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The butterfly effect is a popularly known para-
digm; commonly it is said that when a but-
terfly flaps its wings in Brazil, it may cause a 
tornado in Texas. This essentially describes 
how weather forecasts can be extremely 
sensitive to small changes in the given 
atmospheric data, or initial conditions, used 
in computer model simulations. In 1961, 
Edward Lorenz found that small changes in 
initial conditions given to a weather forecast 
model can, in time, lead to entirely different 
forecasts (Lorenz, 1963). This discovery high-
lights one of the major challenges in modern 
weather forecasting: to provide the computer 
model with the most accurately specified ini-
tial conditions possible. A process known as 
data assimilation seeks to minimize the errors 
in the given initial conditions and in 1911 
was described by Bjerknes as the ultimate 
problem in meteorology (Bjerknes, 1911).

Weather forecast models
Weather forecasts produced by institutions 
such as the UK’s Met Office are generated by 
sophisticated Numerical Weather Prediction 
(NWP) computer models. These models take 
given initial conditions of the atmospheric 
state and evolve them in time according to 
the relevant governing dynamical laws to 
produce a weather forecast. Initial condi-
tions of atmospheric variables such as tem-
perature, wind speed and direction, pressure, 
and humidity need to be known to describe 
the current atmospheric state. NWP models 
require information on each atmospheric 
variable for each grid box in the model, i.e. 
currently a total of around 107 variables, to 
fully describe the initial conditions. 

Traditionally, measurements are taken 
by instrumentation on radiosondes, ships, 
aeroplanes and at surface stations. The 
data collected by these instruments are 
distributed sparsely over the globe. The 
Southern Hemisphere and Polar regions are 
deficient in data generated by these tradi-
tional methods due to their geographical 
nature. Observational data from satellites 

has been available since the 1960s. Satellites 
take measurements of radiance from which 
atmospheric data, such as temperature, are 
inferred; these are known as indirect obser-
vations. Satellites provide almost global data 
coverage and this has made it possible to 
gain information in remote locations where 
data had been previously unavailable. Data 
from satellites now constitute the majority of 
observational data used in modern weather 
forecasting (Simmons, 2003). Despite all 
the observational data available, currently 
around 106 variables, they are still insuffi-
cient to fully specify the initial conditions. It 
is therefore impossible to rely only on these 
observational data to supply the NWP model 
with an initial state of the atmosphere. It is 
possible to use data from the NWP model 
itself, following a spin-up period, to provide 
a complete set of initial conditions; however, 
these are unlikely to be accurate enough on 
their own to provide meaningful forecasts.

Data assimilation
In order to provide the most accurate pos-
sible initial conditions, observational data 
are combined with a forecast estimate of 
the atmospheric state using sophisticated 
mathematical techniques; this process is 
known as data assimilation. The forecast esti-
mate is generally a short-term forecast from 
a previous model run and it is referred to as 
the background state of the atmosphere. The 
background state is an approximate repre-
sentation of the atmospheric state; there-
fore there exists a degree of uncertainty in 
this estimate. Similarly the observations are 
not perfect and have an associated uncer-
tainty. Mathematical formulae are used to 
combine the observational data with the 
background state, according to a weighting 
of the uncertainty in the background state 
and the observational data. This combined 
state is known as the analysis state. This 
should be a more accurate representation 
of the true state of the atmosphere than the 
background state and will provide complete 
initial conditions for the NWP model. The 
aim of data assimilation is to produce the 
most accurate analysis estimate possible of 
all the atmospheric variables at every grid 
box required by the NWP model given the 

background state, observations and their 
associated errors. 

The specification of the uncertainty or 
error statistics in both the observations and 
background state is of crucial importance 
in data assimilation. These errors are repre-
sented in covariance matrices. A covariance 
matrix represents correlations between 
state elements. If two atmospheric state 
variables are closely related (i.e. they vary 
together, such as wind and pressure due to 
geostrophic balance) then they will have a 
high correlation; this is represented by an 
element in the matrix. The background error 
covariance matrix, denoted P, also describes 
the degree of confidence in the background 
state through the diagonal elements of P, 
which are known as variances. If the diago-
nal elements of P are small, the associated 
error is small and there is high confidence 
that the background state estimate is a good 
one. Conversely, if the diagonal elements of 
P are large then there is little confidence in 
the quality of the background state estimate. 
Similarly there exists an observational error 
covariance matrix, R, which describes the 
confidence in the accuracy of the observa-
tions. During the data assimilation process, a 
weighted average of the background cova-
riance, P, and the observational covariance, 
R, is calculated. This weighting determines 
to what degree the previous forecast state 
can be adjusted by the assimilation of the 
observations. If either one of the covariance 
matrices is incorrectly specified, this weight-
ing will also be incorrectly specified, the 
analysis state may be less accurate and there 
is potential for the forecast to be degraded. 
It is currently a major challenge in meteorol-
ogy to specify these matrices to describe the 
true uncertainties and correlations as accu-
rately as possible. 

The Kalman filter
The Kalman filter (Kalman and Bucy, 1961) 
is a well established form of sequential data 
assimilation. Filter is a technical term for 
a data assimilation scheme that uses only 
observational data valid up to and includ-
ing the analysis time. The Kalman filter oper-
ates by updating the forecast trajectory, at 
each observation time, by explicitly solving 

Ensemble-based data assimilation 
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a series of equations (a schematic is shown 
in Figure 1). There are two stages involved in 
using the Kalman filter equations to assimi-
late observational data to reach the analysis 
state of the system: the forecast stage and 
the analysis stage.

