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I Introduction 

Digitalization is one of the megatrends of our days (Collin 2015) affecting all areas of society 

in an unprecedented speed and embracing all aspects of private and professional lives (Legner 

et al. 2017). Besides other areas like education or public services, especially the business 

world experiences significant and rapid changes as technological advancements and 

technologically driven competition forces companies to innovate constantly to satisfy 

changing customer demands that shift toward highly individualized offerings (Gimpel and 

Röglinger 2017; Porter and Heppelmann 2015; Priem et al. 2013; Turber and Smiela 2014). 

Today, customers are, for instance, able to purchase products with only a few clicks from 

Amazon or Alibaba, to book accommodation via smartphone applications of AirBnB or 

trivago, or to conduct financial transactions online offered from N26 or Scalable Capital. For 

this, companies are engaged in digitized value networks, utilize digital technologies, massive 

amounts of data, and innovative IT infrastructures, and apply digital business models. Besides 

industries like online retailing or banking, especially the industrial sector is subject to a 

dynamic digital transformation induced by “the convergence of the so-called IT megatrends 

(social, mobile, big data, cloud, smart)” (Legner et al. 2017, p. 303). These offer new 

opportunities for innovative production processes and disruptive business models as 

“economy [shifts] from a goods-based to a service-based economy” (Barrett et al. 2012, 

p. 434) resulting “in a new fundamental paradigm shift in industrial production” (Lasi et al. 

2014, p. 239). Examples include, for instance, smart manufacturing concepts, data-based 

product-service bundles, usage-based provider business models, and digital platforms 

changing long-established success mechanism in entire industries (Porter and Heppelmann 

2015). In response to this dynamic digital transformation, companies have to adapt their 

business models, invest in digital technologies, develop new service offerings based on hybrid 

value creation, and engage in digitized value networks to retain competitiveness in highly 

competitive global markets, to exploit revenue potentials, and to open up new markets 

(Geisberger and Broy 2015). Along with the adaption of their return management, companies 

have to consider new risk associated with digital technologies, digitized value networks and 

digital business models in the course of their risk management due to the increase of 

information-based, complex dependencies and opaque structures (Broy et al. 2012; Gimpel 

and Röglinger 2017; Tupa et al. 2017). As digitalization and digital transformation affect all 

levels of the enterprise architecture and are characterized by high complexity and fast 

development cycles of digital technologies, companies engaged in digitized value networks 
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require appropriate methods and processes for risk and return management. Only in this way 

are they able to exploit the opportunities offered by digitalization, for instance, in the context 

of hybrid value creation, while at the same time keeping the associated risks manageable. 

Despite the omnipresence and relevance of digitalization in both academia and practice, there 

are various ambiguities and opinions regarding its definition, especially in relation to the 

related term digitization (e.g., Legner et al. 2017; Mertens and Wiener 2018; Riedl et al. 2017). 

Therefore, in this doctoral thesis, these are differentiated according to the majority opinion as 

follows: While the term digitization describes the “technical process of converting analog 

signals into a digital form, and ultimately into binary digits” in a more narrow sense (Legner 

et al. 2017, p. 301) and origins from computer science (Tilson et al. 2010; Hess 2016), the 

term digitalization describes “the manifold sociotechnical phenomena and processes of 

adopting and using […] technologies in broader individual, organizational, and societal 

contexts” (Legner et al. 2017, p. 301). Focusing on the economic perspective, digitalization 

can also be described as the “ever more intensive and rapid penetration of the economy and 

society with information and communication technologies and the associated changes with 

regard to the interconnection of individuals, companies and physical objects” (Gimpel and 

Röglinger 2017, p. 9). Due to its broader scope, the term digitalization is applied in this 

doctoral thesis in accordance with Legner et al. (2017) to describe the comprehensive 

transformation of businesses and value networks by adopting and leveraging digital 

technologies. Since the participle is derived from the verb to digitized, the participle digitized 

is applied in the context of value networks, i.e., digitized value networks. 

Despite its current hype, digitalization is not a new phenomenon (Legner et al. 2017). After 

previous developments including the dissemination of computers and the internet as a global 

communication infrastructure, today, we are experiencing a third wave of digitalization 

(Legner et al. 2017). Thereby, the so-called SMAC technologies (social, mobile, analytics, 

and cloud), miniaturization, increased processing power, storage capacity, and 

communication bandwidth enable smart manufacturing environments, data-based product-

service bundles, and the development of new digital business models (Lasi et al. 2014; Legner 

et al. 2017; Porter and Heppelmann 2015). These developments within the industrial sector 

are referred to under various terms like the Industrial Internet of Things (IIoT), Industry 4.0, 

Industrial Internet, or Advanced Manufacturing (Lasi et al. 2014). While they differ in their 

exact definitions, all terms comprise in their inner kernel the comprehensive application of 

digital technologies in the industrial sector and the extensive integration and internet-based 

interconnection of intelligent products, processes, and services that are able to communicate 
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with each other and with people over the Internet (Kagermann et al. 2013, p. 23). Thereby, 

products and production components generate, share, and process massive amounts of 

production and product-related data that present an unprecedented potential to optimize 

production processes and to develop innovative digital services and new digital business 

models.  

Consequently, digitalization promises great economic potentials for industrial companies with 

respect to digital hybrid value creation. Thereby, digital hybrid value creation can be defined 

as the creation of added value by companies through the combination of specific resources, 

capabilities, intelligent digital technologies, and the internet-based interconnection of 

companies and customers through integrated, data-based product-service bundles (Böhmann 

and Krcmar 2006; Fleisch et al. 2017; Porter and Heppelmann 2015). For instance, a study by 

Accenture estimates that predictive asset maintenance of machinery enabled by advanced 

analytics can reduce overall maintenance costs by up to 30% and result in up to 70% fewer 

breakdowns (Accenture 2015). Further, another study by McKinsey estimates the economic 

impact of the Internet of Things of $2.7 trillion to 6.2 trillion per year by 2025 (Manyika et 

al. 2013). These vast economic potentials are of utmost importance for industrial companies 

as they experience increasing pressure from three sides. First, industrial companies face 

declining margins in core businesses as competitors from formerly low-wage countries, which 

used to serve as extended workbenches, are constantly further developing their technological 

capabilities enabling them to offer competitive products (Kindström 2010). This can be 

observed in the example of China and its industrial masterplan “Made in China 2025” which 

strives for technological leadership in various key industries like machinery, robotics, and 

information technology through concentrated efforts (Wübbeke et al. 2016). Second, market 

and customer demands increasingly shift towards individualized products, ever decreasing 

time-to-market, and highly customized solution offerings increasing the importance of highly 

flexible and efficient production processes and innovative, individualized services and 

products (Brettel et al. 2014; Römer et al. 2017). Third, there is an intense innovation pressure 

induced by market entries of start-ups and non-traditional competitors who offer innovative 

digital services and operate highly agile as they are not bound to traditional business models 

and complex organizational structures of large firms (Gimpel et al. 2018; Röglinger and 

Urbach 2017; Römer et al. 2017).  

Against this backdrop and to retain competitiveness in dynamically changing markets, 

companies in all industrial sectors have to undergo a targeted digital transformation evolving 

their business models, processes, and IT infrastructures to enable digital hybrid value creation. 
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In this regard, digital transformation can be defined as the “socio-technical transformation 

that affects organizational structures, strategies, IT architectures, methods, and business 

models” (Legner et al. 2017, p. 303) referring to “the changes imposed by information 

technologies in the sense of digitization” (Hess 2016). Besides other key areas like digital 

leadership or customer and partner engagement (Böhmann et al. 2015), digital transformation 

requires investments in digital technologies and the development of digitized value networks 

causing adjustments on every level of the enterprise architecture. The enterprise architecture 

of a company can be differentiated into five levels as depicted in Figure I.1-1: Business Model, 

Business Processes, People and Application Systems, Data and Information, and 

Infrastructure (Gimpel and Röglinger 2017; Buhl and Kaiser 2008). 

 

Figure I.1-1: Enterprise Architecture Model for Digital Businesses – Source: Gimpel and Röglinger (2017), 
building on Buhl and Kaiser (2008) 

 Business Model: As customers represent the central value drivers for any company, 

the business model serves to align value creation with company strategy to effectively 

exploit market potentials. Thereby, digital value creation requires a consistent focus 

on customer needs. For this, the business model defines the "basic principle according 

to which an organization creates, conveys and captures values" (Osterwalder and 

Pigneur 2010, p. 18).  

 Business Processes: Taking a process-oriented and cross-functional view of 

companies, business processes specify which tasks must be carried out and how they 
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are intertwined to fulfil corporate tasks. Thereby, traditional, rather static process 

concepts must be complemented by agile processes due to the dynamic of digitized 

value networks (Gimpel et al. 2018). 

 People and Application Systems: Tasks generated by business processes can be carried 

out manually by people (internal or external), automatically by application systems 

(e.g., ERP, MES, CRM) or by a cooperation of both types of task carriers. Thereby, 

especially the cooperation between humans and machines has to be further developed 

in the course of digital transformation (Gimpel and Röglinger 2017). 

 Data and Information: To be able to carry out tasks, data and information are required. 

These include structured and unstructured data, whose available volume is increasing 

rapidly due to the comprehensive dissemination and interconnection of intelligent 

objects generating massive amounts of data (Kiel et al. 2016).  

 Infrastructure: To exploit the potentials of digital technologies, a suitable 

infrastructure is required including all hardware components and system software 

required for technical implementation. Through the use of digital technologies, the 

traditional information and communication infrastructure is increasingly integrated 

with the production infrastructure (e.g., machines and workpieces) to so-called cyber-

physical production systems (CPPS) (Penas et al. 2017). 

In the course of digital transformation, companies need to “master the interaction of these 

levels and to establish structures and processes […] which help to further develop the levels 

in a coordinated and dynamic manner” (Gimpel and Röglinger 2017, p. 10). This is especially 

important in digitized value networks as these are characterized by a highly dynamic 

composition and complex interconnections between value chain partners. Further, the fast 

development cycles of digital technologies confront companies with the challenge to make 

fast and reliable strategic decisions regarding the application of digital technologies on all 

levels of the enterprise architecture (Gimpel and Röglinger 2017). In this regard, there are 

three fields of action: First, digital disruption deals with the assessment of chances and risks 

of disruptive technologies to differentiate between real opportunities and short-term hypes. 

Second, digital business deals with the development and evaluation of new business models 

based on digital technologies. And third, digital transformation seeks to adapt the underlying 

levels of the enterprise architecture that new, digitally enhanced value propositions can be 

delivered (Gimpel and Röglinger 2017). Thereby, companies are in all three fields of action 
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required to adequately analyze and adjust all levels of the enterprise architecture under 

consideration of risk and return aspects by means of appropriate methods and processes. 

Accordingly, the research work carried out in this doctoral thesis attempts to investigate 

specific aspects of risk and return management in digitized value networks affecting the 

different levels of the enterprise architecture under consideration of the three fields of action: 

digital business, digital transformation, and digital disruption. This includes particularly the 

analysis of effects of digitalization and digitized value networks on industrial companies, such 

as their business model, as well as corresponding risks, such as information-based systemic 

risks in smart factory environments. In order to contribute to the knowledge at the interface 

between the disciplines of Finance and Information Management, challenges and methods of 

return management (Chapter II) and risk management (Chapter III) are addressed, evaluated, 

and adapted in the context of digitized value networks. 

Regarding return management: In the course of digital transformation, companies focus first 

on return management in terms of business model level and particularly revenue side to exploit 

the potentials enabled by digitalization (Porter and Heppelmann 2015). Thereby, two target 

dimensions can be distinguished (Kagermann et al. 2013): (i) user dimension and (ii) provider 

dimension. Considering the user dimension, digital technologies and smart manufacturing 

concepts applied in production infrastructures and the vertical integration of information 

systems turn traditional factories into intelligent production facilities, so-called smart factories 

(Radziwon et al. 2014; Zuehlke 2010). This enables a variety of potential benefits like 

optimized production processes, increased efficiency and flexibility, improved product 

quality, and improved supply chain cooperation (Lasi et al. 2014). In the context of digital 

hybrid value creation, value networks are becoming increasingly distributed among several 

highly specialized value chain partners, resulting in complex ecosystems (Martín-Peña et al. 

2018). Additionally, the improvement of inter-organizational cooperation with value chain 

partners by means of digital technologies and the horizontal integration of information 

systems cause an increasing digitalization of value networks (Bharadwaj et al. 2013). From a 

provider perspective, digital technologies and the generation and sharing of massive amounts 

of data enable the development of innovative data-based services and new digital business 

models (Iansiti and Lakhani 2014; Porter and Heppelmann 2015). Thereby, physical functions 

of products can be enhanced with digital services to integrated, data-based product-service 

bundles to offer highly individual, customer-centric solution offerings (Fleisch et al. 2017). 

Through this, companies are able to target new customer segments, to exploit resulting 

revenue potentials, to open up new markets, and to gain competitive advantages through 
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differentiation from competitors (Porter and Heppelmann 2014). Accordingly, digital 

transformation and the comprehensive digitalization of value creation promises a variety of 

potential benefits for industrial companies both internally and externally. However, digital 

transformation and the investments in digital technologies confront companies with various 

challenges regarding their return management. For instance, the development of data-based 

product-service bundles causes various effects and requires targeted adjustments on every 

level of the enterprise architecture as the core of value creation shifts from physical products 

towards digital services. This includes, for example, the development of new value 

propositions in response to changing customer demands like individual solution offerings 

instead of product sales, the development of new capabilities like software engineering and 

data analytics, the engagement with new partners in digital ecosystems like cloud providers, 

as well as the development of new revenue models like pay-per-use or gain-share to 

monetarize on the values generated by digital services. Further, companies must evaluate ex-

ante their investments into specific technologies under consideration of the involved costs, 

risks, and benefits. Thereby, especially the evaluation of benefits remains a major obstacle for 

value-based investment decisions as the variety, complexity, and the fast development cycles 

of digital technologies complicate the identification and quantification of associated benefits. 

Thus, companies developing a sound digitalization strategy require guidance and appropriate 

methods to ensure a comprehensive return management that enables exploiting the benefit 

potential of digitalization. This challenge is addressed in Chapter II of this doctoral thesis. 

Regarding risk management: The digital transformation of business models, processes, and 

IT infrastructures, the application of digital technologies and the comprehensive 

interconnection of production infrastructures, products, customers, and value chain partners 

within digitized value networks creates a variety of new risks. For instance, the application of 

digital technologies bears considerable investment risks, especially considering the fast 

development cycles of digital technologies. Further, the development of new digital business 

models confronts companies with additional risks as companies open up new, unknown 

markets and customers segments, and act as first movers. Additionally, companies face an 

increased complexity of their overall value network and increasingly complex, information-

based dependencies (Geisberger and Broy 2015; Tupa et al. 2017). Thereby, especially 

information-based risks are of utmost importance as the proper functioning of information 

systems and the reliable flow of information have become a prerequisite for the reliable 

operation of production infrastructures and digital services (Tupa et al. 2017; Yoon et al. 2012; 

Zuehlke 2010). Consequently, risk management is confronted with a variety of different 
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aspects in the context of digitalization and digitized value networks. As the increasing 

vulnerability of production infrastructures to IT security breaches represent a central challenge 

for risk management, this doctoral thesis focusses on information-based risks in relation to IT 

security breaches in smart manufacturing environments. This represents a highly relevant 

topic as formerly isolated production facilities become increasingly connected to external 

information systems over the internet due to external services like remote maintenance and 

inter-organizational information systems (Smith et al. 2007; Tupa et al. 2017; Yoon et al. 

2012). Thereby, due to informational interdependencies within digitized value networks, 

single point failures can spread into the entire value network and may result in its complete 

breakdown. These threat scenarios can be observed on various incidents like the cyber-attacks 

WannaCry, Petya, or Locky, that resulted in production downtimes and affected numerous 

companies like Beiersdorf, Honda, Maersk, Merck, Mondelez, Nissan, Renault, Rosneft 

(Handelsblatt 2018; Spiegel Online 2017; Forbes 2017). The relevance of such threat 

scenarios was also confirmed by a study of the German Federal Office for Information 

Security that revealed that 70% of 900 surveyed companies have been exposed to cyber-

attacks in the past two years. Thereby, every second successful attack resulted in production 

downtime or a failure of operations (BSI 2017). Another study by PwC revealed that the 

number of cyber-attacks on businesses rose by 38% in 2015 (PwC 2016). At the same time, 

the complexity and dynamics of digitized value networks and the inherent dependency 

structures complicate risk management for companies as appropriate methods are often times 

missing. Against this backdrop, companies have to deal with the new risks associated with 

digitized value networks and digital businesses in the course of their risk management as part 

of their business activities in a proactive manner. For this, risk management can be structured 

along the risk management cycle into the four phases (1) identification, (2) quantification, (3) 

controlling, and (4) monitoring (Hallikas et al. 2004). Only by identifying the most critical 

points of digitized value networks, economically sound security investments can be derived. 

For this, companies require appropriate methods and processes for their risk management in 

digitized value networks. This challenge is addressed in Chapter III of this doctoral thesis. 

In summary, the digital transformation of companies and investments in digitized value 

networks poses challenges regarding risk and return management under consideration of all 

levels of the enterprise architecture, which are addressed in this doctoral thesis. The following 

Section I.1 illustrates the objectives and structure of the doctoral thesis. In the subsequent 

Section I.2, the corresponding research papers are embedded in the research context and the 

fundamental research questions are highlighted.  
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I.1 Objectives and Structure of this Doctoral Thesis 

The main objective of this doctoral thesis is to contribute to the field of Finance and 

Information Management by focusing on the developments of digitized value networks and 

by addressing specific challenges regarding risk and return management as introduced above. 

Table I.1-1 provides an overview of the pursued objectives and the structure of the doctoral 

thesis. 

I Introduction 

Objective I.1: Outlining the objectives and the structure of the doctoral thesis 

Objective I.2: Embedding the included research papers into the context of the doctoral 

thesis and formulating the fundamental research questions 

II Return Management in Digitized Value Networks (Research Papers 1–3) 

Objective II.1: Determining the effects and challenges resulting from the development of 

digital business models in the context of digital, hybrid value creation 

Objective II.2: Identifying and structuring the anticipated benefits of digital technologies 

in the context of digitalization of the industrial sector 

Objective II.3: Developing an approach to evaluate investments in flexible on-demand 

production capacity in digitized production infrastructures 

III Risk Management in Digitized Value Networks (Research Papers 4–6) 

Objective III.1: Developing a novel approach to model smart factory information 

networks and simulate IT availability risks 

Objective IIII.2: Developing a risk assessment model to model interdependencies between 

the information network and production network of smart factories and 

to quantify IT availability risks for the identification of critical nodes 

Objective IIII.3: Developing a generic architecture for an information system to identify 

and analyze systemic risks and to provide strategic decision support in 

digitized value networks 

IV Results and Future Research 

Objective IV.1: Presenting the key findings of the doctoral thesis 

Objective IV.2: Identifying and highlighting areas for future research 

Table I.1-1: Objectives and structure of the doctoral thesis  
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I.2 Research Context and Research Questions 

In the following, the research questions of chapters II and III including research papers P1 to 

P6 are motivated. As digital transformation affects all levels of the enterprise architecture in 

regard to aspects related to risk and return management, this doctoral thesis distinguishes 

between return management (Chapter II) and risk management (Chapter III).  

In Chapter II, research paper P1 is set up on the business model level and deals with the 

impacts and challenges resulting from the development of digital business models in the context 

of digital hybrid value creation. Research paper P2 can be assigned to digital disruption and 

investigates the anticipated benefits of the application of digital technologies in the context of 

smart manufacturing environments enabling new, innovative business models. Research paper 

P3 with the evaluation of investments for flexible on-demand capacity as a means for increased 

production flexibility addresses a topic concerning digital transformation. In Chapter III, 

research papers P4 and P5 address the modeling of IT infrastructures, production environments, 

and informational dependencies in smart factory environments and the subsequent analysis of 

information-based risk. Research paper P6 addresses processes and systems for risk 

management and develops a generic architecture for systemic risk management. Figure I.2-1 

provides an overview of the papers included in this doctoral thesis. 

  

Figure I.2-1: Research papers included in the doctoral thesis – Own illustration, building on Gimpel and 
Röglinger (2017) and Buhl and Kaiser (2008) 

In the following, the research papers included in this doctoral thesis are embedded in the 

research context, and the research questions are motivated with respect to the above stated 

objectives. 
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I.2.1 Chapter II: Return Management in Digitized Value Networks 

Research Paper P1: “Industrieunternehmen und die Transformation von Geschäftsmodellen 

im Kontext der Digitalisierung – Eine empirische Studie über die Auswirkungen anhand des 

Business Model Canvas” 

Research Paper P2: “Structuring the Anticipated Benefits of the Fourth Industrial 

Revolution” 

Research Paper P3: “Evaluating Investments in Flexible On-Demand Production Capacity 

– A Real Options Approach” 

The comprehensive digital transformation and application of digital technologies promises 

great potentials for companies in the industrial sector (Iansiti and Lakhani 2014; Lasi et al. 

2014). To exploit new market potentials and to generate competitive advantages, companies 

focus first on return management in terms of their business model and revenue side. Regarding 

the provider perspective, digital hybrid value creation by means of innovative, data-based 

product-service bundles present a promising option as the generation, collection, and analysis 

of massive amounts of data enable highly individualized services for customers. For this, 

companies are required to adapt all aspects of their business model including the application 

of innovative digital technologies as key resources like cloud computing, big data analytics, 

or blockchain, and the development of new capabilities like software development as the focus 

of value creation shifts from physical products towards digital services. At the same time, 

digital technologies and smart manufacturing approaches are applied internally and within the 

value network to optimize value creation. However, the variety of digital technologies, their 

fast development cycles, and countless application possibilities on both the provider side and 

the user side complicate the evaluation of potential effects and subsequent investment decision 

processes. Besides transformational effects like the development of new capabilities or the 

cooperation with new partners, this applies in particular for potential benefits of digital 

technologies. While much research deals with effects and benefits of specific digital 

technologies (e.g., Herterich et al. 2015; Michniewicz and Reinhart 2016; Yang et al. 2016), 

a holistic perspective on the effects of digital transformation and digital technologies has been 

rather neglected in scientific literature. Accordingly, as companies face various challenges 

regarding an appropriate return management, this doctoral thesis contributes to closing this 

gap by investigating the effects of digital transformation and digital technologies, especially 

regarding the overall business model level, and the effects of digital technologies within smart 

manufacturing environments, and by providing an approach for the economically sound 
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evaluation of investments in digital technologies, especially regarding investments enabling 

the commissioning of flexible on-demand capacity that becomes feasible in digitized 

production infrastructures. 

Research paper P1 provides results from an empirical study in which the effects and 

challenges of digital hybrid value creation on business models of industrial companies were 

investigated. In order to structure the effects and challenges, the Business Model Canvas 

(BMC) developed by Osterwalder and Pigneur (2010) was applied as an established method 

for business model development. On the basis of a literature review, real-world examples, and 

five interviews with experts from companies in different key industries, the paper presents 

key impacts and resulting challenges for every segment of the BMC. To demonstrate the 

developments associated with digitalization, research paper P1 presents a case study based on 

the example of Mitsubishi Electric. Furthermore, practical recommendations are introduced 

as starting points for the targeted transformation of business models. In sum, research paper 

P1 mainly focuses on the overall business model level, as depicted in Figure I.2-1. By 

addressing the following research questions, research paper P1 provides practical guidance 

for the targeted development of hybrid, data-based product-service bundles in the context of 

digital hybrid value creation: 

 What effects and challenges are associated with the development of digital business 

models in the context of digital hybrid value creation?  

 Which practical recommendations for action can be derived for companies? 

Research paper P2 investigates the anticipated benefits of digital technologies in the context 

of smart manufacturing as companies face a fierce pressure to transform their business 

practices and success models in a proactive manner. To lay the ground for the subsequent 

economic evaluation of investments into digital technologies including the identification and 

quantification of potential benefits, scientific literature was analyzed based on a structured 

literature review and identified benefits were structured and categorized by means of an 

established framework for information systems (IS) benefits. By presenting 21 benefits within 

the four dimensions operational, managerial, strategic, and organizational, a comprehensive 

overview of benefits of digital technologies in the context of smart manufacturing is provided. 

Further, managerial implications resulting from the variety of benefits and their dependencies 

are presented. Accordingly, research paper P2 can be assigned to digital disruption, as depicted 

in Figure I.2-1. By addressing the following research questions, research paper P2 provides an 



I Introduction 13 

 

essential first step towards the economically sound evaluation of digital technologies in 

accordance with value-based management principles: 

 Which benefits of Industry 4.0 are anticipated in scientific literature? 

 How can the benefits of Industry 4.0 be categorized? 

Research paper P3 deals with investments of manufacturing companies enabling the usage of 

flexible on-demand production capacity provided by external capacity providers. As 

development and lifecycles of products accelerate and customer preferences shift towards 

highly individualized products that cannot be economically produced for stock, customer 

demand becomes increasingly volatile requiring manufacturing companies to apply flexible 

make-to-order-concepts. For this, the commissioning of external capacity providers represents 

an interesting option for volume flexibility in terms of capacity planning to expand the rather 

rigid internal production capacity as needed. However, significant upfront investments, for 

instance, for inter-organizational information systems, are required to enable the flexible 

commissioning of on-demand production capacity. To consider these costs as well as 

uncertainty of volatile customer demand, research paper P3 presents an Expanded Net Present 

Value approach based on real options analysis in a discrete-time binomial tree model that is 

able to capture flexibility of action and to evaluate investments under uncertainty. The model 

is evaluated by means of a simulation and sensitivity analyses. Accordingly, research paper 

P3 can be assigned to digital transformation as it enables investments in digital technologies that 

contribute to the flexibility of production as part of innovative business models (cf. Figure 

I.2-1). By addressing the following research question, research paper P3 provides a model for 

the evaluation of upfront investments for the derivation of a profound economical basis for 

investment decisions: 

 How can an industrial company evaluate investments in flexible on-demand 

production capacity considering flexibility of action and uncertainty? 
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I.2.2 Chapter III: Risk Management in Digitized Value Networks 

Research Paper P4: “Modeling IT Availability Risks in Smart Factories – A Stochastic Petri 

Nets Approach” 

Research Paper P5: “Assessing IT Availability Risks in Smart Factory Networks” 

Research Paper P6: “Toward Strategic Decision Support Systems for Systemic Risk 

Management” 

Due to the importance of information systems in digitized value networks, information-based 

risks are a major challenge for risk management in the context of digitalization of the industrial 

sector as digitized value networks are increasingly vulnerable to IT security risks (Tupa et al. 

2017). Reasons for this are the increasing interconnection within digitized value networks 

with a large number of intelligent products and production components that are connected via 

the internet with cloud-based applications for the centralized analysis of data, opening further 

entry points for malicious attacks. Further, digitized production infrastructures, i.e., smart 

factories, are increasingly interconnected to value chain partners opening numerous entry 

points to formerly isolated information systems. Thereby, the informational dependencies 

among products, production components and value chain partners result in the occurrence of 

value network instabilities, as single point failures caused by unintentional errors or 

intentional attacks can spread into the entire value network without any physical connection. 

Ultimately, the resulting cascading failures can cause a complete breakdown of the value 

network. Concurrently, the increasing complexity of smart factory environments and digitized 

value networks complicate the corresponding risk management, especially regarding the 

identification and quantification of information-based risks. Thereby, complex network 

structures and the ever stronger dependencies between information systems and the physical 

production and product environment as well as the numerous active components involved 

result in highly complex information-based dependency structures complicating risk 

management in digitized value networks. Accordingly, as companies face various challenges 

regarding an appropriate risk management, this doctoral thesis contributes to research by 

developing appropriate approaches for the modeling of smart information networks and the 

analysis of information-based risk, especially regarding IT availability risks, and by 

developing a generic architecture for a strategic decision support system for systemic risk 

management.  

Research paper P4 deals with the modeling of smart factory information networks as digitized 

production infrastructures are increasingly intertwined with information and communication 



I Introduction 15 

 

technology and depend on the availability of information networks. Due to informational 

interdependencies between its components, single point failures caused by attacks or errors 

can propagate in the entire network resulting in cascading failures that ultimately jeopardize 

the operational capability of the information network and, consequently, the functionality of 

the entire smart factory. Against this backdrop, research paper P4 presents a novel modeling 

approach based on generalized stochastic petri nets for the modeling of complex information 

networks, its components, and inherent informational dependencies enabling the simulation 

and analysis of IT availability risks and their propagation within the information network. To 

demonstrate the feasibility and usability of the developed approach, different worst-case threat 

scenarios are investigated regarding their impact on the operational capability of an 

information network. Further, interviews with experts from both practice and academia are 

conducted to complement the evaluation. Regarding the enterprise architecture depicted in 

Figure I.2-1, research paper P4 can be allocated on the infrastructure and information level. By 

addressing the following research questions, research paper P4 provides a modeling approach 

for the analysis of IT availability risks, cascading failures, and propagation effects in 

information networks in digitized production environments: 

 How can the information network of a smart factory be modeled to depict and simulate 

IT availability risks? 

Research paper P5 is concerned with informational dependencies in complex smart factory 

networks, which are increasingly vulnerable to IT security risks due to the central role of 

information systems. This includes especially IT availability risks as smart factory networks 

and the proper functioning of the production infrastructure rely on communication and real-

time information synchronization and, thus, depend on the underlying IT systems. However, 

complex network structures of information network and production networks, the magnitude 

of involved components as well as inherent dependency relations complicate investment 

decisions in targeted IT security measures. Against this backdrop, research paper P5 presents 

a risk assessment model based on graph theory, matrix notation and Value at Risk for the 

modeling of interdependencies between the information network and production network of 

smart factories and for the quantification of IT availability risks. In contrast to research paper 

P4 that focusses on the modeling of an information network, the risk assessment model 

presented in research paper P5 considers both the information network and the production 

network as well as their interdependencies. However, research paper P5 addresses also the 

infrastructure and information level of the enterprise architecture, as depicted in Figure I.2-1. 
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By addressing the following research questions, research paper P5 provides a profound 

economic basis for investment decision on IT security measures in complex smart factory 

networks: 

 How can the information network of a smart factory be modeled to depict and simulate 

IT availability risks? 

Research paper P6 deals with the comprehensive management of systemic risk as companies 

are increasingly vulnerable to systemic risk due to the increasing interdependencies and 

complexities of digitized value networks. Thereby, risks that occur at local parts of value 

networks have the potential to spread into the entire value network and to threaten the business 

operations of distant business partners. However, the complexity of value networks and the 

lack of transparency complicate risk management. Thus, companies are often times not able 

to comprehensibly assess their embeddedness and interconnectedness within value networks 

that would be necessary for managerial decisions, e.g. regarding sourcing decisions. 

Accordingly, companies require appropriate decision support systems and the assistance of IS 

technology that gather, process, and interpret information from diverse sources. For this, 

research paper P6 develops a generic architecture for a strategic decision support system for 

systemic risk management. Furthermore, to show potentials for future research, challenges are 

discussed and research question are presented that have to be solved for the implementation 

of an appropriate decision support system. Accordingly, research paper P6 addresses processes 

and systems for risk management, as depicted in Figure I.2-1. By addressing the following 

research questions, research paper P6 supports the realization of a strategic decision support 

system for systemic risk management: 

 What is an appropriate generic architecture for a DSS that is capable of identifying 

systemic risks, analyzing those risks, and providing strategic decision support in 

digitized value networks? 

I.2.3 Chapter IV: Results and Future Research 

After this introduction, which aims at outlining the objectives and the structure of the doctoral 

thesis as well as at motivating the research context and formulating the research questions, the 

research papers are presented in chapters II and III. Subsequently, Chapter IV presents the key 

findings and highlights areas for future research in the fields of risk and return management 

in digitized value networks. 
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II Return Management in Digitized Value Networks 

This chapter deals with the potentials of the comprehensive digital transformation and the 

application of digital technologies in the industrial sector as companies focus first on return 

management in terms of their business model and revenue side and evaluate which 

investments are the most promising. Corresponding investment decisions in line with value-

based management principles have to be made under consideration of involved costs, risks, 

and benefits. Accordingly, an integrated view of risks and returns is necessary. On the one 

hand, this requires a holistic perspective on the effects of digital technologies due to their 

complexity, dynamics, and diverse application possibilities. For this, research papers P1 and 

P2 investigate chances and challenges of digital transformation and digital technologies on 

the overall business model level and within smart manufacturing environments. On the other 

hand, the return expectations of business decisions cannot be evaluated isolated from the 

associated risks. In this respect, research paper P3 presents an approach for the evaluation of 

investment that considers costs, benefits, and risks originating from uncertainty of demand. 

Thus, this chapter includes the following three research papers: 

The first research paper P1 „Industrieunternehmen und die Transformation von 

Geschäftsmodellen im Kontext der Digitalisierung – Eine empirische Studie über die 

Auswirkungen anhand des Business Model Canvas“ (Section II.1) investigates the effects and 

challenges of digital hybrid value creation on business models of industrial companies. 

Further, a real-world case study and practical recommendations for a targeted digital 

transformation of business models are presented. 

The second research paper P2 “Structuring the Anticipated Benefits of the Fourth Industrial 

Revolution” (Section II.2) focuses on the anticipated benefits of digital technologies within 

smart manufacturing environments and presents a structured overview of benefits in a four-

dimensional framework. Further, managerial implications for both research and practice are 

discussed. 

The third research paper P3 “Evaluating Investments in Flexible On-Demand Production 

Capacity – A Real Options Approach” (Section II.3) introduces an investment evaluation 

approach on the basis of real option analysis that captures flexibility of external on-demand 

production capacity and uncertainty of volatile customer demand. 
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II.1 Research Paper 1: “Industrieunternehmen und die 

Transformation von Geschäftsmodellen im Kontext der 

Digitalisierung – Eine empirische Studie über die Auswirkungen 

anhand des Business Model Canvas”1 

Authors: Jochen Übelhöra,b 

a Research Center Finance & Information Management, 

Department of Information Systems Engineering & Financial 

Management (Prof. Dr. Hans Ulrich Buhl), University of Augsburg 

jochen.uebelhoer@fim-rc.de 

b Project Group Business & Information Systems Engineering of the 

Fraunhofer FIT, Augsburg, Germany 

In: HMD - Praxis der Wirtschaftsinformatik, 2019, 56 (2), pp. 453-467 

 

Abstract: 

The paper examines the impact of digitalization on industrial companies' business models in 

the context of the development of integrated, data-based product-service bundles. Examples 

of this are manufacturers of automation robots that offer their customers digital services for 

intelligent control, optimization or maintenance in addition to their core physical product. By 

analyzing the data generated during ongoing operations, it is possible to create new 

customized solutions and thus generate additional customer benefits. Industrial companies 

can thus generate decisive competitive advantages and open up new markets by developing 

digital business models. The paper first examines the effects of digitalization on industrial 

companies' business models and uses the Business Model Canvas as an established method 

for business model development to present and evaluate them in a structured way. On the 

basis of five interviews with experts from leading companies in various key industries, key 

impacts, the resulting challenges, and practical recommendations for action are discussed 

and derived. The developments associated with digitalization are illustrated by a case study 

based on the example of Mitsubishi Electric. The paper introduces practitioners to the effects 

 
1 This is a post-peer-review version of an article published in HMD - Praxis der Wirtschaftsinformatik, 2019, 56(2), pp. 453-
467. The final authenticated version is available online at: https://doi.org/10.1365/s40702-018-0429-3 
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of the digital transformation of business and provides starting points for the transition to 

digital hybrid value creation. 

II.1.1 Digitalisierung als Wegbereiter der digitalen, hybriden Wertschöpfung 

Die Digitalisierung bietet Industrieunternehmen erhebliches ökonomisches Potential durch 

die Entwicklung integrierter, datenbasierter Produkt-Dienstleistungsbündel. So ergab eine 

Umfrage unter 235 Industrieunternehmen, dass diese durch digitalisierte Produkte und 

Dienstleistungen allein bis 2020 Umsatzsteigerungen von durchschnittlich 12,5% erwarten. 

Hochgerechnet auf die deutsche Industrie entspricht dies einem Umsatzplus von über 30 Mrd. 

Euro p.a. (Koch et al. 2014). Wesentliche Grundlage hierfür sind Entwicklungen rund um das 

Internet der Dinge und die sog. Industrie 4.0, zu denen neben innovativen digitalen 

Technologien wie cyber-physischen Systemen, Cloud Computing, Big Data Analytics, 

Blockchain, Virtual und Augmented Reality oder künstlicher Intelligenz insb. die umfassende, 

internetbasierte Vernetzung von intelligenten Objekten wie Maschinen, Anlagen und 

Produkten zählt (Lasi et al. 2014; Porter und Heppelmann 2014). Durch die eingebauten 

Sensoren erzeugen intelligente Objekte im Betrieb beim Kunden umfangreiche Datenmengen, 

welche die Basis für die Entwicklung datenbasierter, digitaler Services darstellen (Iansiti und 

Lakhani 2014). 

Ein Beispiel hierfür ist Mitsubishi Electric mit Lösungen wie Smart Condition Monitoring. 

Dabei werden die von Industriegütern wie bspw. CNC-Bearbeitungsmaschinen erzeugten 

Daten cloudbasiert gesammelt und analysiert. Indem der Verschleiß von Bauteilen frühzeitig 

erkannt und vorbeugende, bedarfsgetriebene Wartungen geplant werden können, ergibt sich 

eine höhere Verfügbarkeit teurer, oftmals hochausgelasteter Industriegüter. Im Kontext der 

Digitalisierung wandeln sich Industrieunternehmen dabei von reinen Produktanbietern zu 

digitalisierten Lösungsanbietern (Iansiti und Lakhani 2014). Die Ausgestaltungsformen 

können von der Ergänzung des physischen Kernprodukts um digitale Dienstleistungen bis hin 

zum kompletten Wandel zum Lösungsanbieter, bei dem das physische Produkt nur noch Teil 

der Lösung ist, reichen (Fleisch et al. 2015). Entsprechend erzeugen Industrieunternehmen im 

Rahmen einer hybriden Wertschöpfung durch die Kombination spezifischer Ressourcen und 

Fähigkeiten (Mehr-)Wert mittels integrierter, kundenindividueller Leistungsbündel aus 

Sachgütern und Dienstleistungen (sog. hybriden Produkten), die für Kunden durch die 

Integration den Wert der Teilleistungen übersteigen (Böhmann und Krcmar 2006). Sich 
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ergänzende Produkt-Dienstleistungsbündel werden dabei schon seit langem von Unternehmen 

angeboten (etwa Wartungsservices für eigene Maschinen). Die Digitalisierung ermöglicht nun 

jedoch durch intelligente, digitale Technologien und die internetbasierte Vernetzung von 

Unternehmen und Kunden die Entwicklung bezahlbarer, kundenindividueller und 

datenbasierter Lösungsangebote und die Erschließung neuer Branchen und Märkte. Vor 

diesem Hintergrund wird die Schaffung von Werten durch die Erstellung integrierter, 

datenbasierter Produkt-Dienstleistungsbündel zur Abgrenzung von herkömmlichen Produkt-

Dienstleistungsbündeln im Folgenden als digitale, hybride Wertschöpfung bezeichnet. 

Für Industrieunternehmen besteht hierbei ein hoher Handlungsdruck. Zum einen leidet das 

Geschäft mit Industriegütern zunehmend unter sinkenden Margen durch Konkurrenten aus 

Billiglohnländern, die inzwischen auch bei hochtechnologischen Industriegütern wie 

Automatisierungsrobotern kostengünstige Produkte anbieten (Kindström 2010). Zum anderen 

steigt die Nachfrage von Kunden nach individuellen Lösungen für spezifische 

Problemstellungen (Porter and Heppelmann 2014). Gleichzeitig steigt der Innovationsdruck 

durch (z.T. branchenfremde) Wettbewerber, da auch diese innovative, digitale 

Serviceangebote entwickeln (Röglinger und Urbach 2016). Setzen sich Unternehmen daher 

nicht mit der der Entwicklung digitaler Services und der damit verbundenen digitalen 

Transformation ihrer Geschäftsmodelle auseinander, besteht die Gefahr, Marktanteile zu 

verlieren und zu Commodity-Lieferanten physischer Produkte zu werden. Entsprechend ist es 

für Industrieunternehmen im Rahmen ihrer Digitalisierungsstrategie von zentraler Bedeutung, 

sich durch proaktives Handeln und die Entwicklung digitaler Geschäftsmodelle mit 

entsprechenden kundenindividuellen, datenbasierten Serviceangeboten Wettbewerbsvorteile 

zu erarbeiten und neue Märkte zu erschließen (Gimpel und Röglinger 2015).  

Die Digitalisierung und die Entwicklung digitaler Services haben jedoch erhebliche 

Auswirkungen auf die bestehenden Geschäftsmodelle der Unternehmen (McDonald und 

Roswell-Jones 2012). So steigt durch multiple Wertversprechen und kundenindividuelle 

Lösungsangebote die Komplexität des Geschäftsmodells. Außerdem entstehen auf Basis der 

beim Kunden erzeugten Daten Abhängigkeiten zwischen physischen Produkten und digitalen 

Services. Darüber hinaus erfordern digitale Services neue Fähigkeiten, Ressourcen, Partner 

oder Erlösmodelle, zusätzlich zu den bereits vorhandenen Schlüsselaktivitäten und  

-ressourcen wie etwa Produktentwicklung oder Produktionsanlagen. Industrieunternehmen 

stehen daher vor der Herausforderung, ihre Geschäftsmodelle, ihr komplettes 
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Wertschöpfungssystem und die darauf ausgerichteten Prozesse, Systeme und Infrastruktur 

gezielt weiterzuentwickeln und dabei die resultierenden Komplexitäten und Abhängigkeiten 

zu berücksichtigen.  

Vor diesem Hintergrund besteht das Ziel dieses Artikels darin, die Auswirkungen der 

Digitalisierung auf die Geschäftsmodelle von Industrieunternehmen und die daraus 

resultierenden Herausforderungen anhand des Business Model Canvas (BMC) als etablierte, 

strukturgebende Methode zur Geschäftsmodellentwicklung aufzuzeigen und zu beurteilen. 

Hierzu wurden neben einer Literaturanalyse im Rahmen einer empirischen Studie Interviews 

mit fünf Experten aus der Industrie geführt. Veranschaulicht werden die beschriebenen 

Entwicklungen durch eine Fallstudie über Mitsubishi Electric, einem international führenden 

Technologiekonzern. Zuletzt werden im Beitrag praxisrelevante Handlungsempfehlungen 

gegeben, die Praktikern bei der Entwicklung digitaler Geschäftsmodelle im Zusammenhang 

mit digitaler, hybrider Wertschöpfung Orientierung geben sollen. 

II.1.2 Digitale Geschäftsmodelle und der Business Model Canvas 

Bis heute gibt es in der wissenschaftlichen Literatur keine allgemein gültige Definition des 

Begriffs Geschäftsmodell. Je nach Untersuchungsschwerpunkt existieren unterschiedliche 

Definitionen, die im Rahmen verschiedener Literaturüberblicke aufgearbeitet und strukturiert 

werden (z.B. Zott et al. 2011; Schallmo 2013). Amit und Zott (2001) etwa definieren in einem 

theoretisch fundierten Ansatz ein Geschäftsmodell als „den Inhalt, die Struktur und die 

Steuerung von Transaktionen, die so gestaltet sind, dass sie durch die Nutzung von 

Geschäftschancen Wert schaffen“. Mit Fokus auf Unternehmensaktivitäten entwickeln Zott 

und Amit (2010) diese Definition weiter und beschreiben ein Geschäftsmodell als „System 

interdependenter Aktivitäten, das über die betrachtete Firma hinausgeht und ihre Grenzen 

überschreitet“. Schallmo (2013) hingegen definiert ein Geschäftsmodell als „die Grundlogik 

eines Unternehmens, die beschreibt, welcher Nutzen auf welche Weise für Kunden und 

Partner gestiftet wird […]“ und „ […] wie der gestiftete Nutzen in Form von Umsätzen an das 

Unternehmen zurückfließt […].“ Der stärker der Praxis entspringenden Definition von 

Osterwalder und Pigneur (2011) folgend, kann ein Geschäftsmodell auch als das 

„Grundprinzip, nach dem eine Organisation Werte schafft, vermittelt und erfasst“, 

beschrieben werden. Es beschreibt damit, wie ein Unternehmen Produkte und 

Dienstleistungen erstellt und dadurch Kundennutzen schafft, um Wettbewerbsdifferenzierung 
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und Kundenbindung zu erreichen, und Werte generiert und abschöpft. Diese Definition eines 

Geschäftsmodells liegt auch dem vorliegenden Beitrag zugrunde. 

Von digitalen Geschäftsmodellen wurde bislang oftmals im Zusammenhang mit digitalen 

Branchen wie bspw. eCommerce gesprochen. Durch die Digitalisierung und die 

Entwicklungen rund um das Internet-of-Things vermengen sich nun auch in der physischen 

Industrie die bisher nicht-digitalen Geschäftsmodelle mit entsprechenden digitalen 

Geschäftsmodellmustern zu einem hybriden Konstrukt, bei dem sich der Wert als 

Kundennutzen aus einem physischen Produkt und einem oder mehreren damit verbundenen 

digitalen Services ergibt (Fleisch et al. 2017). Entsprechend kann von einem digitalen 

Geschäftsmodell gesprochen werden, „wenn Veränderungen in den digitalen Technologien 

grundlegende Veränderungen in der Art und Weise, wie Geschäfte getätigt und Umsätze 

generiert werden, auslösen“ (Veit et al. 2014). Im Kontext der Unternehmensarchitektur 

bilden Geschäftsmodelle die konzeptuelle und architektonische Schnittstelle zwischen der aus 

der Vision des Unternehmens abgeleiteten Unternehmensstrategie und den 

Geschäftsprozessen zur Umsetzung des Geschäftsmodells (Al-Debei und Avison 2010). 

Um Geschäftsmodelle strukturiert zu entwickeln und zu beschreiben, gibt es verschiedene 

Methoden, zu denen auch der BMC zählt. Hierbei werden, wie in Abbildung II.1-1 zu sehen, 

neun grundlegende Bausteine (Kundensegmente, Wertversprechen, Kundenbeziehungen, 

Kanäle, Schlüsselressourcen, Schlüsselaktivitäten, Schlüsselpartner, Einnahmequellen und 

Kostenstruktur) in die vier Bereiche Kunden, Angebot, Infrastruktur und finanzielle 

Überlebensfähigkeit eingeordnet (Osterwalder und Pigneur 2011). Anhand der neun 

Bausteine wird das Geschäftsmodell eines Unternehmens beschrieben und somit strukturiert 

dargestellt. 

 
Abbildung II.1-1: Schematische Darstellung des BMC – Eigene Darstellung in Anlehnung an Osterwalder 

und Pigneur (2011) 
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Zur Veranschaulichung sind in Tabelle II.1-1 beispielhafte Elemente und 

Ausgestaltungsmöglichkeiten der neun Bausteine eines Geschäftsmodells nach Osterwalder 

und Pigneur (2011) präsentiert. 

BMC-Kategorie Beispiel 

Kundensegmente Massenmarkt, Nischenmärkte, multi-sided Markets 

Wertversprechen Produkt, Dienstleistung zur (kundenindividuellen) Problemlösung 

Kundenbeziehungen Individuelle Kundenbetreuung, Selbstbedienung, automatisierte Dienstleistung 

Kanäle Vertriebsteam, Händler, Online-Plattform, Mobile Apps 

Schlüsselressourcen Produktionsanlagen, IT-Infrastruktur, Softwareentwicklung, Patente, Produktdaten 

Schlüsselaktivitäten Produktion von Gütern, Entwicklung digitaler Services, Online-Systemplattform 

Schlüsselpartner Rohstoff-Lieferanten, Cloud-Anbieter, Entwicklungspartner, IT-Dienstleister 

Einnahmequellen Verkauf von Produkten, Leasing, pay per use, Subscription 

Kostenstruktur Kosten für Produktionsanlagen, Kosten für IT-Infrastruktur, Entwicklungskosten 

Tabelle II.1-1: Beispielhafte Elemente eines Geschäftsmodells – Eigene Darstellung 

Durch die visuelle und strukturierte Darstellung ist der BMC ein geeignetes Instrument zur 

Geschäftsmodellentwicklung und kann aufgrund der geringen Komplexität bei interaktiven 

Methoden wie Workshops von interdisziplinären Teams oder bspw. zur 

unternehmensinternen Kommunikation des Geschäftsmodells angewendet werden. Dies stellt 

insb. vor dem Hintergrund der steigenden Komplexität digitaler Geschäftsmodelle einen 

wesentlichen Vorteil dar. Allerdings weist der BMC auch Nachteile auf. So lassen sich 

Rahmenbedingungen, die es bei der Entwicklung von Geschäftsmodellen gerade in 

zunehmend dynamischen Märkten zu berücksichtigen gilt, im BMC nur indirekt, etwa über 

die Kunden-Dimension, abbilden. Hierzu schlagen Osterwalder und Pigneur (2011) jedoch 

mit makroökonomischen Effekten, Markttreibern, (technologischen) Trends und 

Industriefaktoren die Berücksichtigung weiterer vier Dimensionen und damit eine 

Erweiterung des BMC vor. Außerdem ermöglicht der BMC keinen Vergleich mit 

Geschäftsmodellen von Wettbewerbern. Daher stellt der BMC nur ein Instrument des 

notwendigen Methodenbaukastens für die digitale Transformation von Geschäftsmodellen 

dar. Es bedarf darüber hinaus weiterer Instrumente wie etwa Heat Maps zur 

Schwachstellenanalyse, Wettbewerbsanalysen oder Transformations- und Investitionsplänen 

zur operativen Umsetzung. 
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II.1.3 Auswirkungen datenbasierter Produkt-Dienstleistungsbündel  

Die Wertschöpfung datenbasierter Produkt-Dienstleistungsbündel hat vielfältige 

Auswirkungen auf die Geschäftsmodelle von Industrieunternehmen und stellt diese vor 

verschiedene Herausforderungen. In diesem Kapitel werden zunächst grundlegende 

Auswirkungen beschrieben, bevor anschließend auf daraus resultierende Herausforderungen 

eingegangen wird. Die Auswirkungen und Herausforderungen wurden im Rahmen von fünf 

Experteninterviews mit weltweit agierenden Unternehmen aus der Technologie- und 

Industriegüterbranche mit jeweils mehr als 25.000 Mitarbeiter bzw. ein Vielfachem davon 

diskutiert und abgeleitet. Alle interviewten Experten bestätigten, dass die Digitalisierung 

maßgeblichen Einfluss auf ihr jeweiliges Geschäftsmodell hat und dass die gezielte 

Weiterentwicklung zu digitalen Geschäftsmodellen mit datenbasierten Produkt-

Dienstleistungsbündeln von hoher Bedeutung für ihr Unternehmen ist. Abbildung II.1-2 zeigt 

die Auswirkungen, gegliedert nach den neun Bausteinen des BMC, und die resultierenden 

Herausforderungen. 

 

Abbildung II.1-2: Auswirkungen der Digitalisierung auf Geschäftsmodelle und resultierende 
Herausforderungen – Eigene Darstellung 
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entstehen multi-sided Markets, bei welchen neben der primären Kundenzielgruppe auch 

weitere Zielgruppen bedient werden. Bspw. können die gewonnen Daten zum 

Energieverbrauch von Produktionsanlagen anonymisiert und als Verbrauchsmuster 

gebündelt Energieversorgern und Netzbetreibern zur Optimierung ihrer Netzinfrastruktur 

angeboten werden. 

 Wertversprechen: Der Produktverkauf mit After-Sales-Betreuung wandelt sich künftig zu 

kundenindividuellen Lösungsangeboten für spezifische Kundenprobleme. „One-fits-

all“-Angebote verlieren in diesem Zusammenhang an Bedeutung. Grundlage dafür sind 

kundenindividuelle, digitale Services, die aufgrund geringer Grenzkosten künftig 

bezahlbar angeboten werden können. Dadurch tritt zum einen der Besitz physischer 

Produkte in den Hintergrund. Zum anderen werden verschiedene digitale Services 

angeboten, die je nach kundenspezifischer Problemstellung mit dem physischen Produkt 

kombiniert werden.  

