more targeted feed-
back, such as advice to practice certain parts of the score and more
interventions identified by Siebenaler [19]. In order to provide max-
imum flexibility, users or teachers could import pieces on their own.
Consistent fingering for all notes could be added and a keyboard
with lit keys could be used instead of the virtual keyboard. Finally,
more gamification aspects might further increase motivation, such
as earning points according to the player’s performance.
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