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Abstract

Predicting emotions automatically is an active field of research in affective computing. Considering the property of the
individual’s subjectivity, the label of an emotional instance is usually created based on opinions from multiple annotators.
That is, the labelled instance is often accompanied with the corresponding inter-rater disagreement information, which we
call here the perception uncertainty. Such uncertainty information, as shown in previous studies, can provide supplementary
information for better recognition performance in such a subjective task. In this paper, we propose a multi-task learning
framework to leverage the knowledge of perception uncertainty to ameliorate the prediction performance. In particular,
in our novel framework, the perception uncertainty is exploited in an explicit manner to manipulate an initial prediction
dynamically, in contrast to merely estimating the emotional state and perception uncertainty simultaneously, as done
in a conventional multi-task learning framework. To evaluate the feasibility and effectiveness of the proposed method,
we perform extensive experiments for time- and value-continuous emotion predictions in audiovisual conversation and
music listening scenarios. Compared with other state-of-the-art approaches, our approach yields remarkable performance
improvements in both datasets. The obtained results indicate that integrating the perception uncertainty information can
enhance the learning process.

Introduction

Automatic affect recognition is a multidisciplinary research
field, spanning anthropology, cognitive science, linguistics,
psychology, and computer science [4, 6, 34, 40, 47]. In par-
ticular, in order to incorporate cognitive capabilities into
machines, detecting and understanding emotional states of
humans in interactions is of broad interest in both academic
and commercial communities [37, 50]. Additionally, esti-
mating emotions in music automatically can lead to better
user experiences, in a variety of music-related tasks, such
as contextual music recommendation [25], emotion-based
playlist generation [46], and music therapy [29].
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In this respect, significant efforts have been made to
investigate innovative technologies to facilitate various real-
world applications to handle affective information. For this
purpose, a varicty of modalitics have been studied, including
but not limited to facial expressions [50], hand gestures [41],
speech [56], text [1], and physiological signals such as
electrocardiogram (ECG) [26] and electroencephalogram
(EEG) [32].

Morcover, with the recent advent of deep learning tech-
niques, we have witnessed fruitful theoretical and empirical
works, which enable machines to recognise meaningful
patterns of emotions [18, 31, 42, 55]. For instance, the
first attempt to apply Long Short-Term Memory Recur-
rent Neural Networks (LSTM-RNNGs) for long-range con-
text modelling in Speech Emotion Recognition (SER) was
by Wollmer et al. [54]. More recently, the combination
of CNNs and LSTM-RNNs, firstly constructed in [51],
has been shown to be a promising approach for estimat-
ing dimensional emotions in an end-to-end manner. More
recently, memory- or attention-enhanced RNNs were pro-
posed and have shown to be efficient when modelling
conventional emotions [21, 36].
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Despite the great progress that has been made so far in the
development of automatic emotion recognition approaches,
a number of challenges remain to reach full applicability
of current human—machine interaction systems. One among
these is how to tailor existing algorithms to address a
number of special requirements arising from the task
at hand, i.e. emotion recognition. Up to now, most of
these techniques have been originally proposed for other
tasks, and then certainly shown beneficial throughout many
applications. However, it is arguably inadequate to expect
the same benefit arising in emotion recognition, by applying
these frameworks directly without considering the property
of the task. For this reason, these algorithms and structures
have to be adjusted accordingly to fulfil the needs in
several aspects such as effectiveness and efficiency, as well
as reliability and robustness, in the context of emotion
recognition.

To this end, aiming at incorporating the subjective
property of the task at hand, several research have
been carried out by leveraging the perception uncertainty
retrieved on multiple annotations of the same sample.
The foundation of this idea may stem from findings
in [12] and [10] where it has been demonstrated that
the emotion prediction systems perform better in regions
with lower uncertainty. Therefore, a variety of approaches
have been investigated in emotion recognition, such
as estimating emotions together with the perception
uncertainty [20], dynamically optimising the learning
sequence accordingly [16], and exploiting the perception
uncertainty information as a difficulty indicator to promote
the modelling [59].

Motivated by the success of these research, in this
paper, we propose a novel emotion recognition framework
in which the ultimate emotion prediction is delivered,
by regulating an initial emotion prediction with its
corresponding uncertainty degree dynamically. Specifically,
we employ a multi-task learning framework together with
a dynamic tuning operation. On the one hand, the
emotion prediction uncertainty will be estimated together
as the conventional emotional state. On the other hand, this
uncertainty will be exploited to adjust the emotional state
predictions during inference.

In the remainder of this paper, we first briefly introduce
the related work in the section “Related Work”. Then, in
the section “Perception Uncertainty Exploration”, we detail
the novel perception uncertainty exploration framework.
Afterwards, extensive experiments on two databases for
emotion recognition in dyadic conversation and music
listening are carried out in the section “Experiments”.
Finally, our conclusions and future research directions are
provided in the section “Conclusion”.

Related Work

When considering the subjective property of the task of
interest, i.e. emotion recognition, the inter-rater disagree-
ment level among multiple annotators is found to be help-
ful [39, 57]. Take curriculum learning as one example,
during the training process, instances with a lower disagree-
ment degree can be learnt firstly. In such a context, better
systems have been obtained in the affective computing lit-
erature [16, 33]. Likewise, results from [58] indicate that
eliminating instances with a high disagreement level during
training leads to improved performance for speech emotion
recognition.