 Kundenbeziehung: Die primär transaktionalen Kundenbeziehung wandelt sich künftig zu 

einer dauerhaften relationalen Beziehung, da Kunden durchgängig begleitet werden 

müssen, um ein Verständnis für die individuellen Problemstellungen des Kunden entlang 

dessen Ökosystems und Wertschöpfungsprozesse zu gewinnen. Zudem nimmt die digital-

basierte Interaktion mit Kunden aufgrund der digitalen Natur der Serviceangebote und 

der internetbasierten Vernetzung mit diesen zu. 

 Kanäle: Künftig wird das Produkt als Point-of-Sale für die digitalen Services zur 

zentralen Schnittstelle zum Kunden. Dabei wird der Anteil an automatisierten Vorgängen 

ohne direkte Beteiligung von Mitarbeitern zunehmen, da intelligente, vernetzte Objekte 

Bestellvorgänge selbst vornehmen oder Wartungen selbständig initiieren. Darüber hinaus 

wandelt sich der Vertrieb vom einmaligen Produktverkauf zum dauerhaften Vertrieb von 

Lösungen mit digitaler Natur. Zusätzlich ergeben sich im Rahmen von Cocreation-

Ansätzen weitere Vertriebskanäle durch externe Partner. 

 Schlüsselaktivitäten: Standen vormals v.a. die Entwicklung und Produktion von 

Industriegütern im Fokus, werden diese künftig durch Aktivitäten wie 

Softwareentwicklung, Data Analytics sowie Datenschutz und -sicherheit, die für 

digitale Services entscheidend sind, ergänzt. Zudem ist künftig die verlässliche, 

internetbasierte Vernetzung mit Kunden eine zentrale Schlüsselaktivität. 
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 Schlüsselressourcen: Künftig bilden die beim Kunden von den Produkten erzeugten 

Massendaten die Grundlage für die digitalen Serviceangebote. Dementsprechend zählt 

auch das Produkt beim Kunden zu den Schlüsselressourcen. Des Weiteren benötigen 

Unternehmen hochspezialisierte Fachkräfte in Bereichen wie Data Science oder Cyber 

Security. Zuletzt zählen innovative, digitale Technologien wie Künstliche Intelligenz und 

die entsprechende IKT-Infrastruktur, die das Unternehmen mit seinen Kunden vernetzt 

und die beim Kunden erzeugten Daten cloudbasiert sammelt und analysiert, zu den 

Schlüsselressourcen. 

 Schlüsselpartner: Aufgrund der steigenden Anzahl an benötigten Schlüsselfähigkeiten sind 

Industrieunternehmen nur begrenzt dazu in der Lage, sämtliche Fähigkeiten selbst zu 

entwickeln und bereitzuhalten. Dies trifft in besonderem Maße auf kleine und 

mittelständische Unternehmen zu, deren Kernkompetenz bei der Entwicklung und 

Produktion physischer Industriegüter liegt. Daher müssen Unternehmen in zunehmendem 

Maße externe Partner in ihre digitalen Wertschöpfungsprozesse integrieren und digitale 

Ökosysteme schaffen. Hierzu zählen etwa IoT-Plattformen, Cloud-Infrastrukturen oder 

digitale Services. Außerdem wird auch der Kunde selbst durch dessen Integration in den 

Wertschöpfungsprozess zu einem Schlüsselpartner. 

 Einnahmequellen: Durch den Wandel vom reinen Produktverkauf zu lösungsorientierten, 

digitalen Serviceangeboten wird die Entwicklung neuer Einnahmequellen und 

Erlösarten notwendig. Der gleichzeitige Bedeutungsverlust des Besitzes physischer 

Produkte trägt zu dieser Entwicklung bei. Zu vielversprechenden Ansätzen zählen v.a. pay 

per use-Bezahlmodelle für Industriegüter in Kombination mit Subscription-Modellen für 

digitale Serviceangebote. 

 Kosten: Waren bisher die Entwicklung, Produktion und Vertrieb von Industriegütern die 

Hauptkostentreiber von Industrieunternehmen, zählen hierzu künftig v.a. auch Kosten für 

Softwareentwicklung und IKT-Infrastruktur. 

II.1.4 Resultierende Herausforderungen 

Die beschriebenen Auswirkungen stellen Unternehmen vor Herausforderungen, die mit den 

interviewten Experten erarbeitet und validiert wurden und im Folgenden beschrieben werden: 
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 Multiple Wertversprechen: Konzentrierte sich das Wertversprechen bislang auf das 

physische Kernprodukt, bieten Unternehmen künftig durch verschiedene, digitale Services 

weitere Wertversprechen für kundenindividuelle Problemstellungen an. Eine Kernfrage ist 

dabei, welche digitalen Services mit dem physischen Produkt kombiniert werden sollen. Je 

nach Ausprägung des Wandels zum reinen Lösungsanbieter, ändert sich das 

Wertversprechen dabei zum Teil radikal. Unternehmen müssen Kunden zum einen den 

Nutzen der angebotenen Lösungen vermitteln. Zum anderen müssen sie mit der 

resultierenden Komplexität multipler Wertversprechen umgehen und diese sowohl mit 

Blick auf die prozessuale Unterstützung als auch den ökonomischen Wertbeitrag steuern. 

 Bestimmungsgerechte Verwendung von Daten: Im Zusammenhang mit den beim 

Kunden erzeugten Daten gilt es zu klären, wem die erzeugten Daten gehören und für 

welche Zwecke diese verwendet werden dürfen. Dies ist entscheidend, da von einem 

bestimmungsgerechten Umgang die langfristige Beziehung zu den Kunden maßgeblich 

abhängt. 

 Zunehmende Komplexität des Geschäftsmodells: Durch die Zunahme der 

Wertversprechen, neue Kundenzielgruppen und Kanäle, zusätzliche Schlüsselaktivitäten,  

-ressourcen und -partner sowie neue Einnahmequellen und Erlösarten steigt generell die 

Komplexität von Geschäftsmodellen. 

 Abhängigkeit zwischen Produkt und digitalen Services: Aufgrund der erforderlichen 

Massendaten als Grundlage für digitale Services besteht eine erhebliche Abhängigkeit 

zwischen der physischen und digitalen Komponente der digitalen, hybriden 

Wertschöpfung. Dies muss bei der Entwicklung beachtet werden. Außerdem ist die digitale 

Wertschöpfung dadurch von der zuverlässigen Funktionsweise der Produkte und der 

zuverlässigen Vernetzung abhängig. 

 Integrierte Entwicklung: Durch die unterschiedlichen Entwicklungs- und 

Produktlebenszyklen physischer Produkte und digitaler Services stehen Unternehmen vor 

der Herausforderung, diese aufgrund der beschriebenen Abhängigkeitsbeziehung in 

Einklang miteinander zu entwickeln. 

 Technologische Eignung physischer Produkte: Die Erschließung neuer Märkte kann die 

technologische Anpassung der physischen Produkte an neue Einsatzanforderungen 

erfordern. 
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 Cyber Security und Safety: Aufgrund der internetbasierten Vernetzung mit Kunden und 

Partnern sowie vernetzter Produkte und Produktionskomponenten steigt die Anfälligkeit 

der IKT-Systeme für Cyber Security Risiken. Daher müssen sensible Kundendaten vor 

dem Zugriff Unbefugter geschützt werden. Da durch die enge Verknüpfung mit den 

operativen Maschinensteuerungen zudem auch die Maschinensicherheit (Safety) und 

Verfügbarkeit betroffen sein können, stellt Cyber Security künftig eine zentrale 

Herausforderung dar. 

 Gewinnung spezifischer Fachkräfte: Da für Schlüsselaktivitäten wie Data Analytics oder 

Datenschutz hochspezialisierte Fachkräfte notwendig sind, stehen Unternehmen vor der 

Herausforderung, diese bereits heute sehr stark nachgefragten Spezialisten zu gewinnen. 

 Einbindung externer Partner und Kunden: Durch die zunehmende Einbindung externer 

Partner und Kunden in den Wertschöpfungsprozess müssen entsprechende Schnittstellen 

in den dazu notwendigen Systemen eingerichtet und entsprechende interorganisationale 

Informationssysteme eingesetzt werden. Zudem müssen Wertschöpfungsprozesse und die 

zugrunde liegenden Informationsflüsse verstärkt unternehmensübergreifend geplant, 

koordiniert und gesteuert werden. 

 Gestaltung von Erlösmodellen: Aufgrund der Vielzahl möglicher Ausgestaltungsformen 

muss künftig eine Balance zwischen der gewünschten Individualität und der dennoch 

notwendigen Standardisierung gefunden werden. Während es wichtig ist, der Individualität 

der angebotenen Kundenlösungen Rechnung zu tragen, führt eine Vielzahl individueller 

Erlösmodelle insb. bei einer hohen Kundenzahl zu erheblicher Komplexität und 

Intransparenz. 

Unternehmen, die diese Herausforderungen in den Griff bekommen, haben gute Chancen, sich 

gegenüber Wettbewerbern durchzusetzen, Marktanteile zu gewinnen und neue Märkte zu 

erschließen. 

II.1.5 Fallstudie Mitsubishi Electric  

Im Folgenden wird anhand des Geschäftsbereichs Fabrikautomation von Mitsubishi Electric 

der Wandel eines klassischen Geschäftsmodells zu einem digitalen Geschäftsmodell 

beispielhaft dargestellt. Mitsubishi Electric ist als weltweit agierender Technologiekonzern 

mit knapp 140.000 Mitarbeitern und einem Umsatz von 39 Mrd. USD p.a. in den Bereichen 

Fabrikautomation, Energie, Kommunikation, Gebäudetechnologie und Transportation tätig.  
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Im Geschäftsbereich Fabrikautomation zählt das Unternehmen zu den weltweit führenden 

Anbietern von Automatisierungs- und Verarbeitungstechnologien für industrielle Kunden. 

Die Kernprodukte reichen von Steuerungen, Antriebstechnik, Visualisierungstechnologie, 

SCADA-Softwarelösungen, Netzwerktechnologie, Niederspannungsschaltgeräten über 

Industrieroboter bis hin zu CNC-Steuerungen und -Antrieben für Werkzeugmaschinen, 

Erodiermaschinen sowie Laserbearbeitungsmaschinen. Diese wurden bisher überwiegend 

durch klassischen Produktverkauf, Leasing- oder Lizenz-Modelle an Kunden vertrieben. 

Aufbauend auf einem weltweiten Service-Netzwerk wurden Kunden im After-Sales-Bereich 

mit Wartungsdienstleistungen und Technologieberatungen betreut. Abbildung II.1-3 zeigt den 

BMC für das klassische Geschäftsmodell sowie den BMC des zukünftigen digitalen 

Geschäftsmodells, bei dem die bisherigen, klassischen Komponenten wie etwa Produktion 

und Produktionsanlagen um die notwendigen Fähigkeiten, Ressourcen, Partner, etc. für 

beispielhafte digitale Services erweitert wurden, und die mit der digitalen Transformation 

verbundenen Auswirkungen. 

 

 
Legende 

Schwarz: Klassisches GM / Grau: Aktuelles, digitales GM / Grau unterstrichen: Mögl. Weiterentwicklung des digitalen GM 

Abbildung II.1-3: Traditionelles (oben) und digitales Geschäftsmodell (unten) des Geschäftsbereichs 
Fabrikautomation von Mitsubishi Electric im Vergleich – Eigene Darstellung 
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Im Rahmen verschiedener Digitalisierungsprojekte wurden digitale Serviceangebote 

entwickelt, die auf die bei Kunden erzeugten Daten der Industrieanlagen zurückgreifen. So 

wird mit Smart Condition Monitoring Kunden ein optimiertes Wartungsmanagement 

angeboten, bei dem Maschinendaten ausgewertet und durch bekannte Fehlermuster 

Wartungsbedarf von Maschinen frühzeitig erkannt wird. Dadurch werden reduzierte 

Stillstandszeiten und eine gesteigerte Verfügbarkeit hochausgelasteter Industrieanlagen 

erreicht. Ein anderer digitaler Service ist das optimierte Energiemanagement der gesamten 

Industrieanlage auf Basis der Energieverbrauchsdaten. Dabei wird auf Basis einer 

Initialanalyse zunächst der Energieverbrauch optimiert. Aufbauend darauf wird ein laufendes 

Peak-Management angeboten, wodurch Produktionsabläufe so gesteuert werden, dass teure 

Lastspitzen vermieden werden ohne den Produktionsablauf zu beeinträchtigen. 

Auf Basis des heutigen, digitalen Geschäftsmodells sind vielfältige 

Weiterentwicklungsmöglichkeiten denkbar. So könnte bspw. durch die Anbindung von 

Energie-Handelsplattformen eine Berücksichtigung von Echtzeit-Strompreisen bei der 

Produktionsablaufplanung und der Maschinensteuerung erfolgen oder durch die Integration 

in eine Demand-Side-Management-Plattform die Energienachfrageflexibilität für Kunden 

monetarisiert werden. Darüber hinaus lassen sich auch weitere Kundenzielgruppen 

erschließen, indem etwa die Echtzeit-Energieverbrauchsdaten in anonymisierter Form und als 

Verbrauchsmuster gebündelt an Energieversorger und Netzbetreiber vertrieben werden. 

Derartige Entwicklungen erfordern von Mitsubishi Electric eine laufende Anpassung der 

Prozesse, Strukturen und Systeme, so dass bspw. die Kooperation mit Partnern wie SAP mit 

der HANA-Cloud oder IBM-Watson für Analytics-Applikationen künftig stark an Bedeutung 

gewinnt, um sich auf die für das Kerngeschäft erforderliche Kernkompetenzen konzentrieren 

zu können.  

II.1.6 Praxisrelevante Handlungsempfehlungen 

Basierend auf den gewonnenen Erkenntnissen werden abschließend grundlegende 

Handlungsempfehlungen aufgezeigt. Aufgrund der stets unternehmensindividuellen 

Erfordernisse und Ausgangssituationen können diese Praktikern als Orientierung und 

Anhaltspunkte für die Entwicklung digitaler Geschäftsmodelle dienen: 

 Zentraler Ausgangspunkt bei der Entwicklung digitaler Lösungsangebote sollte stets der 

Kunde und das zu lösende Kundenproblem sowie der Aufbau einer langfristigen 



II Return Management in Digitized Value Networks 36 

 

 
 
 

Kundenbeziehung sein. Nur bei Schaffung eines echten Mehrwerts sind Kunden bereit, 

Daten zur Verfügung zu stellen, die dann im Rahmen eines win-win-Setting zur digitalen 

Wertschöpfung eingesetzt werden können. Zudem machen sich Unternehmen mit 

laufenden Einnahmen aus Subscriptions unabhängiger von der konjunkturabhängigen 

Auftragslage bei Industriegütern. 

 Bei kleinen und mittelständischen Kunden sollte der Fokus zunächst darauf liegen, 

vorhandene Potentiale zu heben („low hanging fruits“), da diese aufgrund ihrer 

begrenzten finanziellen Investitionsvolumina nur eingeschränkt zu Investitionen in neue 

Anlagen in der Lage sind. Dies kann bspw. mit individuellen Lösungen durch 

zielgerichtete technologische Nachrüstung bestehender Produktionsanlagen und der 

Nutzung bereits vorhandener Daten erreicht werden. 

 Aufgrund der vielfältigen Schlüsselaktivitäten und -ressourcen stellt der Ansatz der 

Cocreation mit Partnern für Industrieunternehmen, insb. kleine und mittelständische 

Unternehmen, einen vielversprechenden Weg dar, da nicht alle erforderlichen 

Fähigkeiten selbst aufgebaut und vorgehalten werden können. Durch die Zusammenarbeit 

mit Partnern, etwa für Cloud-Infrastruktur und Analytics-Applikationen, können sich 

Industrieunternehmen auf ihre Kernkompetenzen wie die Entwicklung physischer 

Produkte und die enge Begleitung des Kunden fokussieren. Dabei ist allerdings darauf zu 

achten, nicht zum reinen Commodity-Lieferanten des physischen Produkts zu werden. 

 Da auch ohne Ansätze wie Cocreation die Einbindung externer Partner und Kunden in 

digitale Wertschöpfungsprozesse zunimmt, sind offene Produkt- und 

Systemschnittstellen sowie offene Standards wie OPC UA oder MTConnect für den 

Datenaustausch und die Integration von modularen Applikationen von großer Bedeutung. 

 Im Rahmen der Produkt- und Softwareentwicklung sollten Unternehmen einen 

Portfolioentwicklungsansatz verfolgen, bei dem eine enge Abstimmung zwischen der 

Entwicklung physischer Produkte und digitaler Services stattfindet und bestenfalls 

integriert erfolgt. 

 Hinsichtlich Cyber Security müssen die angebotenen Services hohe Sicherheitsstandards 

erfüllen, damit Kundendaten geschützt sind. Dies ist für das Vertrauen der Kunden und 

deren Bereitschaft zur Datenbereitstellung von elementarer Bedeutung. 
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 Um benötigte Fachkräfte zu gewinnen, müssen Unternehmen Möglichkeiten schaffen, 

diese projektbezogen in virtuellen Teams einzusetzen. Dabei sind der Zugriff auf externe 

Dienstleister und Freelancer sowie entsprechende Hochschulkooperationen potentielle 

Wege abseits der Festanstellung, bei denen jedoch ebenfalls hoher Wettbewerb herrscht. 

 Aufgrund der Komplexität digitaler Geschäftsmodelle gewinnt der Einsatz 

interdisziplinärer, crossfunktionaler Teams mit agilen Arbeitsmethoden bei der 

Geschäftsmodellentwicklung und -umsetzung an Bedeutung, da hierzu Kompetenzen aus 

verschiedenen Unternehmensbereichen und kreative Arbeitsweisen wie Design Thinking 

notwendig sind.  

 Bei der Entwicklung neuer Einnahmequellen und Erlösarten sind den möglichen 

Ausgestaltungsformen keine Grenzen gesetzt. Wichtig dabei ist, dass die Komplexität im 

Sinne der Transparenz überschaubar bleibt und in Verbindung mit dem Lösungsangebot 

stets ein beidseitiger Nutzen gegeben ist. Nur dann sind Kunden auch bereit, für digitale 

Services zu bezahlen. 

Die dargestellten Auswirkungen, Herausforderungen und Handlungsempfehlungen stellen 

einen generischen Rahmen für die zielgerichtete Entwicklung digitaler Geschäftsmodelle im 

Kontext der digitalen, hybriden Wertschöpfung dar, welcher auf der Analyse verschiedener 

Realweltbeispiele und der geführten Experteninterviews beruht. Aufgrund der Vielfältigkeit 

möglicher Geschäftsmodelle und der gerade erst beginnenden Verbreitung digitaler 

Geschäftsmodelle im Industriesektor stellt diese Arbeit daher keine abschließende Sicht auf 

das Thema dar. Zudem erfordert die Entwicklung konkreter digitaler Geschäftsmodelle 

zwingend die Berücksichtigung unternehmensspezifischer Faktoren und 

Rahmenbedingungen, die im Rahmen von interdisziplinären Workshops zur 

Geschäftsmodellentwicklung ermittelt werden müssen. Darüber hinaus ist die Entwicklung 

und Umsetzung digitaler Geschäftsmodelle ein laufender, iterativer Transformationsprozess. 

Ab wann ein Geschäftsmodell dabei als „digital“ bezeichnet werden kann, lässt sich allein auf 

Basis der im Rahmen diesen Beitrages erfolgten Forschung nicht eindeutig ableiten, da der 

Übergang von traditionellen Geschäftsmodellen zu digitalen fließend erscheint und 

unternehmensspezifisch ist. Dies stellt jedoch einen Ansatzpunkt für weitere Forschung und 

die Entwicklung entsprechender Ansätze wie etwa Reifegradmodelle zur Bewertung des 

Digitalisierungsgrades von Geschäftsmodellen dar, um Unternehmen weitere Hilfestellung 

beim Transformationsprozess bereitzustellen.  
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Denn nur durch das kontinuierliche Hinterfragen und Weiterentwickeln des Geschäftsmodells 

können Unternehmen im von der Dynamik des technologischen Fortschritts geprägten 

Wettbewerb bestehen und langfristig ihre Wettbewerbsfähigkeit sicherstellen. Gelingt dies, 

bietet die Entwicklung digitaler Geschäftsmodelle und die digitale, hybride Wertschöpfung 

für proaktiv handelnde Unternehmen erhebliche Potentiale.  
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Abstract: The digitalization of production facilities and the accompanying changes are 

anticipated to transform entire industries posing a fierce pressure on companies to deal with 

these developments regarding their information technology management. To lay the 

foundation for the development of corresponding business strategies, we structure benefits of 

Industry 4.0 through a structured literature review and categorize them using an established 

framework for IS benefits. Benefits for companies arise within four dimensions and concern 

various issues ranging from production related benefits to superordinate benefits affecting 

the business model. To conclude, managerial implications resulting from dependencies and 

the variety of benefits are presented. 
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II.2.1 Introduction 

In the recent past, there has been a tremendous hype built up around Industry 4.0. The term 

comprises technological developments such as Internet-of-Things (IoT), Internet-of-Services, 

or cyber physical systems (CPS) (Lasi et al. 2014). In this paper, we focus on CPS as a 

representative of Industry 4.0, the implementation of smart factory concepts and their 

anticipated benefits. As Industry 4.0 is a terminology particular common in Germany and in 

absence of a common global terminology, we explicitly include related concepts such as 

Industrial Internet, Smart Manufacturing, or Advanced Manufacturing that are common in 

English-speaking countries. In our understanding, Industry 4.0 comprises in its inner kernel 

the advanced digitalization of production facilities through the digital connection of smart 

machines and products with networked embedded systems and the extensive integration of 

information systems, digital services, and Internet-based technologies (Barrett et al. 2015; 

Schuh et al. 2014b; Zuehlke 2010). These promise great potentials and benefits for industrial 

applications as smart products are envisioned to self-control their manufacturing process and 

smart factories are anticipated to self-optimize production processes in real-time and respond 

context-specific to turbulences in production and to fast changing customer demands (Schuh 

et al. 2014b). Besides others, these capabilities increase efficiency and competitiveness as 

they enable the flexible production of highly customized products at costs comparable to mass 

production (Radziwon et al. 2014). Further, innovative digital business models like predictive 

maintenance or pay-per-use concepts utilize the tremendous amount of generated production 

and product data and enable innovative products enhanced with digital services (Lasi et al. 

2014).  

These developments are anticipated to deeply impact existing business strategies and success 

models and transform whole economies in a disruptive manner (Iansiti and Lakhani 2014). 

Therefore, companies in all industries face a fierce pressure to deal with the fundamental 

changes and rethink their strategies regarding investments in Industry 4.0 technologies to 

retain competitiveness (Geisberger and Broy 2015). Otherwise, increasing efficiency of 

competitors, market entries of non-traditional competitors, and new digital business models 

intensify competition and, ultimately, jeopardize companies that fail to undergo the necessary 

transformation process. Accordingly, companies must not only evaluate whether to invest into 

Industry 4.0, but especially into which specific technologies and in which order. To come to 

these crucial strategic decisions in correspondence with value-based management principles, 
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investments have to be evaluated ex-ante under consideration of involved costs, risks, and 

benefits (Faisst and Buhl 2005). While costs and risks have already been researched quite 

extensively, benefits of Industry 4.0 have not yet been investigated in a structured manner. 

Till date, authors only point out benefits for motivational reasons or evaluate highly specific 

and application-dependent benefits. To the best of our knowledge, there is no comprehensive 

picture of Industry 4.0 technologies and their contribution to value creation. Consequently, 

the evaluation of benefits remains a major obstacle as the variety and complexity of 

technologies and the absence of best-practices or industry standards complicate their 

identification and quantification. However, this would be necessary to ensure a holistic view 

on Industry 4.0 business strategies. To close this gap, our research focuses on benefits of 

Industry 4.0 and addresses the following research question: 

RQ:  Which benefits of Industry 4.0 are anticipated in scientific literature? 

By identifying benefits based on a structured review of scientific literature and by categorizing 

them into a structured benefits framework, we provide a comprehensive overview of the 

benefits of Industry 4.0. This helps to better describe the characteristics of Industry 4.0 

technologies that are associated with value creation. Further, our research represents an 

essential first step towards the comprehensive evaluation of smart manufacturing technologies 

and lays the ground for a subsequent identification and quantification of benefits. The 

remainder of our paper is organized as follows: We outline our methodology in Section 2. 

Section 3 provides a review on the investigated literature. Section 4 presents the identified 

benefits and a categorization of these benefits into an IS benefits framework. Section 5 

contains a discussion of managerial implications, before Section 6 presents a conclusion and 

gives an outlook on further research. 

II.2.2 Research Methodology 

As Industry 4.0 is a quite young field of research and the body of corresponding literature on 

benefits of Industry 4.0 is rather limited, the aim of our research is not the synthesis of research 

on benefits, but a methodically sound identification of respective benefits mentioned in 

scientific literature. For the approach conducted in this research, the methods presented by 

Bandara et al. (2011), Fettke (2006), vom Brocke et al. (2009), and Webster and Watson 

(2002) concerning structured literature reviews in the IS field serve as a basis. Although the 

approaches coincide in their basic structure (e.g., all authors incorporate a literature search 
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comprising keyword search in databases), they differ regarding their exact research procedure 

and purpose. Therefore, we combine the approaches and derive four steps: Subsequent to a 

literature search (1), relevant articles are identified (2) and analyzed (3). Afterwards, the 

results are structured (4).  

Step 1 - Search process: Since the investigated topic is an emerging field and concerns various 

disciplines, a concept-centric literature search is executed (Webster and Watson 2002). To 

query a wide selection of journals and to include conference proceedings, we query databases 

listed in Table II.2-1 with search terms for Industry 4.0 and related concepts (i.e. Industry 4.0, 

Internet-of-Things, or smart manufacturing) in combination with terms that ensure results 

with a strong association industrial applications (i.e. production, manufacturing, or factory). 

The keyword search is conducted in the search fields abstract, title, and keywords as this 

search strategy is supposed to render papers focusing on the target topic (Bandara et al. 2011). 

The search strategy renders a total of 177 results. 

Databases ScienceDirect, EbscoHost, ProQuest, AIS eLibrary 

Search Fields Title, Abstract, Keyword 

Source Types Journals, Conferences 

Search Terms (Industry 4.0 OR Industrie 4.0 OR Internet of Things OR Industrial Internet 
OR Cyber Physical System OR Cyber Physical Production System OR 
Smart Factory OR Smart manufacturing) AND (production OR 
manufacturing OR factory OR Produktion OR Fabrik OR Industrie) 

Table II.2-1: Parameters of Keyword Search 

Step 2 - Selection of relevant literature: As vom Brocke et al. (2009) argue, the limitation of 

the amount of literature by keyword search should be content-based and include analyzing 

titles, abstracts and full texts. Accordingly, titles of all articles are examined to exclude articles 

not dealing with Industry 4.0 or dealing with non-industrial applications. Further, all articles 

in other languages than English or German are excluded. Then, abstracts of the remaining 

articles are analyzed to select those discussing Industry 4.0. In a last step, full texts of the 

remaining articles are screened by examining relevance for Industry 4.0 and if benefits of 

Industry 4.0 are mentioned in the article. This results in 57 articles (55 in English and 2 in 

German) relevant for further analysis. 27 articles are published in conference proceedings 

from different fields like production engineering, or computer sciences. The other 30 articles 

were published in journals from different fields ranging from engineering and computer 

sciences to management sciences. 
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Step 3 - Analysis of relevant literature: 57 publications are analyzed for mentioned benefits 

of Industry 4.0. Thereby, we define benefit as an umbrella term for positive effects like 

opportunities, potentials, value, or improvements for companies achieved through the 

implementation of Industry 4.0 technologies. Thus, macro-economic effects for economies 

are not considered. Thus, we subsume different levels of benefits, i.e. different degrees of 

concretization, under one term. This approach seems reasonable as Industry 4.0 is a young 

and emerging field of research and, so far, the vast majority of benefits remain rather vague 

potentials with no empirical evidence in literature. Each benefit mentioned and the respective 

publication are recorded in a database resulting in an initial list of multiple benefits. After 

consolidating the initial list and removing doubles and highly similar benefits, we obtain a list 

of 365 benefits.  

Step 4 - Synthesis of analysis results: There are different frameworks for structuring benefits. 

For instance, DeLone and McLean (1992) provide a framework with six dimensions regarding 

aspects of IS and Abelein et al. (2009) develop a framework consisting of technical, 

organizational, and strategic business dimensions. An established framework for IS benefits 

proposed by Anthony (1965) structures benefits into the three dimensions operational, 

managerial, and strategic as this allows the distinction of benefits regarding the hierarchical 

levels of decision-making in organizations, i.e. operational control, managerial control, and 

strategic planning. Since we aim to provide the basis for the analysis of individual use cases 

and concrete decisions, we regard Anthony’s (1965) framework as most suitable. This 

classification supports the differentiation of the impact of benefits and, thus, facilitates their 

subsequent in-detail evaluation and quantification. Numerous authors applied an extended 

version of Anthony’s three dimensional framework by adding the dimensions organizational 

and information technology (IT) infrastructure (e.g. Shang and Seddon 2000, Shang and 

Seddon 2002; Wang et al. 2016) as it was discovered that certain IT benefits could not 

(unambiguously) be clustered without them, in example organizational benefits in terms of 

improved focus, cohesion, learning and execution were identified (Shang and Seddon 2002). 

However, as we view advancements of IT as core enabler of Industry 4.0, we refrain from 

gathering benefits describing enhancements of IT and do not include IT infrastructure in our 

framework. Additionally, IT is developing at an increasingly pace, so the inclusion of 

corresponding benefits would impair the framework's long-term relevance. 
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Each benefit is assigned to one of the four dimensions. Nevertheless, there are 

interdependencies between the dimensions that are addressed later in this paper. To ensure 

objectivity, the benefit assignment is done by two researchers separately and merged while 

assignment differences are discussed. In a second step, benefits within each dimension are 

clustered, again by two researchers separately, and matched to consolidated benefits. Finally, 

we obtain our benefits framework as the central artefact of our research: a structured 

representation of Industry 4.0 benefits. The framework is evaluated by a discussion with ten 

other researchers and the results of the evaluation are considered in the further development 

of the framework presented in Section 4. 

II.2.3 Overview of the Investigated Literature 

In the following, we give an overview on the examined scientific literature concerning 

Industry 4.0 from different fields of research like engineering, operations research or 

sustainability. Due to the innovative nature, many authors approach Industry 4.0 in a general 

manner, propose definitions, and discuss the state of technologies and future research and 

development challenges. For example, Mikusz and Csiszar (2015) develop a framework to 

examine characteristics and abilities of a CPS application in industrial robotics. Wang et al. 

(2015) outline characteristics and definitions of CPS and present advancements in CPPS to 

point towards research directions. Other authors focus on risks and opportunities of smart 

manufacturing (Banham 2015), review the term smart in relation to technology, and propose 

a definition for smart factories (Radziwon et al. 2014). However, due to a macro-perspective 

view on Industry 4.0, these approaches make only general statements on benefits of industry 

4.0 in the context of new business models. 

Despite these general approaches, there are publications addressing specific topics 

accompanying Industry 4.0 and related concepts. For example, some investigate architectures 

or models for the integration of CPS/CPPS in manufacturing and the realization of smart 

factories (Bagheri et al. 2015; Majstorovic et al. 2015). Other authors like Wright (2014) 

outline the effects of CPPS regarding products or focus on effects for humans in smart 

manufacturing environments (Dombrowski and Wagner 2014). An issue examined by several 

authors concerns production and process management (Denkena et al. 2014; Reischauer and 

Schober 2015; Seitz and Nyhuis 2015). For example, Seitz and Nyhuis (2015) present 

advantages of CPS for production planning, controlling, and monitoring. A different stream 
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of literature deals with the implication for supply chains (Frazzon et al. 2015; Papazoglou et 

al. 2015; Veza et al. 2015). A reference architecture for smart manufacturing networks is 

developed by Papazoglou et al. (2015), while Veza et al. (2015) propose a management 

approach for smart factory networks. Laboratory research facilities are another topic discussed 

(Faller and Feldmüller 2015; Hummel et al. 2015; Schuh et al. 2015a; Weyer et al. 2015; 

Zuehlke 2010). For instance, Hummel et al. (2015) point towards the importance of learning 

factories for the qualification and training of professionals. Moreover, several different topics 

are discussed such as the collection and processing of data, data analytics, and simulations 

(Barthelmey et al. 2014; Lee et al. 2014; Neuböck and Schrefl 2015; Rosen et al. 2015), the 

development of new business models (Rudtsch et al. 2014), collaboration mechanisms (Schuh 

et al. 2014b; Schuh et al. 2015b), service innovations (Hertrich et al. 2015) or lean production 

principles (Kohlberg and Zuehlke 2015). These approaches give explicit examples for 

benefits, however, due to the specific research context, they are only partially applicable for 

the comprehensive evaluation of the strategic use of Industry 4.0. 

Based on this diverse body of scientific literature, we can conclude that scientific literature 

mentioning benefits of Industry 4.0 and related concepts differs in focus and scope and deals 

with various aspects of these concepts. Despite the variety of different approaches, to the best 

of our knowledge, there is no structured framework that provides practitioners with a 

comprehensive overview of potential benefits. Therefore, we aim to contribute to this research 

gap by proposing a structured benefits framework to enable decision makers to identify 

relevant fields of actions for their digitalization strategy and to evaluate potential benefit 

dimensions from the realization of Industry 4.0 investments and their contribution to value 

creation in organizations. 

II.2.4 Categorizing the Benefits of Industry 4.0 

In the following, we present our benefits framework for Industry 4.0 that is based on an IS 

benefits framework as it provides predefined dimensions for the consolidation and 

categorization of the extensive list of identified benefits. Further, the framework is designed 

for managers to support the assessment of benefits and, therefore, is appropriate for the 

categorization of benefits considering practitioners’ needs regarding organizational decision-

making and strategy development. As mentioned in Section 2, the applied framework 

comprises operational, managerial, strategic, and organizational benefits. Operational 
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benefits contain benefits concerning periodically repeated actions and improvements of 

practical tasks (Shang and Seddon 2002), while managerial benefits refer to benefits resulting 

from a better supply of information facilitating advances in the resource allocation and control, 

operation monitoring and support of strategic business decisions (Shang and Seddon 2002). 

Benefits affecting long-term planning and high-level decisions are referred to as strategic 

benefits (Shang and Seddon 2002). Further, organizational benefits involve overarching goals 

such as focus, learning, and execution within organizations (Shang and Seddon 2002). The 

benefits are allocated to one of the four dimensions. Since many benefits address same or 

related issues, similar benefits are consolidated and clustered within the respective 

dimensions. Figure II.2-1 shows our benefits framework for Industry 4.0 comprising benefits 

anticipated in scientific literature. As each benefit is a condensate of several benefits from 

scientific literature, we provide detailed insights into related concepts of each benefit in Table 

II.2-2 to Table II.2-5 and indicate the number of articles within our final paper sample in 

which a benefit was mentioned. However, the number of articles is only informative and does 

not allow an assessment of the significance of a benefit. 

 

Figure II.2-1. Benefits framework for Industry 4.0 – Own Illustration 

Benefits assigned to the operational dimension of our framework are primarily production 

related. For instance, continuous production optimization refers to the capability of smart 

factories to (self-) optimize the production system or production processes. Thereby, Industry 

4.0 technologies allow the optimization regarding various goals and business metrics as stated 

by Weyer at al. (2015) and Kolberg and Zuehlke (2015). Another concept widely discussed is 

production flexibility. While in some cases, flexibility is not further expanded on, in some 

publications it is associated to modularity and reconfigurability of production systems and 

processes through plug-and-play principles. Veza et al. (2015) present a different perspective, 

pointing towards the flexibility in terms of short-term responsiveness in case of disruptions. 

Further related concepts are adaptability, agility, and variability. Another aspect of production 
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expected to benefit from Industry 4.0 is production quality. The anticipated benefits are mainly 

a reduction of reworking or scrap. Wright (2014) for instance states that wireless sensors can 

guarantee that final products are completely manufactured. Further, production reliability is 

supposed to benefit from Industry 4.0 including robustness, resilience, and the handling of 

unprecedented events enabling production systems to reduce potential human error (Banham 

2015) and to autonomously improve or maintain a status by self-diagnosis technologies 

(Mönks et al. 2016). A special case of reliability is production availability discussed 

extensively in literature and referring to a reduction of downtime and a higher usability of 

intelligent factories. 

Benefit Related Concept 

production  
flexibility [24] 

i.a. flexibility, adaptability, and reconfigurability of production systems; 
modularity of production modules; easing of engineering and set up; flexibility 
during technical modification; less time consumption during commissioning; no 
engineering efforts for reconfiguration; high process variability; adaptability to 
new product variants or production systems 

continuous 
production 
optimization 
[26] 

i.a. optimization of production; of production systems and processes; enhanced 
equipment efficiency; compensation of limited manufacturing capabilities; self-
optimization of production systems; enhanced production capabilities 

production 
safety [8] 

i.a. higher safety; safer asset utilization; reduction of safety incidents 

production  
reliability [23] 

i.a. high reliability; robustness; resilience; handling of unprecedented events; 
flexibility to respond to disruptions and failures in real-time; autonomous 
problem handing and reaction to maintain the system’s status  

production  
availability [4] 

i.a. increased/high availability; reduction of machine downtime; usability of 
intelligent factories 

production  
efficiency [33] 

i.a. improved production efficiency; more efficient asset utilization; just-in-time 
proceeding of goods; efficient transportation; increased service efficiency; 
increase of throughput; faster production ramp-up; improved technical support 
and maintenance; improved quality control  

production 
quality [10] 

i.a. fewer product defects; reduction of reworking; lowering of scrap and 
failures; quality improvement 

resource 
efficiency [15] 

i.a. energy savings; less energy consumption; resource efficient production; 
optimal resource consumption; reduction of material and supply usage; 
reduction of waste; gains in material efficiency 

product  
development 
[7] 

i.a. innovative product development; accelerated development processes; 
flexible product development; better quality of development; reduction of 
number of iterations between product designers and process planners 

supply chain  
collaboration 
[4] 

i.a. increase of collaboration productivity; higher supply chain productivity; 
higher agility and integration of complete supply chain; improved overall 
performance of supply chains in terms of service-level and flexibility; increase 
of logistic performance 

Table II.2-2: Operational Benefits of Industry 4.0 
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Further, an increase of production safety is expected including higher safety of machines and 

the reduction of safety incidents. Another operational benefit is production efficiency. While 

some authors mention general efficiency gains in relation to production or asset utilization, 

others, anticipating more specifically, for instance, a promotion of just-in-time manufacturing. 

One concept in regard to production efficiency is a better technical support of machinery and 

plant equipment. Rudtsch et al. (2014) describe the concept of remote maintenance that will 

support maintenance processes through web-based technologies and IoT. Further operational 

benefits not directly affecting the shop floor are resource efficiency and product development. 

Resource efficiency is addressed in some cases in general, but also more specific in regard to 

energy efficiency in terms of a lower energy consumption or energy savings. Similarly, 

general benefits regarding resources are expected to materialize through a more accurate 

resource deployment, which is also reflected in waste reduction and a lower overall 

consumption of resources. In addition to the production of products, benefits are also 

anticipated for product development. As Rosen et al. (2015) argue, ubiquitous connectivity 

will close the digitalization loop and enable optimized product design cycles. Further, Schuh 

et al. (2014a) state that simulation and virtualization will enable accelerated development 

processes. Thereby, virtualized development processes contribute to resource efficiency 

through reduced material usage. Contemplating a network of firms, another operational 

benefit is improved supply chain collaboration as higher collaboration productivity through 

improved information sharing and increased IS integration across company-boundaries within 

the eco system is one core characteristic of Industry 4.0. 

Managerial benefits comprise - similar to the operational level - benefits directly related to 

production as well as benefits not related to production. There, the benefit production 

planning & scheduling subsumes the optimization of production management and planning, 

of maintenance scheduling, and of inventory management as well as efficient and advanced 

planning processes. Schuh et al. (2015b) outline that an improved cooperation within a 

network of firms enables improved forecasting and advanced and efficient planning processes 

and, thus, facilitate to counteract over-production as a result of bullwhip-effects. Further, 

continuous improvement enabled by increasing transparency through improved data 

acquisition and analysis affects production as it concerns effective and efficient process and 

performance improvement. For instance, Kolberg and Zuehlke (2015) elaborate on Industry 

4.0 technologies and their application in regard to lean production principles and conclude 
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that innovative automation technology is a promising topic. While benefits regarding decision 

making / support might concern production, they are not limited to it. Yang et al. (2016) state 

that real-time information about positioning and working status might assist decisions 

concerning production and inventory management. Schuh et al. (2015b) further argue that 

enabling a higher transparency within the supply chain contribute to comprehensibility and, 

thus, sustainability of decisions and their effects. Benefits not directly linked to production 

concern risk management. While Majstorovic et al. (2015) and Davis et al. (2012) address risk 

management without presenting more details on how Industry 4.0 is supposed to assist, 

Banham (2015) discusses the reduction of risk at length, arguing that overall strategic, 

operational and financial risks are reduced. For instance, the increased flexibility of 

production systems reduces both strategic risks in regard to fast changing customer demands 

and operational risks in regard to lengthy technical modifications, while improved product 

development reduces product failure risks and, thus, financial risks. Benefits concerning 

positive financial aspects are summarized as financial benefits resulting from various aspects 

like effects on the shop floor. For example, Bagheri et al. (2015) refer to significant economic 

potential of Industry 4.0 enhanced factories. Similar to the operational dimension, benefits 

regarding supply chain management also exist in the managerial dimension, for instance, in 

regard to shared information management, risk management or general optimization. Indeed, 

managerial benefits are more divers including a better handling of complexity, security for 

single parts of a supply chain, and a better level of information sharing. 

Strategic benefits comprise abilities by generating new business models, enabling product 

improvement and innovation, and the alignment of production with changing, individual 

customer demands as well as an enhancement of competitiveness and sustainability. Further, 

new business models become feasible. While some authors make rather general statements on 

new opportunities for value-creation, Veza et al. (2015) and Mikusz and Csiszar (2015) give 

explicit examples arguing that new business models emerge in form of complementary or 

additional services. According to Mikusz and Csiszar (2015), new business models facilitated 

by networked CPS within production facilities and the availability of real-time information 

are Add-On, Product as a Point of Sales, Object Self-Service, and Lock-in business models. 

Veza et al. (2015) state that new business models appear in the form of Manufacturing-as-a-

Service, Industrial Product-Service Systems, or comparable. 
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Benefit Related Concept 

decision 
making / 
support [11] 

i.a. effective and efficient decision making; improved decision support; 
improved performance monitoring in distributed manufacturing; real-time 
reaction on problems in production  

risk 
management 
[4] 

i.a. improved risk prediction, planning, and management; reduction of strategic, 
operational, and financial risk 

financial 
benefits [4] 

i.a. economic potential; improvement of working capital; radical performance 
improvement 

production  
planning &  
scheduling 
[15] 

i.a. efficient and advanced planning process; optimization of manufacturing 
management, maintenance, and service scheduling; optimal production planning 
and inventory management; adaptive production scheduling; reduced planning 
costs 

continuous  
improvement 
[4] 

i.a. effective and efficient process improvement; continuous improvement 
processes; enhancing existing lean production solutions and extending their 
applicability; improvement of overall performance and maintenance 
management; continuous improvement of manufacturing processes; higher 
quality of processes; improvement of quality of production 

supply chain 
management 
[4] 

i.a. dynamic management of complex environments with short-lived supply 
chains; security for all supply chain's elements, access to data, knowledge about 
demand/stock/sales/prediction of anomalies; optimization of value chain by 
implementation of autonomously controlled and dynamic production; solving 
problem of complexity in supply chains 

Table II.2-3: Managerial Benefits of Industry 4.0 

Regarding product innovation and improvement, benefits include the enhancement of product 

performance, its design, quality, and sustainability as well as additional digital services, and 

shorter innovation cycles. For example, Davis et al. (2012) argue that new innovative products 

are facilitated by increased workforce and manufacturing innovation. Another benefit is the 

alignment of production with changing, individual customer demands. It refers to the efficient 

production of individualized products in variable volumes, i.e., mass customization 

(Dombrowski and Wagner 2014). Further, higher customer satisfaction and an increased 

flexibility for changing customer demand are expected. Competitiveness includes, besides an 

increased competitiveness in general, benefits regarding cost and profit (contributing to 

financial benefits), market responsiveness, and a shorter time-to-market. For instance, Schuh 

et al. (2014b) and Davis et al. (2012) state that costs per unit decrease and higher profits can 

be achieved through shorter time-to-market. Sustainability, considered indispensable for a 

company’s long-term success (Perrot 2015), is another benefit that also contributes to resource 

efficiency on the operational level. While benefits addressing sustainability in general are 

mentioned in some publications, others address ecologic sustainability specifically. For 
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instance, Schuh et al. (2015b) elaborate on how Industry 4.0 ultimately enhances ecological 

sustainability. 

Benefit Related Concept 

business model [6] i.a. innovative business models; improved or novel business processes 
within value creation along product life cycle; new market opportunities; 
new value-creation opportunities 

Competitiveness 
[13] 

i.a. increased competitiveness; maintain competitiveness through mass 
customization; production of individual products at reasonable cost; lower 
cost per piece; reduction of cost pressure; reduction of pressure regarding 
demands for individualized products; improvement of time-to-market; 
improved ability to respond to varying market demands 

product innovation  
& improvement 
[18] 

i.a. individualization of products; innovative, complementary products and 
services; enhancement of product design and in-product services; additional 
customer-value on use; extension of products with digital services; 
improvement of next product generations; distribution of product 
information to customer; reduction of product failure risk 

alignment of 
production to 
changing, 
individual customer 
demands [17] 

i.a. product individualization; mass customization; lot size one; optimized 
product customization; increased customer satisfaction; rapid response to 
changing customer needs and individual customer requirements; alignment 
of manufacturing with customer demand through flexible production 

Sustainability [5] i.a. maximizing environmental sustainability; benefits for sustainability; 
improved processes sustainability; sustainable practices 

Table II.2-4: Strategic Benefits of Industry 4.0 

In the organizational dimension, assistance of the worker is expected to benefit from Industry 

4.0 by new ways of support, for example, through advanced gathering, processing, and 

visualization of process date (Schuh et al. 2015a) and virtual instructions at the point of action 

through smart devices (Weyer et al. 2015). Further, working conditions are expected to 

ameliorate through novel tasks, human-centric production systems, and health related issues. 

Rudtsch et al. (2014) mention that human-centered production processes enable production 

processes to follow human speed and instruction. Moreover, decoupling the place of work 

from the location of the worker by wireless technology will increase the mobility of humans 

in production. Further, coping with demographic change constitutes the third organizational 

benefit as Industry 4.0 technologies can contribute to less burdening work systems (Hummel 

et al. 2015). 
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Benefit Related Concept 

coping with 
demographic 
change [1] 

i.a. less burdening work systems to cope with intensifying demographic change  

assistance to 
the worker [4] 

i.a. context-aware assistance to people and machines in task execution; task 
simplification; new ways of gathering, processing, and visualization process 
data; virtual instructions and sensor-based monitoring 

improved 
working 
conditions [7] 

i.a. improved health, better working environment; assistance towards more 
productive, less burdening work; decoupling of workplace from physical 
location of worker; human-centered production processes regarding speed and 
instructions; adjustment to human workforce 

Table II.2-5: Organizational Benefits of Industry 4.0 

II.2.5 Managerial Implications and Challenges 

In the following, we discuss managerial implications and challenges gained in the course of 

our research that should be considered in the strategic alignment of companies in all 

manufacturing industries: 

1. The structured processing of benefits revealed that not all benefits, although allocated to 

separate dimensions with varying scope, are independent from each other. Some benefits 

are rather mutually dependent and complementary. Thereby, it appears that the 

implementation of Industry 4.0 technologies to achieve benefits on the operational level is 

often times a precondition for the realization of benefits on managerial or strategic levels. 

For instance, the realization of strategic benefits like the alignment of production to 

changing, individual customer demands requires the realization of production flexibility or 

an accelerated product development process. Accordingly, the manifold interdependencies 

inherent in potential benefits must be considered by management, especially in terms of 

cause-effect relations to determine which benefits are intertwined and to identify all 

benefits resulting from the implementation of certain enabling technologies.  

2. The benefits' assignment to the respective framework dimensions revealed that the line 

between operational and managerial benefits rather vanishes through the developments of 

Industry 4.0, especially regarding the production system. Examples for this transformation 

identified in the framework are benefits concerning adaptability, utilization, optimization, 

predictive maintenance, or autonomous problem handling. These result from the capability 

of production systems to provide real-time information on an unprecedented fine-granular 

level and, thus, to self-control the production process in real-time, a key-characteristic of 

Industry 4.0. This ability influences traditional planning processes and contributes to an 
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amalgamation of operational and managerial tasks. Thus, management faces the challenge 

to adapt its managerial processes, accordingly. 

3. While some benefits are commonly mentioned to describe the concept of Industry 4.0 

(Neugebauer et al. 2016), they are often times not set in context with concrete enabling 

technologies. Thus, guidance on how to realize specific benefits by means of enabling 

technologies is missing. This was also found by Strozzi et al. (2017), who state that research 

focuses primarily on conceptual work and experiments and rarely discusses actual test-beds 

and lessons learned from practice. Accordingly, management faces the challenge to 

determine concrete investment measures in enabling technologies and to develop robust 

transformation roadmaps in the course of their digitalization strategy. 

4. Yet, some articles mention first examples for implemented benefits and their enabling 

technologies. For instance, Herterich et al. (2015) conduct case-studies regarding impacts 

of CPS on industrial services. Their benefits can be assigned primarily to operational 

benefits including a reduction of downtime or an increased fix time and rate. This leads to 

the impression that operational benefits might appear earlier, whereas strategic benefits 

might materialize on a longer time horizon.  A survey conducted by the American Society 

for Quality mentioned by Banham (2015) gives a similar impression. It reveals that 82% 

of manufacturers could realize production efficiency gains and 49% could reduce product 

defects by investing in smart machines. Also, 45% could increase customer satisfaction, 

which constitutes a strategic benefit. Therefore, management needs to critically review the 

impacts of employed technologies and establish measures to assess benefits on a longer 

time-horizon. To evaluate the success of ex-ante pursued benefits, performance indicators 

should be developed enabling the ex-post evaluation of benefits and their realization. For 

this, our benefits framework can serve as a starting point. 

5. The magnitude and diversity of benefits revealed by our analysis and the accompanying 

costs and risks of investments clearly indicate the importance for management to 

systematically evaluate Industry 4.0 technologies and to apply structured approaches to 

manage benefits actively (Peppard et al. 2015). Accordingly, the comprehensive evaluation 

of Industry 4.0 technologies requires appropriate qualitative and quantitative methods of 

economic investment and decision theory. Our structured overview of possible benefits can 

serve as a starting point, for instance, for a structured benefits management approach by 

means of a benefits dependency network as presented by Peppard et al. (2015).  
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II.2.6 Conclusion, Limitations, and Outlook 

The developments of Industry 4.0 lead to the advancing digitalization of production facilities 

and the development of digital enhanced business models promising great potentials in all 

manufacturing sectors. The accompanying changes are anticipated to transform business 

strategies and success models posing a fierce pressure on companies to deal with these 

developments in a proactive manner. Despite the obvious importance, there was no 

comprehensive picture of the contribution of Industry 4.0 technologies to the value creation 

of companies as a structured overview over the benefits of Industry 4.0 was missing. However, 

this is necessary for a comprehensive identification and subsequent quantification of benefits 

in regard to value-based investment decision strategies. Therefore, our work contributes to 

research by developing a structured benefits overview. For this, we identified 365 benefits 

anticipated in literature, consolidated them to 24 conclusive benefits and categorized them 

into an IS benefits framework. Our overview demonstrates the different dimensions in which 

Industry 4.0 technologies contribute to value creation. It becomes apparent that their strategic 

value resides in optimizing internal and cross-company value creation processes and the 

opportunity to develop new products and business models. 

Despite the merits of this paper in terms of systematically structuring the benefits of Industry 

4.0, there are some limitations, which can be noted as potential areas for further research. For 

instance, our analysis only includes benefits that are mentioned in scientific literature. 

Therefore, potential benefits that are not considered by researchers, or cannot be conceived 

yet, are missing. Moreover, this neglects potential findings only included in non-scientific 

publications. Further, in our literature analysis, we did not consider whether benefits are the 

focus of an article or only listed for motivational or descriptive purposes. Thus, research 

building up on our framework has to consider that the feasibility of the latter might not be 

thoroughly researched yet. Additionally, anticipated benefits in literature address different 

hierarchical levels (e.g. reduction of waste vs. increase of competitiveness) and are in some 

cases mutually dependent regarding their realization. This represents a starting point for 

further research on the hierarchy of benefits, on cause-effect-chains, and on causal relations 

among complementary benefits that could be displayed by benefit dependency networks 

(Ward and Daniel 2006). Additionally, we categorize the identified benefits in an adapted IS 

benefits framework. Future research should examine whether there are other ways of benefits 

categorization that would also be promising and possibly even more appropriate. So far, there 
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is no empirical evidence in literature and, at the same time, great uncertainty in practice about 

which of the anticipated benefits might truly become reality. We refrained from theoretically 

operationalize the respective benefits as the concrete extent and value of a benefit is highly 

use-case specific and would have exceeded the scope of this paper. Thus, the evaluation and 

quantification of benefits under consideration of risk and return aspects is another important 

topic for further research. The same holds true for the development of concrete transformation 

roadmaps and digitalization strategies that support companies in deriving an appropriate 

portfolio and sequence of Industry 4.0 projects. 

Despite these limitations and open topics for further research, we strongly believe that the 

developed benefits framework contributes to research on Industry 4.0 and presents a first step 

in enabling decision makers to identify relevant fields of actions, to develop comprehensive 

business strategies, and consequently, to derive value from the realization of Industry 4.0 

investments. 
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Abstract: Ongoing digitalization of production accelerates trends like mass customization, 

ever shorter lead times, and shrinking product life cycles. Thereby, industrial companies face 

increasingly volatile demand that complicates an appropriate production capacity planning. 

On the other hand, the comprehensive digitalization of production environments favors, 

amongst others, the dynamic integration of flexible external on-demand production capacity 

provided by specialized external capacity providers (ECPs). To enable the usage of on-

demand production capacity, industrial companies may require significant upfront 

investments (e.g., for inter-organizational information systems, planning and organizational 

processes, employee training). The objective of this paper is to develop a model that evaluates 

such enabling upfront investments from the perspective of a manufacturing company. To 

consider flexibility of action, we apply real options analysis in a discrete-time binomial tree 

model and weigh these so-called expansion options to related cash outflows. In addition, we 

evaluate our model by means of a simulation and sensitivity analyses and derive insights for 

 
2 This is a post-peer-review version of an article published in Business Research. The final authenticated version is available 
online at: https://doi.org/10.1007/s40685-019-00105-w 
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both researchers and practitioners. The insights gained by our model present a profound 

economic basis for investment decisions on upfront investments in flexible on-demand 

production capacity. 

II.3.1 Introduction 

With the rise of online market places like Amazon and Alibaba, and the on-demand 

availability of almost any product imaginable, manufacturing companies in all industries face 

significant challenges in their capacity planning. Customers now expect highly individualized 

products, instant availability, and ever-shorter time-to-market and delivery times (Garrido 

2012). This is also the case in the business-to-business sector, in which individualized, 

engineered-to-order business models are increasingly important (Mosig et al. 2017). The 

effects of these developments are intensified by globalization and technological progress, 

which lead to reduced product life-cycles in, for instance, the electronics, semiconductor, toy, 

and fashion industries (Alaniazar 2013). In particular, demand for highly individualized 

products which cannot, economically, be produced for stock (and are thus comparable to 

services, which cannot be physically stored) encourages companies to switch from traditional 

make-to-stock to flexible make-to-order (MTO) manufacturing approaches. Yet, when it 

comes to MTO capacity management, volatile customer demand complicates investment 

decisions in new production facilities. Depending on the particular technology, the 

amortization period of such investment may span several years. What is more, miscalculations 

during investment planning may result in idle capacity or capacity shortages, both of which 

are likely to have negative economic consequences. While idle capacity incurs idle costs, 

capacity shortages result in longer delivery periods and, in the case of dissatisfied customers, 

loss of customer lifetime value. Hence, MTO approaches which do manage to meet volatile 

customer demand are usually those that benefit from more flexible capacity management, 

which allows companies to adjust their production in the short-term. This type of flexibility is 

known as volume flexibility (Wickramasinghe and Perera 2016). 

Instead of investing in new production facilities, companies obtain volume flexibility by 

commissioning external capacity providers (ECPs) who offer manufacturing-as-a-service 

(MaaS) (Rauschecker et al. 2014). More precisely, ECPs offer flexible production on-demand 

using their own production facilities or those of a network. Thereby, they deliver and install 

on-demand production capacity to the customer’s factory or, if geographical distance makes 
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it logistically feasible, may offer remote production. In return, the ECP can charge pay-per-

use fees, as is common practice among businesses offering on-demand production capacity 

(Xu 2012). ECP services can be particularly profitable for small and medium size enterprises 

(SMEs), which usually have lower investment budgets. The overarching digitalization of the 

industrial sector enables companies to commission ECPs, and utilize on-demand production 

capacity, thanks to lower machine setup costs resulting from easier (IT-based) integration (so 

called plug-and-produce) and multi-functionality of leasable production facilities. Moreover, 

digitized production infrastructures significantly simplify MTO approaches thanks to the fact 

that related Cyber-Physical Production Systems (CPPSs), which “synergize conventional 

production technology and IT” (Penas et al. 2017: p.55), support the mass customization of 

products in ever smaller batch sizes down to lot-size one (Gerhard 2017). Compared to 

production costs in traditional environments, costs in CPPSs are comparatively low (Brettel 

et al. 2014; Wang et al. 2016), which makes outsourcing to low wage countries less attractive 

(Katzmarzik et al. 2012). The return of manufacturing from globally-distributed to local (near-

customer) factories can also help to fulfil time-sensitive customer demand. However, factories 

focusing on local markets are subject to more volatile customer demand, i.e., machine 

utilization is less predictable than in factories which manufacture for customers worldwide. 

Hence, digitized production favors ECP business models, and MTO approaches and 

companies which offer local production benefit from volume flexibility as offered by ECPs 

(Matt et al. 2015).  

The emerging trend of ECP services is widely evident. For instance, the US online shop 

eMachineShop of the Micro Logic Corporation offers “easy, convenient and low-cost 

fabrication of custom parts”, which are ordered “via the web” and produced in the company’s 

own facilities (eMachineShop 2017). Relying on a business network, Xometry Inc. offers 

“custom parts through hundreds of manufacturers across the United States” (Xometry 2017). 

Both of these ECPs offer remote production using 3D printing, and have in common that 

customers firstly upload or create a CAD model via the respective website, secondly, receive 

feedback on prices, lead times, and production processes, and, thirdly, submit the order. 

Another example is EMAG Group, a German supplier of manufacturing systems which covers 

“the whole process chain, from soft to hard machining” and builds production facilities for 

“turning, drilling, milling, gear cutting, grinding, laser welding […]” (EMAG 2017). EMAG 

offers its production facilities for lease in order to “assist companies in reacting to peaks or 
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losses in production, or to bridge the waiting period for delivery of a new machine or the time 

taken to recondition / modify an existing one” (EMAG 2017). Although these companies 

already provide on-demand production capacity, the business models of ECPs may be further 

extended in the future. For example, ECPs may offer cloud manufacturing, i.e., “a customer-

centric manufacturing model that exploits on-demand access to a shared collection of 

diversified and distributed manufacturing resources to form temporary, reconfigurable 

production lines which enhance efficiency, reduce product lifecycle costs, and allow for 

optimal resource loading in response to variable-demand customer generated tasking” (Wu et 

al. 2013: p.1). Cloud manufacturing strives to provide “centralized operation management of 

the services, choice of different operation modes and embedded access of manufacturing 

equipment and resources” (Xu 2012: p.79). Those ECPs which offer cloud manufacturing may 

publish their services in a cloud platform that matches customer inquiries with a producer 

based on their qualitative and quantitative parameters, establishes and executes a (virtual) 

manufacturing system, and enables ECP performance evaluation, fee calculation, and 

payment processing (Ren et al. 2017). 

Independent of the established ECP business model, the rise of MaaS has the potential to 

provide industrial companies with additional volume flexibility, accessed on-demand and 

without permanent capacity expansion, in order to successfully enable MTO approaches. 

However, on-demand production capacity comes at a price. On the one hand, the use of on-

demand production capacity fosters companies’ dependence on ECPs. It also requires the 

sharing of highly sensitive information, which could ultimately lead to hold-up problems 

(Haruvy et al. 2018). On the other hand, access to on-demand production capacity (and, 

therefore, volume flexibility) is likely to require initial upfront investments, e.g., for additional 

interface technologies such as inter-organizational information systems, the standardizing of 

planning and organizational processes, employee training, and fees such as availability 

guarantees for production facilities. Given the costs associated with these investments, the 

profitability of on-demand production capacity is highly dependent on the industrial 

companies’ customers, in particular their changing preferences and, thus, the development of 

customer demand over time. This is to say that highly uncertain and volatile customer demand 

favors corresponding upfront investments, as companies then possess volume flexibility 

which allows them to expand their otherwise rigid internal production capacity as needed. 



II Return Management in Digitized Value Networks 65 

 

 
 
 

Investments in on-demand production capacity have to be evaluated in terms of the resultant 

managerial flexibility in response to the uncertain development of demand. Yet this is a 

complex task, and companies which follow principles of value-based management require 

appropriate methods for decision-support which do not yet exist (cf. Section 2). Hence, the 

aim of this paper is to develop a valuation method that addresses this situation. Thereby, real 

options analysis (ROA) comes into consideration which is “an adjusted version of decision 

tree analysis, involving a redistribution of probability masses such that risk is reallocated in a 

way that allows for discounting by the risk-free rate” (Benaroch and Kauffman 2000: p.202). 

ROA is an established method for evaluating investments which focuses on the flexibility of 

managerial action in response to uncertainty. Accordingly, in this paper, we address the 

following research question: 

RQ:  How can an industrial company evaluate investments in on-demand production capacity 

considering managerial flexibility of action due to volume flexibility and uncertainty in 

demand? 

In order to answer this research question, we model and evaluate volume flexibility as a set of 

expansion options, and integrate the respective option values in an economic analysis of 

upfront investments using an expanded net present value approach (ENPV). Our research 

addresses a relevant real-world problem as an answer could facilitate investment decision 

making in the course of industrial companies’ production capacity planning. The remainder 

of this paper is structured as follows: In Section 2, we review related work on manufacturing 

strategies, capacity planning, investment evaluation methods, and – in particular – ROA. In 

Section 3, we describe our research scenario, introduce basic assumptions, and present our 

model, which evaluates expansion options for on-demand production capacity. Afterwards, in 

Section 4, we demonstrate our model using an exemplary base case and then evaluate the 

validity and robustness of the model using randomly chosen simulations and subsequent 

sensitivity analyses. In Section 5, we discuss the managerial implications. Finally, in Section 

6, we conclude our paper by addressing limitations and presenting an outlook for future 

research. 
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II.3.2 Theoretical Background, Related Work, and Research Method 

In the following, we present related work to our research. Firstly, we discuss manufacturing 

strategies and capacity planning in the industrial sector. Secondly, we elaborate on investment 

evaluation methods in general before focusing our discussion on ROA. 

II.3.2.1 Manufacturing Strategies and Capacity Planning 

Companies may follow various different manufacturing strategies. Olhager and Östlund 

(1990) describe a “manufacturing continuum ranging from make-to-stock over assemble-to-

order and make-to-order to engineer-to-order […]” (p.136). They discuss the customer order 

point (COP), i.e., the point in a manufacturing process at which a product is matched with an 

individual customer order. Depending on the degree of customization, the COP may vary 

between finished products in a make-to-stock concept and raw materials in an MTO concept 

(Olhager and Östlund 1990). Customized production and mass customization favor flexible 

MTO approaches. Chen et al. (2003) highlight the fact that MTO approaches require the close 

integration of suppliers, manufacturers, assemblers of components, and distributors of 

finished products in order to ensure short lead times. Thereby, digitalization favors the 

“integration of several different companies through value networks” (Kagermann et al. 2013: 

p.6). As a result, new forms of collaboration become feasible. For example, embedded 

manufacturing systems are vertically connected to business processes and horizontally 

networked with other business partners (Wang et al. 2016). Brettel et al. (2014) argue that 

“boundaries of companies deteriorate” (p.37) and that collaborative manufacturing becomes 

increasingly important. As a result of this trend in networked manufacturing, new business 

models (such as ECPs) emerge and open new market opportunities for companies (Kagermann 

et al. 2013; Monostori 2014).  

As MTO approaches are especially prone to mistakes in capacity planning (cf. Section 1), 

such manufacturing strategies benefit from the opportunity to flexibly outsource production. 

Respective make-or-buy decisions in capacity planning have been well researched in the 

literature (Chase et al. 2004). Kremic et al. (2006) conduct an extensive literature review and 

conclude that motivations for outsourcing fall into three main categories: cost, strategy, and 

politics (the latter mostly in the case public organizations). Transaction-cost theory is often 

used to investigate the cost-saving potential of specialization and economies of scale, while 

the resource-based view is widely used to explain outsourcing from a strategic perspective 
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(Boulaksil and Fransoo 2010). In the latter case, companies apply outsourcing to concentrate 

on core competencies, or to have more flexibility to manage uncertain demand (Lankford and 

Parsa 1999). Decision support for capacity planning and the outsourcing of physical 

production is also well researched. For instance, Tomlin (2006) investigates the effects of 

volume flexibility on sourcing and contingent routing strategy in a single-product setting in 

the event that a company has the choice between different types of suppliers with and without 

volume flexibility. Applying Tomlin’s approach, companies can investigate different capacity 

and sourcing strategies – particularly in the case of disruptions – in order to evaluate the 

volume flexibility of their suppliers. Dong and Durbin (2005) investigate surplus markets, on 

which suppliers can flexibly sell excess component inventory to other manufacturers 

experiencing a shortage. They illustrate that suppliers can profit from the opportunity to sell 

excess inventory in the event of low transaction costs on the surplus market. Tsai and Lai 

(2007) develop a mathematical approach to optimal decision making in joint production 

settings. Using this approach, companies producing joint products can arrive at the most 

mutually-advantageous decisions regarding capacity expansions and outsourcing.  

In addition to the literature on dependent, company-internal, and incremental capacity choices, 

there is also literature on capacity choices that focuses on companies which choose not to 

periodically adjust their capacity but instead decide to source external capacity from ECPs. 

This allows the analysis of decision-specific components such as upper internal capacity limits 

and minimum contract sizes of ECPs. In terms of ECPs which provide services (rather than 

physical production), Aksin et al. (2008) research a call center and the problems it faces when 

making decisions about outsourcing, considering several frame conditions. The authors 

determine optimal capacity levels and characterize optimal pricing conditions for volume-

based and capacity-based contracts offered by a vendor (ECP). Another example is the work 

of Dorsch and Häckel (2012), in which the authors investigate the on-demand exchange of 

excess capacity for cloud-services, and the effect that this has on excess capacity markets. 

They develop a mathematical model of the capacity-related optimization problem experienced 

by service providers with and without excess capacity, and find that flexibility offers 

economic benefits thanks to excess capacity markets. Furthermore, the same authors develop 

an optimization approach to investigate the effects that sourcing decisions have on operating 

costs for business processes, taking particular account of volatile demand and on-demand 

capacity from an external market (Dorsch and Häckel 2014). However, authors in the 
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aforementioned research streams on capacity optimization focus on the optimal allocation of 

existing resources rather than on the provision of decision support for those deciding for or 

against flexibility-enabling investments. 

II.3.2.2 Investment Evaluation Methods 

A well-established method for evaluating investments is to calculate the Net Present Value 

(NPV), which is calculated by subtracting the present value of cash outflows from the present 

value of cash inflows. If a project’s NPV is greater than zero, the project is worth the 

investment (Myers 1984). To account for project uncertainty (i.e., risks), cashflows can be 

additionally discounted using a risk-adjusted discount rate. An alternative approach is to 

adjust cashflows to risk, and discount the adjusted cashflows by the risk-free interest rate 

(Schwartz and Trigeorgis 2004). However, literature often claims that the NPV 

underestimates the value of a project as it does not capture managerial flexibility of actions 

(Kogut and Kulatilaka 1994; Schwartz and Trigeorgis 2004; Lee and Lee 2015), which is a 

major success factor for appropriate decision making, particularly in the case of digitization 

projects (Brettel et al. 2014; Vyatkin et al. 2007; Lasi et al. 2014; Spath et al. 2013). As a 

result, strategically important projects are probably not undertaken as a result of incomplete 

valuations (Amram and Kulatilaka 1998).  

One appropriate approach for capturing managerial flexibility of actions in response to 

uncertainty is ROA, which transfers option pricing models for financial assets to real-world 

investment decisions (Copeland and Antikarov 2003; Trigeorgis 1996). Both financial and 

real options include the opportunity, but not the obligation, to undertake a predetermined 

action at a future point in time (Luehrman 1998). Myers (1977) defines real options as 

“opportunities to purchase real assets on possible favorable terms” (p.163). Depending on the 

kind of managerial flexibility, several types of real options exist, e.g., options to expand, to 

contract, to abandon, to defer, and to switch (Trigeorgis 1996).  

In this paper, we apply ROA in order to evaluate a manufacturing company’s flexibility to 

commission an ECP, which the company may use to address uncertain levels of customer 

demand. We model respective volume flexibility as an expansion option, which was 

traditionally defined as an option to “expand the project’s scale by making an additional 

investment” (Trigeorgis 1993: p.3). Dangl (1999) applies ROA to determine the optimal scale 

and timing of a manufacturing company’s capacity expansion. The author concludes that 

uncertainty in the development of demand considerably increases the optimal scale of capacity 
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expansion and deferral of investment. Similarly, Benavides et al. (1999) research the optimal 

scale and timing of capacity expansions within semiconductor industries. They focus on 

alternative capacity expansion designs, and conclude that uncertainty in demand development 

favors designs for sequentially deployable expansions and late investment decisions. Lier et 

al. (2012) research sequential expansion options for modular chemical plants which can be 

gradually expanded during a fixed project term. This modular approach increases the project 

value response to uncertain demand development, as compared to large-scale chemical plants 

which are, at the outset, built to their final stage of expansion. Fernandes et al. (2012) evaluate 

an option designed to enable a company to stop outsourcing and expand its own production 

capacity. They find that demand uncertainty considerably affects decisions about integration, 

i.e., about the occurrence and timing of internal capacity expansions.  

In our case, however, additional production capacity is only available at times when the 

company is able to expansion option. Hence, our type of expansion option is similar to the 

option of altering the scale, which requires the kind of managerial flexibility that enables a 

company to “increase the scale of a project/system (and thus the range of potential benefits) 

if circumstances are favorable; or […] reduce the scale (and thus potential losses) if 

circumstances are unfavorable” (Fichman et al. 2005: p.25). Abel et al. (1996) implicitly 

model an option to change scale by evaluating a company’s flexibility to both invest and 

disinvest in production capacity. They conclude that the option to disinvest incentivized the 

company to make previous investments. In the context of multistage enterprise resource 

planning (ERP) investment projects, Wu et al. (2009) evaluate several types of real options, 

including a company’s option to change the scale at each stage of a project.  

As opposed to previous studies, in our case, option exercise initializes an external service and 

not an investment in the expansion of internal production capacity. In this vein, Benaroch et 

al. (2010) build a model for evaluating flexibility to out- and back-source IT service contracts. 

Contrary to our approach, they focus on an ECP’s perspective, with the objective of 

identifying optimal contract flexibility in terms of service level agreements. In doing so, they 

neglect some aspects that we explicitly consider, such as the client company’s potential for 

partial outsourcing (they apply an all-or-nothing approach), the possibility of increased costs 

if the client company’s customers become dissatisfied, and an evaluation of necessary upfront 

investments. Wu et al. (2001) and Wu et al. (2002) research long-term contracting agreements 

and spot markets for non-storable goods and services. They differentiate between several 
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cases involving single and multiple buyers and sellers, applying von Stackelberg game-based 

theoretical frameworks in order to determine the prices at which market equilibrium is 

achieved. Thereby, Wu et al. (2001) evaluate long-term capacity options (which buyers obtain 

from sellers) based on Black and Scholes’ (1973) and Merton’s (1973) evaluations of options. 

This approach was further developed by Spinler et al. (2002) to include not only spot price 

uncertainty but also demand and cost uncertainty, and, subsequently, by Spinler et al. (2003) 

with a view to evaluating risk-sharing between the trading partners. Like our approach, all of 

these option pricing models based on Wu et al. (2001) consider a seller’s reservation price (in 

our case: minimum contract size) and, if capacity is called, execution fee per unit of output. 

However, for our purposes, these models do not suit, as our aim is to model a company’s 

(temporal) outsourcing decision problem, which yields additional dependencies on internal 

production costs, internal production capacity, and customer satisfaction. Klaus et al. (2014) 

built a model for IT-service providers to outsource excess demand to an ECP if internal service 

capacity is insufficient. Like us, they weigh the value of their option against the necessary 

upfront investments, while option exercise triggers costs for external service activation. 

Further similarities are their consideration of partial outsourcing and dissatisfied customers. 

However, these authors limit their approach to a one-time outsourcing decision, which must 

fully compensate the company for upfront investments. In contrast, we allow for several 

sequential outsourcing decisions: i.e., for a company’s initial decision-making on upfront 

investments, we evaluate multiple (temporal) expansion options. Furthermore, we extend 

Klaus et al.’s (2014) approach by allowing the ECP to demand a minimum contract size. 

Despite their differences, the studies by Benaroch et al. (2010), Wu et al. (2001), and Klaus 

et al. (2014) have an essential property in common with our objective: Due to the trend toward 

highly individualized products, we consider a company that applies an MTO approach with 

no production of stock, which is similar to those authors’ application context of IT-services 

that cannot be physically stored. In the context of manufacturing, we found only one other 

paper that uses ROA to evaluate temporal capacity expansion of companies with MTO 

approaches: Kleinert and Stich (2010) address companies in the machinery and equipment 

industry that source subcomponents from suppliers. As unforeseen problems might occur 

during the manufacturing process, these authors recommend that such companies consider the 

purchase of additional expansion options from their suppliers. Like our approach, a client 

company therefore weighs costs for enabling (purchasing) the expansion option – and for the 

actual option exercise against adverse effects of time delays (customer dissatisfaction in our 
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case). However, their approach is rather conceptual and is not transformed into a valuation 

formula. Unlike our approach, their expansion option only refers to a single customer order, 

and the possibility that the company might produce subcomponents internally is excluded. 

To the best of our knowledge, existing literature is insufficient for our purposes, which has 

encouraged us to develop an appropriate approach for the evaluation of investments which 

enable the commissioning of ECPs, i.e., recourse to flexible, on-demand production capacity. 

Thereby, neither an isolated NPV approach nor an isolated ROA is sufficient: instead, a 

combination of both approaches seems promising. Panayi and Trigeorgis (1998) introduce the 

ENPV approach, which enhances the common NPV by integrating ROA3. For example, 

investments in a software platform can be evaluated using the ENPV approach: Such a project 

is likely to exhibit a negative NPV for the platform itself, but may become profitable when 

the flexibility to develop additional software applications on this platform is taken into 

account. In this paper, we also apply an ENPV approach. Since our scenario considers the 

evaluation of upfront investments without considering further deterministic cashflows, it is 

kept deliberately simple (i.e., the NPV equals cash outflows due to upfront investments). More 

precisely, in our scenario, the business case of upfront investments must solely pay off by 

obtained flexibility of action. Nevertheless, our approach can be easily extended for scenarios 

with additional cash inflows and outflows of the initial (enabling) project. We introduce our 

ENPV approach in the following section. 

II.3.3 Evaluation of On-Demand Production Capacity 

In this section, we present our ENPV approach, including ROA. Therefore, we firstly describe 

our scenario of an MTO production setting. Secondly, we elaborate on assumptions inherent 

in the model before presenting our approach for modeling and evaluating volume flexibility 

using on-demand production capacity as an expansion option. 

II.3.3.1 Scenario 

As previously mentioned, we consider an industrial company that manufactures highly 

individualized products using an MTO approach. Customers expect the company to deliver 

products within a contractually stipulated timeframe. The rate of incoming customer orders is 

highly volatile and, thus, the company must have an appropriate capacity planning. The central 

 
3 Expanded Net Present Value (ENPV) = Traditional NPV + Value of real options (similar to Panayi and 
Trigeorgis 1998) 
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tradeoff for the company is between idle capacity and capacity shortages. Seeking volume 

flexibility, the company considers commissioning an ECP that offers flexible production 

capacity on-demand. We assume that the ECP’s business model is based on a contractually 

specified pay-per-use payment model, i.e., the industrial company pays for each unit produced 

externally. The contract also specifies a minimum contract size for activating the external 

service, which the company must meet in order to ensure a minimum return for the ECP. 

Commissioning on-demand production capacity also requires initial upfront investments in, 

for example, additional interface technologies such as inter-organizational information 

systems, the standardization of planning and organizational processes, employee training, and 

fees such as availability guarantees for the ECP’s production facilities. In sum, the company 

faces the challenge to (ex-ante) evaluate the business value of volume flexibility using on-

demand production capacity, taking into account both the necessary upfront investments and 

the highly volatile nature of customer orders. In the following we present our model, which 

addresses this real-world problem using ROA. Firstly, however, we introduce the necessary 

assumptions. 

II.3.3.2 Basic Scenario and Model Assumptions 

We consider a time horizon with regard to an arbitrary time 𝑡  for the company’s capacity 

planning. 𝑡  is the current point in time, at which the company must decide whether to sign a 

framework contract with an ECP for a contract term extending until tn. This contract specifies 

the company’s right to use on-demand production capacity (i.e., to activate the ECP’s service) 

at 𝑛 ∈ ℕ equally distributed times 𝑡  with 𝑖 ∈ [1, 𝑛] which divide the planning horizon until 

𝑡  into 𝑛 equal periods. More precisely, this means that, if the company signs the framework 

contract in 𝑡 , it can decide 𝑛 times whether seizing on-demand production capacity is (for 

the duration of one period) preferable given the current volatility of customer demand (Figure 

II.3-1). In terms of ROA, the company can sign the framework contract to purchase 𝑛 

independent expansion options from the ECP. We enumerate expansion options with 𝑖 ∈

[1, 𝑛] and refer to the maturity date of each option using 𝑇 = 𝑡 . 

 
Figure II.3-1: Planning horizon in the Basic Scenario – Own Illustration 
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The objective of our approach is to investigate whether or not the company should sign the 

framework contract with the ECP. This involves comparing the value of the expansion options 

available to the company with the cash outflows required for the necessary upfront 

investments. As stated above, we apply an ENPV approach to evaluate the company’s overall 

business case (𝑉 ):  

𝑉 = 𝐶 (𝑡 ) − 𝐼(𝑡 ) (1)

Thereby, 𝐶 (𝑡 ) is the present value of the expansion option with a maturity date in 𝑇  from 

the perspective of 𝑡 . Accordingly, 𝐼(𝑡 ) is the sum of cash outflow for necessary upfront 

investments in 𝑡 , which is independent of expansion options’ exercise. More precisely, as the 

company decides for or against upfront investments at the current point in time 𝑡 , these 

upfront investments do not influence the company’s future decision making on exercising 

(temporal) expansion options. If the business case yields 𝑉 > 0, signing the framework 

contract with the ECP is preferable. 

The company sells its MTO products in order to generate revenue. We assume highly volatile 

customer demand which yields (for a specific MTO product) a total periodical revenue 𝑅(𝑡 ). 

We choose 𝑅(𝑡 ) ≥ 0 to be our only stochastic variable for determining the value of the 

expansion option since this is a monetary quantity which facilitates the application of ROA 

(compared to, for instance, the modeling of volatile customer orders).  

Assumption 1:  𝑅(𝑡 ) follows a multiplicative (stochastic) binomial process over discrete time 

periods with a constant mean µ > 0 and standard deviation (volatility) σ > 0. 

The company observes 𝑅(𝑡 ) at the current point in time 𝑡  and uses this 

information to predict uncertain future revenues 𝑅(𝑡 ). 

Moreover, the company possesses a fixed internal production capacity which can process a 

certain (periodical) maximum revenue 𝑅 ≥ 0. We assume revenue per unit sold and respective 

internal production costs 𝑘 ∈ [0,1] (as a proportion of this revenue) to be constant for all 

customers and all periods until 𝑡 . Thus, for 𝑅(𝑡 ) ≤ 𝑅, 𝑘 ∗ 𝑅(𝑡 ) refers to the company’s 

total internal production costs in 𝑡 .  
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Assumption 2:  The company’s maximum revenue 𝑅, revenue per unit sold, and internal 

production costs 𝑘  are constant until 𝑡 . Thereby, 𝑅 is a multiple of revenue 

per unit sold. 

Because of the current trend toward MTO approaches, we do not consider stocks of finished 

products. Due to customer expectations of ever-shorter lead times, we assume that customers 

will become dissatisfied if the company does not process their orders within a certain time 

frame. 

Assumption 3:  Customers expect the company to process their order within a certain time 

frame which equals one planning period (e.g., one month). If the company 

cannot deliver a product within this time frame, the respective production 

costs rise to 𝑘 , with 𝑘 > 𝑘  representing the cost of dissatisfied 

customers. 

Thus, if 𝑅(𝑡 ) exceeds 𝑅 at time 𝑡 , the production costs associated with dissatisfied customers 

𝑘  are incurred and apply to all excess revenue 𝑅(𝑡 ) − 𝑅 ≥ 0. In practice, 𝑘  may result 

from contractual penalties incurred due to the violation of service level agreements, loss of 

customer lifetime value, loss of reputation, loss of revenue due to the rejection or cancellation 

of orders, or a combination of these factors. 

However, if an ECP is available, the company can use on-demand production capacity to 

avoid customer dissatisfaction. At expansion option 𝑖’s maturity date 𝑇 , the company reviews 

its current periodical revenue 𝑅(𝑇 ) (which is then known) to determine if production costs 

could be lowered using the ECP’s production capacity. In order to reduce complexity, we 

neglect the fact that the ECP’s production capacity is limited and may involve supply-

dependent pricing structures. 

Assumption 4:  The ECP’s production capacity is high enough to meet the company’s excess 

revenue, and the ECP charges constant unit prices (i.e., external production 

costs, from the client company’s perspective) of 𝑘  with 𝑘 > 𝑘 >

𝑘 . Like 𝑘  and 𝑘 , 𝑘  is proportional to the company’s revenue per 

unit sold. 

As the ECP aims to generate profit, it is reasonable to assume that corresponding external 

production costs per unit 𝑘  are higher than internal production costs per unit 𝑘 . In 

addition, 𝑘  must be lower than 𝑘 , otherwise the ECP will not be competitive. As 
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described in Section 3.1, the company’s contract with the ECP specifies a minimum contract 

size 𝑀𝐶𝑆 every time 𝑡  the company exercises an expansion option, i.e., draws on the on-

demand production capacity. As 𝑘  is constant, 𝑅 refers to the minimum revenue the 

company must draw from its customers in order to yield the required 𝑀𝐶𝑆 with the ECP, i.e., 

𝑅 = . 

Assumption 5:  𝑀𝐶𝑆 and 𝑅 are constant until 𝑡 . If the company does not meet the agreed 

𝑀𝐶𝑆, it must pay the difference. 

Both 𝑅 and 𝑀𝐶𝑆 significantly influence the activation of external services. Finally, to modify 

and apply the binomial tree model of Cox et al. (1979) (Section 3.3.2), we require a rather 

technical assumption. 

Assumption 6:  The company is a risk-neutral decision maker. 

II.3.3.3 Modeling an Expansion Option for On-Demand Production Capacity 

In this section, we present our ROA. Firstly, we describe the decision the company must make 

about seizing on-demand production capacity. Secondly, we develop our option evaluation 

model based on Cox et al. (1979). 

II.3.3.3.1. Decision Problem of Seizing On-Demand Production Capacity  

The decision problem focuses on total periodical revenue 𝑅(𝑡 ), as 𝑅(𝑡 ) is the only stochastic 

parameter in our model. Starting in 𝑡 = 𝑡 , we model 𝑅(𝑡 ) as a multiplicative binomial 

process, i.e., as a binomial tree that forks at each discrete point in time 𝑡  into two different 

values, both of which reflect uncertainty. One value represents a possible future increase in 

𝑅(𝑡 ), the other a possible future decrease. We illustrate an exemplary binomial tree with a 

time horizon of three periods in Figure II.3-2. 

We introduce 𝑢 > 1 and 𝑑 < 1 as factors for upward and downward movement of 𝑅(𝑡 ), 

respectively. Thereby, starting at 𝑡 , 𝑅 (𝑡 ) =  𝑅(𝑡 ) ∗  𝑢 represents a possible (future) 

increase in the total periodical revenue, whereas 𝑅 (𝑡 ) =  𝑅(𝑡 ) ∗  𝑑 represents a possible 

(future) decrease. At time 𝑡 , the binomial tree possesses 𝑖 + 1 different nodes. 𝑊 , =

(𝑤 ,𝑤 ,. . . , 𝑤 ) indicates the filtration or “history” of upward and downward movements 

previous to 𝑡 , with 𝑤 ∈ 𝑢 , 𝑑 , j∈{𝑡 , 𝑡 ,…, 𝑡 }, and 𝑠 ∈ {1, … , i + 1} used to number 
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different nodes at time 𝑡 . This filtration helps to unambiguously identify different nodes at a 

certain point in time 𝑡 , which is necessary for implementing our algorithm. However, for the 

sake of readability, we explain the following with a reduced notation that waives all filtrations. 

 
Figure II.3-2: Binomial tree of the total periodical revenue 𝑅(𝑡 ) – Own Illustration 

At time 𝑡 = 𝑇 , the company must decide to exercise an expansion option. Therefore, it 

observes the total revenue of the current period 𝑅(𝑇 ) and computes the total production costs 

with (𝑇𝑃𝐶 ) and without (𝑇𝑃𝐶 ) recourse to on-demand production capacity. The former 

represents an exercise of the expansion option, the latter represents no exercise. Afterwards, 

the company subtracts the respective total production costs from the total revenue of the 

current period (which the company observes) analogous to common option pricing theory. 

Note that, due to our modelling of cost structure (𝑘  also includes lost revenue resulting 

from insufficient production capacity), in both cases (exercise or not) the company accepts 

every customer order and tries to meet this demand by minimizing related costs. To 

summarize, the company would only exercise the option if the payoff using on-demand 

production capacity were greater than the payoff without using on-demand production 

capacity: 

𝑅(𝑇 ) −  𝑇𝑃𝐶  >  𝑅(𝑇 )  − 𝑇𝑃𝐶  (2) 

From this equation, we can determine that the company only exercises the corresponding 

expansion option for 𝑇𝑃𝐶 > 𝑇𝑃𝐶 . Hence, at time 𝑇 , the value of the expansion option 

𝐶 (𝑇 ) equals the following: 

)
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𝐶 (𝑇 ) = max{𝑇𝑃𝐶 − 𝑇𝑃𝐶 ; 0} (3)

For the computation of 𝑇𝑃𝐶  and 𝑇𝑃𝐶 , we must differentiate between two cases: 𝑅 ≥ 𝑅 

and 𝑅 ≤ 𝑅. This is because the relationship between these two parameters critically influences 

the company’s decision problem (cf. Table II.3-1). As 𝑅 is determined by the focal company 

and 𝑅 by the ECP’s business model, both cases can occur. Depending on 𝑅(𝑇 ), 𝑅, 𝑅, 𝑘 , 

𝑘 , and 𝑘 , the company can then determine the proportion of the revenue that should be 

produced in-house or by the ECP. 

Cases for 𝑹 ≥ 𝑹 

Case Computation of 𝑇𝑃𝐶  and 𝑇𝑃𝐶  𝑇𝑃𝐶 − 𝑇𝑃𝐶  

I.1:  

𝑅(𝑇 ) ≤ 𝑅 ≤ 𝑅

≤ 𝑅 + 𝑅 

𝑇𝑃𝐶 = 𝑅(𝑇 ) ∗ 𝑘   

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘   

= 𝑅(𝑇 ) ∗ 𝑘 − 𝑅 ∗ 𝑘 < 0 

II.1:  

𝑅 ≤ 𝑅(𝑇 ) ≤  𝑅

≤ 𝑅 + 𝑅 

𝑇𝑃𝐶 = 𝑅(𝑇 ) ∗ 𝑘   

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘 + 𝑅(𝑇 ) − 𝑅 ∗ 𝑘    

= 𝑅 ∗ (𝑘 − 𝑘 ) < 0   

III.1:  

𝑅 ≤  𝑅 ≤ 𝑅(𝑇 )

≤ 𝑅 + 𝑅 

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘 + (𝑅(𝑇 ) − 𝑅) ∗ 𝑘  

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘 + 𝑅(𝑇 ) − 𝑅 ∗ 𝑘  

= (𝑅(𝑇 ) − 𝑅) ∗ (𝑘 − 𝑘 ) − 𝑅

∗ (𝑘 − 𝑘 )

⪌ 0 

 

IV.1:  

𝑅 ≤  𝑅 ≤ 𝑅 + 𝑅

≤ 𝑅(𝑇 ) 

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘 + (𝑅(𝑇 ) − 𝑅) ∗ 𝑘  

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘 + (𝑅(𝑇 ) − 𝑅) ∗ 𝑘  

= (𝑅(𝑇 ) − 𝑅) ∗ (𝑘 − 𝑘 ) > 0 

Cases for 𝑹 ≤ 𝑹 

I.2:  

𝑅(𝑇 ) ≤  𝑅 ≤ 𝑅

≤ 𝑅 + 𝑅 

𝑇𝑃𝐶 = 𝑅(𝑇 ) ∗ 𝑘   

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘   

= 𝑅(𝑇 ) ∗ 𝑘 − 𝑅 ∗ 𝑘 < 0 

II.2:  

𝑅 ≤ 𝑅(𝑇 ) ≤  𝑅

≤ 𝑅 + 𝑅 

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘 + (𝑅(𝑇 ) − 𝑅) ∗ 𝑘   

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘   

= (𝑅(𝑇 ) − 𝑅) ∗ 𝑘 + 𝑅 ∗ 𝑘

− 𝑅 ∗ 𝑘 ⪌ 0 

III.2:  

𝑅 ≤ 𝑅 ≤ 𝑅(𝑇 )

≤ 𝑅 + 𝑅 

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘 + (𝑅(𝑇 ) − 𝑅) ∗ 𝑘  

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘 + 𝑅(𝑇 ) − 𝑅 ∗ 𝑘  

= (𝑅(𝑇 ) − 𝑅) ∗ (𝑘 − 𝑘 ) − 𝑅

∗ (𝑘 − 𝑘 )

⪌ 0 

 

IV.2:  

𝑅 ≤ 𝑅 ≤ 𝑅 + 𝑅

≤ 𝑅(𝑇 ) 

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘 + (𝑅(𝑇 ) − 𝑅) ∗ 𝑘  

𝑇𝑃𝐶 = 𝑅 ∗ 𝑘 + (𝑅(𝑇 ) − 𝑅) ∗ 𝑘  

= (𝑅(𝑇 ) − 𝑅) ∗ (𝑘 − 𝑘 ) > 0 

Table II.3-1: Cases for the company’s decision problem at time 𝑡 = 𝑇   
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In cases I.1 and I.2, 𝑅(𝑇 ) is lower than or equal to 𝑅 and  𝑅. If the company does exercise the 

expansion option in these cases, it cannot, or will only just, meet the required 𝑀𝐶𝑆 with its 

customer demand, and will simultaneously fail to utilize its internal production capacity (i.e., 

it outsources customer demand for increased production costs of 𝑘 > 𝑘 ). Conversely, 

even if the company does not exercise the expansion option, its internal production capacity 

is sufficient to avoid dissatisfied customers. This is to say that seizing on-demand production 

capacity would increase total production costs, and can therefore never be profitable 

(𝑇𝑃𝐶 − 𝑇𝑃𝐶 < 0). The same applies in case II.1: As internal production capacity is 

still sufficiently large, outsourcing production for 𝑘 > 𝑘  can never be profitable. In case 

II.2, seizing on-demand production capacity can be profitable if the disadvantage of not or 

only just meeting the required 𝑀𝐶𝑆 – and therefore (due to outsourcing) not utilizing internal 

production capacity – is overcompensated for by the advantage of avoiding dissatisfied 

customers (which would occur without the ECP). In cases III.1 and III.2, the profitability of 

exercising the expansion option further increases, as the company meets the required 𝑀𝐶𝑆 

with its customer demand. However, for (𝑇 ) < 𝑅 + R , the company cannot exercise the 

expansion option and simultaneously utilize all of its internal production capacity, which is a 

disadvantage that can still exceed the monetary benefits of avoiding dissatisfied customers. 

For increasing 𝑅(𝑇 ) until 𝑅(𝑇 ) = 𝑅 + R (upper interval boundary in cases III.1 and III.2), 

this disadvantage (and therefore the cost of activating the external service) shrinks to zero. 

Exercising the expansion option in cases IV.1 and IV.2 (𝑅 + R ≤ 𝑅(𝑇 )) is always profitable, 

since the total internal production capacity is utilized and 𝑘 > 𝑘 . Thereby, the company 

can fully meet the required 𝑀𝐶𝑆. As using on-demand production capacity is not obligatory, 

the company would only exercise the option for 𝑇𝑃𝐶 − 𝑇𝑃𝐶 ≥ 0. 

Figure II.3-3 schematically illustrates the payoff 𝑇𝑃𝐶 − 𝑇𝑃𝐶  and the resulting real 

option values at time 𝑡 = 𝑇 . In Figure 3b, i.e., for 𝑅 ≤ 𝑅, we illustrate two cases which can 

occur depending on parameter values (Cases II.2 and III.2 in Table 1 yield two possible payoff 

progressions depending on whether exercising the expansion option is profitable, i.e., “at the 

money”, for 𝑅(𝑇 ) ≤  𝑅 or 𝑅 ≤ 𝑅(𝑇 )). 
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Figure II.3-3: Cash flows for option exercise at time 𝑡 = 𝑇  for 𝑅 ≥ 𝑅 and 𝑅 ≤ 𝑅 

II.3.3.3.2. Valuation of the Expansion Option 

When entering a framework contract with the ECP, the company has 𝑛 independent expansion 

options, whereas the duration of the 𝑖 ∈ 𝑛  expansion option equals 𝑖 periods. As the 

company can exercise each option only once at the respective maturity date, we can apply the 

established option pricing for European call options. Thereby, 𝑅(𝑡 ) is the underlying of our 

expansion option, since its stochastic development directly affects the expansion option’s 

value. We modify and apply the binomial tree model of Cox et al. (1979), which enables the 

risk-neutral evaluation of European call options. Binomial tree models are one of the most 

commonly used methods for option evaluation as they are easy to comprehend and easy to 

adapt to customized input parameters (Copeland and Tufano 2004). In particular, we choose 

this discrete-time approach rather than a continuous-time approach, since the latter would 

𝑻𝑷𝑪𝑵𝒐𝑬𝒙 − 𝑻𝑷𝑪𝑬𝒙 𝑻𝑷𝑪𝑵𝒐𝑬𝒙 − 𝑻𝑷𝑪𝑬𝒙

𝑹 𝑹

𝑹+ 𝑹 𝑹+ 𝑹𝑹

𝑹

𝟎

𝐂𝐓𝐢
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𝑹 𝑹
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𝑹
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𝟎

𝐂𝐓𝐢
(𝐓𝐢) = 𝐦𝐚𝐱{𝐓𝐏𝐂𝐍𝐨𝐄𝐱 − 𝐓𝐏𝐂𝐄𝐱 ;𝟎}
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exhibit increased mathematical complexity which may limit applicability for practitioners 

(Hauschild and Reimsbach 2015).  

Since we assume risk-neutral decision-making (Assumption 6), we can apply formulae of Cox 

et al. (1979) to model the stochastic development of the company’s total periodical revenue 

𝑅(𝑡 ): 

𝑢 = 𝑒 ∗√∆ , 𝑑 = 𝑒 ∗√∆ , 𝑝 =  
(1 + 𝑟 )∆ −  𝑑

𝑢 −  𝑑
 (4)

As mentioned above, 𝑢 > 1 and 𝑑 < 1 are factors influencing the extent of 𝑅(𝑡 )’s upward 

and downward movement within a single time increment. 𝑝 [1 − 𝑝] is the probability of 

𝑅(𝑡 ) moving upward [downward] within the next period. 𝑟  is the risk-free interest rate. In 

addition, Cox et al. (1979) introduce a necessary inequality: 𝑑 < 1 + 𝑟 <  𝑢 (no-arbitrage 

assumption). Following Cox et al. (1979), we can now determine the value of the company’s 

expansion options. As we consider 𝑛 to represent independent expansion options, which are 

indicated using 𝑖 ∈ [1, 𝑛], we separately evaluate each expansion option 𝑖 by computing 𝐶 ,  

and then total these values in order to weigh them against cash outflows for upfront 

investments (Equation 1). Thus, for each expansion option 𝑖, we model the binomial tree from 

𝑡 = 𝑡  to 𝑡 = 𝑇  as illustrated in Figure 2. Then, in the reverse direction, i.e., from end nodes 

at the respective maturity date 𝑡 = 𝑇  to root 𝑡 , we conduct option evaluation. More 

precisely, for expansion option 𝑖, we start option evaluation by determining the option value 

𝐶 (𝑡 ) in 𝑡 = 𝑇  according to Equation 3. 

As the binomial tree possesses 𝑖 + 1 end nodes in 𝑇 , we must compute 𝑖 + 1 different values 

for 𝐶 (𝑇 ) (which we differentiate by applying filtrations as introduced in Section 3.3.1). 

Since 𝑅(𝑡 ) is the only stochastic variable in our model, the subtraction of each end node 

𝑇𝑃𝐶 − 𝑇𝑃𝐶  depends only on this variable.  

In order to determine the value of the expansion option from the perspective of 𝑡 , i.e., 𝐶 (𝑡 ), 

we must compute the probability-weighted average of all 𝐶 (𝑇 ) and discount them to the 

present. Reintroducing the filtration notation, Figure II.3-4 illustrates an example with three 

periods. 
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Figure II.3-4: Binomial tree model for option evaluation – Own illustration 

For example, the probability of 𝐶 , , 
(𝑡 ) equals 𝑝 𝐶 , , 

(𝑡 ) = 𝑝 . Considering all 

end nodes 𝑠 ∈ {1, … , i + 1} in the tree, we can compute the value of the expansion option in 

𝑡 : 

𝐶 (𝑡 ) =  
 ∑ 𝑝 𝐶 , ,

(𝑇 ) ∗ 𝐶 , ,
(𝑇 )

(1 + 𝑟 )
 (5)

This procedure must be reiterated for every expansion option 𝑖 ∈ [1, 𝑛]. Once this task has 

been completed, we use Equation 1 to evaluate the company’s overall business case 𝑉 . 

As we illustrate in Section 2, ROA is widely applied in investment decision analysis. 

However, as we adapt option pricing from financial option evaluation, we must analyze the 

original requirements for the valid application of this method. Unfortunately, this analysis has 

been neglected by many other authors applying ROA (Ullrich 2013). Firstly, following Ullrich 

(2013), one requirement for the valid application of traditional option pricing models is a 

strike price that is constant or modeled for its stochastic nature. Within our ROA, we do not 

explicitly model a strike price which is implicitly part of the subtraction 𝑇𝑃𝐶 − 𝑇𝑃𝐶 . 

However, if we were to aggregate all constant cost factors in each of the cases presented in 
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Table 1, this would equal a formal representation of the strike price. As a result, we would 

find that the strike price is only constant within each of the cases but not between different 

cases. Hence, in order to validly compute the value of the expansion option, our approach 

must take the stochastic nature of the strike price into consideration. We meet this 

requirement: As the strike price is case-specific, it only depends on one stochastic variable, 

which is 𝑅(𝑡 ). Therefore, for each end node in 𝑅(𝑡 )’s binomial tree, we obtain exactly one 

value for the strike price of the expansion option. Hence, our approach to ROA is valid in this 

respect. Secondly, we confirm that each expansion option can be exercised only once at its 

maturity date. The option’s term is already specified when the company makes a decision 

about signing the framework contract. Thirdly, the value of the underlying must evolve 

according to a Geometric Brownian Motion (GBM) and exhibit a constant variance. This 

requirement of a GBM originally refers to continuous-time models. In our discrete-time 

model, the underlying must therefore evolve according to a multiplicative binomial diffusion 

process which converges (for decreasing-length time increments) to a GBM (Benaroch and 

Kauffman 1999). Due to Assumption 1, both requirements apply in the case of the company’s 

total periodical revenue 𝑅(𝑡 ). Fourthly, for financial options there must exist a “complete 

market” that allows continuous trading of both the underlying and the option. As ROA 

evaluates flexibility of action, this requirement does not usually apply to either the underlying 

or the option. This is a long-standing problem in ROA literature, and we follow Benaroch and 

Kauffman (1999) who refer to Mason and Merton (1985) in stating that “irrespective of 

whether a project is traded, we seek to determine what the project cashflows would be worth 

if they were traded” (p.77). 

II.3.4 Evaluation of the Model 

In this section, we demonstrate how our model can be applied in order to evaluate upfront 

investments in flexible on-demand production capacity. We begin by presenting a set of 

freely-selected scenario parameters. As manually selected parameters are biased in their 

validity, we subsequently conduct randomly chosen simulations and sensitivity analyses in 

order to demonstrate the robustness of our model. 

II.3.4.1 Basic Case 

As stated in Section 3.1, we use the example of a company that manufactures a single but 

individualized product using an MTO approach. Seeking to increase volume flexibility, the 
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company considers commissioning an ECP that offers flexible on-demand production 

capacity. The company calculates that accessing such on-demand production capacity will 

require an upfront investment of 𝐼 = $ 300,000 for availability guarantees and the necessary 

IS infrastructure. Regarding Equation 1, we assume this to be the entirety of cash outflows for 

upfront investments. The company would enter a 12-month framework contract with the ECP. 

The contract specifies that the company has the option to decide the on-demand production 

capacity at the end of every month, meaning that the company will obtain 12 expansion 

options. Independent of this opportunity, the company’s own internal production capacity 

enables it to process a constant maximum revenue of R = $ 1,000,000 per month. The ratio 

of internal production costs to customer revenue equals 𝑘 = 0.7, and the company’s total 

periodic revenue for the current month 𝑅(𝑡 ) = $ 1,000,000. These figures are used for future 

revenue predictions. By analyzing historical data, the company estimates that the monthly 

volatility of 𝑅(𝑡 ) will equal 15%, i.e., 𝜎 = 0.15. If customer demand cannot be satisfied, the 

company estimates costs for dissatisfied customers to a proportion of 𝑘 = 1.1 of customer 

revenue, i.e., due to the loss of customer lifetime value and order cancellations, the company 

incurs costs exceeding the revenue of a single MTO product. Entering the framework contract 

with the ECP would enable outsourcing. In the contract, the ECP specifies a minimum contract 

size of 𝑀𝐶𝑆 = $400,000 for each option exercised, with external production costs to a 

proportion of 𝑘 = 0.8 of customer revenue. Hence, due to 𝑀𝐶𝑆 = 𝑅 ∗ 𝑘 , the company’s 

revenue from its customers that yields the required 𝑀𝐶𝑆 equals 𝑅 = $500,000. Using this 

information, the company can apply our approach for ROA in order to quantify the value of 

flexible on-demand production capacity, and then decide whether to make the required initial 

upfront investment. Assuming an annual risk-free interest rate 𝑟  = 0.7%4 for risk-neutral 

evaluation, we obtain the results illustrated in and below Figure II.3-5: 

 
4 𝑟  = 0.7% is the mean of the 3-month U.S. Treasury Bill yields observed over the last 10 years 
(Mukherji 2011; U.S. Department of the Treasury 2017). 
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Figure II.3-5: Option Values in 𝑡  and exemplary computation for 𝐶 (𝑡 )  

 Value of expansion options ∑ 𝐶 (𝑡 ) = $ 541,091 

 Upfront investments 𝐼 = $ 300,000 

 Business case value 𝑉 = $ 241,091 

Since the overall business case has a monetary value greater than zero, the company should 

make the upfront investment and enter the framework contract with the ECP. 