Beyond sorting or discarding samples accordingly,
approaches have been proposed to characterise the sub-
jective property of emotion perception via the inter-rater
disagreement level [15, 20, 28]. On one hand, it can
be deemed as an auxiliary task, aiming at improving the
performance of emotion recognition by providing compli-
mentary information [15, 28]; on the other hand, the work
in [20] distilled it as an auxiliary descriptor, namely percep-
tion uncertainty (PU), to deliver a ‘soft” emotion prediction
jointly with the conventional emotional state prediction. In
addition, recently, the success achieved by the soft labelling
approach encourages other appealing works in the litera-
ture [2, 8, 9, 27].

Motivated by these research, we propose a framework
to further advance the emotion modelling by leveraging the
perception uncertainty dynamically via multi-task learning.
Although improved performances were obtained by opti-
mising the learning process with the PU information, none
of the aforementioned works exploit the PU knowledge dur-
ing inference. In contrast, in this contribution, the PU is
exploited not only to facilitate the emotion modelling pro-
cess but also to adjust the predictions accordingly during
inference.

Moreover, this work is also relevant to the dynamic
difficulty awareness training approach [59], in which the
estimated PUs are exploited as additional inputs to present
the learning difficulty information explicitly for emotion
recognition. In [59], it has been attempted to modify the
original predictions by linearly taking the uncertainties into
account to deliver the final predictions in a late fusion. In
contrast, we consider the PU as a weighted index to regulate
the emotion estimation throughout the predicting process.

Perception Uncertainty Exploration

In this section, we will detail a novel approach, the Perception
Uncertainty Exploration (PUE), approach step by step.



First, we outline the proposed framework in the section
“System Overview”. Afterwards, we demonstrate how to
quantify the perception uncertainty via inter-rater disagreement
degree in the section “Perception Uncertainty Modelling”.
Then, a brief discussion of a vanilla multi-task learning
structure will be given in the section “Multi-Task Learning”,
followed by a description of the proposed method via
dynamic tuning in detail in the section “Dynamic Tuning”.

System Overview

An overview of the PUE framework is illustrated in
Fig. 1. In particular, the structure consists of three different
layers, i.e. the shared hidden layers to learn embeddings
from input features, the task-specific layers to estimate
initial emotion predictions together with their perception
uncertainty, and a dynamic tuning operation to provide
the final emotion prediction which is regulated by the
uncertainty information.

Mathematically, given an M-dimensional input feature
x € R, the shared layers are learned to generate a
corresponding N-dimensional embedding e € RV i.e. the
output from the last shared hidden layer in Fig. 1. Therefore,
the effect of these layers can be represented as a mapping
function ® : RY — RN andx > e. After that, two
disconnected task-specific layers are constructed to carry
out two tasks separately. In our case, the two selected tasks
are the initial emotion recognition task and the perception
uncertainty prediction task. These two tasks can be trained
jointly under a multi-task learning strategy. Furthermore,

Shared Layers

Task-specific
+ + Layers
P emo Pou

[ Dynamic Tuning ]

pemo=p’emo + Slgn(l’) . p'emo * Pru

Fig. 1 Framework of the Perception Uncertainty Exploration frame-
work for continuous emotion recognition
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to efficiently aggregate the uncertainty information, a
dynamic tuning operation is applied to produce the final
emotion predictions.

Perception Uncertainty Modelling

Before presenting the PUE approach, the definition of PU
will be given firstly in the following paragraphs.

In this paper, PU is defined as an indicator of the
uncertainty level of the perception of an emotional state
for a given observed sample. As mentioned in the
section “Introduction”, emotion prediction is a subjective
task that differs from many other objective pattern
recognition tasks, such as object detection [22] and speaker
identification [43], where there is a ground truth. In contrast,
to obtain a gold standard for a subjective task like emotion
recognition, it is common that a number of raters are
required to annotate the same sample to minimise the
individual bias in perception and rating as much as possible.
In this context, PU can be inferred by calculating the
inter-rater disagreement level, with an assumption that for
each sample, PU is highly correlated with the inter-rater
disagreement level [20, 38].

For this reason, given an emotional instance, its
corresponding PU p,,, can be represented by the standard
deviation of a total of n annotations (same with the
definition in [59]) as:

1 n )
Ppu = m Z(pemo.i - pem())29 (1)

i=1

where pemo.i 18 the ith annotation of the instance with
i = 1,..,n, and pgy, denotes the mean value given all n
annotations:

_ 1 ¢
Pemo = ; 21: Pemo,i - 2
i=

In previous works, the PU information has been
successfully exploited for emotion prediction tasks. On
onc hand, it is indicated in [20] that a more human-like
and comprehensive emotion prediction can be generated via
reporting the confidence together with the emotional state.
On the other hand, the PU information can be exploited as
a learning difficulty indicator to dynamically supervise the
learning process [59].

Multi-Task Learning

After obtaining both the gold standard as our emotional
states pemo and the inter-rater disagreement level as the
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perception uncertainty p,, the two tasks can be learned in
a multi-task learning (MTL) structure, as shown in Fig. 1.
While these two tasks are correlated with each other, during
the training phase in a MTL context, the conventional
emotion prediction task can benefit from the auxiliary
task, i.e. PU modelling, by learning two tasks jointly in a
supervised manner. In other words, the outputs from the
two task-specific subnetworks are both concerned when
updating the parameters in the shared front-end hidden
layers.

To this end, given an input sample {x;} witht =1, ..., T,
the network is optimised by minimising the loss function as:

«7(0) = Lemo(') + B : Lpu(') +A- R(e)’ (’%)

where Lepo(-) and Lp,(-) denote the loss functions for
emotion prediction and PU prediction, respectively, P is a
predefined hyperparameter to regulate the contributions of
L p,(+), and A is another hyperparameter which controls the
importance of the L2 regularisation term R(#).