II.3.4.2 Simulation and Sensitivity Analyses 

II.3.4.2.1. Simulation 

In order to demonstrate the robustness of our model, we conducted randomly chosen 

simulations and sensitivity analyses. For this purpose, we implemented our model using 

Microsoft Excel supported by Visual Basic for Application macros, and chose to draw 

uniformly distributed model parameters from the following intervals (we assume R and 𝑘  

to be constant and to equal our basic case):  

 Annual risk-free interest rate 𝒓𝒇𝝐[𝟎; 𝟎. 𝟎𝟓𝟐]:  

We chose 5.2% as the upper interval boundary, since the maximum annual return on a 3-

month U.S. Treasury Bill within the last 10 years amounted to 5.2% (Mukherji 2011; U.S. 

Department of the Treasury 2017). 

 Volatility of total periodical revenue 𝝈 𝝐[𝟎. 𝟎𝟎𝟏 + 𝒍𝒏 𝟏 + 𝒓𝒇 ; 𝟏]:  

=1.162

=0.486

=0.514

$7,154

$21,204

$24,870

$34,869

$37,841

$46,057

$48,740

$55,937

$58,467

$65,002

$67,442

$73,509

∑ $541,091
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We chose this lower interval boundary for 𝜎 due to the no-arbitrage condition in Cox et 

al. (1979)’s binomial tree model: d < 1+𝑟  < u, i.e., 𝑒 ∗√∆ < 1 + 𝑟  <  𝑒 ∗√∆ . Solving 

this inequality for 𝜎, we obtained 𝜎 >
√∆

= 𝑙𝑛 1 + 𝑟  (with ∆𝑡 = 1). For the 

interval’s upper boundary, we arbitrarily chose 𝜎 = 1, i.e., a periodical volatility of 𝑅(𝑡 ) 

of 100%.  

 Initial month’s total periodical revenue 𝑹(𝒕𝟎)𝝐[𝟓𝟎𝟎, 𝟎𝟎𝟎; 𝟏, 𝟓𝟎𝟎, 𝟎𝟎𝟎]:   

We arbitrarily chose to draw R(𝑡 ) from a corridor around the base case’s R.  

 External production costs per unit 𝒌𝒆𝒙𝒕 = 𝟎. 𝟕 ∗ (𝟏. 𝟎𝟎𝟏 + 𝒒), 𝒒𝝐[𝟎, 𝟎. 𝟓]:  

Assumption 4 argues that 𝑘  must be lower than 𝑘 . Therefore, we scaled 𝑘  with a 

randomly chosen surcharge of up to 50% of 𝑘 = 0.7. 

 Production costs per unit for dissatisfied customers 𝒌𝒅𝒊𝒔 = 𝒌𝒆𝒙𝒕 ∗ (𝟏. 𝟎𝟎𝟏 +

𝒑), 𝒑𝝐[𝟎, 𝟎. 𝟓]:  

Assumption 4 argues that 𝑘  must be lower than 𝑘 . Therefore, we scaled 𝑘  with a 

randomly chosen surcharge of up to 50% of 𝑘 . 

 Contract term 𝑻𝒏𝝐[𝟏; 𝟐𝟒]:  

We arbitrarily chose contract terms between 1 and 24 months. Each month equals one real 

option. 

 Minimum contract size 𝑴𝑪𝑺𝝐[𝟎; 𝟏, 𝟎𝟎𝟎, 𝟎𝟎𝟎]:   

We arbitrarily chose to draw 𝑀𝐶𝑆 from a corridor around the base case’s 𝑀𝐶𝑆. 

Due to the many possible parameter combinations, we repeated our simulation 300,000 times 

to produce a high quality sensitivity analyses. For each simulation we ran, our algorithm drew 

input parameters according to the intervals presented, and calculated the value of real options. 

Accounting for all simulations, we achieved the results depicted in Figure II.3-6. 

Within our simulation, the aggregated values of expansion options ∑ 𝐶 , vary between 

zero and $15,485,424. Although we observe a long tail that we aggregated in Figure 6 for 

values greater than $8,000,000, approximately 55% of simulation runs yielded values between 

$]0; 1,000,000]. In only 5% of all simulation runs the aggregated value of expansion options 

is zero, i.e., in 95% of all simulation runs the aggregated value of expansion options is positive 

and, thus, would help to amortize initial upfront investments. Results of our simulation 
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indicate that volume flexibility using on-demand production capacity from an ECP is of 

considerable value to manufacturing companies. 

 

Figure II.3-6: Histogram with absolute simulation results 

 

II.3.4.2.2. Sensitivity Analyses 

In order to provide further analysis, we depict sensitivities to our results in Figure II.3-7. To 

do so, we apply sensitivity analyses according to the famous quantities “Greeks” to verify the 

validity of our model in terms of common option pricing theory. In particular, we analyze the 

univariate sensitivities of expansion option values to their contract term 𝑇  (“Theta”), the 

annual risk-free interest rate 𝑟  (“Rho”), and the volatility of the total periodical revenue σ 

(“Vega”). In addition to the “Greeks”, we analyze univariate sensitivity to 𝑀𝐶𝑆, 𝑅(𝑡 ), 𝑘 , 

and 𝑘 , as these were factors that varied in our simulation. 
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Figure II.3-7a: Contract duration 𝑇  

 

Figure II.3-7b: Risk-free interest rate 𝑟  

  
Figure II.3-7c: Volatility σ 

 
Figure II.3-7d: Minimum contract size 𝑀𝐶𝑆 

  
Figure II.3-7e: Initial month’s customer  

revenue R(t ) 

 
Figure II.3-7f: External production costs k  and 

costs for dissatisfied customers k  

Figure II.3-7: Sensitivity Analyses 

The sensitivity analyzes we conducted regarding the “Greeks” reveal the following insights 

about the robustness of our model: 

 First, Theta (Figure II.3-7a) illustrates that the expansion option values increase with 
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longer contract terms 𝑇 . Longer contract terms are synonymous with larger numbers 

of expansion options, all of which possess a value greater than or equal to zero.  

 Second, Rho (Figure II.3-7b) illustrates that the expansion option values slightly 

increase with a greater risk-free interest rate 𝑟 . A greater risk-free interest rate 

increases the company’s monetary advantage in that it does not have to pay for 

additional production capacity until the expiration dates of the expansion options.  

 Third, Vega (Figure II.3-7c) illustrates that the expansion option values increase along 

with the volatility of the company’s total periodical revenue σ. Without on-demand 

production capacity, a greater volatility in the company’s total periodical revenue 

implies that there will be more dissatisfied customers, leading to corresponding costs 

of 𝑘 , or idle costs in case of unused capacity. A framework contract with the ECP, 

however, allows the company the flexibility to react to uncertainties in the 

development of demand.  

We conducted statistical two-sample t-tests which confirm this observation (significance 

levels: 0.1% for Theta and Vega and 5% for Rho). All three observations are in line with 

common option pricing theory for European call options (Hull and White 1987). 

The sensitivity analysis of expansion option values to minimum contract size 𝑀𝐶𝑆 (Figure 

II.3-7d) ) illustrates that expansion option values decrease for greater 𝑀𝐶𝑆. A greater 𝑀𝐶𝑆 

increases fixed costs for the exercise of expansion options and, therefore, decreases their 

values. We conducted another statistical two-sample t-test which confirms this observation 

(significance level: 0.1%). The sensitivity analysis of the expansion option values to the initial 

month’s customer revenue 𝑅(𝑡 ) illustrates that expansion option values increase with greater 

𝑅(𝑡 ) (significance level: 0.1%). As a greater 𝑅(𝑡 ) also indicates greater values of the total 

periodical revenue in future, the probability of a decrease in total production costs as a result 

of the use of on-demand production capacity is also increasing (remember, internal production 

capacity is assumed to be constant). In addition, a sensitivity analysis of expansion option 

values to 𝑘  and 𝑘  illustrates that expansion option values increase for greater 𝑘  and 

𝑘  (significance levels: 0.1% for both factors). For 𝑘 , this observation is intuitive. Without 

the ECP, a greater 𝑘  significantly increases costs due to dissatisfied customers, and the 

company may even incur costs exceeding the revenue of a single MTO product. Inversely, 

on-demand production capacity is an insurance against such costs and increases the value of 

expansion options. For 𝑘 , however, this observation may not seem intuitive, as greater costs 
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for outsourcing should not favor the value of on-demand production capacity. We attribute 

this observation to our parameter selection, as the draw of 𝑘  depends on 𝑘 . As 𝑘  

exceeds 𝑘  based on a multiplicative factor greater than one, the (positive) effect of greater 

𝑘  on the value of expansion options exceeds the (negative) effect of greater 𝑘  on 

expansion option values. This technical limitation of our simulation (that is, the 

interdependence of both factors) is necessary to guarantee 𝑘 > 𝑘 > 𝑘 . 

II.3.5 Implications 

Our results enable us to draw insights relevant to both researchers and practitioners. For 

researchers, particularly those working in the field of investment decision theory, we provide 

a methodological contribution: Our approach illustrates how a decision-maker can (i) model 

an industrial company’s use of the on-demand production capacity offered by an ECP, 

accounting for several expansion options; (ii) evaluate the corresponding volume flexibility; 

and (iii) evaluate the upfront investments which enable the use of flexible on-demand 

production capacity, taking into consideration the value of different expansion options. Our 

approach can be classed as formal, as we identify important requirements for the valid 

application of ROA (Ullrich 2013) and demonstrate that the sensitivity of our results to model 

parameters mirror findings from common option pricing theory (“Greeks”).  

For practitioners, our results demonstrate that the opportunity to seize on-demand production 

capacity can be of considerable value to industrial companies, especially when working with 

longer framework contracts. Therefore, companies should investigate whether additional 

volume flexibility is an appropriate means of reducing the adverse effects of volatile customer 

demand and production costs. According to our results, on-demand production capacity seems 

particularly promising for companies in fast-moving industries which exhibit rapidly changing 

customer preferences and, therefore, highly volatile customer demand (e.g., the consumer 

electronics industry). In addition, volume flexibility is particularly promising for companies 

with limited investment budgets, such as SMEs, and during periods of high interest rates, as 

companies can defer their investments in internal production capacity. Practitioners who are 

responsible for production capacity planning can use our ROA approach to evaluate volume 

flexibility and decide on necessary upfront investments within an ENPV approach. Moreover, 

they can use a respective business case for comparison with other business opportunities such 

as investments in the expansion of internal production capacity. Practitioners from ECPs can 
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use our approach for the parametrization of their business models, and for marketing and sales 

purposes to support potential customers in their business case evaluation. 

II.3.6 Conclusion, Limitations, and Further Research 

Shorter product life cycles due to technological progress and changing customer preferences, 

along with customers’ desire for the instant availability of highly individualized products, 

yield increasingly volatile levels of customer demand, which complicate the production 

capacity planning of industrial companies. Aside from investments in new production 

facilities or customer order-controlling approaches such as revenue management, companies 

can make use of volume flexibility using the on-demand production capacity provided by 

ECPs. However, the dynamic integration of on-demand production capacity may require 

companies to make substantial upfront investments, which they must evaluate in an 

appropriate manner, i.e., in line with the principles of value-based management. In this paper, 

we present an ENPV approach that enables such an appropriate evaluation of necessary 

upfront investments, taking into account flexibility of action and demand uncertainty. In order 

to model flexible access to on-demand production capacity and demand uncertainty, we apply 

ROA using binomial tree evaluation of Cox et al. (1979). We evaluate our model using a 

simulation and sensitivity analyses, and conclude that, in approximately 95% of all simulation 

runs, the value of the expansion options, i.e., the value of volume flexibility, is positive.  

However, our approach has some limitations which give rise to future research opportunities. 

For reasons of complexity reduction, we assume that the industrial company can take on an 

infinite level of on-demand production capacity. Moreover, we set internal and external 

production costs at a constant level over the planning horizon and do not account for changing 

costs due to macro-economic or market developments, or for further product life-cycle costs, 

which are also important to consider (Lukas et al. 2017). In applying formulae of Cox et al. 

(1979), we use a multiplicative (stochastic) binomial process of the company’s total periodical 

revenue to describe uncertainty, which significantly influences the choice of internal and 

external production scheduling. However, this may not necessarily hold true in practice as the 

development of this stochastic variable may not exhibit normally distributed returns with a 

constant mean and volatility. Therefore, future research could, for example, apply fat tail 

distributions. Moreover, researching continuous-time approaches for ROA could enable 

continuous-time evaluation. Since the provision of on-demand production capacity represents 
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a new business model that lacks widespread in practice, our simulation parameters are not 

based on real-world data. Therefore, an appropriate next step would be to evaluate our model 

using a real-world example. By applying an ENPV method, we aim to evaluate investments 

in new technologies which enable volume flexibility using on-demand production capacity. 

Nevertheless, these investments could also lead to further benefits, such as improved process 

efficiency, which are not considered in our model. Consequently, there may be more benefits 

which could be considered in future research and integrated in a holistic evaluation model of 

investments in digital transformation. However, our current approach is a first step in this 

direction, and provides both researchers and practitioners with valuable insights which can be 

built upon in the future. 
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III Risk Management in Digitized Value Networks 

This chapter focuses on risk management in digitized value networks. Due to the increasing 

importance of information systems for the reliability of physical production infrastructures, 

information-based risks present a major challenge for risk management. Thereby, especially 

the increasing interconnection of value chain partners, digitized production infrastructures, 

products, and production components lead to highly complex information-based dependency 

structures. On the one hand, these increase the vulnerability of digitized value networks as 

formerly isolated systems exhibit various entry points and single point failures can spread 

within the entire network without physical connections. On the other hand, the complex 

dependency structures complicate risk management in digitized value networks. Regarding 

these challenges for risk management in digitized value networks, research paper P1 and P2 

present approaches for the modeling and simulation of digitized value networks and the 

analysis of inherent IT availability risks, and research paper P3 proposes a generic architecture 

for a strategic decision support system for systemic risk management. Thus, this chapter 

includes the following three research papers: 

The first research paper P4 “Modeling IT Availability Risks in Smart Factories – A Stochastic 

Petri Nets Approach” (Section III.1) introduces a modeling approach for complex smart 

factory information networks based on petri nets enabling the simulation and analysis of IT 

availability risks. Thereby, different threat scenarios, complex informational dependency 

structures, and cascading failures are considered.   

The second research paper P5 “Assessing IT Availability Risks in Smart Factory Networks” 

(Section III.2) introduces a risk assessment model for IT availability risks in smart factory 

networks that models interdependencies between the information network and the production 

network. Further, it provides an approach for the quantification of IT availability risks 

providing an economic basis for investment decisions in targeted IT security measures. 

The third research paper P6 “Toward Strategic Decision Support Systems for Systemic Risk 

Management” (Section III.3) proposes a functional design and a generic architecture for a 

strategic decision support system for systemic risk management. Further, to support the 

implementation of such a system, areas for future research and selected research questions are 

presented. 
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III.1 Research Paper 4: “Modeling IT Availability Risks in Smart 

Factories – A Stochastic Petri Nets Approach”5 
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Abstract: In the course of the ongoing digitalization of production, production environments 

have become increasingly intertwined with information and communication technology. As a 

consequence, physical production processes depend more and more on the availability of 

information networks. Threats such as attacks and errors can compromise the components of 

information networks. Due to the numerous interconnections, these threats can cause 

cascading failures and even cause entire smart factories to fail due to propagation effects. 

The resulting complex dependencies between physical production processes and information 

network components in smart factories complicate the detection and analysis of threats. Based 

 
5 This is a post-peer-review, pre-copyedit version of an article published in Business & Information Systems Engineering. 
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on generalized stochastic Petri nets, this paper presents an approach that enables the 

modeling, simulation, and analysis of threats in information networks in the area of connected 

production environments. Different worst-case threat scenarios regarding their impact on the 

operational capability of a close-to-reality information network are investigated to 

demonstrate the feasibility and usability of the approach. Furthermore, expert interviews with 

an academic Petri net expert and two global leading companies from the automation and 

packaging industry complement the evaluation from a practical perspective. The results 

indicate that the developed artifact offers a promising approach to better analyze and 

understand availability risks, cascading failures, and propagation effects in information 

networks in connected production environments. 

III.1.1 Introduction 

A recent worldwide survey by PricewaterhouseCoopers (PwC) among 2,000 participants from 

nine major industrial sectors and 26 countries showed that 54% of the participants considered 

business interruptions due to cyber-security breaches the main challenge for smart factories 

(PwC 2016a). Thereby, in contrast to traditional factories, smart factories enhance production 

systems through horizontal and vertical integration of information systems representing a 

central characteristic of the Industry 4.0 vision (Acatech 2013). In this context, additional IT 

availability risks arise from digitalization and interconnection of production (Amin et al. 

2013). As production infrastructures in smart factories become increasingly intertwined with 

information and communication technology (ICT), the operational capability of smart 

factories increasingly depends on the high availability of information systems (Lucke et al. 

2008). Thereby, concepts such as the Internet of Things (IoT) and Cyber-Physical Systems 

(CPS) intensify the digital interconnection of production via intra- and inter-organizational 

information networks (Acatech 2013). 

On the one hand, the comprehensive interconnection and resulting real-time availability of 

information enable innovative production principles and business models offering extensive 

advantages (e.g., increased flexibility and efficiency of production) (Iansiti and Lakhani 

2014). On the other hand, however, highly interconnected smart factories are becoming more 

vulnerable to IT availability risks (e.g., due to the removal of protective air gaps or 

interconnection of production and office environments) (Smith et al. 2007; Amiri et al. 2014; 

Smith et al. 2007). Moreover, the integration of Internet-based applications (e.g., cloud 
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computing) and the growing collaboration with value chain partners (customers or vendors) 

reinforce this threat potential due to the growing number of possible access points for 

malicious cyber-attacks (Smith et al. 2007; Yoon et al. 2012). This was also found by the 

study of PwC as the number of cyber-attacks on businesses rose by 38% in 2015 (PwC 2016b). 

Consequently, companies face the challenge to cope with this increased threat potential. In 

addition to intentional attacks, unintentional errors (e.g., technical defects or human errors) 

can heavily compromise the availability of information networks directly and indirectly.  

As physical production processes in smart factories are highly dependent on the underlying 

information network, threats can affect the operational capability of both information and 

production networks (Broy et al. 2012). In addition, threats now also include the propagation 

of locally occurring interruptions within interconnected information and production networks 

even without physical connections (Smith et al. 2007). Thus, informational dependencies that 

arise from the increasing interconnection and use of real-time information are becoming more 

important. Moreover, information-based systemic risks that may spread across smart factory 

boundaries in interconnected digitalized networks are also identified as one of the most 

important challenges in the field of computer science and business informatics, where they 

are known as the “grand challenges” (Buhl and Penzel 2010; Mertens and Barbian 2015). 

Accordingly, IT availability risks have become one of the most important threats in smart 

factories (Amiri et al. 2014). 

This has also been shown by numerous incidents. One well-known example is the Stuxnet 

worm, which infected the industrial control system of a nuclear power plant in Iran in 2011 

(The New York Times 2011). Today, attacks can heavily impede the production of a factory 

and are a threat of upmost relevance as e.g., 70% of the companies of a recent study state that 

they were attacked within the last two years (BSI 2017). The same study revealed that every 

second successful attack causes production downtimes or a loss of operations. In this context, 

the locky or WannaCry ransomware (e.g., Merkur 2018) is another impressive example, how 

intentional attacks can spread within a company, even when starting at only one weak point. 

Thereby, the weak point does not have to be directly connected to production components, as, 

for instance, malicious attackers targeted the industrial control system of a steel mill via the 

office network to compromise the operation of blast furnaces in 2014 (BSI 2014). Moreover, 

errors can lead to far-reaching disturbances: for instance, an incorrect software update forced 

a nuclear power plant into an emergency shutdown for 48 hours in the US in 2008 
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(Washington Post 2008) and a technical defect of a single hard disk resulted in a server 

shutdown for 19 hours in three clinics in Germany (BSI 2016). 

Considering the technical developments and described threat scenarios, companies face the 

challenge of dealing with increasingly complex information networks regarding IT 

availability risk and their inherent dependency structures. Thereby, especially the dynamic 

behavior including cascading failures and stochastic propagation effects are of critical 

importance as single point failures can spread in the entire network and cause severe damage 

in the smart factory, e.g., in terms of production downtime and economic damage. 

Accordingly, companies are confronted with new challenges regarding a comprehensive risk 

management. Thereby, companies have to go through the four phases of risk management 

including (1) identification, (2) quantification, (3) control, and (4) monitoring (Hallikas et al. 

2004). For this, companies require appropriate methods for the modeling and simulation of 

such information networks (Lasi et al. 2014) capturing the peculiarities of information 

networks in smart factories as a first step. As necessary concepts for an appropriate modeling 

of information networks do not exist so far, we state the following research question. 

RQ: How can the information network of a smart factory be modeled to depict and simulate 

IT availability risks?  

Following the Design Science Research (DSR) approach ( Hevner et al. 2004), we introduce 

a stochastic Petri net approach, which enables a structured depiction of information networks 

in smart factories. This allows the analysis of IT availability risks and the identification of 

weak spots within the information network. Our approach depicts the structure of information 

networks by modeling single components and informational dependencies between them. 

Hence, our approach facilitates the risk-oriented analysis of single components as well as of 

the whole information network. Further, it enables the simulation and analysis how different 

patterns of information networks are affected by certain threat scenarios and how propagation 

effects occur and spread in different patterns (e.g., the security level of components). For 

example, with regard to the mentioned examples, our approach could have been used 

preventively to model, simulate, and analyze the information network in the course of risk 

management. On this basis, weak points for attacks and critical dependencies would have 

become apparent, for which targeted security measures could then have been taken. Although 

this would not have made a 100 percent protection possible, a reduction of risk, for example 

by reducing the probability of a successful attack, would have been possible. This is 
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particularly important in smart factories, as the vulnerability of smart factories increases 

significantly due to the increasing dependency relations within the information network. 

Following the publication schema suggested by Gregor and Hevner (2013), this paper is 

organized as follows. In the next section, we provide an overview of related work regarding 

smart factories and IT availability risks. Based on the literature, we derive design objectives 

and requirements for an appropriate modeling approach. In section 3, we specify Petri nets 

(PN) as the modeling language used in our approach. Section 4 describes our modeling 

approach as one essential artifact of our research. In section 5, we evaluate our modeling 

approach by performing a feature comparison and demonstrating the applicability and 

feasibility of our artifact by simulating an exemplary information network based on a real-

world setting. Further, to complement the evaluation from a naturalistic perspective, we 

integrate the insights of interviews with two experts from global leading companies in the 

robotic automation and packaging industry, and an academic PN expert. Finally, in section 6, 

we discuss the results and limitations of our research and provide an outlook on future 

research. 

III.1.2 Theoretical Background and Design Objectives 

In this section, we review current literature on smart factories and categorize IT availability 

risks and threats in smart factories. Based on the literature, we define design objectives (DO) 

to lay the foundation for the development of our artifact in correspondence with our research 

question.  

III.1.2.1  Smart Factories 

The investigated body of literature comprises infrastructural aspects (Lucke et al. 2008; Yoon 

et al. 2012; Zuehlke 2010; Colombo and Karnouskos 2009), characteristics (Brettel et al. 

2014; Radziwon et al. 2014; Schuh et al. 2014), as well as challenges (Amin et al. 2013; Broy 

et al. 2012; Cardenas et al. 2009; Sridhar et al. 2012; Sadeghi et al.) regarding smart factories. 

Although widely used in literature and practice (Radziwon et al. 2014), there is no common 

definition of the term smart factory, so far. Based on the analysis of different definitions, 

Radziwon et al. (2014) define the smart factory as a “manufacturing solution that provides 

such flexible and adaptive production processes that will solve problems arising on a 

production facility […].” Hermann et al. (2015) define the smart factory as a “factory where 

CPS communicate over the IoT and assist people and machines in the execution of their tasks” 
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and describe, that “within the modular structured Smart Factories [...], CPS monitor physical 

processes, create a virtual copy of the physical world and make decentralized decisions”. And 

adopting the idea of IoT, Zuehlke (2010) describes a smart factory that is composed of smart 

objects that are able to “self-organize to fulfil a certain task” by interacting with each other 

via wireless communication infrastructures. These definitions reflect the specific 

characteristics of smart factories, such as their modular and decentralized design, which 

enables functionalities like production flexibility, reconfigurability, and adaptability and that 

distinguish a smart factory from a conventional factory (Brettel et al. 2014, Radziwon et al. 

2014, Zuehlke 2010).  

 

 

Figure III.1-1: Vertical Integration – Decomposition of automation hierarchy  
– Own Illustration based on VDI 2013  

In contrast to traditional factories, smart factories enhance manufacturing systems through 

horizontal and vertical integration representing a fundamental characteristic of the industry 

4.0 vision (Acatech 2013). Horizontal integration refers to the integration of IT systems across 

value chains both within a company and between several different companies. This results in 

the creation of new internal and external connections for data analysis or supply chain 

operations as well as the abandoning of air gaps. Vertical integration refers to the integration 

of IT systems across the different levels of the automation pyramid (cf. Figure III.1-1). 

Through the integration of production-oriented CPSs, so called Cyber-Physical Production 

Systems (CPPSs), the levels of the automation pyramid (i.e., field to business level) gradually 

vanish and are replaced by networked and decentrally organized services (Brettel et al. 2014; 

Monostori 2014). CPPSs integrate computing and communication capabilities in physical 
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production environments realizing the fusion of the cyber and physical world (Lee et al. 2015; 

Wang et al. 2016). Accordingly, CPPSs are able to sense, monitor, and control physical 

production in an autonomous manner and interact with each other in real-time (Brettel et al. 

2014). Based on the described characteristics in existing literature, we obtained the following 

detailed structure of a smart factory as shown in Figure III.1-2. 

 

Figure III.1-2: Basic structure of a smart factory – Own Illustration based on  

Lucke et al. (2008) and Yoon et al. (2012) 

The structure of a smart factory comprises a physical production environment and an 

information network. Following the definition of IT infrastructure (Weill and Vitale 2002), 

we characterize an information network in the context of smart factories as a horizontally and 

vertically integrated network of hardware, software, and service components (i.e., information 

network components) supporting IT-enabled processes in the physical production 

environment. The physical production environment consists of several production 

components (e.g., smart industrial robots, smart machines, and smart transport systems) that 

perform one or multiple tasks and can be combined flexibly according to the requirements of 

a product (Lasi et al. 2014; Lucke et al. 2008). Production components are equipped with a 

multitude of sensors and/or actuators that are connected to programmable logic controller 

(PLC) as well as to higher level IT services and data storages via the information network 

(Lee et al. 2015; Lucke et al. 2008; Zuehlke 2010). The information network seamlessly 

connects so far separated information network components within a company and across 

company borders enabling a flexible and reconfigurable production (Lucke et al. 2008; Yoon 

et al. 2012). Sensors and actuators translate signals between the physical and cyber world. 

Thus, they can be considered as bridge components that are part of both the production 

environment and the information network (Hao and Xie 2009). Thereby, sensors gather 

physical production data (e.g., temperature, pressure) for tasks such as quality management 
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or predictive maintenance (e.g., checking oil level). Actuators execute production tasks based 

on control commands from PLCs (Lee et al. 2015; Zuehlke 2010). PLCs ensure the self-

control of certain tasks and the exchange of relevant production data between machines and 

between information network components such as IT services (Lucke et al. 2008). IT services 

include applications such as enterprise resource planning (ERP) or manufacturing execution 

systems (MES). The server infrastructure for IT services and data storage can either be hosted 

on premise or in the cloud (Colombo and Karnouskos 2009; Yoon et al. 2012; Zuehlke 2010). 

Applications will increasingly be running in the cloud in the future. In addition, there are 

numerous external interfaces to value chain partners that are essential for the increased 

flexibility of the production system and the optimization of production processes extending 

the information network of a smart factory (Broy et al. 2012; Acatech 2013). In conclusion, 

the information network consists of a multitude of different types of information network 

components increasing the overall complexity of production facilities. 

For one thing, “a networked machine is more valuable than isolated ones” and enables the 

creation of “autonomous and intelligent applications” (Wan et al. 2013). At the same time, 

however, the increasing vertical and horizontal integration of ICT and the growing importance 

of real-time information in smart factories lead to information networks with complex and 

manifold informational dependencies. Hence, a structured modeling approach is required to 

provide transparency and to allow the identification of critical components and dependencies. 

Therefore, the modeling approach should provide a formal representation to support 

companies with the analysis of information networks in smart factories. This enables a 

detailed, simulation-based analysis and the comparability of different information network 

designs. Further, a graphical representation of the modeling approach would be beneficial as 

it enables a transparent representation of the mode of operation of a modeled information 

network component. As information networks can be of different sizes in dependence of the 

size of the overall production facility (ranging from a few hundred components to several tens 

of thousands components, e.g., Siemens Electronics Factory in Amberg with >1.000 PLC 

components besides other IT components (Siemens 2017)), the modeling approach should be 

able to depict single components, subnetworks (e.g., production cells), and entire smart 

factory networks. Thereby, we understand scalability as the ability of our modeling approach 

to handle an increasing number of components. Against this background, we define the 

following design objectives. 
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DO.1 Graphical and formal representation: To enable the depiction and simulation-based 

analysis of IT availability risks, the modeling approach has to provide an 

appropriate formal and mathematical representation of information networks in 

smart factories and a graphic representation of the modeling approach. 

DO.2 Scalability: To depict information networks of different sizes and complexity, the 

modeling approach should capture single components, subnetworks, and entire 

smart factory networks in a scalable and comprehensible manner. 

III.1.2.2  IT Availability Risks and Threats in Smart Factories 

In this subsection, we describe IT availability risks in smart factories. Following the definition 

of risk by Kaplan and Garrick (1981), we differentiate between availability risks and threats. 

Threats describe the source of availability risks, whereas availability risks describe the effects, 

more specifically the damage potential. Thus, a threat is an event that can compromise 

components of information networks and even cause the entire smart factory to fail (BSI 

2016). As shown in Figure III.1-3, threats in smart factories include both intentional attacks 

and unintentional errors (Amin et al. 2013). 

 

Figure III.1-3: Classification of threats in smart factories – Own Illustration  

An attack is any intentional threat event that may result in loss of the functionality of a 

component (Amin et al. 2013). According to the motivation of potential attackers, the 

following types of attacks can be distinguished. Internal attacks (e.g., social engineering) are 

executed by attackers from inside the organization (i.e., employees), whereas external attacks 

(e.g., malware infections, attacks on control components or Denial-of-Service (DoS) attacks) 

are executed by attackers from outside the organization (e.g., cybercriminals) (Cardenas et al. 

2009). Thereby, production machines are an easy target for attackers as they usually run 

custom and often obsolete software solutions and, thus, are rather poorly secured. An error is 
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any unintentional threat event that may result in loss of the functionality of a component 

(Amin et al. 2013). Errors can be differentiated between technical errors (e.g., technical 

defects), operator errors (e.g., erroneous entry of data), and organizational errors (e.g., 

incorrect software update) (Amin et al. 2013).  

To better understand availability risks in smart factories and their relations to threats, 

vulnerabilities, and countermeasures as well as reinforcers, we describe their relations as 

depicted in Figure III.1-4. 

 

Figure III.1-4: Availability Risk Relations in Smart Factories – Own Illustration based on Common Criteria 
(2006) and Keller and König (2014) 

As already mentioned, threats are defined as the source of availability risks. By exploiting the 

vulnerabilities of a component, threats can compromise directly and indirectly specific 

components of the information network. The resulting informational risks (e.g., availability 

issues, loss of data) can be evaluated, for instance, by means of the remaining availability of 

the information network. Countermeasures can reduce the vulnerabilities of components and 

informational risks, for instance, to avert operational interruptions. We adopt the idea of 

reinforcers introduced by Keller and König (2014, p. 6), which are caused mainly by the 

underlying network structure. Thereby, reinforcers (e.g., structural design, propagation 

effects) can increase the vulnerabilities of components and availability risks. Informational 

dependencies that arise from (1) the high number of interconnected components and (2) the 

increasing use of real-time information reinforce in particular the vulnerabilities of 

components in smart factory information networks. 

Thereby, especially IoT and smart manufacturing technologies cause increased vulnerabilities 

and change requirements on IT security in smart factories (Wengert et al. 2016). Tupa et al. 

2017 argue that “the connection of cyber-space, sophisticated manufacturing of technologies 
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and elements, and using outsourcing of services [are] the main factors increasing 

vulnerability” and that “the implementation of Industry 4.0 has shown that the connections 

between humans, systems and objects have become a more complex, dynamic and real-time 

optimized network”. Accordingly, “the concept of Industry 4.0 generates new categories of 

risks […] because of the increase of vulnerabilities and threats” (Tupa et al. 2017). 

Consequently, all components of the information network are critical as “industrial control 

systems are becoming the target for malicious cyber intrusions” (Wengert et al. 2016). For 

example, SCADA systems, that were initially designed to operate on closed networks, are 

increasingly based on cloud technology resulting in increased interconnectivity and, 

ultimately, vulnerability (Eden et al. 2017). Thus, “the challenge to maintain availability will 

increase as manufacturing evolves from a centralized system supported by external suppliers 

to a distributed system in which production occurs closer to the point of use” increasing 

potential points of failure (Wengert et al. 2016). Additionally, due to the highly interconnected 

structure of information networks in smart factories, the failure of a component can cause the 

failure of another component resulting in cascading failures (Amin et al. 2013). These 

cascading failures reinforce the initial failure and cause new threats that can lead to the loss 

of the operational capability of the entire information network (Danziger et al. 2016).  

Despite the theoretical and practical relevance of cascading failures in smart factories, 

corresponding research remains insufficient until today and do not address the specific 

characteristics of information networks in smart factories. For instance, Zambon et al. (2011) 

developed a risk assessment method for business processes that considers the IT architecture 

and dependencies between IT components. Sathanur and Haglin (2016) introduce a centrality 

measure that indicates the influences of each node on the network by considering direct and 

indirect compromise through attack propagating. Amin et al. (2013) provide a framework for 

assessing security risks that can be caused by attacks or error based on a game-theoretic 

approach. However, these approaches only allow a static analysis and thus, neglect dynamic 

effects like cascading failures within information networks. Other research analyses 

informational risks that exist in the context of supply chain networks and critical 

infrastructures. For instance, Wagner and Neshat (2010) develop an index to evaluate the 

vulnerability of supply chain processes to informational risks. However, they focus on a static 

analysis and do not explicitly consider propagation effects in smart factories. In addition, they 

analyze the vulnerability of the overall network and do not focus on the criticality of single 
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components. Since propagation effects are interdependent and dynamic, Buldyrev et al. (2010) 

consider the spread of information risks within interdependent networks analyzing the 

criticality of nodes for network stability. Although this approach meets requirements like 

cascading failures, it does not take into account the characteristics of smart factory information 

networks like different component states. Thus, to the best of our knowledge, there is no 

appropriate approach for the modeling of smart factory information networks that considers 

adequately network structures, inherent dependencies, and cascading failures. 

Therefore, in our approach, we consider cascading failures through two types of propagation 

effects, namely deterministic (i.e., timing failure) and stochastic effects (i.e., attack 

propagation). First, deterministic timing failures occur if a supporting component is not able 

to transmit necessary information to other dependent components within a specified time 

constraint. Second, after an attack successfully compromised a component (e.g., the memory 

of a production machine), the affected component can compromise other connected 

components within the information network, what we refer to as stochastic attack 

propagation. Further, we consider the error of components by means of stochastic time to 

error and the corresponding recovery of failed components by means of stochastic time to 

recovery that allows us to consider the resilience of smart factories within the modeling 

approach and the analysis of different security measures. 

To determine whether an information network component is available and, thus, to determine 

the operational capability of smart factories, possible states of a component have to be defined 

(Arshad et al. 2006). Therefore, a component can exhibit only one state at a certain point in 

time in our modeling approach. Thus, our modeling approach considers time as discrete. For 

this, there is an absolute clock that defines a time line consisting of equidistant points in time. 

The time unit between two points in time can be defined depending on the application. For 

example, it seems reasonable to define it as one minute in our application example as we do 

not consider a hard real-time constraint. In case of a hard real time constraint, for instance in 

case of critical safety properties of a system, it could also be defined as a millisecond or a 

second. Based on the described threats in smart factories, the following states of a component 

result: operational (OP), on hold (OH), failed after attack (FA), and failed after error (FE). 

As shown in Table III.1-1, these states and the resulting availability of a component, are 

defined by two attributes: (1) function executable, which indicates whether a component is 
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technically able to execute its function; and (2) information accessible, which indicates 

whether necessary information is accessible within a given (real-time) constraint. 

State Operational (OP) On Hold (OH) Failed after Attack (FA) Failed after Error (FE) 

Function Executable Yes Yes No No 

Information Accessible Yes No Yes/No Yes/No 

Component Available Yes No No No 

Table III.1-1: Component States 

We consider a component to be operational if it can execute its function and necessary 

information is accessible on time. In contrast, a component is on hold if it is technically able 

to execute its function, but necessary information is not accessible punctually (e.g., due to the 

failure of a supporting component). Further, attacks and errors can affect the operational 

capability of a component. In this case, a component is no longer able to execute its function 

and hence, exchange information with other components. In this case, it does not matter if 

necessary information is accessible as the component is not able to execute its function. 

According to the source of the failure, we distinguish between the states failed after attack 

and failed after error. We assume that a component is available if it exhibits the state 𝑠 ∈

{𝑂𝑃} and unavailable if it exhibits one of the other states 𝑠 ∈ {𝑂𝐻, 𝐹𝐴, 𝐹𝐸}.  

To apply appropriate countermeasures against IT availability risks, companies need to 

determine the state of each component. In particular, the resulting dynamic behavior of 

information networks (i.e., state changes initiated by threats) is of upmost importance and has 

to be captured. Thereby, both deterministic (e.g., timing failures) and stochastic (e.g., attack 

propagation or time to error) effects influence the dynamic behavior in different manners. For 

example, while deterministic timing failures occur after a predictable time span of a 

component’s unavailability, the propagation of an attack depends on the underlying stochastic 

propagation probabilities. Hence, the consideration of both deterministic and stochastic effects 

is required. Therefore, we state the following design objective. 

DO.3 Threats: To enable the analysis and comparability of different threats in smart 

factories, the modeling approach has to capture the characteristics of different 

threats and corresponding propagation effects. 
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III.1.2.3  Requirements for the Modeling Approach 

Based on the described design objectives, we derive requirements for an adequate modeling 

approach. These have been discussed in the course of the conducted expert interviews and 

were confirmed by the experts. The requirements substantiate the design objectives and 

exemplify relevant characteristics that an adequate modeling approach has to exhibit. By 

means of the derived requirements, it is possible to evaluate the developed modeling approach 

regarding its suitability to answer the stated research question. 

DO.1 Graphical and formal representation: 

R.1 Graphical notation: To enable a visual and comprehensible depiction of the 

operational mode of the modeling approach, the modeling approach should 

provide a graphical notation. 

R.2 Mathematical definition: To enable the simulation of information networks 

and the analysis of failure propagation after attacks and errors (e.g., 

calculation of ITIL-Availability-Management-KPIs), the modeling approach 

should provide an exact mathematical definition. 

DO.2 Scalability: 

R.3 Modeling module: To enable the scalability of the approach and the 

comprehensible modeling of large information networks, the modeling 

approach should be able to depict an information network component as a 

generic modeling module. 

DO.3 Threats: 

R.4 Operational states: To enable the availability analysis of information 

networks, the modeling approach has to capture the component states (see 

Table III.1-1). 

R.5 Dynamic behavior: To depict the dynamic behavior of information networks, 

the modeling approach has to capture propagations effects, i.e., the 

propagation of attacks and timing failures, in discrete time steps. 

R.6 Stochastic behavior: To depict the stochastic behavior of threats, the modeling 

approach has to consider the probability of a successful attack and its 
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propagation as well as exponentially distributed timing aspects such as “time 

to error” and “time to recovery” after an error of a component occurs. 

III.1.2.4  Methods for the Modeling and Analysis of Networks 

Despite its high theoretical and practical relevance, research on the formal modeling of 

information networks in smart factories remains insufficient. Accordingly, the analysis and 

optimization of information networks regarding IT availability risks remain major challenges. 

In the following, we provide an overview of formal modeling approaches dealing with 

networks that are subject to random failures, cascading failures, and exogenous shocks in the 

context of supply chain and critical infrastructure networks as they may provide adequate 

starting points. 

Graph theory represents a basis for the formal modeling of networks. Here, each actor of a 

network is represented by a node and dependencies between actors are represented as edges 

between two nodes (Wagner and Neshat 2010). For instance, Buldyrev et al. (2010), Faisal et 

al. (2007), and Wagner and Neshat (2010) use graph theory to identify and quantify risks in 

supply chains and critical infrastructure networks. Wagner and Neshat (2010) provide an 

index to measure the vulnerability of supply chains and Faisal et al. (2007) develop a 

framework to quantify information risks in supply chains based on graph theory. However, 

these approaches do not consider dynamic aspects and, thus, are not appropriate for the 

analysis of propagation effects in information networks of smart factories. In contrast, 

Buldyrev et al. (2010) develop a framework that considers the dynamics of cascading failures 

in interdependent networks. However, the approach only considers functional and non-

functional states of network actors and neglects more detailed operational states. An extension 

of the graph theory is the random graph developed by Erdös and Rényi (1960)that combines 

graph theory and probability theory to analyze complex networks that are subject to random 

failures (Albert et al. 2000; Ash and Newth 2007; Gao et al. 2012). However, random graph 

approaches do not allow the depiction of given real-world information network structures as 

nodes are connected randomly (Gao et al. 2012). Altogether, the presented approaches focus 

on the analysis of the overall network and, hence, do not allow the fine granular identification 

and analysis of critical components, what is a prerequisite for the development of sensible 

countermeasures. Furthermore, PN enable the formal modeling of networks considering 

dynamic and stochastic aspects (Arns et al. 2002). Wu et al. (2007) introduce the disruption 

analysis network (DA_NET) approach based on PN to model and quantify the propagation of 
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disruptions in supply chains. Extending the DA_NET approach, Fridgen et al. (2014) provide 

a modular modeling approach that enables the simulation and quantification of exogenous 

shocks in supply networks considering dynamic and stochastic aspects. Although these 

approaches provide a solid foundation in modeling, they do not consider the peculiarities of 

information networks in smart factories (e.g., operational states, timing failures). However, 

there is also a growing number of scientific literature that deals with the description and 

quantification of security risks in smart factories (Amin et al. 2013; Broy et al. 2012; Cardenas 

et al. 2009; Sadeghi et al.; Sathanur and Haglin 2016). For instance, based on a game-theoretic 

approach, Amin et al. (2013) provide a framework for assessing security risks to CPS that can 

be caused by security attacks or random errors. Sathanur and Haglin (2016) introduce a 

centrality measure for the assessment of vulnerability in CPS by considering direct 

compromise and indirect compromise through attack spread. However, these approaches 

neglect different operational states and important aspects such as dynamic behavior of 

propagation effects. Nevertheless, to enable the assessment of IT availability risks in a sensible 

manner, informational dependencies within information networks must be considered. To the 

best of our knowledge, there exists no formal modeling approach for the depiction of 

information networks in smart factories. Therefore, in this paper we focus on the modeling of 

information networks considering IT availability risks. Our approach enables the simulation 

of different information network settings and different threats in an integrated manner. 

III.1.3 Modeling Approach based on Petri Nets 

To address the raised research question, we follow the guidelines for DSR from Hevner et al. 

(2004) and apply the DSR methodology from Peffers et al. (2007) to develop a modeling 

approach as design artifact (Offermann et al. 2010). Therefore, the DSR methodology (Peffers 

et al. 2007) suggests the following six activities for the development of artifacts: (1) identify 

problem; (2) define design objectives for solution; (3) design and develop; (4) demonstrate; 

(5) evaluate; and (6) communicate. Step 1 was already addressed in section 1 by highlighting 

the relevance of formalized modeling approaches for the depiction and simulation of 

information networks in smart factories. In section 2, we deduced design objectives for our 

artifact as well as requirements for the modeling approach (step 2) to ensure that our artifact 

helps to solve the research question. In this section, we start with the design and development 

of our artifact (step 3). 
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We base our modeling approach on PN that were developed by Carl Adam Petri (1962) as PN 

fulfill the postulated requirements (cf. section 2). PN provide an intuitive graphical notation 

as well as a formal notation enabling the mathematical analysis of information networks (van 

der Aalst 1998), fulfilling requirements R.1 and R.2. As existing PN approaches do not 

consider specific characteristics of smart factory information networks, we build on different 

PN approaches as a basis for the development of our modeling approach under consideration 

of the possessed requirements. First, to handle the complexity of large information networks 

and to enhance practicability, we adapt the concept of modularization developed for supply 

chains (Fridgen et al. 2014) fulfilling requirement R.3. Further, as PN consist of passive places 

and active transitions that symbolize states and actions (i.e., state changes), respectively, they 

fulfill requirement R.4. To cover dynamic behavior, firing delays are associated to transitions, 

specifying the duration of activities (Murata 1989). Several concepts regarding firing delays 

can be distinguished. For instance, Ramchandani (1974) developed timed Petri nets that 

associate a deterministic firing delay to each transition. Merlin (1974) introduced time Petri 

nets (TPN) that use time intervals to describe lower and upper bounds for the duration of 

activities. In stochastic Petri nets (SPN), an exponentially distributed firing delay is assigned 

to transitions (Molloy 1981). Further, Marsan et al. (1984) introduced generalized stochastic 

Petri nets (GSPN) that consider immediate transitions (zero firing delay) as well as timed 

transitions (exponentially distributed firing delay) extending SPN. Regarding requirement 

R.5, we adapt the GSPN approach by Marsan et al. (1984) using immediate and timed 

transitions to capture the dynamic behavior (e.g., propagation of attacks and timing failures) 

of information networks. Thereby, the timing requires preselection rules for transitions that 

come into conflict when multiple transitions share input places and can fire at the same point 

in time competing for the same token. The preselection of transitions can be performed, beside 

others, deterministically with priorities or randomly with probabilities (Balbo and Silva 

1998). Necessary information for the parametrization of priority values could be gathered 

from technical data sheets of IT components and system specifications. To depict stochastic 

events (e.g., attacks on specific components), probabilities can be assigned to transitions 

fulfilling requirement R.6. Thereby, probability values for attacks can be derived from official 

statistics (e.g., from the European Union Agency for Network and Information Security - 

ENISA Threat Landscape Report). The obtained values could be adjusted based on expert’s 

expectations (e.g., regarding the development of the number of attacks) or individual internal 

measurements (e.g., the installation of a new cyber security system). Regarding internal errors, 
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internal incident reports can be the basis for the estimation of appropriate probability values. 

Moreover, to depict timing failures between dependent components, we adapt the idea of 

guard functions from colored Petri nets (CPN) (Jensen 1991). Accordingly, considering the 

aforementioned requirements R.1 to R.6, we use GSPN with immediate and exponentially 

distributed firing times and enhance the GSPN with deterministic and stochastic preselection 

of transitions as well as guard functions to fulfill the derived requirements. This enables the 

consideration of specific characteristics of smart factory information networks such as the 

dynamic behavior, i.e., propagation effects and timing failures within the information 

network.  

III.1.3.1 Mathematical Specification 

In this subsection, we briefly describe the basic functioning of PN and specify the 

mathematical definition of our modeling approach. PN are defined as bipartite graphs 

consisting of places, transitions, and arcs. If places additionally carry tokens, PN are called 

"marked PN”. The current state of a PN is specified by its marking, i.e., the number of tokens 

on each place. The PN changes its state by the enabling of transitions which remove tokens 

from input places and create tokens on output places. A detailed explanation and functional 

description of PN can be found by Murata (1988).  

To describe the information network by means of our modeling approach in a formalized way, 

there is a finite set of places 𝑃 = ⋃ {𝑝 } = {𝑝 , … , 𝑝 }6. Further, there is a finite set of 

transitions 𝑇 = ⋃ 𝑡 = {𝑡 , … , 𝑡 }, consisting of immediate and timed transitions. These 

include timed transitions with different timing requirements like the special case of real-time 

constraints or other timing requirements (for instance, for repair times), as well as transitions 

without timing specifications defining pure YES/NO decisions (for instance, transitions that 

determine whether a component is affected by an attack or not). Arcs are divided into two 

finite sets of directed arcs: the input matrix 𝐼 ⊆ (𝑃 × 𝑇) defines arcs from places to transitions, 

whereas the output matrix 𝑂 ⊆ (𝑇 × 𝑃) defines arcs from transitions to places. The binary 

variables 𝐼 ,  and 𝑂 ,  equal 1 if there exists a directed arc from place 𝑝  to transition 𝑡  or from 

transition 𝑡  to place 𝑝 , respectively. Otherwise, 𝐼 ,  and 𝑂 ,  equal 0. The entries of the input 

and output matrices are determined by the structure of the information network. The resulting 

incidence matrix 𝐴 is calculated by equation 1: 

 
6 Table 4 in the appendix provides an overview of the nomenclature of our PN specification. 
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  𝑨 = 𝑶 − 𝑰 (1) 

The marking vector 𝑀  = [𝑀 (𝑝 ); … ; 𝑀 (𝑝 )], contains for each point in time ℎ with ℎ ∈

{0, … , 𝐻}  the number of tokens on each place 𝑝 , where 𝑀  indicates the initial marking 

vector. If there is more than one transition requiring the same input token from a common 

input place at ℎ, there is a conflict. The conflict resolution type vector 𝐶𝑅 = [𝑐𝑟 ; … ; 𝑐𝑟 ] 

assigns each place 𝑝  its type of conflict resolution determining whether a conflict is resolved 

by priority (𝑐𝑟 = 0) or probability (𝑐𝑟 = 1). According to the conflict resolution type, the 

conflict parameter vector 𝐶𝑃 = [𝑐𝑝 ; … ; 𝑐𝑝 ] assigns each transition 𝑡  a specific priority or 

probability, respectively. Further, the guard function vector 𝐺  = [𝑔 (𝑡 ); … ; 𝑔 (𝑡 )] with 

𝑔 (𝑡 ) ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} assigns each transition 𝑡  additional enabling conditions. Therefore, a 

transition 𝑡  is enabled if (1) each input place contains enough tokens and (2) the enabling 

conditions of the assigned guard function 𝐺 (𝑡 ) are fulfilled, i.e. 𝑔 (𝑡 ) = 𝑡𝑟𝑢𝑒. Hence, the 

enabling vector 𝐸  = [𝑒 (𝑡 ); … ; 𝑒 (𝑡 )] with 𝑒 (𝑡 ) ∈ {0,1} determines whether a 

transition 𝑡  is enabled at point in time ℎ. The transition type vector 𝑇𝑇 = [𝑡𝑡 ; … ; 𝑡𝑡 ] 

determines whether a transition is an immediate (𝑡𝑡 = 0) or timed (𝑡𝑡 = 1) 

transtion. Further, the fire rate vector 𝐹𝑅 = [𝑓𝑟 ; … ; 𝑓𝑟 ] specifies the firing rate determining 

the firing delay of timed transitions. Whenever a timed transition is enabled, a random firing 

delay is assigned to it. With every time step, the firing delay decreases. Once the firing delay 

equals zero the transition fires. Therefore, the firing vector 𝐹 = [𝑓 (𝑡 ); … ; 𝑓 (𝑡 )] with 

𝑓 (𝑡 ) ∈ {0,1} determines whether a transition 𝑡  fires at ℎ. Thereby, the marking of the next 

point in time ℎ + 1 is calculated by equation 2: 

  𝑴𝒉 𝟏 = 𝑴𝒉 + 𝑨 ∙ 𝑭𝒉 (2) 

As the information network is composed of several components, we define a set of 

components 𝐶 = ⋃ {𝑐 } = {𝑐 , … , 𝑐 }. For example, and in reference to Figure 2, a set of 

components can include, but is not limited to, servers, cloud-based or on-premise hosted IT 

services, data storage, external interfaces, and sensors, actuators, and embedded systems of 

smart production machines. Each component 𝑐  is described by a subset of places 𝑃 ⊆ 𝑃 and 

a subset of transitions 𝑇 ⊆ 𝑇 (Vladimir 2011). To depict timing failures and, hence, 

informational dependencies between components, the unavailability of a component 𝑐  at a 

certain point in time ℎ and the maximum acceptable interruption time between two 

components 𝑐  and 𝑐  are required. For this, the unavailability of a component, that represents 
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the duration of a component’s unavailability, is depicted by matrix 𝑈  = [𝑢 (𝑐 ); … ; 𝑢 (𝑐 )] 

with 𝑢 (𝑐 ) ∈ ℕ  and the maximum acceptable interruption time is depicted by matrix 𝐿 with 

𝐿 ,  ∈ ℕ. 