Dynamic Tuning

As outlined in the sections “Related Work™ and “Perception
Uncertainty Modelling”, with a vanilla MTL structure,
knowledge of the PU is utilised to facilitate the training
of the emotion estimation model. Albeit the notable
advantages, one may note that, once the training is
completed, the PU path is disregarded and does not
contribute for the emotion estimation anymore. In other
words, the PU path is not exploited at all during inference.
In contrast to a vanilla MTL framework, here we propose
to utilise the PU information to regulate the emotion
estimation for both the training and evaluation phases. It
is expected that the PU estimation can provide auxiliary
information for the emotion estimation.

Specifically, as shown in Fig. 1, another dynamic tuning
operation is built to aggregate the initial emotion prediction
and the perception uncertainty in an explicit way. Formally,
the function of the layer can be expressed via:

Pemo = pémo + pémo * Ppus “)

where p,,. and p,, stand for the output from the
task-specific layers for emotion states and uncertainty
degree, respectively, and p.,, denotes the output from
the dynamic tuning operation. With this approach, the
final emotion estimation p,;,, is partially controlled by
the PU information. In other words, the complementary
information from PU is further employed in the evaluation
phase.

Note that, a presupposition of this adjustment is that the
emotion and the uncertainty are positively correlated. In the

case where the two tasks are negatively correlated, Eq. 4
should be reformulated as:

Pemo = p:emu - p::m() *Ppu- (5)

For the sake of simplicity, Eqs. 4 and 5 can be unified to
be:

Pemo = Pomo + S180(F) * Pl * Ppus (6)

where r indicates the Pearson correlation coefficient (PCC)
between the emotional state values and the perception
uncertainty, and is determined by the prior knowledge with
respect to the given task.

In this circumstance, the objective function in Eq. 3 can
be reformulated as:

J(O0) = Lepo(?) +a - L;mo(') + B : Lpu(') +A-R(@), (7

where Ly, (-) and L), ,(-) denote the loss functions for the
final emotion prediction (outputs of the dynamic tuning
operation) and the initial emotion estimation (outputs of the
emotion prediction task-specific layer), respectively, L,
again stands for the loss for the PU modelling, o and B
are predefined hyperparameters to control the contributions
of L},.,(-) and L, (-), respectively, and A is deployed to
modulate the regularisation.

Furthermore, a triplet loss function is investigated, with an
aim to further advance the embedding learning process. In gen-
eral, the triplet loss forces to project the original input
features into a latent space where instances with similar
semantics are pulled together while instances with dissimi-
lar semantics are pushed away. Consequently, the similarity
of instances with the same semantic information is pre-
served in the learned embedding space. More information
on the implementation of the triplet can be found in [19].

When integrating the triplet constraint into the training
approach, the objective function in Eq. 7 will then be
rewritten as:

J(0) = Lemo(-) +o - L/emo(') + B : Lpu(')
+y - Lyi(4) + A - R(0),

where L;,; is the triplet loss, and the hyperparameter y is
introduced to weight the contribution of the triplet loss.

Note that, the values of «, B, and y arc optimised on
the development set, by achieving the best performance for
the final emotion prediction. After training, the framework
can be applied to estimate final emotional states given
input features, by integrating the two estimations from the
two separate task-specific subnetworks by Egs. 4 or 5
accordingly.

(®)

Experiments

To evaluate the feasibility and effectiveness of our
approach, we carried out extensive experiments on two



emotional datasets for continuous emotion prediction in
dyadic conversation and music listening, respectively.
In particular, the RECOLA dataset [45] was utilised
for audiovisual emotion regression, and the emoMusic
dataset [48] for music emotion prediction. In this section,
we first provide a brief introduction to the two datasets and
the selected feature sets (see section “Data and Features”™).
Then, the experimental setup and evaluation measurements
are explained in detail for the sake of experiment
replication together with a performance comparison (see
section “Implementation and Evaluation”). After that,
experimental results and discussions on the two datasets
are reported in the sections “Experimental Results and
Discussion for RECOLA” and “Experimental Results and
Discussion for emoMusic”, respectively.

Data and Features

For emotion recognition in dyadic multimodal interactions,
the RECOLA dataset was utilised. This multimodal corpus
is widely used for audiovisual dimensional emotion
recognition, and also a benchmark database previously
applied in a series of AVEC challenges since 2015 [44,
52]. It consists of recordings of spontaneous and natural
interactions from 27 French-speaking individuals, aiming
at studying socio-affective behaviours in the context of
remote collaborative tasks. In particular, varied multimodal
signals, i.e. audio, video, and physiological data, were
collected continuously and synchronously [45]. In the
current tentative study, only audio and video recordings
will be investigated. Moreover, detailed time- and value-
continuous dimensional emotion annotations in terms of
arousal and valence are given with a constant frame rate of
40ms for the first 5 min of each recording, by averaging
six annotators, and meanwhile taking the inter-evaluator
agreement into consideration [45]. Following the previous
partitions in the AVEC challenge, the dataset is further
equally divided into three disjoint partitions, by balancing
the gender, age, and mother tongue of the participants. Thus,
each partition contains nine unique audiovisual recordings,
resulting in 67.5K segments in total for each partition, i.e.
the training, development, or test set. For more details of
the data distribution, please refer to Table 1.