III.1.4 Modeling Procedure 

In this section, we illustrate our modeling procedure for answering our research question. 

Following Simon (1996), we conducted several generate-and-test cycles during the design 

process to derive an appropriate approach fulfilling the derived design objectives and 

requirements. To depict components and their interdependencies, we develop a modeling 

module representing one essential artifact of our research. Thereby, each component 𝑐  is 

illustrated by a modeling module, framed by a rounded rectangle as shown in Figure III.1-5.  

 

Figure III.1-5: Modeling of an information network component 

A modeling module consists of six places (𝑝  to 𝑝 ) and seven transitions (𝑡  to 𝑡 ). The state 

places 𝑝  to 𝑝  (white circles) represent the current state 𝑠 ∈ {𝑂𝑃, 𝑂𝐻, 𝐹𝐴, 𝐹𝐸} of a 

component. The operational state, for instance, is represented by one token on place 𝑝 , 

summarized by the marking vector of the state places 𝑀 = [1; 0; 0; 0; 0; 0]. Figure III.1-6 shows 

all states a component can exhibit and their depiction by our modeling module. The on hold 

state is defined by a token on the places 𝑝  and 𝑝 . Further, the failed after error and the failed 

after attack states are depicted by a token on place 𝑝  or place 𝑝 , respectively. 
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Figure III.1-6: Component states depicted in the model 

The structure of complex information networks can be built up by means of the modeling 

modules. Therefore, the modeling modules can interact with each other via interface places 

(striped circles) that are positioned on the borderlines of the module, as well as via guard 

functions that are assigned to transitions. The input interface place (IIP) 𝑝  and the output 

interface place (OIP) 𝑝  facilitate the depiction of attacks and attack propagation within the 

information network by connecting components according to information flows between 

them. The guard functions depict if required information is available within a given time. 

Figure III.1-5, four immediate transitions (black rectangles) depict whether there is a timing 

failure or not (𝑡  and 𝑡 ), or whether an attack harms a component or not (𝑡  and 𝑡 ). Moreover, 

three timed transitions (white rectangles) depict the time to error (𝑡 ) as well as the time to 

recover after an error or attack (𝑡  and 𝑡 ). Thereby, the time to error represents the assumed 

time span between errors, i.e., the time between the occurrences of two errors. The time to 

error can be assessed based on historical data regarding the number of errors in a certain 

interval. The time to recovery includes both the predicted times for detection and repair of a 

failure after an error or attack. Taking the operational state as a starting point, we describe in 

the following how (1) timing failures, (2) errors, and (3) attacks as well as their propagation 

within the information network are depicted in our modeling approach.  

The timing failure model is depicted by means of the state places 𝑝  (for status OP) and 𝑝  

(for status OH), the transitions 𝑡  and 𝑡 , and the assigned guard functions 𝐺 (𝑡 ) and 𝐺 (𝑡 ). 

Thereby, the guard functions monitor whether the unavailability 𝑈 (𝑐 ) of other components 

exceeds the maximum acceptable interruption time 𝐿 ,  (cf. Figure III.1-7).  

 

On Hold (OH)Operational (OP) Failed after Error (FE) Failed after Attack (FA)
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Figure III.1-7: Timing failure sequence 

To demonstrate the timing failure mechanism, we consider an example consisting of two 

components 𝑐  and 𝑐 . Component 𝑐  (e.g., a sensor) supports component 𝑐  (e.g., an 

embedded system) with necessary information. Hence, the operational capability of 

component 𝑐  depends on the information transmitted by component 𝑐  in real-time. Figure 6 

shows the subsequent states of component 𝑐 . The guard function 𝐺 (𝑡 ) is true if the 

unavailability of component 𝑐  exceeds the maximum acceptable interruption time (e.g., due 

to a technical defect) enabling transition 𝑡  of component 𝑐  (step 1 / ℎ=1). Subsequently, 

transition 𝑡  fires and an additional token is created on place  𝑝  changing the state of 

component 𝑐  from operational to on hold (step 2 / ℎ=27). As there is both an arc from 𝑝  to 

𝑡  and from 𝑡  to 𝑝 , the marking of place 𝑝  after firing is the same. Once component 𝑐  is 

recovered and its unavailability is less than the maximum acceptable interruption time, guard 

function 𝐺 (𝑡 ) of component 𝑐  is true, enabling transition 𝑡 . The firing of transition 𝑡  only 

consumes the token on place 𝑝  as transition 𝑡  is a sink transition without outgoing arcs (step 

3 / ℎ=43). Therefore, the state of component 𝑐  changes from on hold back to operational.  

Moreover, the error model enables the consideration of randomly occurring errors such as 

technical defects or erroneous entry of data by operators and their effects on the operational 

capability of the smart factory. For this, the error model comprises a sequence of the three 

states operational, failed after error, and on hold as shown in Figure III.1-8.  

Guard Function of Component :

If then

Guard Function of Component :

If then

Exemplary Guard Functions:

: Operational : Operational

: Operational (OP)

: On Hold

: On Hold: Failed After Error

TTR=40

Step 1 Step 2 Step 3

TTR: time to recovery
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Figure III.1-8: Error sequence 

The exponentially distributed firing delays of the error sequence are described by the error 

rate 𝜆  and the error recovery rate 𝜆 . These fire rates define the stochastic time to error 

(e.g., TTE=25) and time to recovery (e.g., TTR=10) that are associated to the timed transitions 

𝑡  and 𝑡 . The information about their parametrization is available through sources such as 

maintenance information of manufacturers, and hence, can be assessed and applied as 

exogenous input parameters to our model. After the assigned time to error elapsed, 

transition 𝑡  fires, representing the occurrence of an error of the component (step 1 / ℎ=1). 

Therefore, transition 𝑡  consumes the token on place 𝑝  and creates a token on place 𝑝  

changing the state of the component from operational to failed after error (step 2 / ℎ=26). 

Subsequently, transition 𝑡  is enabled and the random firing delay time to recovery is assigned 

to it. Once the time to recovery is elapsed and the component is recovered, transition 4 fires 

and the component exhibits the on hold state (step 3 / ℎ=36). In this state, the component 

monitors whether all necessary information from supporting components is accessible. Once 

all necessary information is accessible, the component’s state switches back to operational 

(step 4 / ℎ=37), otherwise the component stays on hold (see timing failure model described 

above).  

Finally, the attack model includes the three states operational, failed after attack, and on hold 

as well as the IIP 𝑝  and OIP 𝑝  as shown in Figure III.1-9.  

Step 1: Operational Step 2: Failed after Error Step 3: On Hold Step 4: Operational

TTE = 25 TTR = 10 TTR: time to recovery
TTE: time to error



III Risk Management in Digitized Value Networks 122 

 

 
 
 

 

Figure III.1-9: Attack sequence 

The occurrence of an attack is represented by the presence of a token on the IIP 𝑝  enabling 

both transitions 𝑡  and 𝑡  (step 1 / ℎ=1). Whether an attack is successful (𝑡  fires) or not 

successful (𝑡  fires) is determined randomly according to the assigned probabilities 1 − 𝛼 

and 𝛼, respectively. Hence, the parameter 𝛼 can be interpreted as a measure for the security 

level of components. If an attack is not successful, transition 𝑡  consumes the token on IIP 𝑝  

and the component remains in the operational state (step 2a / ℎ=2). In contrast, if the attack 

is successful, transition 𝑡  consumes the tokens on the state places 𝑝  and IIP 𝑝  and creates a 

token on the state place 𝑝  and OIP 𝑝  (step 2b / ℎ=2). The token on the state place 𝑝  initiates 

the recovery of the component and the token on OIP 𝑝  depicts the attack propagation to other, 

connected components. Subsequently, transition 𝑡  is enabled and the attack recovery rate 𝜆  

defines the stochastic time to recovery (e.g., TTR=10) assigned to transition 𝑡 . Once the time 

to recovery is elapsed and the component is recovered, the component switches to the on hold 

state (step 3 / ℎ=12) and monitors whether all necessary information from supporting 

components are accessible (see the timing failure model described above). Finally, the 

component is in the operational state again /step 4 / ℎ=13). 

TTR=10

Step 1: Operational

Step 2b: Failed after Attack Step 3: On Hold Step 4: Operational

Step 2a: Operational

attack not
successful
( fires)

attack
successful
( fires)

TTR: time to recovery
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Figure III.1-10: Attack propagation sequence 

As shown in Figure III.1-10 the attack propagation is depicted by the OIP and IIP on the 

borderlines of the modeling modules. We apply the idea of fusion of places as described by 

Murata (1989), where the OIP of component 𝑐  and the corresponding IIP oFf component 𝑐  

are represented by the same place 𝑝 . Hence, if an attack is successful and a token is created 

on the OIP of component 𝑐  there is also a token on the corresponding IIP of component 𝑐  

enabling the above-described attack model. Moreover, if a component is connected to more 

than one other component, the number of OIPs within a modeling module can be expanded to 

an arbitrary number as indicated in component 𝑐  (cf. Figure 10). 

Further, to represent the stochastic occurrence of attacks and to simulate the expected number 

of attacks in a certain time interval, we adopt a shock module as introduced by Fridgen et al. 

(2014). The shock module shown in Figure 11 comprises one transition 𝑡  and one or multiple 

OIPs. Transition 𝑡  is a source transition (i.e., without input places) and, thus, is always 

enabled. The attack rate 𝜆  defines the random firing delay time to attack that is associated 

with transition 𝑡 . After the firing delay elapsed, transition 𝑡  fires and creates a token on the 

OIP representing the occurrence of an attack. Thereby, one OIP of the shock module is 

connected to one IIP of a modeling module. To depict simultaneous attacks (Amin et al. 2013) 

the number of OIPs within the shock module can be expanded analogously to the modeling 

module (cf. Figure III.1-11). 

. 

Figure III.1-11: Structure of a shock module  
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III.1.5 Evaluation 

Following Sonnenberg and vom Brocke (2012), within this section, we demonstrate and 

evaluate the feasibility and applicability of our modeling approach. For this purpose, they 

propose a combination of ex-ante and ex-post evaluation activities (Eval1 to Eval4) in 

artificial and naturalistic environments. Thereby, Eval1 requires the presentation of the 

research topic as a meaningful DSR problem and the formulation of design objectives. Eval2 

validates the design specification against the postulated design objectives. Eval3 aims to 

validate the feasibility of a prototype in an artificial setting. Finally, Eval4 serves the purpose 

of validating the applicability of the developed artifact from a naturalistic perspective.  

We already conducted Eval1 activity in sections 1 and 2 by identifying the need for a 

formalized approach for the modeling of information networks in smart factories. Sections 3 

and 4 described the logical reasoning of our artifact, the modeling approach.  

In section 5.1, we validate the design specification against the possessed design objectives and 

requirements from the literature by means of a feature comparison. Further, in section 5.2, we 

simulate an exemplary information network based on a real-world setting in an artificial 

setting (Eval3) to demonstrate the feasibility of our modeling approach and to show that our 

artifact behaves as intended for single test cases (Sonnenberg and Vom Brocke 2012). In 

section 5.3, we apply key figures that are based on the data generated by our modeling 

approach to demonstrate its usefulness for the analysis of an information network, its 

interdependencies, and the propagation behavior of failures over time. Finally, to validate the 

modeling approach from a naturalistic perspective (Eval4), we interview experts from two 

leading global companies in the automation and flexible packaging sector and an academic 

PN expert (cf. section 5.4).  

III.1.5.1  Feature Comparison 

In section 2, we derived design objectives for the development of our modeling approach. We 

compare these design objectives with the design specifications of our developed modeling 

approach to validate whether our developed artifact fulfills these design objectives (Venable 

et al. 2012).  

DO.1 Graphical and formal representation: Our modeling approach is based on PN 

providing both a graphical representation of modeling modules and a formal 
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representation of information networks. Owing to the exact mathematical definition of 

PN, it is possible to convert information networks into mathematical equations 

enabling computer-based simulations of complex real-world settings. 

DO.2 Scalability: Our modeling approach depicts the information network as a multitude of 

single modeling modules and dependencies between them. This modularization 

enables the modeling of information networks of different sizes and compositions.  

DO.3 Threats: Our modeling approach provides the possibility to model and simulate 

different threats (intentional attacks via virus attacks and technical errors) as well as 

associated propagation effects (attack and timing failure propagation) (cf. section 4).  

Based on this design objective comparison, we can state that our developed modeling 

approach fulfills all design objectives derived in section 2.  

III.1.5.2 Simulation based Analysis of an Exemplary Information Network 

To demonstrate the feasibility of our modeling approach, we simulate an exemplary 

information network that is based on a real-world setting oriented on a matrix production 

principle of a leading robotics manufacturer (cf. Figure III.1-12) and that is affected by 

different threats. For this, we model the information network of a production environment 

consisting of five robotic cells that are a section of a larger smart factory. 

 

Figure III.1-12: Exemplary smart factory information network 

The information network consists of 211 components (modeling modules) containing servers, 

IT services, data storage, external interfaces, embedded systems, sensors, and actuators. The 
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exemplary setting is based on a real-world setting of one of the leading robotic manufacturers 

with its matrix organized production concept for customers for the production of industrial 

goods and, thus, is geared toward a close-to-reality production infrastructure. There are five 

robotic cells equipped with four industrial robots on the shop floor of the smart factory. Each 

industrial robot embraces one embedded system, three sensors (e.g., temperature or ultrasonic 

sensor), and six actuators (six axis robots) to flexibly perform production tasks. The embedded 

systems, sensors, and actuators are modeled as components of the information network. 

Embedded systems control sensors and actuators as well as exchange production and machine 

data between industrial robots, IT services, and data storage. According to real-time 

requirements and data volumes, IT services and data storage can be hosted either on on-

premise servers (e.g., MES, ERP) or via external interfaces in the cloud (e.g., big data 

analytics). Thereby, the MES and ERP applications perform traditional production tasks (e.g., 

production planning and control), whereas big data applications analyze production and 

machine data to predict, for instance, productivity, quality, and maintenance jobs. Based on 

these analyses, big data applications give MES and ERP applications feedback to optimize 

production processes. Further, we assume that a failure of the on-premise server (hosting MES 

and ERP applications) can lead to a standstill of the entire smart factory due to missing 

necessary information of the MES and ERP. In contrast, a failure of the cloud server (hosting 

big data applications) affects only the ability of the smart factory to optimize production flows, 

but the operational capability of production remains unaffected.  

Taken this initial setting, we consider two scenarios (i.e., Scenario 1 - Attack and Scenario 2 

- Error) to demonstrate and analyze the impact of different threats on the operational 

capability of the information network by using the unavailability rate as a measure for the 

impact of failures. The simulations are based on the following specifications (see Table 

III.1-2). 

 Scenario 1 – Attack Scenario 2 – Error 
Case 1A Case 1B Case 2A Case 2B 

Number of Simulation Runs 1,000 

Number of Points in Time 100 

Number of Components 211 

Error Rate (L_E) 0.0001 0.0001 0.0001 0.0001 

Error Recovery Rate (L_ER) 0.01 0.01 0.01 0.1 

Security Level α 0.90 0.99 0.90 0.90 

Table III.1-2: Scenario specifications 
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We developed an application using MATLAB, which allows us to design, simulate, and 

analyze generalized stochastic nets. Our application considers immediate and timed 

transitions. Timed transitions can be deterministic or stochastic. Furthermore, priorities or 

probabilities can be assigned to conflicting transitions. We use this application to simulate and 

analyze the information network modeled by means of our PN approach.  

We conduct 1,000 simulation runs for each scenario. In each simulation run, we observe a 

time frame of 100 points in time and the states of 211 components of the smart factory 

information network (see Fig. 12) resulting in 21,100 states. For all simulation runs we define 

that the start marking was the same (i.e., all of the 211 components are in the state 

“operational”). However, the stochastic effects of the threat events (e.g., probability of a 

successful attack or the exponentially distributed time to error) lead to different results in each 

simulation run. Thereby, the error failure rate as well as the error and attack recovery rates of 

all components are set to 𝜆 = 0.0001 and 𝜆 = 𝜆 = 0.01, meaning that errors occur in 

one out of 10,000 points in time and that recovery after errors and attacks takes about 100 

points in time. Both information are based on technical specifications of IT components and 

can be gathered from technical data sheets. The maximum acceptable interruption time 𝐿 ,  

between components within a robotic cell is set to one (real-time requirement), between 

robotic cells to 20 points in time, and between IT services and embedded systems to 60 points 

in time. Further, the 𝐿 ,  between servers and IT services is also set to one depicting functional 

dependencies.  

In Scenario 1 - Attack, we assume an adversary that performs a coordinated cyber-attack on 

all embedded systems of robotic cell 1 via the internet (e.g., via a remote maintenance 

channel). Thereby, a successful attack can compromise other, directly connected components 

(e.g., sensors, IT services) according to their security level. First, we assume that the 

embedded systems run an out-of-date firmware and hence, offer a security level of only 90%. 

After installing a security update, the security level increases to 99%. Comparing the two 

security levels, the unavailability rate decreases from 30% to 1% (see Figure III.1-13). The 

results indicate that an increased security level dramatically reduces the unavailability rate 

and, therefore, the impact of an adversary on the operational capability of the information 

network. 

In Scenario 2 - Error, we consider a technical defect of the on-premise server leading to 

failures of the MES and ERP applications. To demonstrate how timing failures affect the 
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operational capability of the smart factory, we analyze different recovery rates of the on-

premise server. First, we assume a recovery time defined by the recovery rate 𝜆 = 0.01. 

After improving the recovery process and fault diagnosis (e.g., by the use of augmented 

reality) the recovery time decreases (𝜆 = 0.1). Thereby, the unavailability rate decreases 

from 27% to 13% (see Figure III.1-13). The results indicate that an improved recovery rate 

reduces the unavailability rate and, hence, the impact of an error of the on-premise server on 

the information network.  

 

Figure III.1-13: Simulation results: Unavailability rates for Scenario 1 – Attack and Scenario 2 – Error 

In summary, the results of the scenario simulation indicate the applicability of the modeling 

approach to a production environment that is close to real world. In addition, the simulation 

results demonstrate the application possibilities of our approach for deriving suitable security 

and prevention measures. Of course, the size of the modeled information network is limited 

and information networks of smart factories in practice are far more complex because they 

consist of considerably more components. Nevertheless, the application of our modeling 

approach to a close-to-real-world scenario within the simulation and its results demonstrate 

that our approach is principally suitable for more complex scenarios due to the modular 

structure of our modeling approach. Further, the application demonstrates that there is a need 

for an adequate modeling approach that enables detailed analysis of IT availability risks (cf. 

section 5.3).  

III.1.5.3 Application of Key Figures 

Besides the simulation results described in section 5.2, the data regarding the components’ 

states and their operational capability (ref. Table III.1-1) generated by the simulation can be 

used to analyze the information network, its interdependencies, and the propagation behavior 

of failures over time in more detail. The development of corresponding key figures that are 

calculated on the basis of the generated data seems promising to support the identification of 
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critical components. Although the elaborated development of such key figures is subject to 

further research (source left blind due to double-blind review), we briefly describe two 

potential key figures that can be derived from our approach.  

For this, the current state 𝑠 ∈ {𝑂𝑃, 𝑂𝐻, 𝐹𝐴, 𝐹𝐸} of each component at ℎ is depicted by the 

state vector 𝑣 , = [𝑏 , ; 𝑏 , ; 𝑏 , ; 𝑏 , ], where 𝑏 ,  represents a binary variable that 

takes the value 1 if component 𝑐  is in state 𝑠 at ℎ, else 0. By means of the state vector 𝑣 , , 

the state of each component is defined clearly for each point in time ℎ. Table III.1-3 provides 

an overview over the states, their attributes, and the associated state vector. 

States Operational (OP) On hold (OH) Failed after attack (FA)  Failed after error (FE) 

Function executable yes yes no no 

Information accessible yes no yes or no yes or no 

State vector 𝑣 ,  𝑣 , = [1; 0; 0; 0] 𝑣 , = [0; 1; 0; 0] 𝑣 , = [0; 0; 1; 0] 𝑣 , = [0; 0; 0; 1] 

Table III.1-3: Component states and corresponding state vectors 

Based on the state vector, we develop the key figures availability and operational availability 

to analyze the smart factory’s information network regarding its operational capability after 

an attack or error:  

Dynamic key figure “Availability”: The availability of the information network 𝐴𝑉 (𝑀, ℎ) 

measures the share of components that are able to provide their function (𝑠 ∈ {𝑂𝑃, 𝑂𝐻}) at 

ℎ considering that a subset 𝑀 of the components initially fails7 at ℎ due to an attack or error 

(see eq. 3).  

Dynamic key figure “Operational availability”: The operational availability of the 

information network 𝑜𝑝𝐴𝑉 (𝑀, ℎ) measures the share of components that are able to provide 

their function and access necessary information (𝑠 ∈ {𝑂𝑃}) at ℎ considering that a subset 

𝑀of the components initially fails at ℎ due to an attack or error (see eq. 4).  

𝐴𝑉 (𝑀, ℎ) =
∑ , ∑ ,

   (3)   𝑜𝑝𝐴𝑉 (𝑀, ℎ) =
∑ ,

   (4) 

To calculate the two key figures, the values of the state vectors obtained from the marking 

vector resulting from the simulation and fulfilling the respective criteria (for eq. 3 𝑠 ∈

 
7  𝑀 is a subset of N (𝑀 ⊆ 𝑁) consisting of one or multiple components (e.g., in case of common cause failures or 
synchronized attacks) and representing the initial trigger of failures. 
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{𝑂𝑃, 𝑂𝐻}, for eq. 4 𝑠 ∈ {𝑂𝑃}) are summed up. By means of the distinction between 

availability and operational availability, the information network and its components can be 

analyzed regarding their operational capabilities as well as their informational dependencies 

to identify critical components. Whereas traditional availability key figures often only cover 

whether a system is in a functioning condition or not, our approach enables a detailed 

depiction of four different relevant states. This enables the determination of the extent of non-

availability of components that results solely from informational dependencies. They can be 

applied to analyze an entire information network, a subnetwork, or selected components. 

Thus, the key figures support the improvement of already existing information networks 

through targeted security measures as well as the development of a sensible design and 

configuration of new information networks. 

To demonstrate the application of the key figures, Figure III.1-14 contains the exemplary 

course of a worst-case simulation run of two different scenarios that resulted both in a 

significant non-availability of IT components and, thus, a restriction of the production system. 

For this analysis, we selected two worst-case courses among the generated simulation runs. 

The worst-case courses show different effects on the information network: (a) a failure of the 

server (e.g., caused by an incorrect software update) and (b) an attack on one embedded 

system that can compromise other directly connected components with a given probability. 

      

Figure III.1-14: Illustration of AV and opAV after failure (a) and attack (b) for an exemplary simulation run 

As shown in Figure III.1-14a, the availability in scenario (a) drops to 98% and remains 

constantly at this level after the failure of the server at ℎ = 1. However, the operational 

availability considerably decreases stepwise, as IT services depend functionally on the server. 

Consequently, controllers (drop 2 in Figure III.1-14a), embedded systems, and all dependent 

sensors and actuators (drop 3 and 4 in Figure III.1-14a) exhibit the OH state due to missing 

information, resulting in a standstill of the entire smart factory. After the server is repaired, 
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all components restore their operational capability and change their state from OH to OP as 

necessary information is accessible, again. Finally, the entire smart factory is restored and 

fully functional. This worst-case scenario illustrates that a failure of central components, i.e., 

the server, leads to an inoperability of the entire smart factory and, thus, a significant economic 

damage.  

As shown in Figure III.1-14b, the attack on the embedded system causes a rapid drop of the 

components’ availability to 41%. The rapid drop can be explained by the spread to directly 

connected components leading to a functional incapacity of these components, too. Thereby, 

the operational availability decreases to 30% as missing information causes further 

components to interrupt their function (𝑠 ∈ {𝑂𝐻}). As soon as components begin to restore 

their operational capability, there is a gradually increase of availability and a stepwise increase 

of operational availability. This stepwise increase can be explained by the fact that all 

components of a production cell have to be restored until the production cell is completely 

functional, again. 

These exemplary worst-case courses of failure propagations within the information network 

illustrate that our modeling approach can be used as the basis for detailed analyses of 

information networks and their components and, thus, provides value for practitioners. The 

analysis of single worst-case courses is especially important as the potentially worst-case 

courses of propagation effects can cause significant damage to companies and, thus, represent 

extreme risk potentials for companies like complete production downtimes or a loss of 

operations that result in significant economic damage. These worst-case courses would not be 

observable if the data of simulation runs is accumulated, for instance, to average values. Thus, 

our modeling approach and the application of key figures such as the described ones enable 

the profound analysis of different structural designs of information networks and the targeted 

derivation of IT security measures to avoid or soften worst-case courses. Accordingly, the 

identification of beneficial design features such as precise and highly effective air gaps 

between components of the information network or the implementation of redundant IT 

components is facilitated. 

III.1.5.4 Expert Interviews 

To complement the evaluation from a naturalistic perspective, we interviewed experts from 

two companies to cover different views and an academic PN expert. Thereby, we discussed 

our modeling approach with the experts in-depth and based on the exemplary application in 
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the close-to-reality structure from section 5.2 and the application of key figures in section 5.3. 

The interviews with the experts from practice, who deal with our research context on a daily 

basis in detail, focused on the first two phases of the DSR methodology (problem 

identification and design objectives) and helped to validate the usability and real-world 

fidelity of our modeling approach. 

First, we interviewed the chief information officer of PACKAGING, one of the world’s 

leading manufacturers of flexible packaging with 10,000 employees in 23 countries and sales 

of €1.9 billion in 2015. PACKAGING extensively applies automation technologies in their 

production facilities and, thus, provides great experience with comprehensive information 

networks and digital technologies within production facilities. The expert confirmed the need 

for a modeling approach that depicts information networks in smart factories to analyze both 

attacks and errors in a separated and integrated manner as, till date, corresponding approaches 

are missing. Further, he considered our abstraction of a smart factory network, the 

categorization of threats, and the proposed design objectives and requirements of our research 

as useful and sensible. For further research, he remarked that employees might not be familiar 

with the graphical representation of a modeled information network component due to the 

specific notation of PN. Further, the graphical representability of the entire modeled 

information network might suffer in large information networks and become rather complex 

and confusing. Both limitations could be addressed by an user-friendly graphical user 

interface in combination with drill down functions and a defined hierarchical structure that is 

able to condense large information networks on customizable granularity levels. For instance, 

these hierarchy levels could be defined on a component level, production cell level, or 

production area level.  

The second organization ROBOTIC is a manufacturer of industrial robots and intelligent 

automation solutions. ROBOTIC has about 12,300 employees and sales of €3 billion. We 

interviewed the vice president of digital strategy of ROBOTIC, who holds a doctorate in 

business & information systems engineering and has several years of experience in the field 

of automation and robotics. This expert also confirmed the need for modeling and analyzing 

IT availability risks in smart factory information networks and the lack of corresponding 

approaches, till date. He highlighted that the modularization of our PN approach is helpful in 

managing the increasing size and complexity of information networks. Further, he remarked 

that the development of key performance indices is necessary to enable employees of the IT 
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department to analyze and improve the security of smart factory information networks. This 

important remark was integrated in our research and led to the development of the key figures 

presented in section 5.3. Moreover, he pointed out that the consideration of a dynamic failure 

rate would be beneficial, as failure rates of technical applications generally change during 

service life (cf. Weibull distribution). Since the application of our modeling approach in the 

paper at hand is steered towards an already installed smart factory network that is in an 

established, running operational mode, the consideration of life cycle effects such as set-up 

difficulties or wear-out of components is not necessary. However, this would be possible 

through an appropriate parametrization and the use of suitable distributions. Further remarks 

from these experts were used as orientation for the parametrization of the exemplary 

simulation in section 5.2 (for instance, regarding the security level of components or the error 

recovery rate). 

Lastly, we interviewed a professor for electrical engineering with a background in 

mechatronic and control engineering as an expert for PN to evaluate our modeling approach 

from a methodological perspective. The interviewed expert focusses in his research on flexible 

automation and cooperative robotics in the field of Industry 4.0 and, thus, besides the 

methodological knowledge about PN he possess relevant practical knowledge about smart 

factories and their information networks. This expert confirmed that our developed modeling 

approach addresses a highly relevant research topic as the analysis of IT availability risks in 

complex smart factory information networks requires the development of appropriate 

approaches. In the opinion of the expert, our approach can serve as a basis for the analysis of 

different interconnection patterns of information networks and for failure analysis, for 

instance, of common-cause failures. Further, he confirmed that our design objectives and 

requirements derived from literature are decisive and plausible. He highlighted, that our 

approach by means of stochastic PN approach is highly valuable for the structured modeling 

of complex information networks and that our modeling approach is plausible and 

comprehensible. Further, he emphasized that the data necessary for the parametrization of our 

modeling approach in real-world application scenarios can be gathered through different 

sources relating to functional safety such as technical data sheets of component manufacturers. 

The expert also suggested that the consideration of functional safety and its impairment by IT 

availability risks would have been another interesting element. Since we focused our research 
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on IT availability risks and their direct effects in the information network, this represents an 

interesting opportunity for further research. 

III.1.6 Conclusion, Limitations, and Future Work 

The digitalization and interconnection of production infrastructures lead to new challenges for 

companies (Amin et al. 2013). In particular, the flawless functioning of information networks 

and the exchange of information in real-time are prerequisites for the operational capability 

of smart factories. Therefore, in this paper we have presented a stochastic PN approach to 

model and simulate information networks of smart factories considering different threats. The 

key benefits of our modeling approach are: 

 increased transparency and controllability of complexity as the modularization of the 

modeling approach enables the depiction and simulation of increasingly complex and 

dynamic information network settings; 

 analysis of different threat scenarios and derivation of valuable recommendations 

towards sensible design patterns for smart factory information networks and degree of 

interconnectivity; 

 identification of weak spots in the information network and basis for the derivation of 

appropriate countermeasures against IT availability risks that is subject to further 

research. 

To validate the developed modeling approach, we have simulated different threats 

compromising an artificial information network setting and interviewed experts from two 

global leading companies and an academic PN expert. The results indicate that the developed 

approach is appropriate for the modeling of information networks in smart factories and the 

analysis of associated IT availability risks. Considering the examples of Stuxnet, locky, 

WannaCry, or the steel mill provided in the introduction, our modeling approach can support 

companies in their preventive risk management by modeling, simulating, and analyzing the 

information network and by identifying weak spots and critical dependencies through the 

qualitative   comparison of different threat scenarios. For this, our modeling approach provides 

the starting points for a profound comparison of different threat scenarios by creating 

transparency and providing a structured modeling approach. In addition to quantitative key 

figures, a more qualitative analysis, e.g. on the basis of expert assessments and expert 

discussions (see also our expert interviews in section 5.4), should also be conducted in any 
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case, since pure key figure-based comparisons are not sufficient, e.g. due to uncertainties in 

parameterization. However, these discussions are made possible or are really effective only 

through the transparency created by structured approaches such as our modeling approach. 

Accordingly, the insights gained by our approach can be used as a starting point to investigate 

targeted IT-security measures to reduce risks associated with IT availability. Accordingly, the 

insights imply that our approach can be beneficial for practice and further research to derive 

valuable recommendations towards the design of information networks from a risk 

management perspective. Hence, our approach is the basis for the (further) development and 

protection of information networks and dependent production systems.  

Our developed modeling approach entails both the challenge of gathering the necessary data 

by companies and the challenge of the identification of a sensible parametrization (e.g., 

security level) for accurate modeling and simulation. In this regard, our approach can serve as 

a blueprint that helps companies to identify which data they should gather to be able to analyze 

availability risk of their information network. Potential sources for these data may include 

maintenance data and technical data sheets of components, historical data, expert estimates, 

or reports from IT security authorities like the German BSI. In addition, the composition of 

the single modules of large, complex smart factory information networks is time-consuming 

for the initial modeling. To support this, further research could develop a formal definition for 

the model composition that performs place superposition based on corresponding labels and, 

thus, automates the composition process.  

Our approach is restricted to the analysis of information network components. However, 

extensions such as modules for the depiction of information flows and threats that can affect 

information flows (e.g., broken cables) can be applied due to the modular approach. Further, 

currently, our modeling approach can only model intentional attacks caused by virus attacks 

and technical errors. Thus, further research could develop modeling extensions to incorporate 

other kinds of attacks like data leakage. Pointing into the same direction, our approach is 

constrained by the defined operational states and, thus, is not able to depict components with 

reduced functionality. The consideration of different threat intensities and propagation 

velocities of threats representing, for instance, the skills of an adversary are subject to further 

research. Besides, the insights provided by our approach regarding IT availability risks could 

be used to improve existing Unified Modeling Language (UML) models that are suitable to 

visualize the structure and behavior of the smart factory. As UML (reference) models lack the 
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possibility to analyze dynamic effects such as stochastic cascading failures and propagation 

effects, our modeling approach can be used as a suitable extension. 

Considering that the comprehensive interconnection in smart factories provides both positive 

(e.g., increased flexibility and efficiency of production) and negative effects (e.g., increased 

vulnerability to IT availability risks), companies face the challenge of deciding whether an 

extensive or deliberate interconnection of the information network is sensible. In this regard, 

the identification of the sensible degree of interconnection in smart factories represents one of 

the most challenging topics. Hence, the goal of our future research is to develop approaches 

and methods to determine the sensible degree of interconnection considering risk and return 

aspects in different production environments. Here, the analysis of interdependencies between 

information and production networks and within the production network is especially 

necessary to enable the monetary valuation of business interruptions.  

To solve this research endeavor, we see four consecutive research areas. Based on the 

modeling approach presented in the paper at hand (area 1), the identification of critical 

components (area 2) within information networks represents a subsequent step for deciding 

on appropriate countermeasures, e.g. by means of key figures. To consider risk and return 

aspects of interconnectivity and to assess the sensible degree of interconnection in smart 

factories, methods for the quantification of economic loss potentials (area 3) and expected 

benefits (area 4) resulting from extensive interconnectivity are necessary. These capabilities 

should empower companies to assess the sensible degree of interconnection in information 

networks and to derive adequate IT security measures.  
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III.1.7 Appendix 

Parameter Description 

𝑃 Set of places 𝑃 = ⋃ {𝑝 } = {𝑝 , … , 𝑝 } 

𝑇 Set of transitions 𝑇 = ⋃ 𝑡 = {𝑡 , … , 𝑡 } 

𝐶 Set of components 𝐶 = ⋃ {𝑐 } = {𝑐 , … , 𝑐 } 

𝐼 Input matrix 𝐼 with 𝐼 ,  ∈ {0,1} 

𝑂 Output matrix 𝑂 with 𝑂 ,  ∈ {0,1} 

𝐴 Incidence matrix 𝐴 with 𝐴 ,  ∈ {−1,0,1} 

𝐶𝑅 Conflict resolution vector 𝐶𝑅 = [𝑐𝑟 ; … ; 𝑐𝑟 ] 

𝐶𝑃 Conflict parameter vector 𝐶𝑃 = [𝑐𝑝 ; … ; 𝑐𝑝 ] 

𝑇𝑇 Transition type vector 𝑇𝑇 = [𝑡𝑡 ; … ; 𝑡𝑡 ] 

𝐹𝑅 Fire rate vector 𝐹𝑅 = [𝑓𝑟 ; … ; 𝑓𝑟 ] 

𝐿 Maximum acceptable interruption time matrix 𝐿 with 𝐿 ,  ∈  ℕ 

ℎ Discrete point in time ℎ with ℎ ∈ {0, 1, … , 𝐻} 

𝑀  Marking vector 𝑀  = [𝑀 (𝑝 ); … ; 𝑀 (𝑝 )] with 𝑀 (𝑝 ) ∈ {0,1} 

𝐸  Enabling vector 𝐸  = [𝑒 (𝑡 ); … ; 𝑒 (𝑡 )] with 𝑒 (𝑡 ) ∈ {0,1} 

𝐹  Firing vector 𝐹  = [𝑓 (𝑡 ); … ; 𝑓 (𝑡 )] with 𝑓 (𝑡 ) ∈ {0,1} 

𝐺  Guard function 𝐺  = [𝑔 (𝑡 ); … ; 𝑔 (𝑡 )] with 𝑔 (𝑡 ) ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 

𝑈  Unavailability vector 𝑈 = [𝑢 (𝑐 ); … ; 𝑢 (𝑐 )] with 𝑢 (𝑐 ) ∈ ℕ  

Table III.1-4: Nomenclature of PN specification 

III.1.8 References 

Acatech (2013): Recommendations for Implementing the Strategic Initiative INDUSTRIE 

4.0. http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech 

/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessib

le.pdf, Accessed 17 April 2017. 

Albert, Réka; Jeong, Hawoong; Barabasi, Albert-László (2000): Error and Attack Tolerance 

of Complex Networks. In: Nature 406 (6794), pp. 378–382. DOI: 10.1038/35019019. 

Amin, Saurabh; Schwartz, Galina A.; Hussain, Alefiya (2013): In Quest of Benchmarking 

Security Risks to Cyber-Physical Systems. In: IEEE Network 27 (1), pp. 19–24. DOI: 

10.1109/MNET.2013.6423187. 



III Risk Management in Digitized Value Networks 138 

 

 
 
 

Amiri, Amin K.; Cavusoglu, Hasan; Benbasat, Izak (2014): When is IT Unavailability a 

Strategic Risk?: A Study in the Context of Cloud Computing. In: Proceedings of the 

35th International Conference on Information Systems, Auckland, New Zealand, pp. 1–

11. 

Arns, Markus; Fischer, Markus; Kemper, Peter; Tepper, Carsten (2002): Supply Chain 

Modelling and its Analytical Evaluation. In: Journal of the Operational Research 

Society 53 (8), pp. 885–894. DOI: 10.1057/palgrave.jors.2601381. 

Arshad, Naveed; Heimbigner, Dennis; Wolf, Alexander L. (2006): Dealing with failures 

during failure recovery of distributed systems. In: Computer Science Technical Reports 

(943), pp. 1–12. DOI: 10.1145/1082983.1083067. 

Ash, Jeff; Newth, David (2007): Optimizing Complex Networks for Resilience Against 

Cascading Failure. In: Physica A: Statistical Mechanics and its Applications (380), S. 

673–683. DOI: 10.1016/j.physa.2006.12.058. 

Brettel, Malte; Friederichsen, Niklas; Keller, Michael; Rosenberg, Marius (2014): How 

Virtualization, Decentralization and Network Building Change the Manufacturing 

Landscape: An Industry 4.0 Perspective. In: World Academy of Science: Engineering 

and Technology International Journal of Mechanical, Aerospace, Industrial, 

Mechatronic and Manufacturing Engineering 8 (1), pp. 37–44. 

Broy, Manfred; Cengarle, María Victoria; Geisberger, Eva (2012): Cyber-Physical Systems: 

Imminent Challenges. In: David Hutchison, Takeo Kanade, Josef Kittler, Jon M. 

Kleinberg, Friedemann Mattern, John C. Mitchell et al. (eds.): Large-Scale Complex IT 

Systems. Development, Operation and Management, Bd. 7539. Springer Berlin 

Heidelberg (Lecture Notes in Computer Science), pp. 1–28. 

BSI (2014): Die Lage der IT-Sicherheit in Deutschland 2014. Bundesamt für Sicherheit in 

der Informationstechnik. 

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/L

agebericht2014.pdf?__blob=publicationFile&v=2, Accessed on 17 April 2017. 

BSI (2016): Die Lage der IT-Sicherheit in Deutschland 2016. Bundesamt für Sicherheit in 

der Informationstechnik. 

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/L

agebericht2016.pdf?__blob=publicationFile&v=5, Accessed on 17 April 2017. 



III Risk Management in Digitized Value Networks 139 

 

 
 
 

BSI (2017): Cyber-Sicherheits-Umfrage 2017 - Cyber-Risiken, Meinungen und 

Maßnahmen. https://www.bsi.bund.de/SharedDocs/Downloads/ACS/cyber-sicherheits-

umfrage_2017.pdf?__blob=publicationFile&v=3https://www.bsi.bund.de/SharedDocs/D

ownloads/ACS/cyber-sicherheits-umfrage_2017.pdf?__blob=publicationFile&v=3, 

Accessed on 2 June 2018 

Buhl, Hans Ulrich; Penzel, Hans-Gert (2010): The Chance and Risk of Global 

Interdependent Networks. In: Business & Information Systems Engineering 2 (6), pp. 

333–336. DOI: 10.1007/s12599-010-0131-7. 

Buldyrev, Sergey V.; Parshani, Roni; Paul, Gerald; Stanley, H. Eugene; Havlin, Shlomo 

(2010): Catastrophic Cascade of Failures in Interdependent Networks. In: Nature 464 

(7291), pp. 1025–1028. DOI: 10.1038/nature08932. 

Cardenas, Alvaro; Amin, Saurabh; Sinopoli, Bruno; Giani, Annarita; Perrig, Adrian; Sastry, 

Shankar (2009): Challenges for Securing Cyber Physical Systems. In: Workshop on 

Future Directions in Cyber-Physical Systems Security, pp. 1–4. 

Colombo, Armando Walter; Karnouskos, Stamatis (2009): Towards the Factory of the 

Future: A Service-oriented Cross-layer Infrastructure. In: ICT shaping the world: a 

scientific view (65), pp. 65–81. 

Common Criteria (2006): Common Criteria for Information Technology Security 

Evaluation: Part 1: Introduction and General Model. Version 3.1, Revision 1, CCMB-

2006-09-001, pp. 1–86, 

https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R1.pdf, Accessed on 

17 April 2017. 

Danziger, Michael M.; Shekhtman, Louis M.; Bashan, Amir; Berezin, Yehiel; Havlin, 

Shlomo (2016): Vulnerability of Interdependent Networks and Networks of Networks. 

In: Antonios Garas (ed.): Interconnected Networks. Cham: Springer International 

Publishing (Understanding Complex Systems), pp. 79–99. 

Eden, Peter; Blyth, Andrew; Jones, Kevin; Soulsby, Hugh; Burnap, Pete; Cherdantseva, 

Yulia; Stoddart, Kristan (2017): SCADA System Forensic Analysis Within IIoT, In: L. 

Thomas and D. Schaefer (eds.): Cybersecurity for Industry 4.0 - Analysis for Design and 

Manufacturing. Springer, Cham, pp. 73-101. 



III Risk Management in Digitized Value Networks 140 

 

 
 
 

Fridgen, Gilbert; Stepanek, Christian; Wolf, Thomas (2014): Investigation of Exogenous 

Shocks in Complex Supply Networks – A Modular Petri Net Approach. In: International 

Journal of Production Research 53 (5), pp. 1387–1408. DOI: 

10.1080/00207543.2014.942009. 

Gao, Jianxi; Buldyrev, Sergey V.; Stanley, H. Eugene; Havlin, Shlomo (2012): Networks 

Formed from Interdependent Networks. In: Nature Physics 8 (1), pp. 40–48. DOI: 

10.1038/NPHYS2180. 

Gregor, Shirley; Hevner, Alan R. (2013): Positioning and Presenting Design Science 

Research for Maximum Impact. In: Management Information Systems Quarterly 37 (2), 

pp. 337–355. 

Hallikas, Jukka; Karvonen, Iris; Pulkkinen, Urho; Virolainen, Veli-Matti; Tuominen, 

Markku (2004): Risk Management Process in Supplier Networks. In: International 

Journal of Production Economics 90, pp. 47–58.  

Hao, Kecheng; Xie, Fei (2009): Componentizing Hardware/Software Interface Design. In: 

Conference on Design, Automation and Test in Europe, Dresden, Germany, pp. 232–

237. 

Hermann, Mario; Pentek, Tobias; Otto, Boris. 2015. "Design Principles for Industrie 4.0 

Scenarios - A Literature Review." Technische Universität Dortmund - Working Paper 

01/2015. 

Hevner, Alan R.; March, Salvatore T.; Park, Jinsoo; Ram, Sudha (2004): Design Science in 

Information Systems Research. In: Management Information Systems Quarterly 28 (1), 

pp. 75–106. 

Jensen, Kurt (1991): Coloured Petri Nets: A High Level Language for System Design and 

Analysis. In: G. Goos, J. Hartmanis, D. Barstow, W. Brauer, P. Brinch Hansen, D. 

Gries et al. (eds.): Advances in Petri Nets 1990. Springer Berlin Heidelberg (Lecture 

Notes in Computer Science), pp. 342–416. 

Kaplan, Stanley; Garrick, B. John (1981): On The Quantitative Definition of Risk. In: Risk 

Analysis 1 (1), pp. 11–27. DOI: 10.1111/j.1539-6924.1981.tb01350.x. 



III Risk Management in Digitized Value Networks 141 

 

 
 
 

Keller, Robert; König, Christian (2014): A Reference Model to Support Risk Identification 

in Cloud Networks. In: Proceedings of the 35th International Conference on Information 

Systems, pp. 1–19. 

Lasi, Heiner; Fettke, Peter; Kemper, Hans-Georg; Feld, Thomas; Hoffmann, Michael 

(2014): Industry 4.0. In: Business & Information Systems Engineering 6 (4), pp. 261–

264. DOI: 10.1007/s12599-014-0334-4. 

Lee, Jay; Bagheri, Behrad; Kao, Hung-An (2015): A Cyber-Physical Systems Architecture 

for Industry 4.0-based Manufacturing Systems. In: Manufacturing Letters 3, pp. 18–23. 

DOI: 10.1016/j.mfglet.2014.12.001. 

Lucke, Dominik; Constantinescu, Carmen; Westkämper, Engelbert (2008): Smart Factory - 

A Step towards the Next Generation of Manufacturing. In: The 41st CIRP Conference on 

Manufacturing Systems. 

Marsan, Marsan; Balbo, Gianni; Conte, Gianfranco (1984): A Class of Generalized 

Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems. In: 

ACM Transactions on Computer 2 (2), pp. 93–122. 

Merlin, Philip (1974): A Study of the Recoverability of Computer System. In: PhD thesis, 

University of California, Irvine. 

Mertens, Peter; Barbian, Dina (2015): Grand Challenges – Wesen und Abgrenzungen. In: 

Informatik Spektrum 38 (4), pp. 264–268. DOI: 10.1007/s00287-015-0897-6. 

Molloy, Michael Karl (1981): On the Integration of Delay and Throughput Measures in 

Distributed Processing Models. In: PhD thesis, University of California, Los Angeles. 

Monostori, László (2014): Cyber-physical Production Systems. Roots, Expectations and 

R&D Challenges. In: Proceedings of the 47th CIRP Conference on Manufacturing 

Systems 17, pp. 9–13. DOI: 10.1016/j.procir.2014.03.115. 

Murata, Tadao (1989): Petri Nets - Properties, Analysis and Applications. In: Proceedings of 

the IEEE 77 (4). 

Faisal, Mohd Nishat; Banwet, D. K.; Shankar, Ravi (2007): Information Risks Management 

in Supply Chains. An Assessment and Mitigation Framework. In: Journal of Enterprise 

Information Management 20 (6), pp. 677–699. DOI: 10.1108/17410390710830727. 



III Risk Management in Digitized Value Networks 142 

 

 
 
 

Offermann, Philipp; Blom, Sören; Schönherr, Marten; Bub, Udo (2010): Artifact Types in 

Information Systems Design Science – A Literature Review. In: David Hutchison, Takeo 

Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell et al. 

(eds.): Global Perspectives on Design Science Research, Springer Berlin Heidelberg 

(Lecture Notes in Computer Science), pp. 77–92. 

Peffers, Ken; Tuunanen, Tuure; Rothenberger, Marcus A.; Chatterjee, Samir (2007): A 

Design Science Research Methodology for Information Systems Research. In: Journal of 

Management Information Systems 24 (3), pp. 45–78. DOI: 10.2753/MIS0742-

1222240302. 

Petri, Carl Adam (1966): Communication with Automata. Doctoral Thesis, Technische 

Universität Darmstadt. 

PwC (2016a): Industry 4.0 - Building the Digital Enterprise. 

https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-

building-your-digital-enterprise-april-2016.pdf, Accessed 1 February 2017. 

PwC (2016b): Turnaround and Transformation in Cybersecurity. Key findings from The 

Global State of Information Security Survey 2016. 

http://www.pwc.com/sg/en/publications/assets/pwc-global-state-of-information-security-

survey-2016.pdf, Accessed on 17 April 2017. 

Radziwon, Agnieszka; Bilberg, Arne; Bogers, Marcel; Madsen, Erik Skov (2014): The 

Smart Factory. Exploring Adaptive and Flexible Manufacturing Solutions. In: Procedia 

Engineering 69, pp. 1184–1190. DOI: 10.1016/j.proeng.2014.03.108. 

Ramchandani, Chander (1974): Analysis of Asynchronos Concurrent Systems by Timed 

Petri Nets. In: PhD Thesis, Massachusetts Institute of Technology. 

Sadeghi, Ahmad-Reza; Wachsmann, Christian; Waidner, Michael: Security and Privacy 

Challenges in Industrial Internet of Things. In: Design Automation Conference, pp. 1–6. 

Sathanur, Arun V.; Haglin, David J. (2016): A Novel Centrality Measure for Network-wide 

Cyber Vulnerability Assessment. In: IEEE Symposium on Technologies for Homeland 

Security, pp. 1–5. 



III Risk Management in Digitized Value Networks 143 

 

 
 
 

Schuh, Günther; Potente, Till; Wesch-Potente, Cathrin; Weber, Anja Ruth; Prote, Jan-

Philipp (2014): Collaboration Mechanisms to Increase Productivity in the Context of 

Industrie 4.0. In: Procedia CIRP 19, pp. 51–56. DOI: 10.1016/j.procir.2014.05.016. 

Simon, Herbert Alexander (1996): The Sciences of the Artificial: MIT Press.  

Smith, Grafton Elliot; Watson, Kevin J.; Baker, Wade H.; Pokorski II, Jay A. (2007): A 

Critical Balance. Collaboration and Security in the IT-enabled Supply Chain. In: 

International Journal of Production Research 45 (11), pp. 2595–2613. DOI: 

10.1080/00207540601020544. 

Sonnenberg, Christian; Vom Brocke, Jan (2012): Evaluation Patterns for Design Science 

Research Artefacts. In: Markus Helfert and Brian Donnellan (eds.): Practical Aspects of 

Design Science, Springer Berlin Heidelberg (Communications in Computer and 

Information Science), pp. 71–83. 

Sridhar, Siddharth; Hahn, Adam; Govindarasu, Manimaran (2012): Cyber–Physical System 

Security for the Electric Power Grid. In: Proceedings of the IEEE 100(1), pp. 210–224. 

DOI: 10.1109/JPROC.2011.2165269. 

The New York Times (2011): Israeli Test on Worm Called Crucial in Iran Nuclear Delay. 

http://www.nytimes.com/2011/01/16/world/middleeast/16stuxnet.html, Accessed on 17 

April 2017. 

Tupa, Jiri; Simota, Jan; and Steiner, Frantisek (2017): Aspects of risk management 

implementation for Industry 4.0, in Procedia Manufacturing (11), pp. 1223 – 1230. 

van der Aalst, W. M. P. (1998): The Application of Petri Nets to Workflow Management. 

In: Journal of Circuits, Systems and Computers 8 (01), pp. 21–66. DOI: 

10.1142/S0218126698000043. 

Venable, John; Pries-Heje, Jan; Baskerville, Richard (2012): A Comprehensive Framework 

for Evaluation in Design Science Research. In: David Hutchison, Takeo Kanade, Josef 

Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell et al. (eds.): Design 

Science Research in Information Systems. Advances in Theory and Practice, Springer 

Berlin Heidelberg (Lecture Notes in Computer Science), pp. 423–438. 