For music emotion recognition (MER), the emoMusic
dataset was selected, which was a publicly available
benchmark for MER and first introduced during the
MediaEval 2013 “Emotion in Music” task [49]. This music
corpus spans 1000 45-second clips, by selecting 1000
songs from the Free Music Archive. After that, annotations
were collected via more than 300 crowdworkers using the
Amazon’s Mechanical Turk platform. Especially, for each
single clip, continuous arousal and valence annotations
were generated with a constant sampling rate of 2 Hz,

235

Table 1 Three partitions of the RECOLA database

No. Train Development Test
Female 6 5 5

Male 3 4 4

French 6 7 7

Italian 2 1 2
German 1 0

Age 1 (0) 21.2(1.9) 21.8(2.5) 21.2(1.9)

by averaging annotations of at least 10 annotators from
the crowdsourcing platform. Moreover, the continuous
annotations are between —1 and +1 and the first 15 s
are excluded due to the instability of the annotations at
the start of the clips [48]. Also note that, after removing
redundant songs from the initial version, the reduced corpus
now consists of 744 songs in total, and is further split into
two disjoint parts, i.e. the development set with 619 clips
and the test set with 125 clips. As a result, the remaining
segments are 37,759 and 7,625 for the development and test
sets, respectively.

In order to investigate the correlation between the
emotion annotation (arousal or valence) and the inter-
evaluator disagreement level, we computed the PCC r
between the generated ‘gold standard’ and its corresponding
perception uncertainties. The obtained results are presented
in Table 2. Interestingly, one can notice that in RECOLA
the two targets are partially positive linearly correlated (.215
for arousal and .103 for valence), while in emoMusic the
correlations are negative (— .296 for arousal and — .203 for
valence). That means, in human conversation, individuals
tend to disagree more on instances with stronger emotions;
however, for emotions in music, people demonstrate higher
consistency on instances with richer emotional content. One
reason might be that, some annotators tend to stick to ‘what
is common’ unconsciously, resulting in a higher standard
deviation of ‘what is rare’. In most human interactions,
neutral is common, while emotional representations are
more ordinary in music as its main intention is to achieve
consensus emotionally among listeners. Therefore, the
PU information should be exploited differently for the

Table 2 Obtained Pearson correlation coefficients (PCCs) between
the absolute value of the emotional states and the corresponding
perception uncertainties for RECOLA and emoMusic, with respect to
arousal and valence, respectively

PCC Arousal Valence
RECOLA 215 103
emoMusic —.296 —.203
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two tasks, when dynamic fine-tuning the initial emotion
estimations (see section “Dynamic Tuning”).

For acoustic features, we used the extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS [13]) for
both datasets. The feature extraction can be done with
our open-source openSMILE toolkit [14]. In particular, 88
supra-segmental features were extracted by applying vari-
ous statistical functionals, such as mean and moments, over
23 frame-level low-level descriptors, such as MFCCs and
energy. This handcrafted feature set has been successfully
utilised in previous studies and achieved robust prediction
performance in a wide range of audio tasks, especially in
emotion recognition.

For video recordings in the RECOLA dataset, two types
of facial descriptors are investigated, i.e. appearance and
geometry based, which are standard features provided in
the AVEC challenges [52], for a fair comparison with other
methods in the literature. This resulted in 168 appearance
and 632 geometric visual features. For more details on the
feature extraction process, the reader is referred to [52].

Moreover, we applied online standardisation to the
above-mentioned feature sets, respectively. Specifically, the
means and variances of features were calculated on the
training set, which were then applied over the development
and test sets for standardisation.

Implementation and Evaluation

To implement the proposed PU modelling framework for
continuous emotion recognition, we employed a deep
RNN structure with gated recurrent units (GRUSs). As an
alternative to long short-term memory cells, GRU cells can
capture long-term dependencies in sequence-based tasks
and ameliorate the vanishing gradient problem as well.

For the RECOLA experiments, the number of hidden
layers and the number of units per layer were defined,
following our previous work on the same database after
a grid search evaluation strategy [59]. In particular, in
all systems, the number of hidden layers for the shared
subnetwork and the task-specific subnetworks was set as
2, respectively. In addition, each hidden layer consisted of
120 GRU cells. During network training, we utilised the
Adam optimisation algorithm with an initial learning rate
of 0.001. Moreover, to facilitate the training process, the
mini-batch size during training was 128. Finally, an early
stopping strategy was deployed as no improvement of the
prediction performance on the development partition has
been observed during 20 epochs or a predefined maximum
number of training epochs (100 runs in all our cases) has
been reached.

Furthermore, we applied a grid-search strategy for the
three hyperparameters «, B, and y in Eq. 8 which control
the contribution of the initial emotion prediction loss,

the PU prediction loss, and the triplet loss, respectively.
More specifically, the best setting was determined on
the best performance achieved on the development set
by a grid search over [.1,.2,.5,1.0] for « and over
[0, .01,.02,...,.09, .1, .2, .5, 1.0] for B and y, respectively.
In addition, we executed the same annotation delay
compensation strategy and the post-processing chain
on all predictions, following the suggestions by the
AVEC challenge in [52]. Specifically, the post-processing
parameters were optimised on the development set and then
applied to the test set to refine the obtained predictions.
Thus, these settings varied from task to task.

Finally, to evaluate the performance of the models, we
computed the official metric of the AVEC challenges for
dimensional emotion recognition tasks, namely Concor-
dance Correlation Coefficient (CCC) [52] which can be
computed via:

B 2rocoy
02402+ (ix — 11y)?

©)

Te

where r denotes PCC between two objects (e.g., prediction
and gold standard), u, and p, arc the means of cach
object, and of and (rvz stand for the corresponding variances.
The CCC metric falls into the range of [—1, 1], where 41
represents perfect concordance, —1 total discordance, and 0
no concordance at all. In general, a higher CCC indicates a
better prediction performance.