Vladimir, A. Bashkin (2011): On the Modularity in Petri Nets of Active Resources. In: 

Proceedings of CompoNet and SUMo, pp. 33–48. 



III Risk Management in Digitized Value Networks 144 

 

 
 
 

Wagner, Stephan M.; Neshat, Nikrouz (2010): Assessing the Vulnerability of Supply Chains 

Using Graph Theory. In: International Journal of Production Economics 126 (1), pp. 

121–129. DOI: 10.1016/j.ijpe.2009.10.007. 

Wan, Jiafu; Yan, Hehua; Liu, Qiang; Zhou, Keliang; Lu, Rongshuang; Di Li (2013): 

Enabling Cyber-Physical Systems with Machine-to-Machine Technologies. In: 

International Journal of Ad Hoc and Ubiquitous Computing 13 (3/4), pp. 187–196. DOI: 

10.1504/IJAHUC.2013.055454. 

Wang, Shiyong; Wan, Jiafu; Li, Di; Zhang, Chunhua (2016): Implementing Smart Factory 

of Industrie 4.0: An Outlook. In: International Journal of Distributed Sensor Networks, 

pp. 1–10. 

Washington Post (2008): Cyber Incident Blamed for Nuclear Power Plant Shutdown. Unter 

Mitarbeit von Brian Krebs. http://www.washingtonpost.com/wp-

dyn/content/article/2008/06/05/AR2008060501958.html. Accessed on 17 April 2017. 

Weill, Peter; Vitale, Michael (2002): What IT infrastructure capabilities are needed to 

implement e-business models?. In: Management Information Systems Quarterly 1(1), pp. 

17-34. 

Wengert, Andre; Graham, James; Ribble, Eli (2016): A New Approach to Cyberphysical 

Security in Industry 4.0, in L. Thomas and D. Schaefer (eds.): Cybersecurity for 

Industry 4.0 - Analysis for Design and Manufacturing. Springer, Cham, pp. 59-72. 

Wu, Teresa; Blackhurst, Jennifer; O’grady, Peter (2007): Methodology for Supply Chain 

Disruption Analysis. In: International Journal of Production Research 45 (7), pp. 1665–

1682. DOI: 10.1080/00207540500362138. 

VDI (2013): Cyber-Physical Systems: Chancen und Nutzen aus Sicht der Automation. 

https://www.vdi.de/uploads/media/Stellungnahme_Cyber-Physical_Systems.pdf#. 

Accessed on 15 May 2018. 

Yoon, Joo-Sung; Shin, Seung-Jun; Suh, Suk-Hwan (2012): A Conceptual Framework for the 

Ubiquitous Factory. In: International Journal of Production Research 50 (8), pp. 2174–

2189. DOI: 10.1080/00207543.2011.562563. 



III Risk Management in Digitized Value Networks 145 

 

 
 
 

Zambon, Emmanuele; Etalle, Sandro; Wieringa, Roel J.; and Hartel, Pieter (2011): Model-

based Qualitative Risk Assessment for Availability of IT Infrastructures. In: Software & 

Systems Modeling 10 (4), pp. 553–580. 

Zuehlke, Detlef (2010): Smart Factory—Towards a Factory-of-Things. In: Annual Reviews 

in Control 34 (1), pp. 129–138. DOI: 10.1016/j.arcontrol.2010.02.008.  

  



III Risk Management in Digitized Value Networks 146 

 

 
 
 

III.2 Research Paper 5: “Assessing IT Availability Risks in Smart 

Factory Networks”8 

Authors: Björn Häckela,e, 

Florian Hänschb, 

Michael Hertelc, 

Jochen Übelhörd,e 

a University of Applied Sciences Augsburg, Germany 

bjoern.haeckel@hs-augsburg.de 

b Finalix Business Consulting, Zurich, Suisse 

florian.haensch@finalix.ch 

c BMW Financial Services, Munich, Germany 

michael.hertel@bmw.de 

d Research Center Finance & Information Management, 

Department of Information Systems Engineering & Financial 

Management (Prof. Dr. Hans Ulrich Buhl), University of Augsburg 

jochen.uebelhoer@fim-rc.de 

e Project Group Business & Information Systems Engineering of the 

Fraunhofer FIT, Augsburg, Germany 

In:  Business Research, 2019, 12 (2), pp. 523-558 

Abstract: Emerging smart manufacturing technologies combine physical production 

networks with digital IT systems, resulting in complex smart factory networks, which are 

especially vulnerable to IT security risks, such as IT component non-availabilities. Companies 

must employ extensive IT security measures to secure their production facilities. However, 

complex network structures and inherent dependencies of smart factory networks complicate 

corresponding investment decisions and increase the need for appropriate decision support. 

We develop a risk assessment model that supports companies in the investment decision 

making process regarding IT security measures by identifying and evaluating the most critical 

areas of the information network while considering the underlying production network. For 
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this purpose, IT availability risks are quantified by means of graph theory, matrix notation, 

and Value-at-Risk. Our model provides a structured approach, and considers network 

structures and interdependencies. The insights gained by our model present a profound 

economic basis for investment decisions on IT security measures. By applying our model in 

an exemplary real world setting, we analyze various IT security measures and their risk 

reduction effect. 

III.2.1 Introduction 

Technological trends, such as the Internet of Things (IoT), cyber-physical systems (CPS), and 

other smart manufacturing technologies turn conventional production facilities into so-called 

smart factories (Lasi et al. 2014). There, CPS enable machinery and products to control and 

monitor production processes collaboratively, and to optimize themselves and the production 

processes (Yoon et al. 2012, Schuh et al. 2014, Hessman 2013). Suppliers, customers, and 

vendors are increasingly integrated into the production infrastructure, resulting in  

IT-dependent, intercompany smart factory networks, with complex interdependencies. 

Thereby, the connection of physical production and digital information enables the flexible 

production of individualized goods, while simultaneously increasing efficiency (Radziwon et 

al. 2014). Besides manifold potential benefits, a number of new risks arise in smart factory 

networks. For instance, the digital transformation of production facilities bears considerable 

investment risks considering the substantial investment volumes that are often required. At 

the same time, technological risks arise due to the fast development cycles of digital 

technologies. Given the coordinative role of humans in complex production processes, the 

importance of humans as a possible source of error for operational risks but also as an object 

to be protected in the context of safety is also increasing (Hertel 2015). This is accompanied 

by the increasing complexity of the overall socio-economic system of the smart factory 

network, which increases the criticality of random and negligent errors and disturbances (Tupa 

et al. 2017, Geisberger and Broy 2015). Besides these general risks, especially IT security 

risks are of central importance as smart factory networks rely on communication and real-time 

information synchronization and, thus, depend on the underlying IT systems, which are 

mandatory for the reliable operation of the production infrastructure (Zuehlke 2010, Yoon et 

al. 2012, Tupa et al. 2017). Therefore, smart factory networks are concurrently increasingly 

vulnerable to IT security risks as they are no longer isolated and closed systems (Yoon et al. 

2012, Smith et al. 2007, Tupa et al. 2017). Besides other dimensions of IT security risks 
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including access, accuracy, or accountability, this involves especially IT availability risks. 

These are becoming one of the most critical threats for companies, as non-availabilities of IT 

systems significantly hamper the reliable operation of dependent production components, and 

eventually cause their complete failure (Amiri et al. 2014). Although many companies are 

extensively engaged in digital transformation, the associated risks are often underestimated or 

not considered. However, this is of utmost importance as the consequences of IT availability 

risks in form of business interruptions might lead to considerable damage potentials. These 

damage potentials are increased by just-in-time and just-in-sequence production principles 

and ultimately result in severe monetary losses. This especially holds true for highly 

integrated, interdependent supply networks in which the failure of one company can cause 

interruptions in the entire supply network. Accordingly, companies must assign considerable 

investment volumes to IT security measures to secure their production facilities against IT 

availability risks and to prevent economic harm. However, the variety of potential measures, 

the increasing complexity of smart factory networks, and especially the inherent dependency 

structures significantly complicate the identification of the most critical areas of IT systems 

with regard to potential threat scenarios. Thus, companies require well-founded approaches 

that support a comprehensive assessment of IT availability risks and, based on that, enable 

well thought out investment decisions regarding IT security measures in the course of their IT 

security strategy. 

Due to the outlined complex interdependencies in smart factory networks, a corresponding 

risk assessment model for IT availability risks must consider – besides specific characteristics 

of smart factory networks – that non-availability of IT systems interrupts the operation of the 

dependent production infrastructure (Lee 2008, Lucke et al. 2008, Zuehlke 2010). 

Additionally, increasing interconnectedness contributes to this increased vulnerability as local 

failures causing non-availabilities of IT systems can lead to disruptions in the entire value 

network (Amin et al. 2013, Hallikas et al. 2004). Local failures include, amongst others, 

simple technical failures, incorrect capacity planning, human errors, natural disasters, or 

intentional attacks on IT systems. For example, targeted denial-of-service attacks can cause a 

non-availability of IT components, affecting the functionality of the production network and 

reducing its productivity (Lucke et al. 2008, Zuehlke 2010, Amin et al. 2013). Numerous 

examples illustrate this threat potential. First, the German Federal Office for Information 

Security (abbreviated as BSI) mentions in its status report on information security that hackers 
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attacked a steel plant by intruding its office network. After advancing into the production 

control network and attacking the control components of the blast furnace, the blast furnace 

was left in an “undefined status” and could not be shut down in a controlled manner. As a 

result, the blast furnace and other parts of the plant were severely damaged (BSI 2014). This 

illustrates that due to ongoing interconnectedness, investments in IT security measures are of 

critical significance, even in traditional production facilities. Another example is the Stuxnet 

worm attack in 2010, which targeted industrial control systems in high-security 

infrastructures, such as atomic plants. The Stuxnet incident revealed that the 

interconnectedness of applications presents a serious security issue, and demonstrated that 

even the control system’s disconnection from the Internet as well as personal access 

restrictions are insufficient as protection for industrial control systems (Karnouskos 2011). 

Considering these threat scenarios, companies must employ IT security measures to secure 

their CPS infrastructure against IT availability risks. Appropriate IT security measures 

include, but are not limited to, redundancies through backup components, industrial hardware 

with integrated IT security mechanisms, intrusion detection systems, or appropriate service-

level agreements (Byres and Lowe 2004, Cardenas et al. 2008, Yadav and Dong 2014, 

Zambon et al. 2007). 

Given the variety of potential IT security measures, in combination with limited personal and 

financial resources, the corresponding investment decisions regarding IT security measures 

must be based on a profound economic basis, considering costs, benefits, and risk aspects 

(Cavusoglu et al. 2004, Gordon et al. 2003, Huang 2010). For this, the most critical areas of a 

smart factory network’s IT system must be identified and evaluated with a structured 

approach, to invest available funds in the most effective way (i.e., reducing IT availability 

risks to the best possible extent). Thereby, an analysis must consider the diverse, complex 

network structures and dependencies between the physical production world and the digital 

IT systems of the smart factory network. To support companies in their corresponding 

decision processes, we develop a structured approach for the identification and evaluation of 

a smart factory network’s most critical areas regarding IT availability risks and formulate the 

following two research questions: 

RQ1:  How can a smart factory network, consisting of dependent and connected production 

components and IT systems, be modeled and formalized? 
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RQ2:  How can IT availability risks of IT systems in a smart factory network be quantified to 

identify the most critical nodes? 

To answer these research questions, we first model and formalize the smart factory networks’ 

general setting by means of graph theory and matrix notation. Then, we quantify IT 

availability risks by applying the risk measure Value at Risk (VaR). While there are a few 

multi-criteria decision making approaches that try to integrate interdependencies, causes, and 

effect relations like the DANP approach of Ramkumar and Jenamani (2015) for the 

assessment of sustainability induced in supply chains by e-procurement, approaches are 

missing that consider a monetary financial perspective, analyze root causes and damage 

potentials, and transfer these to a monetary basis. Against this backdrop, our approach 

focusses on the root causes of damage and the resulting propagation effects within smart 

factory networks and uses VaR as a suitable risk measure, which indicates damage with a 

confidence level, to condense the effects and, thus, provide a monetary valuation that is 

suitable for management practice due to the wide spread and acceptance of VaR as a standard 

risk measure. In particular, our approach allows for analyzing the damaging effects that result 

from failures of single IT components by taking into account the manifold and complex 

interdependencies in smart factory networks. By means of this, it enables companies to 

identify the most critical IT components and to derive a solid design of their smart factory 

information network. Further, our results demonstrate that the criticality of an IT component 

is determined by numerous factors that have to be considered in the risk assessment. 

Accordingly, our approach addresses a relevant real-world problem and contributes to 

literature and practice as it enables a structured analysis of increasingly complex smart factory 

networks under consideration of not only direct but also indirect dependencies among the 

components of the smart factory network, propagation effects and the resulting damages. Key 

findings and contributions include: 

 We find that the complex network structures and direct and indirect dependency 

relationships have a considerable influence on the effects of IT availability risks. Thus, 

a targeted degree of interconnectedness and a solid design of the smart factory network 

is crucial for IT security. 

 Various influencing factors such as dependency relationships to other components, the 

degree of productivity interference on the production process, affected process steps, 
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respective damage potentials, utilization of production components, and compensation 

effects influence the criticality of IT components and have to be considered. 

 Due to the large number of possible IT security measures, these must be assessed in 

an economically sound manner, taking into account the cost-benefit aspect and its 

effect on the overall system. For this, our structured approach helps to assess risks 

associated with the ever increasing interconnection within smart factories, to assess 

where interconnections and dependencies should be deliberately avoided and where 

redundancies should be deliberately created, e.g. by means of backup servers or cloud-

based modules. 

 Insights gained by our approach provide practitioners with a risk assessment tool that 

supports companies with risk-oriented guidance regarding a solid design of their smart 

factory and identifies the most critical IT components for the derivation of an 

appropriate IT security strategy. 

The remainder of our paper is organized as follows: Section 2 provides an overview of the 

theoretical background. In Section 3, we outline the basic idea and develop a risk assessment 

model to address our research questions. In Section 4, we demonstrate the applicability of the 

developed risk assessment model by analyzing an exemplary real world scenario and 

conducting sensitivity analyses. Finally, Section 5 provides managerial implications before 

Section 6 presents a conclusion, and denotes limitations and an outlook on further research. 

III.2.2 Theoretical Background and Research Methodology 

Subsequently, we provide a comprehensive overview of the theoretical background and our 

research methodology. First, we discuss scientific and application-oriented literature 

regarding smart factory networks, and specify the associated role of IT systems. Then, we 

substantiate the significance of related IT availability risks, and define central requirements 

for an adequate risk assessment approach regarding IT availability risks in smart factory 

networks. Second, we examine corresponding literature, and carve out the research gap. And 

third, we outline the methodological approach applied to address this research gap. 

III.2.2.1 Smart Factory Networks and corresponding IT Availability Risks 

Given the advancements of smart manufacturing technologies and the innovative nature of 

smart factory networks, scientific literature is constantly evolving and contains a diverse body 

of literature (e.g. see Haller et al. 2009, Iansiti and Lakhani 2014, Turber and Smiela 2014, 
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Strozzi et al. 2017). Further, there are numerous studies and application-oriented examples of 

research institutes exploring and describing the implementation of smart manufacturing 

technologies (e.g. see Hessman 2013, Lucke et al. 2008, Radziwon et al. 2014, Yoon et al. 

2012, Zuehlke 2010, Shariatzadeh et al. 2016, Zhong et al. 2017). In corporate practice, we 

can observe that IoT-based technological solutions such as radio frequency identification 

(RFID) are widely implemented enabling, for example, the real-time acquisition of data and 

the real-time monitoring of objects within production processes (Lucke et al. 2008, Fleisch 

and Thiesse 2007, Zhong et al. 2017). However, the comprehensive and holistic 

implementation of smart manufacturing technologies in production facilities serving as test-

beds remains object to laboratory research facilities, such as SmartFactoryKL, or pilot 

facilities, such as the Siemens Electronic Works Facility or the WITTENSTEIN bastian’ 

Production Facility (Hessman 2013, Zuehlke 2010, Schlick et al. 2014). This was also found 

in a dynamic literature review performed by Strozzi et al. (2017). To structure the diverse 

body of literature on smart factories, they performed a combination of systemic literature 

review and bibliographic network analysis. Thereby, they revealed that the biggest literature 

stream focusses on RFID technology and agent-based intelligent decision support system 

architecture, both aspects concerning monitoring and scheduling of production processes. 

Further, they found that research focusses on “models, frameworks, and architectures related 

to the implementation of the Smart Factory […], along with high-level ‘landscape’ analyses.” 

A recent example of such research is the work of Jung et al. (2017), in which a reference 

factory design and improvement activity model is introduced for designing new and 

improving existing factories. The model highlights interrelationships of implemented 

technologies and provides an indication for further improvements through sensors, software 

tools, or gathered data. Another finding of the study by Strozzi et al. (2017) is that research 

focuses more on topics related to the development and adoption of software tools and cloud 

applications instead of topics related to the adoption of new technologies in manufacturing 

processes. For instance, Shariatzadeh et al. (2016) develop an IoT platform-based system 

architecture and a generic framework for communication interfaces between the digital 

factory and the smart factory. Other researchers address the potential of the digital twin 

concept in regard to near-real time data acquisition and analysis (e.g. see Uhlemann et al. 

2017, Borodulin et al. 2017, Qi and Fao 2018). In summary, it can be concluded that scientific 

contributions “propose conceptual works and experiments, and rarely actual test-beds and 

lessons learned from the practice are described and discussed” (Strozzi et al. 2017). 



III Risk Management in Digitized Value Networks 153 

 

 
 
 

Another shortcoming of current literature is the lack of a common definition of the term smart 

factory, although widely used in both scientific literature and practice (Radziwon et al. 2014). 

Based on a collection of different definitions, Radziwon et al. (2014) define the smart factory 

as a “manufacturing solution that provides such flexible and adaptive production processes 

that will solve problems arising on a production facility […].” Hermann et al. (2015) define 

the smart factory as a “factory where CPS communicate over the IoT and assist people and 

machines in the execution of their tasks”. They further describe, that “within the modular 

structured Smart Factories [...], CPS monitor physical processes, create a virtual copy of the 

physical world and make decentralized decisions”. Based on SmartFactoryKL and adopting 

the idea of IoT, Zuehlke (2010) describes that a “factory-of-things will be composed of smart 

objects which interact based on semantic services”. Yoon et al. (2012) describe a smart factory 

as a “factory system in which autonomous and sustainable production takes place”. And Lucke 

et al. (2008) envision the smart factory as a “real-time, context-sensitive manufacturing 

environment that can handle turbulences in production using decentralized information and 

communication structures for an optimum of production processes.”  

These definitions reflect the specific characteristics of smart factory networks, such as their 

modular design, which enables functionalities like flexibility, reconfigurability, and 

adaptability (Brettel et al. 2014, Radziwon et al. 2014, Zuehlke 2010). These functionalities 

enable smart factory networks to respond to circumstances and turbulences in the real-time 

production, such as the non-availability of single production components (Lucke et al. 2008). 

Further, smart factory networks attempt to offer increased productivity, optimized processes, 

improved capacity utilization, and reduced lead times, as well as enhanced energy and 

resource efficiency (Brettel et al. 2014, Chui et al. 2010, Radziwon et al. 2014, Schuh et al. 

2014, Yoon et al. 2012, Shrouf et al. 2014). These benefits contribute to the ability to produce 

highly individualized products in low batch sizes in a considerably short time-to-market, at 

costs comparable to those of mass production (Lasi et al. 2014). This is of central importance 

for future competitiveness in all manufacturing industries, as customer expectations shift 

toward mass customization, shorter innovation cycles, and customer participation models 

(Lasi et al. 2014, Yoon et al. 2012, Iansiti and Lakhani 2014, Turber and Smiela 2014).  

The characteristics of smart factory networks are facilitated through concepts such as IoT and 

production-oriented CPSs, which involve smart objects, such as intelligent machinery and 

products. CPS integrate computing and communication capabilities in physical production 
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processes to combine the cyber and physical world (Lee et al. 2015; Wang et al. 2016). Smart 

objects are connected over the Internet, or other network infrastructures, to form dynamic, 

intelligent, and self-controlling networks (Broy et al. 2012, Schuh et al. 2014). Within these 

networks, smart objects control and monitor the production process collaboratively through 

machine-to-machine communication, and exchange information to optimize themselves and 

the production process (Brettel et al. 2014, Hessman 2013, Schuh et al. 2014, Yoon et al. 

2012). Hence, smart objects represent elementary components of the collaborative production 

infrastructure (Zuehlke 2010, Yoon et al. 2012). Although smart objects control and optimize 

themselves autonomously on a workflow level, central IT systems are required for an 

overarching planning and coordination of decentralized smart objects. For example, central 

IT systems must provide parameters and framework conditions to define a possible course of 

action for the autonomous control and optimization of smart objects (Schuh et al. 2014). These 

IT systems are connected with other internal and external networks to facilitate information 

exchange and collaboration within the supply network. The necessary infrastructure is 

typically company-specific, and can be on-premise, cloud-based, or a hybrid form of both 

(Zuehlke 2010, Yoon et al. 2012, Karnouskos and Colombo 2011, Colombo et al. 2013, 

Shrouf et al. 2014, Haller et al. 2009). 

Due to the high level of interconnectedness between production and IT components, the 

operation of the physical production process depends on the flawless operation of IT services. 

Consequently, smart factory networks face new IT security threats that concern the four 

dimensions of IT security risks availability, access, accuracy, and accountability (Westerman 

and Hunter 2009). Thereby, the threats stem from four channels: (1) software bugs and 

hardware malfunctions, (2) open Internet protocols and shared networks, (3) the numerous 

parties involved, and (4) a large number of field devices that can be accessed (Amin et al. 

2013). IoT and smart manufacturing technologies change requirements on IT security 

(Wegner et al. 2017) and “the concept of Industry 4.0 generates new categories of risks […] 

because of the increase of vulnerabilities and threats” (Tupa et al. 2017). Tupa et al. (2017) 

argue that “the connection of cyber-space, sophisticated manufacturing of technologies and 

elements, and using outsourcing of services [are] the main factors increasing vulnerability” 

and that “the implementation of Industry 4.0 has shown that the connections between humans, 

systems and objects have become a more complex, dynamic and real-time optimized 

network”. For instance, central components of an IT infrastructure like an on-premise server 
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are no longer the only critical components of an information network. In fact, all components, 

including remote manufacturing equipment and internal and external sensors, become critical 

as “industrial control systems are becoming the target for malicious cyber intrusions” (Wegner 

et al. 2017). Further, SCADA systems, that control manufacturing processes, were initially 

designed to operate on closed networks. With IoT applications, SCADA systems are 

increasingly based on cloud technology resulting in increased interconnectivity and, 

ultimately, vulnerability (Eden et al. 2017). Therefore, “the challenge to maintain availability 

will increase as manufacturing evolves from a centralized system supported by external 

suppliers to a distributed system in which production occurs closer to the point of use” 

stretching potential points of failure (Wegner et al. 2017).  

Given this increasing dependency of the production infrastructure on the reliable functioning 

of the IT services and the real-time constraint of smart factory networks, especially non-

availabilities, that is, the non-usability of an on-demand service, are becoming one of the most 

critical threats in smart factory networks (Amiri et al. 2014, Cardenas et al. 2008, Lee 2008). 

Non-availabilities can be caused by events including intentional attacks, such as denial-of-

service attacks, simple human errors, random technical failures, or incorrect capacity planning 

(Amin et al. 2013). Further, the smart factory’s interconnectivity and IT-based integration 

with its supply network, aside from the benefits incurred through improved collaboration, 

increase IT availability risks because former protective barriers are at least partially removed 

and the amount of potential entry points increases (Eden et al. 2017, Smith et al. 2007). For 

example, modern industrial control systems are connected to office networks and external 

systems for information exchange, and are no longer isolated through air gaps (Byres 2013). 

A study by Byres and Lowe (2004) emphasizes this increased vulnerability, and reveals that 

security incidents increasingly stem from external sources (70%), compared to internal 

sources (30%). They mention the increasing interconnection of critical systems and resulting 

interdependencies as a reason for this development, among others. In combination with the 

highly interconnected information network of a smart factory, a non-availability of one 

component can spread in the entire network resulting in cascading failures (Amin et al. 2013). 

These reinforce the initial failure and can lead to the loss of the operational capability of the 

entire smart factory network (Danziger et al. 2016). Consequently, IT availability risks play a 

major role in smart factory networks, and companies must apply corresponding IT security 

measures. 
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In this context, comprehensive IT availability risk management in smart factory networks 

requires economically profound analyses, and a structured, methodological approach to 

identify and quantify existing IT availability risks and to lay the ground for corresponding IT 

security investments. For this purpose, the most critical components of the IT system must be 

identified based on the effects of a component’s non-availability on the production process. 

An adequate risk assessment approach must take account of smart factory networks’ specific 

characteristics. Thereby, the modeling of corresponding dependency structures represents an 

essential requirement for the analysis of resulting cascade failures in the production process. 

Thus, we formulate the following requirements for an appropriate risk assessment approach 

for smart factory networks, which is able to support investment decisions regarding IT security 

measures: (R1) the network structures of the IT system, including dependencies between IT 

components, must be considered. (R2) The production system’s interdependencies and 

network structures must be considered. (R3) Losses in the production process caused by IT 

non-availabilities must be quantified and assigned to responsible IT components, while 

considering the production infrastructure’s dependencies on the IT system. 

III.2.2.2 Approaches regarding the Assessment of IT Availability Risks  

Risk assessment is an elementary step within the risk management cycle that can be structured 

along the four phases of (1) identification, (2) assessment, (3) control, and (4) monitoring 

(Hallikas et al. 2004, Harland et al. 2003). The goal of risk assessment is to identify and 

evaluate risks in order to decide on appropriate security measures. For this, companies 

engaged in smart factory networks require appropriate structured approaches for the 

evaluation of IT availability risks that fulfill the stated requirements R1-R3 due to the 

aforementioned, specific challenges of smart factory networks (Tupa et al. 2017). For risk 

assessment within information systems, there exist a magnitude of different approaches within 

literature. While some suggest frameworks and approaches for information systems in 

general, others place a special focus on the characteristics of their respective application field 

as vulnerabilities and accompanying losses are highly specific, due to characteristics such as 

IT architecture, or business operations’ varying dependencies on IT services.  

Based on a structured review of 125 risk assessment approaches for information systems, 

Shameli-Sendi et al. (2016) develop a taxonomy that structures risk assessment approaches 

along the four categories appraisement, perspective, resource valuation, and risk 

measurement. Thereby, appraisement differentiates risk assessment approaches from a 
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methodological perspective into quantitative, qualitative, and hybrid approaches (Shameli-

Sendi et al. 2016). Quantitative methods deploy mathematical functions, objective 

measurements, and quantitative data to evaluate risk (Karabacak and Sogukpinar 2005, Suh 

and Han 2003, Sun et al. 2006). For example, the risk assessment framework developed by 

Jaisingh and Rees (2001) uses the quantitative risk measure VaR to assess IT security risks. 

The derived information can then be used to analyze the relationship between the cost of 

security measures and the risk reduction effects achieved. Niesen et al. (2016) develop a 

conceptual framework for data-driven risk assessment based on real-time operational data that 

becomes available in smart factory environments. By means of their approach, live monitoring 

of different types of risk becomes feasible. However, their approach does not allow the 

consideration of specific types of IT related threats, especially availability risks, as appropriate 

data and relevant indicators are missing. This shows that quantitative approaches often face a 

lack of necessary detailed data. Further, disadvantages include time-consuming and expensive 

calculation processes, the complex implementation in practice, and the difficult interpretation 

of results (Shameli-Sendi et al. 2016). In contrary, qualitative methods use descriptive 

variables to evaluate the likelihood of occurrence, and the impact of IT non-availability 

(Caralli et al. 2007, Aagedal et al. 2002). As they do not rely on accurate historical data and 

are much easier to understand and implement in contrast to quantitative methods, they are 

widely used in practice (Shameli-Sendi et al. 2016). For instance, Silva et al. (2014) develop 

a multi-dimensional risk management model based on Failure Mode and Effect Analysis 

(FMEA) and fuzzy theory that analyses five dimensions of information security risks: access 

to information and systems, communication security, infrastructure (hardware and networks), 

security management, and secure information systems development. Thereby, FMEA 

provides a structured approach for assessing failure modes according to three risk factors 

occurrence, severity, and detection that are assessed by expert estimations. The derived results 

provide information regarding the criticality of the investigated failures that produce 

vulnerabilities to the company’s information system. Eom et al. (2007) develop a risk 

assessment approach for the evaluation of assets regarding their degree of contribution to 

related business processes. For this, they apply with Delphi teams a qualitative risk analysis 

methods. Besides the merits of qualitative approaches, shortfalls are that they often lack 

measurable detail and monetary results to support investment decision making considering 

cost-efficiency, and that results are often times subjective and prone to errors and imprecision 

(Shameli-Sendi et al. 2016). To overcome the weaknesses of sole quantitative or qualitative 
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approaches, there are hybrid methods combining both types to enable a simple and fast 

qualitative assessment as well as detailed quantitative analysis for more critical aspects 

(Yadav and Dong 2014, Rainer et al. 1991, Shameli-Sendi et al. 2016). For example, the initial 

quantitative risk assessment method developed by Zambon et al. (2007) considers the IT 

architecture and dependencies between IT constituents, based on a time-dependent model for 

business processes. Based on this, they extend their model to a qualitative model for the 

analysis of availability risks in IT architectures, requiring only commonly available input data 

(Zambon et al. 2011).  

Another category for risk assessment approaches introduced by Shameli-Sendi et al. (2016) is 

risk measurement that differentiates approaches into the two types non-propagated and 

propagated. While approaches of the non-propagated type neglect the propagation of an 

attack impact on dependend nodes, risk assessment approaches of the propagated type 

consider impact propagation in networks to obtain a more precise picture of damage potential 

(Shameli-Sendi et al. 2016). Regarding non-propagated types, Zhong et al. (2017) develop a 

quantitative approach based on RFID and laser scanners to visualize the manufacturing 

environment for the real-time observation of production and detection of risks and 

disturbances. Although their model enables real-time monitoring, it does not allow to analyze 

the causes of occurring failure propagation and, thus, lacks the possibility to analyze 

dependency structures. Further, it lacks the possibility to quantify the resulting damages from 

occurring failures and disturbances within the production process. In contrast, there are some 

approaches that consider propagation effects within information systems. For instance, Fenz 

et al. (2011) develop a software-based risk management methodology that supports 

investment decision making while considering the business criticality of information assets 

based on their involvement in business processes. Ackermann and Buxmann (2010) develop 

a risk assessment model for IT-based service networks that supports IT security investment 

decisions. This model quantifies IT security risks in relation to different IT security measures, 

and considers dependencies between different services of the network (i.e., transferred data). 

Finally, Papa et al. (2011) develop a qualitative risk assessment model for Supervisory Control 

and Data Acquisition (SCADA) embedded systems, focusing on availability risks. Their 

model calculates corresponding risk scores for each SCADA element, considers effects for 

the entire system, and determines protection measures to reduce risk. Despite these examples, 

Shameli-Sendi et al. (2016) state that there are only few risk assessment approaches that 
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consider propagation effects, although these are essential to assess the entire damage potential 

caused by attacks and errors in complex network environments to provide a profound basis 

for economically sound investment decisions.  

Further, there is no assessment approach, thus far and to the best of our knowledge, for IT 

availability risks in smart factory networks, that is, no existing approach that considers the 

specific characteristics of smart factory networks and consequently fulfills the stated 

requirements R1-R3. However, the consideration of network structures including 

dependencies between IT components and the production system’s interdependencies and 

network structures, as well as the transfer of damage potentials to a monetary valuation 

represent a necessary step in the course of an appropriate risk assessment within smart factory 

networks. Such an approach is necessary to support organizations with risk-oriented guidance 

in deducing reasonable investment strategies in regard to IT security measures. As the 

modeling of dependency structures under consideration of propagation effects represents an 

essential requirement in this endeavor, we aim to address this research gap in the following 

section by developing a first approach based on graph theory and matrix notation. We chose 

graph theory and matrix notation as these are widely used and easily comprehensible methods 

to depict network structures and complex dependency relations and allow the consideration 

of characteristics of smart factory networks. Further, we apply VaR as an accepted and widely 

used standard risk measure to quantify damage potentials with a confidence level and to 

provide a monetary valuation that is suitable for management practice. 

III.2.2.3 Research Approach and Applied Concepts 

To answer the research questions raised in Section 1, under consideration of the requirements 

set forth in Section 2.1, we develop a structured approach for an appropriate assessment of IT 

availability risks in smart factory networks. This approach uses graph theory and matrix 

notation methods, as they are widely utilized methods for formalized representation and the 

analysis of complex and interdependent networks. For example, Wagner and Neshat (2010), 

Faisal et al. (2006), and Buldyrev et al. (2010) use graph theory and matrix notation to analyze 

risk in supply chains and critical infrastructures regarding vulnerability, risk mitigation, and 

cascading failures in interdependent networks. Graph theory enables a relatively simple and 

transparent application of our approach. These are two important characteristics, since our 

model represents a first approach that should be easy to use and should have a certain degree 

of scalability. Besides graph theory, there are other approaches for the formalized 
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representation of networks such as petri nets or system dynamics if other priorities are to be 

set. For example, if the analyses should be more detailed or more detailed stochastics (e.g., 

stochastic recovery times) should be used (e.g. Arns et al. 2002, Wu et al. 2007 or Fridgen et 

al. 2014). However, in our opinion, graph theory seems to be an appropriate method for a first 

attempt, especially for reasons of transparency and complexity reduction. Further, we apply 

the risk measure VaR for the quantification of IT availability risks, as it is a widely utilized 

risk measure for downside risks.  

To develop and analyze our model, we use the research paradigm introduced by Meredith et 

al. (1989). This approach structures research into a “continuous, repetitive cycle of 

description, explanation, and testing.” By going through these stages in an iterative process, 

the description and explanation of an observable economic fact in a structured manner is 

possible. First, we formally describe cause-and-effect-relationships that determine the threat 

potential of an IT component (e.g., the basic structures and dependencies of smart factory 

networks). As new findings cannot always be derived from practical observations, we use a 

formal deductive modeling approach. Afterward, we discuss and explain the derived findings 

and give practical recommendations. An application in an exemplary real world scenario 

indicates the utility of our risk assessment model as an appropriate and profound basis for 

decision support regarding IT security investments, and serves as a starting point for its 

empirical validation. However, the testing of the findings shall be subject to future case study 

research. 

III.2.3 Risk Assessment Model 

Our risk assessment model considers relevant smart factory characteristics, and identifies the 

most critical IT components of a smart factory’s information network concerning IT 

availability risks by quantifying the corresponding threat potentials. In the following 

subsection, we describe the elementary steps of the model as shown in Figure III.2-1. The 

basic idea of our risk assessment model is to analyze the threat potential posed by the non-

availability of an information network’s IT component to the production network of a smart 

factory. This threat potential arises as the functionality and productivity of the production 

network depend on the reliable operation of the information network. In order to quantify the 

resulting threat potentials, we apply graph theory and matrix notation as well as VaR. The 

results gained by our model are of central importance to ensure a cost-efficient usage of 
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usually scarce IT budget and to support companies’ investment decisions since available funds 

for IT security measures must be invested in the most efficient way. First, we present an 

abstraction of the smart factory’s general setting, including its basic structures and relations 

(Section 3.1). Based on this abstraction, we then describe our risk quantification algorithm. 

At this, we model and formalize the smart factory structure by means of graph theory and 

matrix notation (Section 3.2). Subsequently, the threat potential of each IT component is 

quantified (Section 3.3). 

 
Figure III.2-1: Methodical Procedure of the Model Development – Own Illustration 

 

III.2.3.1 General Setting 

The basic structure of a smart factory consists of two connected networks: the production 

network and the information network, as illustrated in Figure III.2-2. First, there are different 

manufacturing machines in the production network performing various production 

procedures. These machines process products, and are organized in process steps, whereby a 

certain process step contains machines with identical capabilities. Manufacturing machines 

are equipped with embedded systems, which consist of electronic hardware (e.g., a microchip) 

and a software component. The embedded systems enable the manufacturing machines to 

control themselves autonomously, to a certain point, and to synchronize process information 

via the information network. Hence, we consider the embedded systems as parts of the 

information network. In addition to the embedded systems, the information network comprises 

further components performing various IT services crucial for the reliable operation of the 

smart factory. These IT services range from machine control and manufacturing execution, to 

enterprise level and machine communication applications. The different applications may be 

hosted on on-premise hardware or are obtained as cloud-based solutions. The respective IT 

infrastructure is also considered as an IT service. 

(3.1) General Setting: Abstraction 
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(3.3) Risk Quantification 
Approach to Identify 
Critical Nodes
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Figure III.2-2: Simplified Structure of the Smart Factory – Own Illustration 

As a result, a hierarchical structure emerges inducing functional dependencies between IT 

components. These functional dependencies exist directly between two IT components (e.g., 

applications depend on the server) or indirectly over at least one other IT component (e.g., an 

embedded system depends on the server over an application hosted on that server). A company 

may also include redundancies within the information network through backup components 

to secure certain IT services and to prevent single-point failures. If all IT services operate 

reliably, the manufacturing machines are able to coordinate themselves in a highly flexible 

and adaptive manner. This includes, for example, the adjustment of the product flow in the 

case of a manufacturing machine’s non-availability. In addition to manufacturing components, 

there are suppliers vertically and horizontally integrated into the supply network, and 

customers receiving the completed products. Both are defined as parts of the production 

network due to their importance, and because local interruptions affect the smart factory. 

Considering the integration of external partners into a smart factory’s IT system, both 

suppliers and customers are connected through external data interfaces. Given the 

dependencies within and between these networks, a diverse and complex dependency 

structure emerges, in which the production components depend on several components of the 

information network for functionality. This dependency structure is of central relevance in our 

model, because it provides the basis for the quantification of the IT component’s availability 

risks. Based thereupon, we analyze the consequences of an IT component’s non-availability 

by deriving unprocessed units, which occur in a fixed time period. By analyzing the resulting 

risk values of all IT components, we are able to prioritize IT components in terms of their 

threat potential to the production network. 
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Figure III.2-3: Operational Steps of the Risk Assessment Algorithm – Own Illustration 

In the following subsection, we outline the algorithm and its assumptions (see Figure III.2-3) 

in more detail. First, we formalize and model the basic structures of the smart factory and its 

networks by means of graph theory and matrix notation. The resulting smart factory 

dependency structure lays the groundwork for the risk quantification based on VaR, which 

will be discussed in the subsection afterwards. 

III.2.3.2 Modeling of the Smart Factory 

In the following, we describe, model, and formalize the smart factory’s two connected and 

dependent networks. Thereby, we elaborate on the underlying assumptions regarding the basic 

structures and characteristics of both networks, their components, and their connections and 

dependencies.9 

Assumption 1 (A1): The production network 𝑷 consists of a finite set of smart production 

components 𝒑𝒊 with 𝒊 = 𝟏, … , 𝒎 ∈ ℕ (nodes) performing specific production 

procedures, and a finite set of arcs (edges) connecting the production components.  

The smart production components 𝑝  perform production procedures to process product units 

𝑢 ∈ ℕ, and are assigned to a process step 𝑙 with 𝑙 = 1, … , 𝐿 ∈ ℕ in correspondence to their 

respective production task. The suppliers and customers are modeled to be a part of the 

production network and are also denoted as production components 𝑝 . The capabilities of 

production components are identical within a process step 𝑙, but differ between process steps. 

Regardless of the process step, each production component 𝑝  has a given capacity 𝑞 ∈ ℕ to 

process a given number of units 𝑢 in the considered time period. In combination with current 

capacity utilization 𝑞𝑢 ∈ ℕ of a production component, idle capacity 𝑞𝑖 ∈ ℕ of a production 

component can be derived by Eq. (1):  

𝑞𝑖 = 𝑞 − 𝑞𝑢  𝑤𝑖𝑡ℎ 𝑞𝑢 ≤ 𝑞  (3)

 
9  The reader might find it helpful to reference to Figure III.2-4 on page 167 while reading the following subsections to better comprehend 
the used notations. 
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If a process step 𝑙 consists of more than one production component, product units can be 

flexibly routed to any of the assigned production components, under consideration of 

respective idle capacities. Therefore, utilization of the smart factory and individual production 

components are important factors determining the smart factory’s flexibility and adaptability. 

A2:  The information network 𝑪 consists of a finite set of IT components 𝒄𝒔 with 

𝒔 = 𝟏, … , 𝒌 ∈ ℕ and a finite set of arcs connecting the IT components.  

IT components 𝑐  of the information network 𝐶 perform various IT services 𝑠. Thereby, each 

IT service is provided by one IT component and may be backed up by a redundant IT 

component, denoted as 𝑐 . . Depending on the specific layout of the information network, 

different types of IT components can be included, such as hardware components, software 

modules, embedded systems, and external data interfaces. This flexibility enables the adaption 

of the algorithm to any information network layout (e.g., on-premise vs. cloud-based) without 

changing the algorithm’s overall approach. Considering the layout and hierarchical structure 

of the information network and its IT services, there are direct functional dependencies 

between IT components, such as the dependency of an application on its host server. Binary 

information network dependency matrix 𝐷 ,  defined by Eq. (2) represents all direct functional 

dependencies: 

𝐷 , =

𝑑 , ⋯ 𝑑 ,

⋮ ⋱ ⋮
𝑑 , ⋯ 𝑑 ,

 (2)

The numerical value of the binary variable 𝑑 , ∈ {0; 1} expresses whether there is a direct 

functional dependency between two IT components.  

A3:  Production components depend either directly or indirectly on IT components in 

regard to functionality.  

As already described, the smart production components’ ability to synchronize information 

via the information network 𝐶 is an essential requirement for reliable functioning of the 

production network. The resulting direct functional dependencies of production components 

on IT components are expressed by using the binary direct functional dependency matrix 𝐷 , , 

defined by Eq. (3): 
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𝐷 , =

𝑑 , ⋯ 𝑑 ,

⋮ ⋱ ⋮
𝑑 , ⋯ 𝑑 ,

 (3)

Thereby, binary variable 𝑑 ,  equals one for the dependency relationship between production 

components and their respective embedded systems, as the latter establishes the connection to 

the information network and is the interface between smart production components and digital 

information flow. For all other IT components, variable 𝑑 ,  equals zero, since production 

components are not directly connected with them. However, production components can still 

depend indirectly on those IT components, as IT services are unavailable if IT components 

providing those services are unavailable. This is due to the transitivity of IT component 

failures, meaning that, for example, the failure of a server affects production components 

through the triggered failure of a software application (Zambon et al. 2007). Further, existing 

redundancies in the information network must be considered, as redundant IT components 

prevent single-point failures of backed-up components; thereby, influencing the dependency 

structure of the smart factory (Cardenas et al. 2008). To consider both direct and indirect 

functional dependencies and redundancies in the information network, we apply a set of 

matrix calculations based on matrix algebra, which will be not explained in full detail, but be 

briefly described in the following. 

First, we determine all direct and indirect functional dependencies within the information 

network by raising matrix 𝐷 ,  to higher powers, according to the algorithm by Festinger, 

Perry, and Luce (Festinger 1949), and combining the resulting matrices in the binary matrix 

𝐷 , . Multiplying matrix 𝐷 ,  with the direct functional dependency matrix 𝐷 ,  delivers all 

indirect functional dependencies of production components on IT components (matrix 𝐷 , ). 

Adding the matrices 𝐷 ,  and 𝐷 ,  results in the direct and indirect functional dependency 

matrix 𝐷 , , containing both the direct and indirect functional dependencies of production 

components on IT components. We now adjust matrix 𝐷 ,  for possible redundancies based 

on the number of IT components 𝑐  available for the execution of an IT service 𝑠. In particular, 

if a production component depends on more than one IT component, the dependency is 

removed because the failure of a redundant IT component is backed up. First, we aggregate 

the available IT components of each IT service 𝑠 in a binary matrix 𝑍 , , and only the main 

IT components of each IT service 𝑠 in matrix 𝑍 , . Multiplying matrix 𝑍 ,  with matrix 𝐷 ,  

delivers matrix �̅� , , which represents the number of available IT components for each 
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production component in regard to an IT service 𝑠. Subsequently, all values of �̅� , , which do 

not equal one, are set to zero. This results in the binary matrix �̿� ,  with all production 

components depending only on one IT component in regard to an IT service 𝑠. Lastly, we 

multiply matrix �̿� ,  with the transposed main IT component matrix �̇� ,  to derive the 

dependency matrix 𝐷 ,
∗ , as defined by Eq. (4). The resulting dependency matrix 𝐷 ,

∗  defined 

by equation (4) contains all direct and indirect functional dependencies of production 

components on IT components, and considers redundancies in the information network. 

Thereby, the binary variable 𝑑 ,
∗ ∈ {0; 1} equals one if there is a direct or indirect functional 

dependency; otherwise, 𝑑 ,
∗  equals zero: 

𝐷 ,
∗ =

𝑑 ,
∗ ⋯ 𝑑 ,

∗

⋮ ⋱ ⋮
𝑑 ,

∗ ⋯ 𝑑 ,
∗

 (4)

So far, dependency matrix 𝐷 ,
∗ , as a central artifact of our algorithm and essential for the risk 

quantification approach, was derived considering the production network (A1), the 

information network (A2), and the functional dependencies between the two networks (A3). 

These steps lay the ground for the risk quantification approach, which identifies and evaluates 

critical IT components regarding IT availability risks.  

III.2.3.3 Risk Quantification Approach 

The risk quantification approach determines the unprocessed units caused by the non-

availability of an IT component based on the smart factory’s dependency structure. The 

resulting VaR values represent the central results of our model, and enable the identification 

of the most critical IT components. The following section elaborates on the risk quantification 

approach and its assumptions in more detail. 

A4:  The non-availability of an IT component restricts the productivity of dependent 

production components. 

As technical failures and attacks result in the non-availability of the affected IT component, 

we assume that an IT component fails completely, and do not consider partial functionality 

interferences. Accordingly, a failing IT component c  is not able to provide its IT service s 

and interferes dependent production components’ productivities, leading to decreased 

production capacities. Thereby, we observe the consequences of an IT component’s non-
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availability in a fixed time period, and assume that the IT component failure occurs at the 

beginning of the considered period and lasts until its end. The production components’ 

interference differ for each IT component, and can range from a partial capacity reduction, 

(e.g., through a restricted automation) to a complete failure. The interference degree of each 

IT component is expressed by the exogenous interference degree variable �̅� ∈ {0; 1} and is 

based on expert estimations. Applying an exogenous input parameter is a reasonable approach 

because experienced company experts can adequately assess the effects of an IT component’s 

non-availability on its dependent production components based on their knowledge and 

expertise. Further, it would be possible to differentiate the interference degree of an IT 

component on a more detailed level for each production component. However, for reasons of 

simplicity, we break down the required data on a reasonable and manageable granularity level, 

and assume that an IT component’s interference degree is identical for all production 

components. Multiplying the values of the dependency matrix 𝐷 ,
∗  with �̅�  according to Eq. 

(5) derives the interference variable 𝑟 , ∈ {0; 1}, expressing the degree of productivity 

reduction of a production component 𝑝 , if an IT component 𝑐 , fails: 

𝑟 , = �̅� ∗  𝑑 ,
∗  (5) 

If a productivity reduction occurs, 0 < 𝑟 , ≤ 1; otherwise, 𝑟 , = 0. If the reduced capacity 

is less than the utilization, that is, the interference cannot be absorbed by idle capacity, the 

productivity reduction causes initially unprocessed units 𝑣 ,  at the production component 

𝑝 , as calculated by Eq. (6): 

𝑣 , = 𝑚𝑎𝑥 𝑞𝑢 − 𝑞 ∗ 1 − 𝑟 , ; 0  (6) 

A5:  Initially unprocessed units 𝒗𝒄𝒔,𝒑𝒊
, caused by the interference of an affected 

production component, can be (partially) compensated by other production 

components. 

The smart factory’s ability to flexibly combine the production components in temporary 

production lines enables the compensation for initially unprocessed units 𝑣 , . However, the 

compensation is only possible if compensating production components possess the same 

production capabilities and, hence, belong to the same process step 𝑙 as the affected production 

component. Further, compensating production components must have idle capacity left. The 
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compensable units 𝑤 ,  provided by a compensating production component are calculated as 

described by Eq. (7): 

𝑤 , = 𝑚𝑎𝑥 𝑞 ∗ 1 − 𝑟 , − 𝑞𝑢 ; 0  (7) 

After deriving the initially unprocessed units and the compensable units on a production 

component level, we aggregate both values separately for each process step 𝑙. By subtracting 

the compensable units 𝑤 ,  from the initially unprocessed units �̅� ,  on the process step level 

according to Eq. (8), the unprocessed units 𝑣 ,  per process step 𝑙 after the compensation 

effect can be derived: 

𝑣 , = 𝑚𝑎𝑥  �̅� , − 𝑤 , ; 0  (8) 

A6:  Unprocessed units 𝒗𝒄𝒔,𝒍 at a process step 𝒍, cause a continual production failure in 

following process steps due to the lack of workable units. 

As we assume that each unit of process step 𝑙 + 1 requires one unit from the preceding process 

step 𝑙, production failures are passed through all subsequent process steps. This production 

failure cycle continues until the last process step is reached. Further, the number of 

unprocessed units might increase in later process steps if the IT component’s non-availability 

also affects that process step. Accordingly, we transfer the unprocessed units 𝑣 ,  to following 

process steps with further matrix calculations. The resulting unprocessed units matrix 𝑉 ,
∗  

defined by Eq. (9) represents all unprocessed units 𝑣 ,
∗  per process step 𝑙 after consideration 

of the compensation effect and continual production failure: 

𝑉 ,
∗ =

𝑣 ,
∗ ⋯ 𝑣 ,

∗

⋮ ⋱ ⋮
𝑣 ,

∗ ⋯ 𝑣 ,
∗

 (9) 

A7:  Unprocessed units 𝒗𝒄𝒔,𝒍
∗  at a process step 𝒍 cause monetary losses. 

The losses caused by unprocessed units reflect the value added during the production process 

in the respective process steps. The losses are assigned proportionally to each process step 

according to the respective activities performed in each process step. Process step-specific 

loss values are necessary because different impact locations of IT component failures cause 

different effects in the production network. For example, a production failure in the first 

process step results in no processed units; in contrast, a production failure in an advanced 
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process step results in semi-finished units, which present a value because their time-to-market 

is shorter due to their advanced production state. The information about process step-specific 

loss values is available through accounting and performance measurement methods, such as 

activity-based costing, and hence, can be easily assessed and applied as exogenous input 

parameters to our model (Cooper and Kaplan 1991). Based thereupon, we apply the VaR to 

quantify the consequences of an IT component’s non-availability in the considered time 

period. The VaR is a downside risk measure and a “standard benchmark” (Duffie and Pan 

1997, p. 3) for the measurement of a company’s exposure to financial risks, i.e., potential loss. 

For a given time period and probability (or confidence level) (1 − 𝛼), the VaR is defined as 

the loss over the time period that is exceeded with probability 𝛼 (Duffie and Pan 1997 and 

Jorion 2006). We apply the VaR in our model for risk quantification as loss values 

corresponding to an IT component’s non-availability are not fixed and may vary due to 

market-induced interference factors and random effects, such as price and demand 

fluctuations. Therefore, we assume that losses are normally distributed with an expected loss 

value 𝜇  and a standard deviation 𝜎  per unprocessed unit 𝑢 for each process step 𝑙, expressed 

in monetary units (in US$). The use of a normal distribution is justifiable because variations 

of the value added are driven by market parameters, causing both positive and negative 

deviations. However, other distributions, such as the lognormal distribution can be used, if the 

normal distribution is inappropriate in specific applications. The definition of a confidence 

level (1 − 𝛼) takes into account the risk attitude. In most cases, no sufficient historical data 

basis exists to derive loss values and standard deviations solely by means of statistical 

analyses. Therefore, the loss extends, and probabilities must be estimated by experts (Hovav 

and D'Arcy 2003, Gordon and Loeb 2002, Mercuri 2003). Additionally, the excessive amounts 

of production-related data could be used to support these expert estimations (Lucke et al. 

2008). With this information, the VaR of each IT component 𝑐  for each process step 𝑙, 

denoted as 𝑥 , , can be derived by Eq. (10), with 𝑁( ) being the (1 − 𝛼) quantile of the 

normal distribution: 

𝑉𝑎𝑅 = 𝑥 , =  𝜇 ∗ 𝑣 ,
∗ +  𝑁( ) ∗ 𝜎 ∗ 𝑣 ,

∗  (10) 

The risk value matrix 𝑋 , , defined by Eq. (11), represents all VaR-values of each IT 

component 𝑐  for each process step 𝑙: 
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𝑋 , =

𝑥 , ⋯ 𝑥 ,

⋮ ⋱ ⋮
𝑥 , ⋯ 𝑥 ,

 (11)

The row sums ∑ 𝑥 ,  of matrix 𝑋 ,  show the total VaR, caused by the non-availability of 

an IT component 𝑐 . Ranking these values derives a priority order regarding the IT 

component’s threat potential. This represents the central result of our risk assessment model, 

quantifying the consequences of an IT component’s non-availability. 

Our model’s described risk quantification approach enables the consideration of diverse and 

complex network structures and dependencies between the production and information 

networks of the smart factory (A4). Further, with the compensation effect (A5) and continual 

production failure (A6), the model considers two key characteristics of a smart factory: the 

flexible combination of production components and the unit flow dependencies within the 

production network. By determining the resulting unprocessed units, and by quantifying the 

corresponding financial damage based on VaR (A7), the model derives a risk value vector, 

with risk values for each IT component. This information enables management to identify the 

information network’s components most critical to the production network, and to ground 

corresponding investment decisions regarding IT security measures on a profound basis. 

III.2.4 Exemplary Application 

In the following section, we demonstrate the applicability of our risk assessment model in an 

exemplary smart factory that is oriented on a real world scenario of producing customized 

sports shoes. Afterwards, we conduct sensitivity analyses regarding the capacity utilization 

and the impact of varying loss potential estimations to evaluate the basic effects of two major 

influencing factors. Finally, we analyze the risk reduction effects of different IT security 

measures by comparing the model’s results based on the with-and-without-principle to 

demonstrate the model’s application in an investment decision process. We refrain from 

comparing our model and its results with other risk assessment methods for reasons of 

evaluation, as we doubt the value of such a comparison due to the lack of comparable methods. 

Although there are other methods for the assessment of information risks such as the discussed 

FMEA model by Silva et al. (2014) or the model by Zambon et al. (2007), none of them 

incorporates the specific characteristics of smart factory networks, such as network structures 

or network interdependencies. However, this would be necessary for a meaningful and 

conclusive comparison with our model. Instead, we believe further evaluation of our model 
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in concrete real world scenarios, with real world data, is a promising next step for future 

research activities.   

III.2.4.1 Exemplary Smart Factory Setting 

The smart factory in our application example is an automated production facility for the 

custom production of sports shoes.10 The factory produces sports shoes, which are customized 

by customers online in regard to shoe type, fabrics, and colors. The company is deploying 

smart manufacturing technologies in the factory to produce the shoes in the shortest time 

possible. This enables the highly flexible custom production of sport shoes in a batch size of 

one, at costs comparable to mass production. Figure III.2-4 illustrates the exemplary setting 

of the smart factory.  

 
Figure III.2-4: Exemplary Smart Factory – Own Illustration 

The customer (𝑝 ) customizes a sports shoe on the sports goods manufacturer’s online 

platform. Once completed, a data interface (𝑐 ) automatically transmits the order to the smart 

factory. In correspondence to the customers’ specifications, the necessary semi-finished parts 

are ordered automatically from the supplier (𝑝 ). For this purpose, another data interface (𝑐 ) 

connects the supplier with the smart factory. Once the raw materials are received, smart 

manufacturing machines first stitch the parts of the shoes together (𝑝 , 𝑝 , and 𝑝 ), then 

conglutinate the stitched parts (𝑝  and 𝑝 ). All machines, that is, sewing machines and 

conglutination machines, are equipped with embedded systems (𝑐 , 𝑐 , 𝑐 , 𝑐 , and 𝑐 ) 

connecting the machines with the information network and enabling their communication. 

The information network contains a communication module (𝑐 ), facilitating information 

 
10 The smart factory example is geared to the “SPEEDFACTORY” research project, funded by the German Federal 
Ministry of Economics and Energy (2015). 

c2.1

c1

c3 c4c2.2

c5

c6

c7

c8

c9

c10

c11

IT Component

Production Component

Information Flow

Product Unit Flow

p4

p5

p6

p2

p1

p7

p3

Supplier
(l=1)

Customer
(l=4)

Server Communication 
ModuleSCADA Modules

Production Step 1:
Stitching of Parts (l=2)

Production Step 2:
Conglutination of Parts (l=3)



III Risk Management in Digitized Value Networks 172 

 

 
 
 

synchronization between smart manufacturing machines, and providing all required 

optimization parameters. By synchronizing status information, such as utilization, idle 

capacity, and queued orders, the smart manufacturing machines optimize product flow 

through the production process. Further, SCADA modules (𝑐 . , 𝑐 . , and 𝑐 ) for the 

manufacturing machines control and monitor the assigned machines’ production activities. 

The SCADA module 𝑐 .  controls the sewing machines 𝑝 , 𝑝 , and 𝑝 , and SCADA module 

𝑐  controls the conglutination machines 𝑝  and 𝑝 . Thereby, sewing machine 𝑝  has an 

additional backup module (𝑐 . ) securing the main module (𝑐 . ). Accordingly, the backup 

module is an existing redundancy. All software modules (𝑐 . , 𝑐 . , 𝑐 , and 𝑐 ) are hosted on 

a company-owned server (𝑐 ), located on the premises of the smart factory. The assignment 

of the IT components to the respective IT services is illustrated in Table III.2-1.  

IT Service 𝑠 1 2 3 4 5 6 7 8 9 10 11  

Main IT Component 𝑐  𝑐 .  𝑐  𝑐  𝑐  𝑐  𝑐  𝑐  𝑐  𝑐  𝑐   

Backup IT Component  𝑐 .            

Table III.2-1: IT component assignment 

The non-availability of IT components causes different interference degrees for the dependent 

production components (see Table III.2-2). Thereby, non-availability of the server (𝑐 ) causes 

a complete standstill of the dependent production components because all software services 

are interrupted. The non-availability of a software module causes an interference of 75% 

because either the information synchronization is disrupted, or machine control functions are 

no longer provided. However, the affected machines’ emergency routines enable a partial 

continuity of the production process. As a result, the production machines are only able to 

produce 25% of their actual capacity. The non-availability of an embedded system causes an 

interference of 50% because the dependent production components’ information 

synchronization is hampered. Lastly, the non-availability of a data interface causes an 

interference of 50% because either the automated ordering process with the supplier is 

hampered and manual backup processes do not achieve the same efficiency, or the customer’s 

ability to customize products is restricted.  

IT Component 𝑐  𝑐  𝑐 .  𝑐 .  𝑐  𝑐  𝑐  𝑐  𝑐  𝑐  𝑐  𝑐  𝑐  

Interference Degree �̅�  100% 75% 75% 75% 75% 50% 50% 50% 50% 50% 50% 50% 

Table III.2-2: Interference degrees of IT components 
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Once the production of an order is completed, the sports shoes are shipped to the customer. 

The smart factory has a capacity of 120 units and a utilization rate of 100%. The production 

components’ capacities, utilizations, and idle capacities are shown in Table III.2-3. 

Production Component 𝑝  𝑝  𝑝  𝑝  𝑝  𝑝  𝑝  𝑝  

Capacity 𝑞  (units) 120 40 40 40 60 60 120 

Utilization 𝑞𝑢  (units) 120 40 40 40 60 60 120 

Table III.2-3: Capacity and utilization of production components 

III.2.4.2 Analysis of Basic Scenario 

By applying our risk assessment model to the exemplary smart factory, we can identify the IT 

components most critical to the production network. First, the matrix calculations obtain all 

functional dependencies of production components on IT components. The derived 

dependency matrix 𝐷 ,
∗  is multiplied by the interference degrees �̅� , illustrated in Table 

III.2-2. Based thereupon, we derive the unprocessed units 𝑣 ,
∗  according to the risk 

quantification approach. In combination with the expected losses and standard deviations 

noted in Table III.2-4, we calculate the threat potential based on the VaR for each IT 

component 𝑐 , with a confidence level (1 − 𝛼) of 95%.  

Process Step 𝑙 1 2 3 4 

Expected Loss 𝜇  ($) 5 10 10 15 

Standard Deviation 𝜎  ($) 1.5 3 3 4.5 

Table III.2-4: Loss values of process steps 

The resulting risk value matrix 𝑋 , , noted in Table III.2-5, presents the total threat potential 

(∑ 𝑥 , ) posed by the non-availability of each IT component 𝑐 .  
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IT Comp. 𝒄𝒔 𝒄𝟏 𝒄𝟐.𝟏 𝒄𝟐.𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒄𝟕 𝒄𝟖 𝒄𝟗 𝒄𝟏𝟎 𝒄𝟏𝟏 ∑ 

VaR 𝑥( , ) ($) 896 0 0 0 672 448 0 0 0 0 0 0  

VaR 𝑥( , ) ($) 1,792 896 0 0 1,344 896 299 299 299 0 0 0  

VaR 𝑥( , ) ($) 1,792 896 0 1,344 1,344 896 299 299 299 448 448 0  

VaR 𝑥( , ) ($) 2,688 1,344 0 2,016 2,016 1,344 448 448 448 672 672 1,344  

VaR ∑ 𝑥( , ) ($) 7,169 3,136 0 3,360 5,376 3,584 1,045 1,045 1,045 1,120 1,120 1,344 29,346 

Rank 1 5 12 4 2 3 9 9 9 7 7 6  

Table III.2-5: Analysis Results and Risk Value Matrix 

The derived information regarding the threat potential of individual IT components, and their 

rank in relation to other IT components, identifies the most critical IT components. 

Additionally, the results of our risk assessment model reveal the following insights: 

 The server of the smart factory (𝑐 ) causes the maximum possible threat potential, with a 

VaR of $7,169, as its non-availability results in a complete standstill in the production 

network. 

 The supplier data interface (𝑐 ) ranks third, and before the SCADA modules (fourth and 

fifth, respectively), although the supplier data interface has a lower interference degree 

than the SCADA modules. This can be explained by the impact location of the failing IT 

components. The supplier data interface influences the first process step, in contrast to 

the SCADA modules, which influence later process steps. Therefore, an interesting 

insight is that the impact location in the production network is an important factor because 

the supplier data interface’s restriction causes production failures in all subsequent 

process steps of our smart factory example. Further, the SCADA module for the sewing 

machines has a partial backup, which reduces its threat potential.  

 The embedded systems of the conglutination machines (𝑐  and 𝑐 ) rank seventh and 

before the sewing machines’ embedded systems (𝑐 , 𝑐  and 𝑐 ), although they affect a 

later process step. This is due to the utilization of the conglutination machines, which 

with 60 units are more substantial than the sewing machines’ 40 units, and hence, lead to 

higher threat potentials. 

Of course, the complexity of the exemplary smart factory is limited and therefore, the server’s 

first rank may seem obvious. However, smart factory networks in practice are far more 

complex and unmanageable because they consist of considerably more production 
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components and IT components, inducing a highly complex dependency structure. Further, 

we assumed a symmetric setting regarding the production components’ capacities within a 

process step, meaning that all production components in a process step possess identical 

capacities. This might also differ in practice, as machines are constantly developed and 

production facilities typically grow over time, resulting in a heterogeneous machinery pool. 

Nevertheless, the results and insights of our application clearly indicate the need for decision 

support through a structured approach that assesses the availability risks of individual IT 

components. With the information provided by our risk assessment model, the focal 

company’s management can discuss potential IT security measures, and can profoundly 

ground corresponding investment decisions. 

III.2.4.3 Sensitivity Analysis 

We conduct sensitivity analyses in the following subsections to evaluate the results and basic 

effects of the two major influencing factors, that is, the utilization and loss potentials. Thereby, 

we use the smart factory setting from our demonstration example above. 

III.2.4.3.1.Utilization Variation 

For the utilization variation, we increase the utilization of all production components 

gradually, from 1% to 100%, and evaluate the effects on the VaR values of the IT components 

and the VaR sum. Thereby, the VaR sum ∑ ∑ 𝑥 ,  of the risk value matrix 𝑋 ,  makes 

no statement regarding the information network’s total threat potential because our model 

analyzes scenarios with individual IT component failures. However, the VaR sum can be used 

as an indicator of the vulnerability of the production network to IT component non-

availabilities. All other parameters, such as interference degrees and loss potentials, are kept 

constant. The effects of an increasing utilization on our model’s results can be seen in  

Figure III.2-5.  

 

 

 
Figure III.2-5: Utilization Variation – VaR-Sum  Figure III.2-6: Utilization Variation – VaR(𝑐 ) 
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The VaR sum increases with an increasing utilization because more units are in the production 

process. However, the slope of the curve is not linear, and illustrates four kink points at which 

the slope increases. The kink points are caused by IT components whose non-availabilities 

have no effect up to a certain utilization threshold. This effect can be seen in more detail in 

Figure III.2-6, which shows the curve of each IT component relative to the utilization. One 

reason for the kink points is an interference degree less than 100%. Depending on the 

utilization, the restricted production components can still process some, or even all, product 

units with their reduced capacity. For example, the software modules (𝑐 , 𝑐 , and 𝑐 ) have an 

interference degree of 75%. Accordingly, the non-availability of the communication module 

(𝑐 ) and the SCADA module (𝑐 ) has no effect until the threshold reaches 25%. The sewing 

machines’ SCADA module (𝑐 . ) causes no losses even until the threshold reaches 50% 

because of its partial backup. The embedded systems have an even higher threshold. First, this 

is caused by the interference degree of 50%, but also by the compensation effect for 

utilizations less than 100%. Accordingly, the threshold of the embedded system is 75% (𝑐  

and 𝑐 ) and 83%, respectively (𝑐 , 𝑐 , and 𝑐 ). Thereby, the sewing machines’ embedded 

systems have a higher threshold because three machines are available for compensation within 

the stitching step, in contrast to two machines in the conglutination step.  

III.2.4.3.2.Loss Potential Variation 

In addition to the utilization, we analyze the impact of loss potential estimations on the results 

of our model in the example smart factory scenario to demonstrate the effects of inaccurate 

expert estimations. Thereby, we multiply the loss values 𝜇  and 𝜎  with a variable 𝛽 to 

demonstrate the effects of an underestimation (𝛽 < 1), respectively an overestimation (𝛽 >

1). All other input parameters are constant. The effects of deviating loss potential estimations 

for different, higher utilizations are shown in Figure III.2-7, with 0.5 ≤  𝛽 ≤ 1.5. The 

underestimation of loss potentials results in lower, and the overestimation in higher, threat 

potentials. Accordingly, the curves show an ascending slope. Thereby, the slope of a curve 

increases for higher utilizations.  
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Figure III.2-7: Impact of Deviating Loss Potential Estimation 

Of course, there are other influencing factors aside from utilization and loss potentials, such 

as the smart factory’s network structure, and the interference degrees of IT components. 

However, varying other factors does not change the fundamental tendencies and effects 

described in this section. 

III.2.4.4 IT Security Measure Analysis 

In the following, we analyze various IT security measures for our smart factory example by 

comparing the model’s results based on the with-and-without principle. This demonstrates our 

model’s applicability for the economic analyses of potential IT security investments, and thus, 

for the profound support of valuable investment decisions. For this, we compare the VaR sum 

of our basic scenario setting ($29,346) to settings with additional IT security measures, and 

apply the VaR sum as an indicator for the vulnerability of the production network to IT 

component non-availabilities. This determines the impact of an IT security measure on the 

production network’s vulnerability, and hence, enables a risk-oriented evaluation. 

Accordingly, the results can be used as a basis for investment decisions. As our model is based 

on the smart factory’s network structure, it is highly suitable to analyze structure-based IT 

security measures.  

 

Figure III.2-8: Exemplary IT Security Measures – Own Illustration 
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potential. As loss potentials are input parameters in our model, it is not possible to explain the 

cause-effect chain of process-based measures and the reduced loss potentials as their effect. 

However, our model can illustrate the impact of reduced loss potentials on the production 

network’s vulnerability to IT component non-availabilities if the reduced loss potentials are 

used as adjusted input parameters. Structure-based measures are supposed to be highly 

effective against IT availability risks, including redundancies within the information network. 

Thereby, measures such as backup IT components or cloud-based applications influence 

dependency relations by preventing single-point failures of IT components. For example, the 

basic scenario of our example application contains a redundancy, securing the SCADA service 

for sewing machine 𝑝  due to the partial backup SCADA module (𝑐 . ). Without the 

redundancy, the VaR increases to $30,915. Accordingly, the partial backup component 

reduces the VaR sum by 5.1%. In the following, we add further IT security measures, as 

illustrated in Figure III.2-8, to the information network, in addition to the already existing 

partial backup component (𝑐 . ).  

Installing a backup server (1) is an appropriate IT security measure because our model in the 

example application revealed that the server (𝑐 ) is the most critical IT component. The VaR 

sum decreases to $22,178, which equals a reduction of 24.4% in comparison to the basic 

scenario, because of this security measure. The hereby occurring trade-off between the high 

investment volume and the risk reduction effect demonstrates that our algorithm is of value 

because it enables a risk-oriented evaluation of investment alternatives, and allows for the 

profound grounding of investment decisions. The second measure is a cloud-based backup for 

the communication module (𝑐 ) (2). Cloud-based applications are especially effective because 

they not only remove the direct dependency of production components on the locally hosted, 

secured application, but they also remove the indirect dependency of production components 

on the server if the production components do not depend on other applications hosted on that 

server. This is, for example, the case for the supplier (𝑝 ) and the customer (𝑝 ), whose data 

interfaces only depend on the server because of the communication module (𝑐 ). Accordingly, 

the cloud-based backup communication module also removes the customer and supplier’s 

dependencies on the server, and reduces the VaR sum by 21.4% to $23,704. The last measure 

analyzed is the complete switch of the communication module, from a module hosted on a 

company-owned server to a cloud-based module (3). As a result, the communication module 

no longer depends on the functioning of the server; hence, functional dependencies within the 
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information network are removed. However, the production components still depend on the 

cloud-based communication module for the corresponding communication IT service because 

there is no redundant backup for that service. Accordingly, the VaR only decreases by 3.1%, 

to $28,450. 

III.2.5 Managerial Implications 

Subsequently to the exemplary application, sensitivity analysis, and IT security measure 

analysis, we discuss managerial implications derived from the development of our risk 

assessment model in the following: 

1. The results gained in the course of our research clearly indicate the need for decision 

support through a structured approach. The complexity that arises from the multitude 

of direct and indirect dependencies in ever complex smart factory information 

networks and the resulting propagation effects of failures can no longer be mastered 

by human decision-makers alone due to an increasing lack of transparency. In this 

regard, our structured approach presents a risk-oriented guidance for practitioners in 

the course of their digital transformation. 

2. There is a multitude of different IT security measures that companies can apply as part 

of their IT security strategy. These differ in their modes of action, but ultimately their 

effect on the possible extent of damage is decisive. Thereby, some IT security 

measures target specific critical components in the information network, in particular 

structural IT security measures such as redundancies through backup systems. In 

contrast, other IT security measures have a more holistic effect on the information 

network such as process-related IT security measures, e.g., reduced damage potentials 

through improved recovery measures. Here, our structured approach serves as 

guidance in the derivation of an appropriate IT security strategy. It supports investment 

decisions on a profound economic basis, as it helps to identify the most critical IT 

components and quantifies the threat potentials resulting from propagation effects. 

3. A decisive lever for the IT security strategy is the degree of interconnectedness within 

the smart factory information network. Companies are faced with the question of 

where interconnectedness makes sense and creates added value and where air gaps 

should be deliberately made or redundancies should be created. For this, our approach 
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provides a risk-oriented guidance for the solid design of smart factory information 

networks. 

4. The insights gained by the sensitivity analysis demonstrate the importance of the 

utilization as an influencing factor. We were able to show that the threat potential 

increases with an increasing utilization because risk reduction effects, such as the 

compensation ability, decrease gradually. Considering the high utilization of smart 

factories through automation and optimization technologies as key benefits, the threat 

potentials posed by IT availability risks will be rather high in smart factories 

(Radziwon et al. 2014, Schuh et al. 2014). 

5. The insights gained by the loss potential sensitivity analysis demonstrate that the 

underestimation or overestimation of loss values has a greater effect on the model’s 

results in application scenarios with high utilizations. Therefore, considering the 

probable, high utilization of smart factories, the loss potential estimation’s accuracy is 

of crucial importance for risk quantification to derive accurate results. 

6. Our risk assessment model examines IT availability risks primarily on the internal 

company level. In times of comprehensive, cross-company, Internet-based 

interconnection of information systems, however, the supply chain level becomes 

particularly important for companies' IT security strategy. For this purpose, our 

approach can also be extended across companies to make the prevailing complexity 

tangible and controllable. 

The described managerial implications are highly relevant as they indicate aspects of IT 

security and IT availability risks in smart factory information networks that have to be 

considered when deciding on a suitable IT security strategy. Accordingly, they provide 

valuable guidance for companies in the course of their digital transformation. 

III.2.6 Conclusion, Limitations, and Further Research 

The increasing adoption of smart manufacturing technologies promises great potential, 

leading to a paradigm shift in manufacturing. The emerging smart factory networks constitute 

automated and flexible production facilities, and can efficiently produce individualized 

products in low batch sizes at a cost-efficient level. However, the criticality of IT systems and 

the interconnectedness of IT and production systems cause an increase in the vulnerability to 

IT availability risks. Considering this threat scenario, companies must employ extensive IT 
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security measures to secure their production facilities. However, the highly complex, 

interconnected, and interdependent smart factory networks complicate investment decisions 

regarding possible IT security measures. Thus, decision makers face significant difficulties 

regarding the allocation of available funds in the most efficient way. 

Therefore, we develop a risk assessment model for the quantification and evaluation of IT 

availability risks in smart factory networks that serves as the basis for corresponding 

investment decisions. We first model and formalize the smart factory networks’ general 

setting, with its basic structures and relations, by means of graph theory and matrix notation. 

Then, we quantify IT availability risk by applying the VaR. Our research contributes to 

literature and practice as it enables a structured analysis of increasingly complex smart factory 

networks under consideration of not only direct but also indirect dependencies. While other 

risk assessment approaches like multi-criteria decision models often times address different 

dimensions of damage and do not consider root causes, our approach focusses on propagation 

effects and the resulting damages within smart factory networks. Accordingly, our research is 

rooted in the propagation and damaging effects based on the complex interdependencies in 

smart factory networks. Our structured approach helps to assess the risks associated with the 

ever increasing interconnection within smart factories, to assess where interconnections and 

dependencies should be deliberately avoided and where redundancies should be deliberately 

created, e.g. by means of backup servers or cloud-based modules. Hence, the insights gained 

by our model provide practitioners with a risk-oriented guidance regarding the solid design of 

smart factory networks in the course of their digital transformation. Further, it helps to identify 

the most critical IT components, and consequently offers a profound economic basis for 

corresponding investment decisions regarding IT security mitigation measures. Thus, it also 

supports the derivation of an appropriate IT security strategy. Based on the results of our 

model, other subsequent approaches, such as multi-criteria decision making models, can then 

be applied. For example, based on a multi-criteria decision model, an optimal portfolio of IT 

security measures could be derived by taking into account different decision criteria and 

dimensions. Corresponding approaches already exist, for example, in the area of cloud 

computing, for which Shameli-Sendi and Cheriet (2014) propose a risk assessment model 

based on fuzzy multi-criteria decision-making or Akinrolabu et al. (2018) propose a cloud 

supply chain cyber risk assessment model which applies decision support analysis and supply 

chain mapping for the identification, analysis and evaluation of cloud risks. Besides the risk-
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oriented guidance as the basis for subsequent decision making, our risk assessment model 

provides the possibility to consider a cross-company view regarding the effects of 

interorganizational information systems, as cross-company ecosystems increases constantly 

in the course of the ongoing digitalization. We demonstrate the model’s applicability in a 

setting based on an exemplary real world scenario, and conduct sensitivity analyses. Our 

results demonstrate that the criticality of an IT component is determined by numerous factors: 

the dependency relationships to production components, the degree of productivity 

interference caused by the IT component failure, the IT component failure’s impact location 

within the production process, loss potentials in the respective process steps, the utilization of 

dependent production components, and the extent of the possible compensation effect. The 

variety of these influencing factors and their complex interplay clearly indicate the need for a 

risk assessment model enabling a structured analysis, and supporting investment decisions.  

Nevertheless, there are some limitations to our results, which represent potential areas for 

further research. First, we do not consider the possibility of negative, upward feedback effects 

within the information network. For example, a failing machine, which cannot upload 

information due to its failing embedded system, in turn affects the overall system. 

Additionally, we apply our risk assessment model in an exemplary application to demonstrate 

its applicability and its basic functionality. For further evaluations, it would be beneficial to 

apply our model in different real world scenarios, with real world data. Further, our model 

focuses on IT availability risks. The incorporation of other dimensions of IT security risk, 

such as accuracy, access, and accountability, would further increase the model’s value 

regarding the identification of critical IT components. Another area for further research is the 

trade-off between the risk reduction effects of idle capacity and accompanying opportunity 

costs, which should be addressed by an optimization model built from our risk assessment 

model. Additionally, investment decisions regarding IT security measures include other 

aspects, such as the overall investment budget and the relation between a measure’s efficiency 

and the required investment volume, which are not addressed in this paper. 

Other than these limitations, we made certain model assumptions that limit the model’s 

applicability, but that, in our opinion, are reasonable to keep the model’s complexity moderate. 

Nevertheless, relaxing some model assumptions offers potential areas for the model’s further 

development. First, our model assumes that IT components fail completely because technical 

failures and attacks result in the complete non-availability of IT components. Partial 
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functionality interferences of IT components are not considered. As this could occur in some 

specific threat scenarios, such as data manipulations, the inclusion of this aspect could be a 

potential extension of our model. Second, our model analyzes the event of an IT component’s 

non-availability and its implications in a fixed time period. Thus, another substantial extension 

would involve including a timing component and thus, developing our approach further to a 

continuous-time model. Third, though our model considers individual interference degrees for 

the respective IT components, we assume that an IT component’s non-availability causes 

identical interference degrees on all dependent production components. We believe that this 

approach is reasonable because it includes the interference degrees on a detailed IT component 

level. A further differentiation on the production component level would cause an increase in 

complexity, while the added value seems questionable. However, a further differentiation of 

interference degrees on a production level would be possible.  

Despite these limitations, we strongly believe that the developed risk assessment model 

presents a substantial step toward the profound management of IT availability risks in smart 

factory networks, and supports the corresponding investment decision process. This is of 

particular importance because the continuous progression of IoT, CPS, and other smart 

manufacturing technologies requires the ongoing development of appropriate risk assessment 

methods. 
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Abstract: The globalization and digitalization of production and businesses increases 

interdependencies and complexities of (digitized) value networks. Companies increasingly 

face lack of transparency issues and are therefore not able to consider their environmental 

and technological embedment for important management decisions. This development makes 

companies more and more vulnerable to systemic risks, i.e., risks that usually occur at local 

parts in (digitized) value networks but threaten to spread to (distant) companies’ related 

business operations. The management of systemic risks is a complex task for companies and 

requires the assistance of IS technology. We believe that new decision support systems (DSS) 

will provide a significant tool to assist in the management of these complexities and opacities, 

endemic to systemic risk management by gathering, processing, and interpreting manifold 

information originating from internal and external sources of a focal company. In this paper, 

we conduct research to address the issue described above by developing a generic 

architecture of a strategic DSS designed specifically to manage systemic risk, and by 

discussing major challenges for which solutions are required in order to implement such a 

DSS. We pave the way for important future research by defining selected research questions 
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and conclude that the realization of a strategic DSS to support systemic risk management 

requires joint efforts of interdisciplinary researchers, as well as practitioners. 

III.3.1 Introduction 

Over the past decades, the increasing globalization of production and businesses has enabled 

companies to open new customer markets and reduce costs by exploiting new possibilities 

such as offshoring, outsourcing, international joint ventures, and acquisitions. These 

developments have resulted in the emergence of increasingly fragmented and distant value 

networks in which specialized companies cooperate on a global scale. The resulting 

interconnections of business partners are growing due to just-in-time inventory levels, as well 

as just-in-sequence production, and the manifold dependencies on inter-organizational 

information systems (IS) and IS service providers (Basole and Rouse 2008). Hence, as lack 

of global transparency of value networks increases, single companies are now encountering 

difficulties with the complexity of their business operations related to important management 

decisions. This development results in a situation such that the business is increasingly 

vulnerable to risks from correlated defaults, which stem from a focal company’s value 

network. We refer to those risks that originate at a small number of nodes and move to the 

entire value network as “systemic risks.” Systemic risks are located within the structural 

composition of a value network as well as the inherent interdependencies (Neitzke 2007), and 

“are mostly based on cascade spreading effects in networks” (Helbing 2012, p. 276). Such 

risks may occur at any node on the value network and affect other business partners due to 

interdependencies in flows of goods, financial flows and flows of information. The term 

“systemic risk” is closely related to “supply chain risk,” commonly used within the supply 

chain (risk) management literature. Supply chain risks comprise “any risks for the 

information, material, and product flows from the original supplier to the delivery of the final 

product to the end user” (Jüttner et al. 2003, p. 203). In contrast to systemic risks, which are 

(to date) especially researched in the context of interbank markets (Bartle and Laperrouza 

2009) and supposed to impose large-scale economic impacts (Roengpitya and 

Rungcharoenkitkul 2011), supply chain risks may also be limited to operational risks with 

(usually) less economic impact (Tang 2006). Yet, our focus in this paper is on strategic levels 

of networked (non-financial) companies, i.e., we focus on risks that may jeopardize the 

existence of a focal company due to major dependencies and interconnections within a 

dynamic value network. In addition, although existing definitions of supply chain risks are 
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widely used, we regard this term as neither intuitive nor suitable to describe risks beyond 

immediate value creation and supply chain management. In particular, certain risks such as 

dependencies of focal companies on their (IT) service providers or on financial institutions 

are usually not included within the context of supply chain risks. For this reason, we continue 

to use the broader terms “value networks” and “systemic risks” instead of “supply chains” and 

“supply chain risks.”  

There are already some examples of systemic risks in value networks, which have resulted in 

large economic damages. In October 2011, a flood in Thailand caused production outages in 

the local hard disk industry that produced 70% of all hard disk motors (a central hard disk 

component) worldwide. Consequently, hard disk producers such as Seagate and Western 

Digital halted production for weeks and thus, these manufacturers were not able to meet their 

customer demand of computer manufacturers like Dell or Lenovo, or online sellers such as 

Newegg. As a result, market prices for hard disks rose threefold and, a year later, prices were 

still up 60% to 90% relative to prices prior to the flood (Randewich 2011). Another example 

is the recall of 7.8 million vehicles in the US in 2014 due to defective driver-side airbags 

manufactured by the Japanese component supplier, Takata that affected at least the following 

ten automobile manufacturers: Toyota, Honda, Mazda, BMW, Nissan, Mitsubishi, Subaru, 

Chrysler, Ford, and General Motors. The defective airbags exploded when an automobile was 

involved in an accident, dispersing metal shards. The linkage of the defective air bags to at 

least five customer deaths and several serious customer injuries resulted in the filing of Class-

action lawsuits naming several automobile manufacturers (besides Takata) as defendants. This 

litigation cost the defendants substantial financial penalties; in addition, the defendant 

manufacturers incurred costs to replace the defective airbags and they suffered from damage 

to their quality brand images (Bennett et al. 2014). According to a study of Hendricks and 

Singhal (2005) of 885 disruptions of value networks, the occurrence of (systemic) risks 

negatively affected the operating performance (mostly sales) as well as the return of the stock 

price of the affected companies that continued for a period of up to two years. Accordingly, 

the management of systemic risks in complex and interconnected value networks is of great 

strategic importance. More recently, emerging trends in technology such as digitalization, the 

internet-of-things, and cyber-physical (production) systems have accelerated the intensity of 

these vulnerabilities. There is an increase in integration of value networks within information 

and communication technology that connects physical production systems, products, services, 
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business partners, and customers across business (local and global) borders. Despite the 

numerous benefits of digitized value networks such as the flexible production of custom 

products at costs comparable to those for mass production (“lot size one”), this development 

leads to even more value network interconnections, complexity, and therefore vulnerability of 

single companies. Moreover, new kinds of security risks emerge, since IS are increasingly 

opened and integrated across company-borders to enable collaboration and thus, allow for 

peripheral activities with criminal intentions on a high degree of anonymity. This threat was 

exemplified by a cyber-attack on a steel plant in 2014 reported by the German Federal Office 

for Information Security (BSI 2014). After they intruded the office network of the plant, the 

hackers manipulated critical control components, which allowed them to access the separated 

production network. In the course of the attack, the state of the blast furnace was undefined 

and it was not possible to shut it down in a controlled manner. The situation resulted in severe 

damage to the blast furnace and other machinery of the plant (BSI 2014). This example 

describes a conventional, low-digitized production facility. The threat potential significantly 

increases in businesses that are dependent on just in time and just-in-sequence production, and 

participate in highly interconnected, digitized value networks.  

Traditionally, a corporate risk management comprises different steps of a risk management 

process, such as risk identification, evaluation, control, and monitoring. Though spreadsheet 

calculations created by applications such as Microsoft Excel provide custom solutions for 

specific risk management purposes (Power and Sharda 2007; Jüttner and Ziegenbein 2009), 

the resulting diverse and silo structured application landscapes are often inconsistent, do not 

share an integrated database, and thus, possess functional limitations so they cannot support 

comprehensive risk management activities. In particular, such IT applications are not capable 

of handling the increasing complexities and opacities caused by the dynamics of digitized 

value networks. This is also concluded in the “governance, risk, and compliance report” 

(GRC) by SAP (2015) which interviewed 1,010 executives with responsibilities for GRC in 

their organizations. The survey states that the increasingly complex business and risk 

environment is severely challenging companies and that only one in ten organizations are fully 

satisfied with their current GRC tools, technologies, and processes. A helpful first step for 

many focal companies would be the integration of different risk management processes as 

well as corresponding application systems in order to optimize collaboration between risk 

managers relative to sharing of important (systemic) risk relevant information. Such an 
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integration enables the design, development and implementation of decision support systems 

(DSSs), i.e., an IS that supports complex decision making by providing solutions to semi-

structured or unstructured problems through accessible user interfaces (Shim et al. 2002; 

Huang et al. 2010). In particular, a custom DSS is required to manage complexities and 

opacities of systemic risk management by gathering, processing and interpreting manifold 

information from inside and outside a focal company. A customized DSS has the potential to 

improve decision quality, reduce response times, lower risk management costs, and establish 

new forms of collaboration within company boarders as well as with external business 

partners. The creation of such a DSS, however, creates several challenges and open-end 

questions, which have to be approached by both researchers as well as practitioners. In this 

paper, we address these challenges and open-end questions by developing a generic 

architecture for a strategic DSS designed specifically to support systemic risk management, a 

prerequisite effort to the creation of such a DSS: 

RQ:  What is an appropriate generic architecture for a DSS that is capable of identifying 

systemic risks, analyzing those risks, and providing strategic decision support in 

digitized value networks? 

Following Broniatowski (2015), we define a generic architecture as “generalized structure that 

may be applied to a technical system […] in order to indicate how information flows between 

system components” (p.1547). Therefore, our generic architecture is a template for a future 

DSS that abstractly relates necessary technological components of a risk management IS, 

based on (systemic) risk relevant information flows. It is the first step within a larger project 

that requires joint efforts from both (interdisciplinary) researchers as well as practitioners in 

order to enable companies whose business operations are dependent on digitized value 

networks to deal with systemic risks. The organization of the remainder of our paper is as 

follows. Section 2 provides an overview of the various directions of existing research on the 

topic. In Section 3, we derive the generic DSS architecture based on an appropriate functional 

design. In Section 4, we discuss challenges and selected research questions regarding the 

future realization of a strategic DSS for systemic risk management. Finally, Section 5 presents 

the conclusion, identifies limitations, and provides an outlook for future research. 
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III.3.2 Related Work 

Shang et al. (2008) define DSS as “a class of information systems intended to assist managers 

in decision-making” (p. 2). Traditionally, a DSS provides “more comprehensive support for 

human control systems [...] while maintaining and strengthening human qualities” 

(Strohmaier and Rollett 2005, p. 4). Since the concept of a DSS emerged in the 1970s, 

supporting human qualities to control decisions has been more important in this field of 

research than replacing the humans with computers (Arnott and Pervan 2008). DSS is a fast 

growing field of IS research (Suduc et al. 2010) and we continue to analyze DSS literature 

within the special application field of corporate and public risk management in order to locate 

our research subset. Second, we present literature on supply chain risk management, which 

investigates topics closely related to our objective, and further elaborate why this discipline, 

however, is insufficient to develop measures against systemic risks. Moreover, this part 

illustrates the importance of IS research and our approach in particular. Third, we extend 

previous arguments by identifying additional challenges in the emerging field of digitized 

value networks.  

III.3.2.1 Decision Support Systems in Risk Management and Methodology 

In general, literature that researches DSS within the application field of risk management 

addresses different areas of application. On an operational level of business-management, 

Fang and Marle (2012) built a simulation-based DSS approach for project risk management, 

which integrates risk identification, risk evaluation, risk control, and risk monitoring. Similar, 

Dey (2001) develops a DSS for project planning by using “analytical hierarchy process” as a 

structured technique to analyze project risks as well as decision trees for deriving appropriate 

risk responses. Mahdi and Alreshaid (2005) use analytical hierarchy process to build a DSS 

for the proper selection of project delivery methods that integrates risk and performance 

measures. To prevent production system failures, Puente et al. (2002) developed a DSS based 

on the qualitative failure mode and effect analysis. Their method is built on structured expert 

knowledge and establishes risk priority categories. Li and Liao (2007) proposed a decision 

support framework for operations in dynamic alliances, which combines core competences of 

different companies. Their approach is capable of identifying and evaluating various types of 

risk factors in multi-attribute decision-making.  
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On a tactical level of business-management, Hong and Lee (2013) proposed a DSS for 

procurement risk management. By considering correlated demand, yield, and price 

uncertainties, their approach includes the design of a robust purchasing plan for supplier 

selection and order allocation. Converging toward our objectives, Güller et al. (2015) 

proposed a decision support model of supply chain risk management. Their framework 

integrates an agent-based simulation model, real-time databases as well as risk management 

processes and is suited to manage disruption risks proactively before they occur. However, 

we want to go beyond those authors’ application area, which is restricted to directly observable 

flows of goods and business collaborations (i.e., operational and tactical levels of business-

management). Our objective is to set a direction for a strategic DSS that is capable of capturing 

systemic risks that arise from widely ramified as well as complex network structures and 

(informational) interdependencies. In particular, we want to contribute to this area of literature 

by developing a generic DSS architecture that defines the foundation for an intelligent IS, 

which is capable of supporting risk managers by deriving risk information for strategic 

corporate decisions. 

Literature on strategic DSS, as applied to risk management, is limited to critical infrastructure 

and large-scale public construction projects, i.e., applications to public authorities which are 

usually in possession of (or are able to obtain) crucial information about important (spatial) 

properties, involved parties, and interdependencies. To prioritize renewal of water pipeline 

projects, Moglia et al. (2006) built a DSS that contains a risk management approach to predict 

cost as well as pipeline failures. Snediker et al. (2008) developed a spatial DSS to mitigate 

disruption risks in (critical) network infrastructures, identified from several sources such as 

natural disasters, terrorism, human errors, etc. Their approach facilitates the examination of 

“what-if” planning scenarios in public disaster management by examining geographic and 

topologic implications. Levy (2005) discussed advances in multiple criteria decision making 

and respective implementations of DSS for flood risk management. He presents a DSS 

architecture that he applies to the flood planning and management of the Yangtze River, 

China. Horita et al. (2015) developed another spatial DSS for flood risk management. Their 

approach combines data sources from wireless sensor networks with geographic information 

volunteered from ordinary citizens in high-risk areas. Kumar and Viswanadham (2007) focus 

on risk management in major construction supply chains and suggest a DSS framework by 
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applying a case-based reasoning approach. This IT-enabled solution is useful in preventive 

and reactive risk management.  

Although these are just examples that illustrate the scope of existing research on DSS in risk 

management, we were, despite intensive efforts, not able to identify literature on any strategic 

DSS applied to systemic risk management. In our opinion, this situation is not surprising, 

primarily because of the fact that external information, i.e., information from outside of the 

company that is necessary to monitor and analyze (inter-) dependencies of business operations 

and associated systemic risks, is usually incomplete or unavailable. We want to contribute to 

this research gap by proposing a generic architecture for a strategic DSS in systemic risk 

management and by conducting a subsequent discussion on necessary future research with 

particular emphasis on the gathering and processing of unstructured (external) input 

information. We chose to conduct a comprehensive interdisciplinary approach, although this 

has not allowed our research to study fine-grained details of every related research discipline. 

In particular, we did not conduct a structured state-of-the-art approach, since this would not 

have enhanced the explanation of our artifact. An interdisciplinary approach is reasonable, 

considering that no research discipline (e.g., finance, supply chain management, and 

operations research) can solely manage the many challenges of systemic risk management. IS 

and especially DSS research, however, have the ability to merge interdisciplinary knowledge 

as we particularly demonstrate in Section 4.  

III.3.2.2 Supply Chain Risk Management  

In order to enable corporate risk management to include risks beyond company boundaries, a 

new line of research was already established called “Supply Chain Risk Management” 

(SCRM). Literature on this topic has increased significantly since the beginning of the 21th 

century (Ceryno et al. 2013; Colicchia and Strozzi 2012; Sodhi et al. 2012; Tang and Nurmaya 

Musa 2011). This may be due to catastrophes related to supply chains such as the 9/11 attacks 

(USA 2001), hurricane Katrina (USA 2005) and the big earthquake as well as tsunami (Indian 

Ocean 2004) (Thun and Hoenig 2011; Qazi et al. 2015), and from current developments in 

globalized, interconnected and dependent industries as stated in our introduction. Ho et al. 

(2015) define SCRM as “an inter-organisational collaborative endeavour utilising quantitative 

and qualitative risk management methodologies to identify, evaluate, mitigate and monitor 

unexpected macro and micro level events or conditions, which might adversely impact any 

part of a supply chain” (p. 5036). The essence of this definition emphasizes the need to extend 
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traditional risk management processes through more intensive inter-organizational 

collaboration in order to include adverse effects that may be due to organizational or 

environmental parameters that are external to a focal company (“externalities”). SCRM 

literature has already developed several approaches to account for such risk management 

extensions (Nishat Faisal et al. 2006; e.g. Giunipero and Aly Eltantawy 2004; Manuj et al. 

2014; Manuj and Mentzer 2008b; Norrman and Jansson 2004; Peck 2006; Nyoman Pujawan 

and Geraldin 2009; Ritchie and Brindley 2007).  

There are three important research gaps that systematically appear throughout this line of 

research. First, Qazi et al. (2015) conducted a comprehensive and systematic review of SCRM 

literature for the years 2000 to 2014 and concluded that existing SCRM approaches 

predominantly use qualitative methodologies rather than quantitative techniques. A review of 

SCRM literature between the years 2000 to 2010 (Ghadge et al. 2012) identified this result. 

The researchers state, “the preferred methodology has been qualitative” (p. 324). To illustrate 

this first research gap from a practitioner’s perspective, Blackhurst et al. (2005) conducted a 

multi-industry empirical study in which all interviewed supply chain managers emphasized 

the need for quantitative assessment of critical nodes in the supply chain. Second, the few 

existing quantitative models for risk assessment usually do not include dependencies between 

several supply chain risk factors (Qazi et al. 2015; Badurdeen et al.). However, a literature 

review of Colicchia and Strozzi (2012) for the years 1994 to 2010 revealed that the 

consideration of dynamic interactions among risk sources and supply chain partners is a “key 

challenge” for effective supply chain risk identification and assessment. Third, most 

quantitative models are inappropriate for strategic decisions. Tang (2006) reviewed various 

quantitative models of mitigating supply chain risks. He states that most existing approaches 

focus exclusively on the management of operational rather than strategic supply chain risks 

(such as customer demand and supply risks, or price risks) and are therefore not capable of 

capturing the complexity of an entire supply-chain. However, this is a necessary precondition 

in order to be able to manage systemic risks such as threats of major disruptions. We conclude 

that there is a lack of appropriate quantitative risk management approaches for strategic 

decision support.  

An explanation of this lack is because circumstances necessary to create quantitative models 

for risk management usually require (historical) information for appropriate calculations. 

Though information gathering is already challenging within company boundaries, creating 
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quantitative models of a supply chain level is an even more difficult task. The SCRM literature 

actually emphasizes the importance of (external) information management and, in particular, 

information sharing between supply-chain partners, which is a shift toward inter-

organizational learning (Manuj and Mentzer 2008a). Peck (2006) states that “few would 

dispute the almost universally held belief […] that […] information sharing […], is a route to 

more effective supply chain risk management” (p. 134). Yet, Christopher and Peck (2004) 

state that “there has not been a history of sharing information either with suppliers or 

customers” (p. 17). Manuj et al. (2014) conducted a survey of supply chain managers in which 

many interviewees express the desire to evaluate SCRM strategies, external information 

gathering; however, remains an open challenge. Blackhurst et al. (2005) observe supply chain 

managers’ need for “relevant, timely and credible information” (p. 4075), since supply chain 

visibility “is the new battleground” (Blackhurst et al. 2005, p. 4073) in competitive 

environments and “core element of supply chain risk mitigation” (Blackhurst et al. 2005, p. 

4073). Besides mitigating risks, supply chain managers must implement information sharing 

in order to develop competitive advantages (Giunipero and Aly Eltantawy 2004), especially 

when the technology or market environment change rapidly (Fynes et al. 2005). In particular, 

researchers found either theoretically (Lee et al. 2000; Cachon and Fisher 2000; Ha and Tong 

2008; Li et al. 2006; Lin et al. 2002; Christopher and Lee 2004) or empirically (Zhou and 

Benton jr. 2007; Wong et al. 2015; Rai et al. 2006) that information sharing can be very 

beneficial in contractual and operational terms which do not directly affect risk management. 

In summary, literature on SCRM emphasizes the importance and benefits of (external) 

information management and, in particular, information sharing, but usually lacks solutions 

to the corresponding difficulties that, to date, “do not feature within the core” of SCRM 

research (Ghadge et al. 2012, p. 328). Hence, although SCRM is already an interdisciplinary 

field of research (Manuj and Mentzer 2008b; Peck 2006), there remains the need for further 

integration of interdisciplinary knowledge (Tang and Nurmaya Musa 2011). The use of IS 

could improve information sharing and therefore risk management across the supply chain 

(Gupta and Nandan 2014). In particular, the research field of IS enables the creation of a 

strategic DSS in systemic risk management and is therefore essential for our objective. Such 

a DSS must possess the capability to quantify systemic risks as well as interdependencies 

between risk factors; this represents a “grand challenge” of IS research (Mertens and Barbian 

2015) and a major research requirement in SCRM. 
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III.3.2.3 Digitalized Value Networks 

The concurrent digitalization of value networks, which comprises technological trends such 

as the Internet-of-Things or cyber-physical (production) systems, promises business potential 

but also imposes significant challenges for corporate risk management (Lasi et al. 2014). For 

instance, the increasing organizational and technological interconnectivity between 

companies leads to ever-complex business dependency structures as well as information-

based dependencies, which decrease transparency of business operations and hence, 

complicate risk management efforts. Further, the real-time constraint of highly optimized, 

flexible and automated production infrastructures increases the importance of accurate 

information flows for proper operation of production processes (Hessmann 2013; Schuh et al. 

2014a; Yoon et al. 2012) and digitized value networks become increasingly vulnerable to 

information-based risks such as unavailability, inaccessibility, inaccuracy and 

unaccountability of information (systems) (Yoon et al. 2012a; Smith et al. 2007). Information-

based risks can spread through the entire digitized value network due to informational 

dependency structures that are independent of the physical connections. Hence, information-

based risks can take the property of systemic risks by possessing high damaging potential and 

must be included in operative and strategic risk management approaches in order to derive 

(preventive) risk mitigation measures. Further, in the course of digitalization, the importance 

of (digital) service providers increases significantly, as digital services enable key 

functionalities for digitized value networks such as real-time information sharing, 

communication, data storage, and processing. However, digital service providers, not directly 

involved in the value creation of a company, are inadequate included in existing SCRM 

approaches.  

Literature on systemic risks, so far, is focusing on interbank markets in response to the 

financial crisis of 2007 (e.g. Acharya et al. 2010; Adrian and Brunnermeier 2009; Bartram et 

al. 2007; ECB – European Central Bank 2010; Huang et al. 2009; Lehar 2005). The transfer 

of developed concepts and the adaption to the application field of digitized value networks is 

still missing. There are first publications that already deal, at least to some extent, with 

digitalization and the effects on risk management. For example, Keller and König (2014) 

develop a reference model for service oriented value networks based on actors, risks, and 

dependency structures of digital cloud networks. Hertel (2015) presents a framework for 

structuring threat scenarios and risk sources in digitized production infrastructures, i.e., so-
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called smart factories. Becker et al. (2013) developed a conceptual modeling language to 

specify interaction routines in service networks and a modeling method based on social 

construction of networks. Further, taking advantage of the tremendous amounts of data 

becoming increasingly available, Caron et al. (2013) exploit the potential of data measures 

and process mining in the field of risk management. Pika et al. (2016) use event logs of 

information systems that record execution of business processes to evaluate the overall 

process risk and to predict process outcomes. However, similar to most SCRM literature, those 

authors apply qualitative approaches for structuring risks. Quantitative methods of risk 

identification, evaluation and mitigation as well as economic risk measures are still not 

developed, and therefore, are subject to future research. Digitalization requires the 

consideration of the many dimensions of both corresponding potentials and threatening risks. 

III.3.3 Generic RMSS Architecture 

The previous section provides a sufficient indication that in order to be capable of 

counteracting systemic risks, researchers, and practitioners must think beyond the capabilities 

of existing risk management approaches. Inter-organizational information sharing is already 

used to facilitate procurement as well as delivery processes, reduce storage costs, and to enable 

outsourcing as well as customer-specific products. However, besides objectives of cost 

reduction and business development, information sharing and gathering can generate benefits 

in terms of corporate risk management. The objective of this paper is to derive a generic 

architecture toward a strategic DSS in systemic risk management. In the following, we refer 

to such a system as “Risk Management Support System” (RMSS) and we begin by presenting 

an appropriate functional design (Figure III.3-1) that integrates a technological interface for 

external information sharing and gathering. Then we use this perspective to motivate the 

components of our generic DSS architecture.  
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Figure III.3-1: RMSS Functional Design – Own Illustration 

A RMSS is the vision of a comprehensive IT-based DSS for systemic risk management, which 

emphasizes the need for human-driven risk control and decision-making. DSS assist the 

(human) risk controller to “discover what would happen if a series of decisions are taken” 

(Arán Carrión et al. 2008, p. 2360). Therefore, a RMSS must provide the risk controller with 

an opportunity to select specific “what if”-scenarios. For example, if the focal company 

intends to award new delivery contracts to suppliers, the risk manager should be able to 

request risk estimates of different sourcing strategies by using an appropriate user interface. 