Experimental Results and Discussion for RECOLA

For the task of emotion regression in dyadic conversation,
the performances in terms of CCC are presented in
Table 3. For a fair performance comparison, the results
of the corresponding baseline systems, our proposed PU
modelling system, as well as that of other state-of-the-
art benchmarks on RECOLA, are listed for each selected
feature set in detail. In particular, our single-task learning
baseline system (denoted as STL in Table 3) is a plain four-
layer GRU-RNN deep structure with 120 cells per layer,
aiming to provide time- and value-continuous predictions in
the arousal and valence dimensions, respectively. As can be
seen in Table 3, our STL baseline performances are already
quite competitive, when comparing their performance with
that of other recent works in the literature on the same
database.

Moreover, in order to explore the auxiliary information
from the perception uncertainty, a multi-task learning
framework (denoted as MTL in Table 3) was further
evaluated. From the obtained results, one may notice that the
MTL systems outperform the corresponding STL ones in all
audio feature-based recognition tasks and six out of eight
cases when using video features (appearance or geometric).
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Table 3 Performance comparison in terms of Concordance Correlation Coefficient (CCC) for emotion regression tasks on the dev(elopment) and
test sets of RECOLA in arousal and valence, respectively

CcCcC Audio-eGeMAPS Video-appearance Video-geometric
Arousal Valence Arousal Valence Arousal Valence
Dev Test  Dev Test Dev Test  Dev Test Dev Test Dev  Test
Proposed
STL 766 .605  .504 381 512 411 545 525 499 399 .619 529
MTL 779 620 520 405 514 456 .549 493 542 327 .647 531
MTL with PU modelling 79 623 .534* 420" 522% 440 .566*  .525% 528  .407*  .651 @ .545*
Other state of the art
PU-based DDAT [59] 811 664 498 407 518 438 514 431 513 .397 .632 501
DNNs [33] 573 517 129 .044 .387 220 306 206 312 .296 362 216
Curriculum learning (DNN) [33] 687 591 159 174 417 343 446 419 394 267 300  .269
Curriculum learning (GRU-RNN) [59] .754  .611  .501 357 491 391 557 492 444 336 .609  .500
Strength modelling [17] 155 .666 476 364 350 196 592 464 - - - -
Feature selection + offset [23] 800 - 398 - 587 - 441 - 173 - 441 -
SVR + offset [52] 796 .648 455 375 483 343 474 486 379 272 612 507
CNN + LSTM-RNN [5] 846 - 450 - 346 - S11 - - - - -

Results are reported for the proposed PU modelling approach, together with the single-task learning (S7L) framework, and the multi-task learning
(MTL) framework, as well as other state-of-the-art works (DDAT, dynamic difficulty awareness training). The best achieved CCCs are italicised.
Three feature sets (audio-eGeMAPS, video-appearance, and video-geometric) are evaluated for all methods. Cases where the proposed PU
modelling has a statistical significance (p < .05) of performance improvement over MTL by means of Fisher’s r-to-z transformation are marked

by *

This meets our expectation and further consolidates findings
from our previous works [20, 59].

Furthermore, by modulating the emotion estimations
with PU directly, our PU modelling delivered significant
performance improvements continuously over a large
margin, when compared with STL. Besides, it is interesting
to notice that the MTL with the PU modelling approach
is superior to the MTL-only method, which indicates the
effectiveness of the PU-based amendment. In particular, on
the test set, the best CCC of .623 is reached with audio-
eGaMAPS features for arousal, while the best CCC of
.545 for valence is achieved on the video-geometric feature
set. In addition, we observe that the best results of PU
modelling frameworks are consistently achieved when o =
1. This may imply that the loss from the initial emotion
estimation is essential to regulate the training process of a
PU modelling framework. Similarly, we observe that during
the optimisation procedure, best performance was in most
cases achieved when B and y were non-zeros, indicating
that taking these terms away from the proposed objective
function will lead to a performance decrease.

Finally, we reported the state-of-the-art results obtained
on RECOLA with the same feature sets. It is noticeable
that our systems get the best results on the test set except
for arousal with audio features (ours is .623 while the best

CCC .666 is obtained by strength modelling). The rationale
for this is that, in strength modelling [17], the advantages
of RNN and SVR are both exploited, while in our model
only an RNN was used. However, in this specific case,
an SVR model brings more benefits for the audio arousal
regression than an NN-based model (.648 for SVR and
.611 for curriculum learning with RNN). In this regard, one
future investigation might be integrating the PU modelling
with the strength modelling, to further boost the capability
of a system for emotion modelling.

Experimental Results and Discussion for emoMusic

For music emotion recognition, experiments on the emoMu-
sic database were conducted to further justify the robustness
and efficiency of the proposed paradigm. Details of the
obtained results are presented in Table 4. Note that, while
the correlation between the emotional states and the cor-
responding uncertainties are negative (cf. Table 2 for both
arousal and valence), Eq. 5 was applied to modulate the final
predictions with the help of their PUs.

As shown in Table 4, similar observations could be seen
as in the previous tasks. Comparing the plain STL and
MTL systems, one may notice that, by training a network
under the MTL strategy, better performances have been
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Table 4 Performance comparison in terms of Concordance Correla-
tion Coefficient (CCC) on the test set of the emoMusic dataset for
arousal and valence predictions

Methods Arousal Valence
Proposed
STL 153 558
MTL 761 562
MTL with PU modelling 179 .597
Other state-of-the-art
BLSTM-RNN [3] .300 .060
Sum of CCC objective [53] 719 582
TCCC objective [53] .790 .648

Results obtained after the post-processing chain are given, for the
proposed PU modelling system, together with the corresponding
single-task learning (S7L) and multi-task learning (MTL) baselines, as
well as other state-of-the-art works (BLSTM-RNN, bidirectional long
short-term memory recurrent neural networks). The best results are
italicised

achieved for both arousal and valence. This observation is in
accordance with our previous findings and our expectation
that estimating the emotions and PU levels simultaneously
could bring benefit to the emotion recognition task.