While risk control is a function executed solely by humans, conduction of other actions of the 

RMSS occurs autonomously, following human frame conditions. Human experiences and 

estimations, however, can be provided as additional input to enrich the data set (e.g., expert 

knowledge for closing data gaps). We build the RMSS functional design exemplar using a 

common 4-step risk management process for the observation and control of business 

operations. Thereby, business operations “comprise the dealings of an organization with its 

stakeholders including customers, suppliers, and employees with regards to everyday 

activities” (Okoe et al. 2015, p. 345). In addition, we propose a new step in the risk 

management process, called “External Information Management” (EIM). The objective of 

EIM is to share and gather information with and about supply chain participants, and (digital) 

service providers as well as their surrounding environment. The technological components of 

EIM can be located inside as well as outside a focal company, integrated as a monitoring 

component of the RMSS, with the function to enable an automated information input stream. 
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Therefore, EIM supplements the RMSS with additional input information processed to 

identify, evaluate, and monitor (systemic) risks. Provision is made for the human risk 

controller to provide information about externalities and their (potential) influence on business 

operations. Based on this new process step, (in particular) strategic decisions such as choices 

about new business partners, product diversification and international site selection, can be 

supported in terms of integrated risk and return management. To summarize, the RMSS has 

to be an extensively networked online system, which is able to execute queries, analyze new 

as well as previously stored information, and conduct computations in real-time.  

To converge to a definition of RMSS, we classify and design a generic RMSS architecture, a 

template for a future DSS and therefore a fundamental requirement for the development of 

applicable IS to support systemic risk management. The objective of the generic RMSS 

architecture is to create abstract relationships among the necessary technological components 

based on (systemic) risk relevant information flows. In order to appropriately classify and 

design a generic RMSS architecture, we follow the “Expanded DSS Framework” of Power 

(2002) and Power (2008), who distinguish five categories of DSS technologies depending on 

their main purposes: 

 Communications-driven DSS: “use network and communications technologies to 

facilitate decision-relevant collaboration and communication” (Power 2008, p. 129). 

 Data-driven DSS: “provide tools for access and manipulation of large databases or data 

warehouses storing large amounts of data” (Hassan et al. 2015, p. 26). Input data is already 

structured (Power and Sharda 2007). 

 Document-driven DSS: use “computer storage and processing technologies to provide 

document retrieval and analysis” (Power 2008, p. 130). Input data is still unstructured 

(Power 2008). 

 Knowledge-driven DSS: “suggest or recommend actions based upon knowledge that has 

been stored using Artificial Intelligence or statistical tools” (Power and Sharda 2007, p. 

1045). They approach problems “which are normally resolved by a human expert” (Hassan 

et al. 2015, p. 26). 

 Model-driven DSS: provide decision support with “algebraic, decision analytic, financial, 

simulation, and optimization models” (Power and Sharda 2007, p. 1044). They “use limited 

data and parameters provided by decision makers to aid decision makers in analyzing a 
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situation, but in general large databases are not needed for model-driven DSSs” (Power 

2008, p. 126). 

In accordance with Power and Sharda (2007) who stated that an IS may also include several 

of the above approaches, we conceive our RMSS to be an “integrated system.” This is because 

none of the outlined categories is sufficiently comprehensive to grasp RMSS complexity, 

which is necessary to deal with systemic risks. The integrated system combines components 

from different DSS categories as illustrated in Figure III.3-2. 

 

Figure III.3-2: RMSS Generic Architecture – Own Illustration 

The RMSS collects input from three sources: First, the objective of the “Monitor” is to observe 

internal influences on business operations, i.e., information within company boundaries. In an 

example of new procurement contracts, this could comprise order details (e.g., business 

volumes, time schedules, and requirements specification), corporate information (e.g., 

strategic goals, balance sheet numbers, and regulations), and existing supplier information 

(e.g., offering prices, delivery times, existing collaborations, and mutual trust). Second, the 

Monitor integrates (or is connected with) a technological interface that supports EIM in order 

to share and gather information from outside the focal company that might influence business 

operations. In the case of our example, the latter may consist of market information (e.g., 

supplier competition, product sourcing alternatives, and currency and commodity price 

fluctuations), supplier vulnerability and criticality information (e.g., natural hazard and 

country risk indices, credit ratings, supplier product diversification, and supplier dependencies 

including dependencies on (digital) service providers). Third, the human risk controller 
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describes the decision problem to the system by specifying an information request within the 

“User Interface Module.” Those three input sources initialize the system to create decision 

support, which is the output of the RMSS. Since the Monitor works independent of specific 

support requests, it must be preconfigured to support a broad range of search patterns, with 

access to a variety of data sources. Moreover, it may be necessary to create additional user 

interfaces to manually enter information. The Monitor passes input information to an 

“Unstructured Database,” which gathers all delivered (meta) data. Such information can be 

manifold and provided in different data formats. Since database capacities are limited, there 

must be a first step of data processing, which filters, structures and stores required information 

for further usage. Performance of this task occurs via an intelligent component, which we refer 

to as the “Document-driven Component.” Although this component is not a DSS in terms of 

the Expanded DSS Framework, we attribute special properties of a Document-driven DSS to 

it. The Document-driven Component extracts, categorizes and summarizes information 

qualitatively from the Unstructured Database (similar to a Document-driven DSS of (Power 

2002)), which can subsequently be used for special (e.g. numeric) purposes. The output o6f 

the Document-driven Component is structured information (managed by a Structured 

Database) that can be accessed on demand by a “Data-driven Component,” which is the 

connecter to the central “RMSS Control Module.” Following the concept of a Data-driven 

DSS, this intelligent component enables the RMSS to “analyze, display and manipulate large 

structured data sets” (Power 2002, p. 124). In addition, the Data-driven Component can assess 

information from a Data Warehouse, which (in general) provides long-term storage of 

historical and consolidated data to improve decision support (Dewan et al. 2013). While an 

arbitrary number of Structured Databases can exist (e.g., for separately managing structured 

internal and external information), the Data Warehouse must be unique. Since the RMSS 

frequently receives new input information, detailed designs of Document-driven and Data-

Driven Components have to build on Big Data and Semantic Web Research. The RMSS 

Control Module receives information requests from the User Interface Module and 

coordinates the creation of appropriate decision support. After receiving an information 

request, this intelligent component compares the inquiry to existing knowledge, which is 

stored within a “Knowledge-driven Component.” Similar to a Knowledge-driven DSS, such a 

component provides basic expertise (e.g., rules or procedures) that is derived from historical 

data (i.e., from previous information requests) or manually implemented default knowledge. 

In addition, it is capable of conducting qualitative risk analysis by applying human expert 
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knowledge and visualization measures (e.g., risk matrix, or risk maps). The Knowledge-driven 

Component informs the RMSS Control Module regarding required input information for 

qualitative (systemic) risk analysis. For modeling and quantifying (systemic) risks, however, 

the RMSS Control Module submits an inquiry to the “Model-driven Component,” a derivative 

of a Model-driven DSS. Depending on the specific information request, this component 

chooses appropriate analytical or simulation models and requests required input information 

from the RMSS Control Module. The RMSS Control Module in turn passes input information 

requests of the Model-driven and Knowledge-driven Components to the Document-driven 

and Data-driven Components. These components apply their analytic algorithms to the (Un-) 

structured Database(s) and the Data Warehouse and respond. After receiving the required 

input information, the Model-driven Component executes the computations to generate the 

quantitative risk identification, evaluation, and monitoring while the Knowledge-driven 

Component performs the qualitative analysis defined by those three steps of the risk 

management process. The processing of input information requests, subsequent computation 

as well as analytic procedures iterate for each of the three risk management process steps and 

cannot be performed concurrently (risk evaluation, for example, postulates previous risk 

identification). If necessary, the RMSS Control Module configures other intelligent 

components in order to adapt them to the user’s specific information request (e.g. adapting 

semantic search terms within the Document-Driven and the Data-driven Components). 

Finally, the RMSS Control Module aggregates and delivers decisions support to the User 

Interface Module, thereby completing the decision support request. The information request 

as well as the system’s response, recorded within the Knowledge-driven Component, extends 

the systems knowledge base. The RMSS is now ready to process the next human request for 

decision support. It is reasonable to implement a feedback function in which the user can 

assess the relevance and completeness of the decision support response in order to improve 

the RMSS knowledge database. Note that we did not implement a “Communications-driven 

Component” in our generic RMSS architecture, as we do not focus on distributed decision 

support; however, respective extensions may be reasonable in future designs. We believe that 

the first applications of the RMSS will be limited to very specific purposes (e.g., the estimation 

of tier-one supplier risk exposure for different single- and dual-sourcing strategies of key 

components) but we expect that the RMSS will evolve to a more complex DSS in the future. 
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III.3.4 Challenges and selected Research Questions toward future detailed designs 

To date, our generic RMSS architecture is a rough concept of a risk management IS that is 

becoming a necessary tool for many (global) companies. Since many challenges must be 

addressed, the full implementation of such an IS remains into the future. To address these 

challenges, it requires joint efforts of researchers, representing interdisciplinary knowledge 

from diverse research disciplines, and practitioners, to demonstrate practical feasibility. In the 

following, we provide our contributions to such joint efforts by discussing some major RMSS 

challenges and selected research questions, thereby providing an orientation for future (IS) 

research. We structure our discussion along the following dimensions of our RMSS 

architecture: (1) information sharing and gathering, (2) information analysis, (3) information 

processing, and (4) decision support.  

III.3.4.1 Technological Interfaces for External Information Sharing and Gathering 

The RMSS Monitor integrates (or is connected with) a technological interface for EIM, i.e., 

an interface to obtain information about externalities and their (possible) influence on a focal 

company. Such a technological interface may be a shared digital database such that each 

supply chain participant can share its data and obtain external information from other 

participants. However, even if companies in a digitized value network are willing to share 

their data (c.f. next research question), it will be necessary that a central unit of organization 

exists, which provides the necessary coordination and IT infrastructure. Hence, a major 

challenge emerges from the fact that some organization must invest resources and effort to 

create and manage the necessary databases. It would be necessary to either form a supply 

chain board for coordination, or possibly commission an independent service provider. 

Regardless of the method preferred, most digitized value networks are opaque, complex, 

interconnected with other digitized value networks and heavily exposed to dynamic changes 

in composition and boundaries. This fact complicates communication and increases the costs 

of coordinating such a project. Assuming digitized value networks with several participants, 

the outlined situation is a perfect example of a “public good game,” because a single company 

would prefer others to bear the costs and organizational effort. To summarize, shared digital 

databases are hardly appropriate for EIM. 

In order to communicate with direct business partners, companies have already implemented 

so-called “Inter-Organizational Information Systems” (IOIS). IOIS, which were first 
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mentioned by Barrett and Konsynski (1982), serve as a technological interface between (two 

or more) business partners, and support sharing of risk-relevant information. Prominent 

examples of IOIS are systems for vendor-managed inventory as well as collaborative 

planning, forecasting, and replenishment systems. However, the nature of systemic risks 

particularly requires communication beyond direct business partners. Existing approaches to 

enable communication between distant supply chain participants are product centric 

technological interfaces such as the EPCglobal Network. “Product centric” means that 

information is embedded within each single product, and not shared through digital databases. 

Although there are different product centric approaches, “the EPCglobal Network stands out 

among the rest because in 2003 it was authorized as a Global Standards I (GS1)” (Muñoz-Gea 

et al. 2010, p. 480). The EPCglobal Network uses RFID tags (with unique identifiers) and 

readers to read and write product codes affixed to (semi) finished products. For example, Bi 

and Lin (2009) develop a methodology to discover digitized value networks by using the 

EPCglobal Network. They analyze information within a four-dimensional matrix and support 

the capability to map the network structure, quantities of the flows of goods and the time that 

individual goods remain at and move between digitized value network participants. However, 

the information that is available from EPCglobal, is not sufficient to manage systemic risks, 

since a focal company reads only product codes and related information of incoming and 

outgoing commodities. In particular, information about the flow of goods that is non-physical 

(e.g. IT services) and/or not directly connected with the focal company (e.g. competitors, and 

suppliers’ customers in different industries) cannot be accessed. While product centric 

approaches focus on decentralized information of individual products, other technological 

interfaces can build on bilateral information sharing between distant supply chain participants. 

Yao (1986) and Goldreich et al. (1987) provide the foundation for the so-called “Secure 

Multiparty Computation” (SMC), a subfield of cryptography, which enables the creation of 

information exchange software using peer-to-peer networks. “SMC allows mutually 

distrustful parties to jointly compute a functionality while keeping their inputs private” 

(Dachman-Soled et al. 2011, p. 130). This technology can enable simultaneous information 

sharing without leakage of critical information and therefore increase the willingness of 

companies to participate in information sharing. For example, Fridgen and Garizy (2015) 

provide a first approach to use SMC in a digitized value network to discover networking 

structures by simultaneously preserving individual privacy. However, there remains the 

problem that some organization must (initially) bear the costs and organizational effort to 
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develop and distribute the corresponding software. To date, technological interfaces that 

support information sharing and gathering are rarely developed, applied as well as researched 

upon frame conditions and capabilities. We state the following research question: 

Q1: To support EIM, what are the technological interfaces that must be designed to 

appropriately enable and coordinate the (remote) sharing and gathering of (systemic) risk 

relevant information? 

III.3.4.2 Information Sharing Incentives 

Besides enabling and coordinating EIM, appropriate technological interfaces must ensure 

information sharing incentives. Companies usually have concerns regarding security, privacy 

and intellectual property (Li et al. 2006). In particular, the concern that information sharing 

primarily benefits a counterparty is a major disincentive (Mishra et al. 2007; Lee and Whang 

2000). Moreover, information sharing may require “the release of confidential and closely 

guarded financial and strategic information to partners who might have been or may later be 

competitors” (Du et al. 2012, p. 91). Even if those partners were confidential, there is a thread 

of information leakage to third parties. Li (2006) refers to this problem as the “leakage effect” 

as competitors may discover confidential information based on the actions of the informed 

parties. In particular, customers or suppliers of a focal company can use leaked information 

within upcoming negotiations. For these reasons, companies are frequently reluctant to share 

information with their network partners. 

Q2: How can technological interfaces that support EIM limit a focal company’s concerns 

regarding security, privacy, as well as intellectual property and incentivize information 

sharing? 

III.3.4.3 RMSS Database Systems 

One purpose of the monitoring component of our generic RMSS architecture is the intention 

to collect unstructured (meta) information regarding the company and external influences. 

Depending on this component’s configuration, this may result in huge amounts of push-based 

data within short time periods. On the one hand, continuous data input streams might lead to 

data overflow errors and therefore possible loss of critical input information if data storage 

capacities are not sufficiently large. On the other hand, traditional database management 

systems are static, which means that information has to be stored before that data can be 

processed. Therefore, information within the database might be outdated or inaccurate. To 
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cope with these challenges, a detailed design of our Document-driven Component must 

integrate modern database systems. In the early years of this millennium, research on “Data 

Stream Management Systems” (DSMS) raised with the objective to create administration 

software for continuous queries on large data streams (Chen et al. 2000; Babcock et al.; Abadi 

et al. 2003). DSMS “allow user to analyze the data-in-motion” (Gupta et al. 2012, p. 50) and, 

in particular, the continuous extraction of risk relevant information. For example, a DSMS in 

our Document-driven Component can query unstructured input information from the Monitor 

according to the RMSS control module’s configuration input. By using a DSMS, unstructured 

(static) databases might be dispensable and extracted input information can be stored directly 

in a Structured Database component as well as the Data Warehouse for further use. Another 

promising technology, “Real-Time Database Systems” (RT-DBS), are “an amalgamation of a 

conventional database management system and a real-time system” (Bestavros, A., Lin, K. J., 

& Son, S. H. 2012, p. 1). A RT-DBS not only optimizes for logical correctness (i.e., querying 

the required information) but also for temporal correctness which means that information has 

to be processed at the correct time under special consideration of deadlines (Safaei et al. 2011). 

Although both objectives are important, such a system usually favors timeliness, a property 

that can be especially valuable in situations such that a risk manager requires contemporary 

decision support (Diallo et al. 2012). In contrast to a DSMS, a RT-DBS is only approximately 

real-time, since queries are highly frequented but not continuous, and data must be stored in 

an (unstructured) database prior to processing. However, if data input streams from the 

Monitor are highly volatile, a DSMS may encounter damaging traffic congestion in times of 

high activity (Gürgen et al. 2008), which is less a problem for a RT-DBS. A third kind of 

modern database system is an “In-Memory Database” (IMDB) which stores information 

within main memory. This enables fast access to the large volumes of data (Buhl et al. 2013). 

In particular, applications for data processing can access the in-memory data directly (without 

disk access) and therefore increase transaction performance significantly. Yet, limited 

capacity is still (likewise in our case) a big problem for IMDB (Nishida and Nishi 2012). 

Modern relational and multidimensional database systems are indispensable for managing 

input information within the RMSS. However, more research is required in order to clarify 

which technology (or combination of technologies) is preferable in order to cope with volatile 

amounts of unstructured input information. We state the following research question: 

Q3: What are the appropriate database architectures that can support specific RMSS purposes? 
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III.3.4.4 RMSS Data Processing 

By executing queries submitted by the RMSS control module, both the Document-Driven 

Component and the Data-driven Component must process risk relevant information from data 

that is resident within the (Un-) structured Database(s) and the Data Warehouse. A detailed 

design of both Components can consist of two types of software: Online transaction 

processing (OLTP) and online analytical processing (OLAP). OLTP is suited for executing 

ordinary and highly repetitive queries on detailed and current information (Chaudhuri and 

Dayal 1997; Park et al. 2015). For example, information transactions submitted to the Data-

driven Component, backed by the Structured Database(s), may focus on recent financial 

figures and key performance indicators of the focal company, or exchange rates with foreign 

currencies. OLAP, on the other hand, is suited for complex queries and analysis of data. For 

example, if the RMSS control module requires a time-series and comparison of several 

exchange rates, then the Data-driven Component can use the OLAP capability to query the 

Data Warehouse and its long-term historical data. However, since misinterpretation of 

(especially unstructured) information is frequent, depending on vocabulary choice, the 

context, and data quality, the benefit offered by decision support is dependent upon the 

analytic capabilities of both software types. Today, there is still a need for OLTP and OLAP 

to integrate more accurate semantic data analysis (Gulić 2013) which is particularly important 

for the RMSS, since correct interpretation of input data is a key to strategic decision support. 

Semantic data analysis is also an important and fast growing IS research field with the 

objective to manage the challenges posed by Big Data (Englmeier 2015; Patel and Madia 

2016). Standards such as Linked Data are delivered by a larger number of data providers; 

these data providers create the foundation for more successful semantic data analysis activities 

in the future (Bizer et al. 2009). We emphasize the need to transfer research of semantic data 

analysis to the creation of Document-Driven and Data-driven Components. 

Q4: What is the appropriate data processing software for RMSS to support a robust level of 

OLTP and OLAP in order to enable the system to conduct semantic data analysis on risk-

relevant input information? 

III.3.4.5 Risk Modeling Languages 

We believe that a RMSS enables the user to obtain strategic decision support. Such decision 

support may be both qualitative and quantitative statements regarding risk exposure due to 

different options of action. The creation of quantitative statements requires the system to 
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possess risk modeling and assessment techniques, which our RMSS utilizes within the Model-

driven Component. The modeling of systemic risks is crucial for subsequent risk assessment, 

and influenced by the selection of appropriate modeling languages. In the case of RMSS, an 

appropriate modeling language must fulfill three basic requirements. First, it has to be 

“complete” in terms of representing all relevant components and their relationship in a 

comprehensive model of risk origination and propagation. Second, it has to be “consistent” 

which means that rules and procedures do not yield contradictory results. Two identical basic 

situations with identical parameter settings must result in two identical outcomes. Third, it has 

to be “simplifying” in terms of reducing real-world problems to manageable complexity. In 

particular, a simplifying modeling language should allow for abstraction, formalization and 

modularization (Fridgen et al. 2014). Modeling languages that support (inter-) organizational 

risk management purposes have already been used in conjunction with the related research 

field of SCRM. Neiger et al. (2009) develop a modeling methodology to identify supply chain 

risks, based on value-focused process engineering (VFPE), a modeling language that “creates 

links between business processes and business objectives at the operational and strategic 

levels” (Neiger et al. 2009, p. 155). Mahfouz and Arisha (2010) use integrated modeling 

approaches (IDEF0 & IDEF3) to assess and mitigate rush order risks at both macro and micro 

levels of a supply chain. Their simulation model provides numerical measures as well as 

insights into sensitivities of relevant parameters. Fridgen et al. (2014) extend an approach of 

Wu et al. (2007) to model disruptions and their propagation in supply chains based on modular 

Petri Nets. They conclude that IS should manage the increasing complexity of value network 

and information flow. Wagner and Neshat (2010) build an approach to quantify and mitigate 

supply chain vulnerability using graph theory. To address the modeling of network 

interdependencies, Buldyrev et al. (2010) apply Erdős-Rényi networks (i.e., random graphs) 

and use their specialized model to describe cascade failures during the 2003 electrical blackout 

in Italy. These are only some examples that illustrate the variety of modeling languages that 

were already used for (inter-) organizational risk management purposes outside interbank 

market research. To the best of our knowledge, literature that provides a comparative analysis 

of modeling languages, their development potential with respect to completeness, consistency, 

simplicity, and general applicability to modeling systemic risks in digitized value networks 

does not exist. Therefore, with regard to our purposes, we state the following research 

question:    
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Q5: What comprehensive, consistent, and simplifying modeling languages are most 

appropriate in the sense that they have the most development potential for modeling systemic 

risks? 

III.3.4.6 Risk Assessment Measures 

Another important objective of the Model-driven Component is risk assessment. The 

quantification of risks within the RMSS might be twofold: First, since digitized value 

networks abstractly consist of companies (nodes) and their connections and dependencies 

(edges), we must consider the network analytic metrics, generally referred to as “centrality 

measures.” These are metrics that evaluate “the level of importance or influence of a node in 

a graph” which reflects “certain topological characteristics” (Chen et al. 2016, p. 2). In other 

words, topological characteristics of a digitized value network provide information regarding 

the critical and vulnerable nature of certain companies within the network. For example, 

“degree centrality” can quantify the critical attribute (“out-degree”) and vulnerable attribute 

(“in-degree”) of a company, while “closeness centrality” as well as “betweenness centrality” 

provide information regarding both properties. Second, the quantification of (systemic) risks 

can be computed by applying “risk measures,” a “functional that assigns a numerical value to 

a random variable which is interpreted as a loss” (Rachev et al. 2008, p. 4). A popular risk 

measure, because of its simplicity, is the “value-at-risk” (VaR) that quantifies a threshold loss 

value for a given confidence level and period of time. The VaR is the most widely applied 

risk measure in finance (Peterson and Boudt 2008) and has already been transferred into the 

context of SCRM (Sanders and Manfredo 2002; Lodree Jr and Taskin 2008; Zhang et al. 

2013). However, VaR approaches have several disadvantages, which occur commonly for 

systemic risks. First, this risk measure does not account for the average extent of damage 

beyond the given confidence level. This is a serious problem, since it would not be possible 

to calculate worst-case impacts from systemic risks. Second, many VaR approaches assume 

normally distributed losses, whereas systemic risks (such as natural disasters) usually exhibit 

heavy-tailed distributions, i.e., the probability for worst-case scenarios is higher than is 

assumed by a normal distribution of losses (Kousky and Cooke 2010). Third, VaR approaches 

require historical data to estimate parameter values and/or perform historical simulations. This 

data is often not available due to the rarity and manifold nature of systemic risks and/or the 

absence of external information access. Fourth, VaR measures are not necessarily sub-

additive, which means that the VaR of an entire company might exceed the sum of VaR of all 
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business units. However, there is no evidence that systemic risks exhibit negative 

diversification effects. Another financial risk measure, which quantifies “the expected loss 

given that the loss is greater than or equal to the VaR” (Rockafellar and Uryasev 2002, p. 

1445), is the “conditional-value-at-risk” (CVaR) or “expected shortfall.” Therefore, in 

contrast to the VaR, the CVaR would be able to account for worst-case impacts of systemic 

risks. Moreover, this risk measure is sub-additive, therefore eliminating two of the mentioned 

VaR disadvantages. Similar to the VaR, researchers suggest the transfer of CVaR to the (non-

financial) context of SCRM, especially to support procurement decisions (Chen et al. 2014; 

Sawik 2013; Zhang et al. 2013). The remaining issues with normally distributed losses and 

little historical data may be addressed using “extreme value theory” (EVT), a research field 

that provides methods to quantify risks with heavy-tailed distributions based on VaR and 

CVaR (Allen et al. 2013; Singh et al. 2013). EVT has already been transferred to SCRM 

(Ravindran et al. 2010) and may be well suited for rare events such as systemic risks (Zhang 

et al. 2009), characterized by a small amount of available information. However, if no 

information is available or it is not possible to guarantee information validity, a common 

occurrence in risk management practice, none of the mentioned centrality metrics or risk 

measures is able to provide reliable results. We state the following research question:   

Q6: What centrality metrics and risk measures are most appropriate or possess the most 

development potential to quantify (systemic) risks; how do these metrics address missing or 

inaccurate information? 

III.3.4.7 RMSS Learning Capabilities 

Finally, we introduce an important research challenge to the development of a Knowledge-

driven Component. A detailed design of this intelligent component may include concepts from 

the IS research field of machine learning with the objective of allowing a system to generalize 

beyond existing knowledge (Domingos 2012). Existing knowledge within the RMSS may 

originate from two sources. First, a training set can be used (offline) to initialize machine 

learning during the development or maintenance of the system. Second, decision support 

during RMSS operation may be assigned (ex-post) with fitness values, for example, by 

analyzing human feedback and/or backtesting functions, which enable the system to 

continuously improve the quality of decision support (online) for individual user 

requirements. Following Domingos (2012), machine learning consists of three components. 

First, “Representation,” which comprises the formal language for the hypothesis space (e.g. 
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neural networks, support vector machines); second, “Evaluation,” to compute fitness values 

for different options for action; and third, “Optimization,” for actual action selection, i.e., 

decision support in our case. To date, many different approaches for machine learning exist, 

even for purposes of supply chain management (Carbonneau et al. 2008). However, there is 

no evidence in the literature that documents the techniques that might be most suited for the 

purposes of systemic risk management. Hence, we state the research question: 

Q7: What machine learning techniques are most appropriate or have the most development 

potential to allow the RMSS to enable continuous improvement in decision support? 

III.3.5 Conclusions and Discussions 

The globalization and digitalization of production and businesses continues to increase 

interdependencies and complexities within (digitized) value networks. Hence, focal 

companies’ exposure to their dynamic environment is increasing, also increasing systemic 

risks, which jeopardizes their business operations and therefore their very existence. DSS can 

assist managers to manage the complexities and opacities in systemic risk management by 

gathering, processing and interpreting manifold information from inside and outside a 

company. The creation of such a DSS, however, creates challenges and unanswered questions, 

which require resolution by researchers and practitioners, working together. 

In this paper, we contribute to the development of a strategic DSS created to support systemic 

risk management by developing a generic architecture and by discussing open challenges as 

well as selected research questions. The generic architecture is a template for future IS and 

therefore, a fundamental requirement, which relates necessary technological components, 

based on systemic risk relevant information flows. Our discussion of open challenges and 

selected research questions provides an orientation for future research and is another 

contribution to this interdisciplinary endeavor.  

One limitation of our approach is the gap between our generic architecture and future practical 

implementations, which are, to date, merely a vision. Currently, we have not conducted a 

detailed study of requirements and possible use cases with practitioners that will be necessary 

to develop a RMSS detailed design. Moreover, the quantification of systemic risks with 

missing, incomplete, or inaccurate information is a major research challenge that will 

determine the performance capability of any future RMSS. To date, we are only able to pose 

corresponding research questions. Therefore, we especially encourage researchers in 
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quantitative risk management to join our efforts in order to develop appropriate risk measures. 

However, we regard this paper as an important first step to motivate interdisciplinary and, in 

particular, IS research in systemic risks as well as to identify an initial approach to resolution 

that can be further developed and serve as a foundation for future research.  

A reasonable next step for our research is to introduce and discuss our generic RMSS 

architecture using risk managers from companies that have already established a risk 

management implementation of strategic decision support. The further development of such 

systems is inevitable in order to manage the increasing threat of systemic risks. This objective 

should empower companies to manage not only the opportunities but also the challenges of 

production and business globalization and digitalization. 
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IV Results, Future Research, and Conclusion 

This chapter contains the key findings of this doctoral thesis in Section IV.1 and an outlook 

on future research areas in Section IV.2. It also provides a short conclusion in Section IV.3. 

IV.1 Results 

The main objective of this doctoral thesis was to contribute to risk and return management in 

the context of digitized value networks. After motivating the relevance of appropriate risk and 

return management methods to successfully master the challenges of digitalization and digital 

transformation in the industrial sector, this thesis presented insights and approaches for the 

targeted transformation of companies affecting all levels of the enterprise architecture 

considering the three fields of action: digital business, digital transformation, and digital 

disruption. 

Regarding return management, the research papers provide practical guidance for the targeted 

transformation of business models in the context of digital hybrid value creation and insights 

concerning the resulting impacts and challenges associated with the development of digital 

business models. Further, the research papers support the transformation process by analyzing 

and categorizing the potential benefits of digital technologies for smart manufacturing 

environments and by providing an investment decision support model by means of an 

Expanded Net Present Value approach utilizing real options for the evaluation of investments 

in flexible on-demand production capacity (Chapter II). 

Regarding risk management, the research papers provide a novel modeling approach for smart 

manufacturing information networks as well as a risk assessment model for smart factory 

networks enabling the simulation and analysis of inherent IT availability risks. Further, a 

generic architecture for the management of systemic risk is presented providing strategic 

decision support in digitized value networks (Chapter III). 

In the following, the key findings of the research papers of this doctoral thesis are presented. 

At the end, future research opportunities are discussed and a short conclusion is provided. 

IV.1.1 Results of Chapter II: Return Management in Digitized Value Networks 

Chapter II focusses on providing insights and appropriate approaches for return management 

in the context of digitalization and digitized value networks by examining three concrete 
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research topics: First, the impacts and resulting challenges associated with the development 

of digital business models in the context of digital hybrid value creation are investigated and 

practical recommendations for the targeted transformation of business models are derived 

(Section II.1). Second, the potential benefits of digital technologies in the context of smart 

manufacturing are analyzed by means of a structured literature review and categorized in an 

established framework for information systems (IS) benefits (Section II.2). And third, 

investments enabling the usage of flexible on-demand production capacity are evaluated with 

the help of a real options approach (Section II.3). 

 In Section II.1, research paper P1 investigates impacts and challenges resulting from 

the development of digital business models in the context of digital hybrid value 

creation (Objective II.1). In this context, the primary goal, the thematic focus, and the 

characteristics of digital hybrid value creation of industrial companies and of 

innovative, data-based product-service bundles are presented. Based on a literature 

review, real-world examples, and five interviews with experts from leading companies 

in different key industries, the impacts and resulting challenges on business models 

are investigated and presented in a structured manner by means of the Business Model 

Canvas (BMC) as an established method for the representation and development of 

business models (Osterwalder and Pigneur 2010). As a first result, it can be stated that 

the development of data-based product-service bundles causes numerous impacts (and 

subsequently challenges) discussed in the following. First, the value proposition, and, 

thus, the core of value creation, increasingly shifts from the sale of physical products 

towards multiple, customer-specific solution offerings on the basis of multiple digital 

services. Accordingly, the complexity increases as multiple value propositions have to 

be tailored to individual customer preferences. Second, digital services require the 

development of new capabilities like software development and data analytics, new 

resources like cloud infrastructure, and the cooperation with value chain partners like 

cloud providers in increasingly interconnected, digital ecosystems. In sum, the 

development of data-based product-service bundles affects all segments of the 

business model. Thus, a holistic perspective on the overall business model is required 

in the course of digital transformation. To demonstrate the transformation of a business 

model, research paper P1 presents a case study based on the example of Mitsubishi 

Electric. Subsequently, as the last result of this research paper, recommendations for 
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practitioners are presented by proposing different starting points for the digital 

transformation of a business model. In this context, the central starting point for the 

development of digital service offerings should always be the customer and the 

customer problem as well as the establishment of a long-term customer relationship. 

Only by creating a real added value for customers, a long-term customer relationship 

and a sustainable win-win-setting can be created. Regarding the various possibilities 

for the design of new revenue sources and types, the complexity has to remain 

manageable in terms of transparency, and mutual benefits for both, providers and 

customers have to be ensured. Additionally, companies should seek the cooperation 

with value chain partners in closely interconnected digital ecosystems and pursue 

approaches like cocreation as companies are not able to build and maintain all 

necessary capabilities and resources by themselves. Summarizing, Section II.1 

provides insights and practical guidance for the development of digital business 

models in the context of digital hybrid value creation. 

 In Section II.2, research paper P2 investigates the anticipated benefits of digital 

technologies in the context of smart manufacturing enabling new business models and 

success practices and provides a structured overview of benefits by means of a benefits 

framework (Objective II.2). For this, a structured literature review was conducted in 

accordance with established methods for literature reviews in IS research (e.g., 

Bandara et al. 2011; Fettke 2006; Levy and J. Ellis 2006; Vom Brocke et al. 2009; 

Webster and Watson 2002). Based on a keyword search in different scientific 

databases, 57 scientific publications were selected for a full-text analysis resulting in 

a list of 365 obtained benefits. This shows the magnitude and diversity of benefits in 

literature and underlines the importance of a structured overview to support investment 

decision processes with a comprehensive picture. The obtained benefits were assigned 

to one of the four dimensions operational, managerial, and strategic organizational 

of an established framework for IS benefits initially proposed by Anthony (1965) and 

clustered to 21 benefits including, for instance, production flexibility, resource 

efficiency, or product innovation & improvement. The classification into one of the 

four dimensions supports the differentiation of the impact of benefits and, thus, 

facilitates their subsequent evaluation as the dimensions consider the hierarchical 

levels of decision-making in organizations. Despite the structured benefits framework 

as the central artefact of research paper P2, further insights and managerial 
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implications are derived in the course of the research. First, there are interdependencies 

between certain benefits as digital technologies applied to enable benefits on the 

operational level often times serve as the basis for the realization of benefits on the 

managerial or strategic level (e.g., the alignment of production to changing, individual 

customer demands requires the realization of production flexibility or an accelerated 

product development process). Second, the operational and managerial level are partly 

fading regarding certain benefits like utilization or problem handling as production 

systems are able to self-control the production process in real-time. This influences 

traditional planning processes and requires management to adapt managerial 

processes. Third, the gained results indicate that operational benefits of digital 

technologies might appear earlier, whereas strategic benefits might materialize on a 

longer time horizon. Accordingly, the comprehensive evaluation of benefits of digital 

technologies and the assessment by means of appropriate measures is of crucial 

importance for value-based management and the development of a sound digitalization 

strategy. 

 In Section II.3, research paper P3 presents a mathematical model based on real options 

analysis in a discrete-time binomial tree model to evaluate investments enabling the 

commissioning of flexible on-demand production capacity in digitized production 

infrastructures (Objective II.2). The model economically evaluates upfront 

investments required for the commissioning of external capacity providers by means 

of an Expanded Net Present Value approach and integrates the value of the resulting 

volume flexibility. For this, a real options approach is applied as it is an established 

valuation method designed to capture flexibility of action and, thus, enables 

investment evaluations under uncertainty. Thereby, the approach models and evaluates 

the volume flexibility as an expansion option. Against the backdrop of increasingly 

volatile customer demand due to shorter product life cycles and changing customer 

preferences towards the instant availability of non-storable, individualized products, 

the approach supports investment decisions of companies in the context of production 

capacity planning. Based on the results, it can be stated that the possibility to 

commission on-demand production capacity can be of considerable value. Thereby, 

the conducted sensitivity analyses revealed that this holds true especially for longer 

framework contracts with external capacity providers. Further, insights gained by the 

sensitivity analyses include that the volatility of customer revenue is another strong 
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value driver for volume flexibility. Accordingly, flexible on-demand capacity is 

especially valuable for companies in fast-moving industries that exhibit ever shorter 

product life cycles, rapidly changing customer preferences, and, thus, highly volatile 

demand. Furthermore, the commissioning of non-permanent on-demand production 

capacity represents a valuable option for small and medium enterprises with rather 

limited investment budgets, as the commissioning of on-demand capacity requires 

smaller investment volumes in comparison to costly investments into new internal 

production capacities with amortization periods of several years. Summarizing, 

Section II.3 presents an approach for the sound economic evaluation of investments 

enabling flexible on-demand production capacity and, thus, supports the strategic 

decision making of companies in the context of their digital transformation.  

IV.1.2 Results of Chapter III: Risk Management in Digitized Value Networks 

Chapter III focusses on providing appropriate approaches for risk management in the context 

of digitalization and digitized value networks by examining two concrete research topics: On 

the one hand, approaches for the modeling and simulation of smart factory networks are 

developed that consider information networks and production networks, both exhibiting 

complex informational interdependencies. Thereby, it is demonstrated how these approaches 

can support management on analyzing inherent informational risks as a means for sound 

decisions on appropriate IT security strategies (Section III.1 and Section III.2). On the other 

hand, a generic architecture for a strategic decision support system for systemic risk 

management is presented and areas for future research are introduced (Section III.3). 

 In Section III.1, the presented modeling approach contributes to the modeling and 

structured depiction of smart factory information networks and the simulation and 

analysis of IT availability risks (Objective III.1). For this, as a first result, design 

objectives for the development of an appropriate modeling approach are derived from 

literature. These include the formal and mathematical representation of information 

networks enabling a simulation-based analysis of IT availability risks and a graphical 

representation of the modeling approach enabling the transparent depiction of the 

modeled components. Further, the scalable depiction of components, subnetworks, 

and the entire information network should enable the inclusion of a varying number of 

information network components. And lastly, characteristics of different threats 
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including attacks and errors as well as corresponding propagation effects have to be 

captured. Based on these design objectives, six requirements for an adequate modeling 

approach are derived and petri nets, more precisely, stochastic generalized petri nets 

with immediate and exponentially distributed firing times, deterministic and stochastic 

preselection of transitions as well as guard functions, are selected as the basis for the 

modeling approach. Building on these results, a generalized modeling module for the 

depiction of single components and their interdependencies is developed as the central 

artefact. By means of this modularization approach, complex information networks 

can be modeled and simulated. Thereby, the modeling module is designed to enable 

different types of threat scenarios including timing failures, errors, and attacks as well 

as their propagation within the information network. To evaluate the developed 

modeling approach, different threats comprising a smart factory information network 

are simulated. Thereby, the data generated by the simulation regarding the states and 

the operational capabilities of the respective components can be used to analyze the 

information network and IT availability risks over time in more detail by means of key 

figures such as (operational) availability rates. Additionally, interviews with experts 

from both practice and academia are conducted to evaluate the modeling approach 

from a naturalistic perspective. In sum, the developed modeling approach facilitates 

the risk-oriented analysis of information networks and enables the analysis of different 

network design patterns regarding certain threat scenarios as well as the analysis of 

propagation effects regarding their occurrence and spread. This allows the 

identification of weak points and critical dependencies within the information network 

and, thus, provides insights for the sensible design of smart factory information 

networks, for instance, regarding the degree of interconnectivity, and the derivation of 

targeted IT security measures to reduce risks associated with IT availability. 

 In Section III.2, a risk assessment model for the modeling of smart factory networks 

and the quantification of IT availability risks is presented that enables the identification 

of critical nodes and supports corresponding investment decisions in IT security 

measures (Objective III.2). For this, the general setting of smart factory network is 

abstracted first. This results in a basic structure consisting of two connected networks: 

information network and production network. Both networks contain different 

components like smart machinery equipped with embedded systems or servers and 

software components. As the production network depends on the reliability of the 
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information network and its components, there are direct and indirect functional 

dependencies within both networks and between them. Accordingly, smart factories 

contain diverse and complex dependency structures in which production components 

depend on various components of the information network regarding their 

functionality. The developed risk assessment model uses this dependency structure as 

the basis for the quantification of IT availability risks. For this, the smart factory 

network is modeled and formalized by means of graph theory and matrix notation, and 

the threat potential of each IT component caused by non-availability is quantified by 

means of Value at Risk under consideration of utilization rates, different interference 

degrees of IT components, and compensation effects in case of idle capacity. The 

applicability of the developed model is demonstrated through an exemplary real-world 

scenario in which different IT security measures are investigated regarding their risk 

reducing effects. Further, sensitivity analyses are conducted revealing that the 

criticality of IT components are determined by numerous influencing factors including 

the underlying dependency relations to production components, the degree of caused 

production interferences, the impact location in terms of process steps, the utilization 

of dependent production components, and the resulting possible compensation effect 

of unaffected production components. Accordingly, the variety of influencing factors 

in combination with the complex interdependencies in smart factory networks 

demands for structured approaches supporting investment decisions in the context of 

IT security strategies. For this, the developed risk assessment model presents an 

approach for the structured analysis of increasingly complex smart factory networks 

under consideration of not only direct but also indirect dependencies. It considers 

propagation and damaging effects caused by IT availability risks based on complex 

dependency structures. Accordingly, the presented risk assessment model provides 

risk-oriented guidance for the solid design of smart factory networks and an economic 

basis for corresponding investment decisions regarding IT security measures. 

 In Section III.3, a generic architecture for a strategic decision support system for 

systemic risk management in digitized value networks is developed (Objective III.3). 

Against the backdrop of globalization and the digitalization of the industrial sector, 

companies are increasingly confronted with interdependencies and complexities 

within digitized value networks. At the same time, increasing systemic risks jeopardize 

companies as failures of distant value chain partners can disturb business operations 
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even in the absence of direct dependencies. However, complexity of value networks 

and the lack of transparency complicate risk management. A potential solution can be 

provided by decision support systems that extend the capabilities of existing risk 

management approaches by automatically gathering, processing, and analyzing 

information from manifold sources from inside and outside a company (inter-

organizational information sharing). Accordingly, a generic architecture for such a 

decision support system as a template for future information systems is developed. As 

a first step, a functional design is presented that integrates a technological interface for 

external information sharing and gathering. The functional design is based on the 

established risk management processes containing the four phases for the observation 

and control of business operations. The four phases of risk management are extended 

by an external information management step that gathers and shares information with 

and about supply chain partners, digital services providers, and the surrounding 

environment, and that enables an automated information input stream. Accordingly, 

additional input information becomes available to identify, evaluate, and monitor 

systemic risk. Based on this functional design, a generic architecture for the decision 

support system containing different components is derived. The components include 

a monitor for the observation of internal and external information, unstructured and 

structured databases as well as a data warehouse. Further components like a document-

driven component, a data-driven component, a knowledge-driven component, and a 

model-driven component facilitate the processing of information and the execution of 

qualitative and quantitative risk analyses. A central control module coordinates all 

components and is connected to the user interface module for human decision-makers. 

To develop and implement corresponding risk management information systems on 

the basis of the developed generic architecture, different challenges must be addressed 

by combining interdisciplinary knowledge from diverse research disciplines. These 

challenges include technological interfaces for external information sharing and 

gathering, information sharing incentives, database systems, data processing, risk 

modeling languages, risk assessment measures, and learning capabilities of risk 

management support systems. For each of these challenges, selected research 

questions are presented as orientation for future research. 
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IV.2 Future Research 

To provide a concluding outlook on the research topics in this doctoral thesis, potential aspects 

for future research are highlighted for each chapter in the following. 

IV.2.1 Future Research in Chapter II: Return Management in Digitized Value 

Networks 

The limitations of research paper P1 that provide opportunities for future research regarding 

digitalization and digital transformation of business models are: 

 The paper presents impacts and resulting challenges of the development of digital 

business models in the context of digital hybrid value creation on the basis of a 

literature review and five interviews with experts from companies in different key 

industries. These present a generic framework for the digital transformation of 

companies. However, due to the diversity of possible business models and the just 

beginning spread of digital business models in the industrial sector, this work does not 

represent a final view on the topic. To obtain a more complete overview on the impacts 

and challenges and to investigate the body of both scientific and practical literature in 

a structured manner, a structured literature review should be conducted as proposed, 

for instance, by Bandara et al. (2011), Fettke (2006), or Webster and Watson (2002). 

Additionally, further interviews with experts from various industries and companies 

of different sizes, especially small and medium companies, should be conducted to 

include practical insights that may only occur in specific industries or in companies 

with a specific size. 

 The development and implementation of digital business models is an ongoing, 

iterative transformation process. Especially the question of when a business model can 

be described as "digital" remains a major challenge that cannot be clearly deduced 

solely on the basis of the research carried out in research paper P1, since the transition 

from traditional business models to digital ones appears to be rather fluid and is highly 

company-specific. Accordingly, this represents a starting point for future research and 

the development of corresponding approaches such as maturity models for assessing 

the degree of digitalization of business models to provide companies with further 

assistance in the transformation process. 
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Regarding the evaluation of benefits of digital technologies in the context of smart 

manufacturing, opportunities for future research based on the limitations of research paper P2 

are: 

 The structured literate review conducted in research paper P2 only included scientific 

literature. Accordingly, potential findings that are yet only included in practical-

oriented literature and, thus, not considered by researchers, are not considered. To 

overcome this limitations and to include findings that might not been published in 

scientific literature due to timely review processes, future research should conduct a 

structured literature review including literature like white papers or real-world 

application case studies published in both scientific and practical-oriented publication 

media. 

 With respect to interdependencies between different potentials and their realization, it 

would be valuable to comprehensively investigate cause-effect-relations of digital 

technologies and resulting benefits as well as causal relations among complementary 

benefits. This is especially important as benefits are often times only mentioned in 

literature for motivational reasons and are not set in context with concrete enabling 

technologies. For this, established methods from the field of benefits management like 

benefits dependency networks could serve as appropriate means (Peppard et al. 2007). 

This would present a comprehensive guidance for the targeted implementation of 

digital technologies and the development of robust transformation roadmaps in the 

course of a digitalization strategy. 

 The development of appropriate measures for the ex-post assessment of ex-ante 

pursued benefits represents another aspect for future research. As benefits enabled by 

digital technologies are manifold and affect different aspects of an organization 

considering the four dimensions of the developed benefits framework, management is 

required to critically review and accompany the implementation of investments in 

digital technologies. For this, a robust system of key performance indicators should be 

developed that supports management in the ongoing evaluation of digital initiatives.  

The limitations of research paper P3 that provide opportunities for future research regarding 

the evaluation of investments in the context of digitized production infrastructures are: 
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 The presented investment evaluation model only considers the resulting volume 

flexibility of flexible on-demand capacity as a benefit of the evaluated upfront 

investments. As these investments are likely to be made in innovative digital 

technologies like inter-organizational information systems or flexible and expandable 

production infrastructures, there might be further benefits that should be considered in 

the investment evaluation in correspondence to value-based management principles 

(cf. Section II.2). Accordingly, future research should aim on developing a holistic 

evaluation model for investments in the context of digital transformation. 

 The presented model contains some assumptions that restrict its applicability. These 

include the assumption of infinite on-demand production capacity of external 

production providers that might not hold true in reality. Further, the model assumes 

constant internal and external production costs for the planning horizon and, thus, 

neglects the possibility of changing prices due to macro-economic or market 

developments affecting both input parameters. 

 Finally, the model should be examined empirically with real-world data. So far, the 

model’s application in the simulation was based on exemplary parameters as the 

provision of on-demand production capacity represents a new, still evolving business 

model lacking a widespread application in practice, yet. In this context, the 

parametrization of intervals and the selection of appropriate distributions should be 

investigated and based on real-world data to improve robustness of results. 

Taken together, these potential research opportunities provide various starting points for 

further contributions toward enhanced return management in digitized value networks. 

IV.2.2 Future Research in Chapter III: Risk Management in Digitized Value 

Networks 

The major limitations that represent opportunities for future research regarding the modeling 

of smart factory information networks and the analysis of inherent information-based risks as 

shown in research paper P4 are: 

 The modeling approach is restricted to the modeling and analysis of information 

networks and its components. Accordingly, and in contrast to the risk assessment 

model developed in research paper P5, it does not allow the explicit consideration of 

the production environment of smart factories. Therefore, future research should 
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investigate extensions that allow the consideration of production components such as 

smart machinery or products to analyze interdependencies between information 

networks and production environments in more detail. Moreover, extensions could 

include components of an information network that are not considered in the presented 

modeling approach like broken cables. 

 As the developed modeling approach distinguishes between the four different 

operational states operational, on hold, failed-after-attack, and failed-after-error, it is 

not able to depict components with reduced functionality. Future research should focus 

on incorporating different intensities and propagation velocities of threats to extend 

the range of depictable threat scenarios and to include, for instance, the effectiveness 

and skills of an adversary. 

 As interconnections within the information network contain both positive and negative 

effects, the identification of a sensible degree of interconnection in smart factories 

represents a major challenge. For instance, there is a tradeoff between increased 

flexibility and efficiency of production through enhanced interconnection and an 

increased vulnerability to IT availability risks as threats can spread due to 

informational interdependencies. Therefore, future research should develop 

approaches for the determination of a sensible degree of interconnection considering 

aspects of both risk and return management. 

 In this regard, future research should develop appropriate methods for the 

quantification of economic loss potentials and expected benefits resulting from 

interconnection in smart factories as necessary steps towards the determination of a 

sensible degree of interconnection.  

The analyses of IT availability risks in smart factory networks by means of the developed risk 

assessment model presented in research paper P5 comes along with the following limitations 

that represent areas for future research: 

 The presented risk assessment model does not consider the possibility of negative, 

upward effects within the information network, for instance, in case a failing machine 

of the production network is not able to provide and share information regarding its 

operational status. However, this negatively affects the overall production system 

considering the real-time requirement regarding information synchronization. 
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Therefore, future research should extend the presented risk assessment model to 

incorporate unilateral effects of failing components. 

 Although IT availability risks represent a highly critical threat for smart factories due 

to the importance of the information system for the proper functioning of the 

production infrastructure, the developed model does not allow the consideration of 

other dimensions of IT security risks such as confidentiality, accuracy, or access. As 

smart factories are also highly vulnerable to these risks, it would be beneficial to 

incorporate other dimensions of risks to enable a holistic perspective on IT security 

risks regarding the criticality of IT components. 

 To improve the investment decision support regarding IT security measures, future 

research should develop an optimization model that addresses the tradeoff between 

risk-reducing effects of idle capacity and the accompanying costs under consideration 

of IT security risks as compensation effects enabled by idle capacity significantly 

influence the loss potentials of IT components’ non-availabilities. 

 The relaxation of some model assumptions would further improve the model’s 

applicability. For instance, future research should extend the model to consider partial 

functional interferences of IT components as this could occur in some cases (e.g., data 

manipulations). Additionally, regarding the consideration of timing, future research 

should further develop the presented model to a continuous-time or discrete-time 

model as the current model only analyzes the effects of IT components’ non-

availability in a fixed time period.  

 The model should be applied in different real-world scenarios to examine it 

empirically with real-world data. So far, the model was only applied in an exemplary 

scenario based on a close-to-reality setting to demonstrate its applicability and basic 

functionality. Through this, the parametrization of the required parameters and the 

gathering of the necessary data can be validated and tested in different real-world 

scenarios. 

Regarding the developed generic architecture for a strategic decision support system for 

systemic risk management and the discussion of open challenges for future research presented 

in research paper P6, the aspects for future research are: 

 Future research should investigate the gap between the developed generic architecture 

and the practical implementation of a risk management information system in more 
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detail. Thereby, especially the involvement of risk managers and practitioners are 

important to study requirements and use cases necessary for the development of a 

detailed design. 

 The quantification of systemic risk remains a major challenge for research as missing, 

incomplete, or inaccurate information negatively impact the capabilities of future 

strategic decision support systems. Accordingly, future research should investigate the 

quantification of systemic risk and develop appropriate risk measures. For this, 

interdisciplinary research regarding systemic risks should be conducted especially by 

researchers from the field of quantitative risk management and IS. 

Taken together, these potential research opportunities provide various starting points for 

further contributions toward enhanced risk management in digitized value networks, for 

instance, in respect to the dependencies of return and risk. 

IV.3  Conclusion 

Summarizing the research papers presented in Chapter II and III, this doctoral thesis 

contributes to the existing literature in Finance and Information Management by investigating 

specific aspects of risk and return management in digitized value networks. They especially 

investigate fundamental aspects of the digital transformation of companies affecting all levels 

of the enterprise architecture, address specific challenges regarding digital business models, 

digital transformation, and digital disruption, and provide approaches for investment 

evaluation and risk management. Although this doctoral thesis certainly can only answer some 

selected questions, it contributes to previous work in this area. As risk and return management 

will continue to play an important role in the course of the digital transformation of companies 

in all industrial sectors, this doctoral thesis hopefully can provide valuable theoretical and 

practical insights for some specific aspects of risk and return management in digitized value 

networks. 
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