Furthermore, when modifying the learning strategy via
utilising the PU estimations explicitly, our method delivers
further performance improvements over a large margin
consistently on all cases. In particular, after the post-
processing procedures, the performance of our proposed
system reaches CCC values of .779 and .597 for arousal
and valence, respectively. These results demonstrate that
the PU modelling approach significantly outperforms both
the plain STL and MTL baselines (p < .05 by means of
Fisher’s r-to-z transformation). Moreover, results achieved
by other state-of-the-art works are also presented in Table 4.
In particular, it can be observed that by replacing the
conventional root mean square error loss with CCC-based
objective function, performance in both arousal and valence
is increased. Hence, further investigations need to be
performed to integrate CCC optimisation to the present PU
modelling system.

In addition, to further assess the effect of the PU
modelling for the music emotion regression task, we
conducted experiments with the positive regulation with
Eq. 4 too. In this context, the best CCCs were obtained at all
times when B in Eq. 8 was set to 0. This further meets our
expectation that when two targets are negatively correlated,
the PU-based emotion modification should be operated with
Eq. 5 in place of Eq. 4. In other words, given a new task,
the correlation between the task itself and its PU degrees
(positive or negative) should be understood first before

deploying the framework. Thus, analysing the correlation
between a subjective task and its perception uncertainty
based on human cognition might be a promising avenue for
future work, and would promote further applications of our
method in other subjective recognition tasks.

Conclusion

In this paper, we propose a multi-task learning framework
for emotion recognition in human conversation and
music listening. By integrating the perception uncertainty
information into the emotion estimation during both the
training and evaluation phases, we have altered the initial
emotion prediction in order to produce its corresponding
final prediction. When conducting intensive experiments on
two emotional datasets for human interaction and music
emotion recognition, respectively, impressive performance
improvements have been observed in both tasks. To the best
of our knowledge, though there are many existing studies in
exploiting the inter-rater disagreement level, this is for the
first time that the disagreement level is applied to revise the
prediction during inference in a dynamic way.

In the future, we will consider the sign function
in Eq. 6 as a hyperparameter rather than a pre-defined
parameter in the network training phase. This improvement
will make the framework more flexible when dealing
with the unknown correlationship between the emotional
state and perception uncertainty for each utterance. In
addition, to further justify the effectiveness and robustness
of the approach, we plan to evaluate it on additional
large-scale emotional datasets, where annotations from
multiple raters are provided, such as SEWA [30]. Moreover,
given that our framework can be deployed to other
subjective recognition tasks, we would like to examine its
generalisation properties on more tasks, such as sentiment
analysis [11], personality estimation [35], and engagement
detection [7]. Lastly, Bayesian learning-based approaches
will be explored to model the uncertainty and learn
interpretable representations of emotional instances in
future [24].

Funding Information This study was partially supported by the
TransAtlantic Platform “Digging into Data” collaboration grant
(ACLEW: Analysing Child Language Experiences Around The
World), with the support of the UK’s Economic & Social Research
Council through the research Grant No. HJ-253479, and by the Euro-
pean Union’s Horizon H2020 Research and Innovation programme
under Marie Sklodowska-Curie grant agreement No. 766287 (TAPAS).

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.



Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

11.

14.

15.

16.

. Dang T,

. Agarwal B, Poria S, Mittal N, Gelbukh A, Hussain A. Concept-

level sentiment analysis with dependency-based semantic parsing:
a novel approach. Cogn Comput. 2015;7(4):487-99.

. Albanie S, Nagrani A, Vedaldi A, Zisserman A. Emotion

recognition in speech using cross-modal transfer in the wild. In:
Proc. ACM international conference on multimedia (MM). Seoul;
2018. p. 292-301.

. Aljanaki A, Yang YH, Soleymani M. Developing a benchmark

for emotional analysis of music. PloS One. 2017;12(3):¢0173,392.

. Beatty A. Anthropology and emotion. J R Anthropol Instit.

2014;20(3):545-63.

. Brady K, Gwon Y, Khorrami P, Godoy E, Campbell WM,

Dagli CK, Huang TS. Multi-modal audio, video and physiological
sensor learning for continuous emotion prediction. In: Proc.
6th international workshop on audio/visual emotion challenge
(AVEC). Amsterdam; 2016. p. 97-104.

. Cambria E. Affective computing and sentiment analysis. IEEE

Intell Syst. 2016;31(2):102-7.

. Chorianopoulou A, Tzinis E, losif E, Papoulidi A, Papailiou

C, Potamianos A. Engagement detection for children with autism
spectrum disorder. In: Proc. international conference on acoustics,
speech and signal processing (ICASSP). Calgary; 2017. p. 5055-9.

. Chou H, Lee C. Every rating matters: joint learning of subjective

labels and individual annotators for speech emotion classification.
In: Proc. IEEE international conference on acoustics, speech and
signal processing (ICASSP). Brighton; 2019. p. 5886-90.

. Dang T, Sethu V, Ambikairajah E. Dynamic multi-rater gaussian

mixture regression incorporating temporal dependencies of emo-
tion uncertainty using kalman filters. In: Proc. IEEE International
conference on acoustics, speech and signal processing (ICASSP).
Calgary; 2018. p. 4929-33.

Sethu V, Epps J, Ambikairajah E. An investi-
gation of emotion prediction uncertainty using gaussian mix-
ture regression. In: Proc. Annual conference of the inter-
national speech communication association (INTERSPEECH).
Stockholm; 2017. p. 1248-52.

Dashtipour K, Poria S, Hussain A, Cambria E, Hawalah AY,
Gelbukh A, Zhou Q. Multilingual sentiment analysis: state of
the art and independent comparison of techniques. Cogn Comput.
2016:8(4):757-71.

. Deng J, Han W, Schuller B. Confidence measures for speech

emotion recognition: a start. In: Proc.the 10th ITG conference on
speech communication. Braunschweig; 2012. p. 1-4.

. Eyben F, Scherer K, Schuller B, Sundberg J, André E., Busso

C, Devillers L, Epps J, Laukka P, Narayanan S, Truong K. The
Geneva minimalistic acoustic parameter set (GeMAPS) for voice
research and affective computing. IEEE Trans Affect Comput.
2016;7(2):190-202.

Eyben F, Wollmer M, Schuller B. openSMILE — the Munich
versatile and fast open-source audio feature extractor. In: Proc.
ACM international conference on multimedia (ACM MM).
Florence; 2010. p. 1459-62.

Eyben F, Wollmer M, Schuller B. A multitask approach to
continuous five-dimensional affect sensing in natural speech.
ACM Trans Interact Intell Syst. 2012;2(1):1-29.

Gui L, Baltrusaitis T, Morency L. Curriculum learning for facial
expression recognition. In: Proc. 12th IEEE international confer-
ence on automatic face gesture recognition (FG). Washington;
2017. p. 505-11.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

239

Han J, Zhang Z, Cummins N, Ringeval F, Schuller B. Strength
modelling for real-world automatic continuous affect recognition
from audiovisual signals. Image Vis Comput. 2017;65:76-86.
Han J, Zhang Z, Cummins N, Schuller B. Adversarial training in
affective computing and sentiment analysis: recent advances and
perspectives. IEEE Comput Intell Mag. 2019;14(2):68-81.

Han J, Zhang Z, Keren G, Schuller B. Emotion recognition in
speech with latent discriminative representations learning. Acta
Acust United Acust. 2018;104(5):737-40.

Han J, Zhang Z, Schmitt M, Schuller B. From hard to soft:
towards more human-like emotion recognition by modelling the
perception uncertainty. In: Proc. ACM International conference on
multimedia (MM). Mountain View; 2017. p. 890-97.

Hazarika D, Poria S, Zadeh A, Cambria E, Morency L,
Zimmermann R. Conversational memory network for emotion
recognition in dyadic dialogue videos. In: Proc. the 2018
conference of the North American chapter of the association
for computational linguistics: human language technologies
(NAACL-HLT). New Orleans; 2018. p. 2122-132.

He K, Zhang X, Ren S, SunJ. Deep residual learning for image
recognition. In: Proc. IEEE conference on computer vision and
pattern recognition (ICCV). Las Vegas; 2016. p. 770-78.

He L, Jiang D, Yang L, Pei E, Wu P, Sahli H. Multimodal
affective dimension prediction using deep bidirectional long short-
term memory recurrent neural networks. In: Proc. 5th international
workshop on audio/visual emotion challenge (AVEC). Brisbane;
2015. p. 73-80.

He L, LiuB, LiG, Sheng Y, Wang Y, Xu Z. Knowledge base
completion by variational Bayesian neural tensor decomposition.
Cogn Comput. 2018;10(6):1075-84.

Kaminskas M, Ricci F. Contextual music information retrieval
and recommendation: state of the art and challenges. Comput Sci
Rev. 2012;6(2-3):89-119.

Katsigiannis S, Ramzan N. DREAMER: a database for emotion
recognition through EEG and ECG signals from wireless low-cost
off-the-shelf devices. IEEE J Biomed Health Inf. 2018;22(1):98-
107.

Kim Y, Kim J. Human-like emotion recognition: multi-label
learning from noisy labeled audio-visual expressive speech. In:
Proc. IEEE International conference on acoustics, speech and
signal processing (ICASSP). Calgary; 2018. p. 5104-08.

Kim Y, Provost EM. Leveraging inter-rater agreement for audio-
visual emotion recognition. In: Proc. International conference
on affective computing and intelligent interaction (ACII). Xi’an;
2015. p. 553-59.

Koelsch S. Music-evoked emotions: principles, brain correlates, and
implications for therapy. Ann N 'Y Acad Sci. 2015;1337(1):193—
201.

Kossaifi J, Walecki R, Panagakis Y, Shen J, Schmitt M,
Ringeval F, Han J, Pandit V, Schuller B, Star K, Hajiyev E,
Pantic M. SEWA DB: arich database for audio-visual emotion and
sentiment research in the wild. In: IEEE Transactions on pattern
analysis and machine intelligence. No pagination. 2019.

Li X, Bing L, Lam W, Shi B. Transformation networks for target-
oriented sentiment classification. In: Proc. Annual meeting of
the association for computational linguistics (ACL). Melbourne;
2018. p. 946-56.

LiuN, Fang Y, LiL, HouL, Yang F, Guo Y. Multiple feature
fusion for automatic emotion recognition using EEG signals. In:
Proc. IEEE International conference on acoustics, speech and
signal processing (ICASSP). Calgary; 2018. p. 896-900.

Lotfian R, Busso C. Curriculum learning for speech emotion
recognition from crowdsourced labels. IEEE/ACM Trans Audio
Speech Lang Process. 2019:27(4):815-26.

Majid A. Current emotion research in the language sciences. Emot
Rev. 2012;4(4):432-43.



240

Cogn Comput (2021) 13:231-240

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Majumder N, Poria S, Gelbukh A, Cambria E. Deep learning-
based document modeling for personality detection from text.
IEEE Intell Syst. 2017;32(2):74-9.

Majumder N, Poria S, Hazarika D, Mihalcea R, Gelbukh A,
Cambria E. DialogueRNN: an attentive RNN for emotion detec-
tion in conversations. In: Proc. Thirty-Third AAAI conference on
artificial intelligence (AAAI). Honolulu; 2019. p. 6818-25.
Malandri L, Xing FZ, Orsenigo C, Vercellis C, Cambria
E. Public mood-driven asset allocation: the importance of
financial sentiment in portfolio management. Cogn Comput.
2018;10(6):1167-76.

Mauss IB, Robinson MD. Measures of emotion: a review. Cogn
Emotion. 2009;23(2):209-37.

Mower E, Metallinou A, Lee C, Kazemzadeh A, Busso C, Lee
S, Narayanan S. Interpreting ambiguous emotional expressions.
In: Proc. International conference on affective computing and
intelligent interaction (ACII). Amsterdam; 2009. p. 1-8.
Niedenthal PM, Ric F. Psychology of emotion, 2nd ed. New York:
Psychology Press; 2017.

Noroozi F, Kaminska D, Corneanu C, Sapinski T, Escalera
S, Anbarjafari G. Survey on emotional body gesture recognition.
IEEE Transactions on Affective Computing. No pagination. 2018.
Poria S, Cambria E, Gelbukh A. Deep convolutional
neural network textual features and multiple kernel learning
for utterance-level multimodal sentiment analysis. In: Proc.
International conference on empirical methods in natural language
processing (EMNLP). Lisbon; 2015. p. 2539—44.

Principi E, Rotili R, Wollmer M, Eyben F, Squartini S, Schuller
B. Real-time activity detection in a multi-talker reverberated
environment. Cogn Comput. 2012;4(4):386-97.

Ringeval F, Schuller B, Valstar M, Jaiswal S, Marchi E, Lalanne
D, Cowie R, Pantic M. AV+EC 2015: the first affect recognition
challenge bridging across audio, video, and physiological data.
In: Proc. the 5th international workshop on audio/visual emotion
challenge (AVEC). Brisbane; 2015. p. 3-8.

Ringeval F, Sonderegger A, Sauer JS, Lalanne D. Introduc-
ing the RECOLA multimodal corpus of remote collaborative and
affective interactions. In: Proc. 10th IEEE International confer-
ence and workshops on automatic face and gesture recognition
(FG). Shanghai; 2013. p. 1-8.

Sarda P, Halasawade S, Padmawar A, Aghav J. Emousic:
emotion and activity-based music player using machine learning.
In: Proc. International conference on computer communication
and computational sciences (IC4S). Bangkok; 2018. p. 179-88.
Schuller B, Batliner A. Computational paralinguistics: emotion,
affect and personality in speech and language processing.
Hoboken: Wiley; 2013.

Soleymani M, Caro MN, Schmidt EM, Sha CY, Yang
YH. 1000 songs for emotional analysis of music. In: Proc. 2nd

@ Springer

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

ACM international workshop on crowdsourcing for multimedia
(CrowdMM); 2013. p. 1-6.

Soleymani M, Caro MN, Schmidt EM, Yang YH. The mediaeval
2013 brave new task: emotion in music. In: Proc. MediaEval
workshop; 2013. p. 1-2.

Sun X, Lv M. Facial expression recognition based on a hybrid
model combining deep and shallow features. Cogn Comput.
2019;11(4):587-97.

Trigeorgis G, Ringeval F, Bruckner R, Marchi E, Nicolaou
M, Schuller B, Zafeiriou S. Adieu features? End-to-end speech
emotion recognition using a deep convolutional recurrent network.
In: Proc. International conference on acoustics, speech and signal
processing (ICASSP). Shanghai; 2016. p. 5200—4.

Valstar M, Gratch J, Schuller B, Ringeval F, Lalanne D, Torres
Torres M, Scherer S, Stratou G, Cowie R, Pantic M. AVEC
2016: depression, mood, and emotion recognition workshop and
challenge. In: Proc. the 6th international workshop on audio/visual
emotion challenge (AVEC). Amsterdam; 2016. p. 3-10.
Weninger F, Ringeval F, Marchi E, Schuller B. Dis-
criminatively trained recurrent neural networks for continu-
ous dimensional emotion recognition from audio. In: Proc.
International joint conference on artificial intelligence (IJCAI).
New York; 2016. p. 2196-02.

Wollmer M, Eyben F, Reiter S, Schuller B, Cox C, Douglas-
Cowie E, Cowie R. Abandoning emotion classes — towards
continuous emotion recognition with modelling of long-range
dependencies. In: Proc. Annual conference of the international
speech communication association (INTERSPEECH). Brisbane;
2008. p. 597-600.

Zhang L, Wang S, Liu B. Deep learning for sentiment analysis:
a survey. Wiley Interdiscip Rev: Data Mining Knowl Discov.
2018;8(4):1-25.

Zhang Z,, Coutinho E, Deng J, Schuller B. Cooperative learning and
its application to emotion recognition from speech. IEEE/ACM
Trans Audio Speech Lang Process. 2015;23(1):115-26.

Zhang Z, Cummins N, Schuller B. Advanced data exploitation
for speech analysis — an overview. IEEE Signal Process Mag.
2017;34(4):107-29.

Zhang Z, Eyben F, Deng J, Schuller B. An agreement and
sparseness-based learning instance selection and its application
to subjective speech phenomena. In: Proc. 5th international
workshop on emotion social signals, sentiment & linked open
data, satellite of LREC. Reykjavik; 2014. p. 21-6.

Zhang Z, Han J, Schuller B. Dynamic difficulty awareness
training for continuous emotion prediction. IEEE Trans Multimed.
2019;21(5):1289-301.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.