In the forecast stage, the background 
state, •, is forecast by the dynamical system 
equations to the time of the first observa-
tion. The error statistics in the background 
error covariance matrix P, illustrated by the 
grey shading in Figure 1, are also evolved in 
time by the model dynamics. This allows for 
an accurate representation of the error sta-
tistics throughout the assimilation. 

In the analysis stage, a weighting between 
the observational and background errors is cal-
culated as part of the Kalman filter equations 
(Kalman and Bucy, 1961). This error weighting 
determines the degree to which the forecast 
trajectory can be adjusted towards the obser-
vational data. If the error statistics of the back-
ground state estimate are low, then there is 
high confidence that the estimate is a good 
one and the assimilation of the observational 
data will have little impact. Conversely, if the 
background error statistics are large then 
there is little confidence in the quality of the 
forecast estimate and the assimilation of the 
observational data will have a much greater 
impact on the forecast trajectory. The analy-

sis state, •, is used to make a forecast of this 
estimate to the time of the next observation 
which then becomes the background state 
for the next assimilation.

This system allows an atmospheric state 
and its error covariance to evolve in accor-
dance with the dynamical equations when 
there are no observations but allows the 
forecast to be ‘corrected’ when observations 
become available.

The standard Kalman filter is impracti-
cal for implementation in operational NWP 
partly due to the computational expense of 
calculating and evolving the background 
error covariance matrix. Variations have 
been developed from the basis of the stan-
dard Kalman filter equations. One such vari-
ation is the ensemble Kalman filter (EnKF) 
(Evensen, 2003). This replaces the single 
forecast trajectory of the standard Kalman 
filter with an ensemble. 

The initial ensemble is a collection of per-
turbed state estimates of the background 
state. The EnKF produces an ensemble of 
forecasts from which an approximation to 
the evolved background error covariance 
can be calculated. This approximation pro-
vides the EnKF with significant computation-
al savings compared to the standard Kalman 
filter. The spread of the ensemble allows the 
forecast to be qualified by a degree of uncer-

tainty. This is illustrated in Figure 2, where 
the degree of uncertainty is supposed to 
mimic the grey shading of Figure 1. If all the 
members of the ensemble predict a similar 
state, i.e. are tightly spaced, then there is 
high confidence in the analysis; conversely 
if the ensemble members are spread widely, 
then there is low confidence in the analysis 
state. After the assimilation of observational 
data, the spread of the ensemble members 
is reduced. Another key benefit of the EnKF 
over the standard Kalman filter is that the 
ensemble of analysis states could be used 
to provide good initial perturbations for an 
ensemble-based NWP scheme.

Problems associated with the 
ensemble Kalman filter
Maintaining ensembles of state estimates 
is computationally expensive. Although 
increases in computing power have enabled 
such statistical approaches to become more 
feasible, they are not widely implemented 
as the cost is often still prohibitively large. 
The cost is dependent on the size of the 
ensemble. Therefore reducing the number 
of ensemble members can reduce the com-
putational cost. Care must be taken, how-
ever, to ensure that the ensemble size is not 
too small so that it remains statistically rep-
resentative of the system (Kalnay, 2003). The 
number of ensemble members required to 
represent the system is related to the size of 
the state space. Current NWP models have 
state spaces of the order of 107 elements 
and can thus require a large ensemble to 
adequately represent the statistics.

Undersampling
In situations where the ensemble size is 
too small to be statistically representative 
of the system it is said to be undersampled. 
Undersampling is a fundamental problem in 
ensemble Kalman filtering. The success of 
the EnKF is highly dependent on the size of 
the ensemble being adequate (Houtekamer 
and Mitchell, 1998). Undersampling intro-
duces three major problems in ensemble fil-
tering: underestimation of covariance, filter 
divergence and the development of long-
range spurious correlations, which are now 
discussed. 

Underestimation of covariance
The evolved background error covariances 
are also known as the forecast error covari-
ances and are systematically underestimat-
ed after each assimilation cycle (Furrer and 
Bengtsson, 2007). If this covariance is under-
estimated, false confidence is placed in the 
background state. The systematic under-
estimation is not an indication that the 
analysis state is really more accurately rep-
resenting the true system state. The smaller 

Figure 1. Schematic of a Kalman Filter. The green dots indicate the background states at various 
times, the blue dots indicate the analysis states and the blue lines are the analysis increments. The 
black line is the forecast trajectory. The grey shading indicates the uncertainty in the background 
forecast and the red crosses indicate observations with error bars in red.

Figure 2. Schematic of an ensemble Kalman filter. The lines represent individual ensemble members, 
the red crosses indicate observations.



W
eather – M

arch 2010, Vol. 65, No. 3

67

Ensem
ble-based data assim

ilation

Methods of mitigation
It is not currently known how to eliminate 
these problems but various methods have 
been developed to negate their impact. 
Covariance inflation and covariance locali-
sation (Hamill et al., 2001) are two of these 
methods and are now reviewed.

Covariance inflation
Covariance inflation, introduced by Ander-
son and Anderson (1999), is a method of 
correcting the underestimation in the fore-
cast error covariance matrix. The principle 
is to simply increase the forecast error cov-
ariances by an inflationary factor, r, in each 
assimilation cycle to negate the system-
atic underestimation. The inflation factor 
is normally chosen, based on experience, 
to be slightly greater than 1.0, although it 
can be much greater than 1.0. This tech-
nique of covariance inflation is commonly 
used in ensemble filtering. Although this 
is a useful technique, it can lead to physi-
cal balances in the system dynamics being 
disrupted by the inflations (Anderson, 
2001). Inflation factors do not help to cor-
rect the problem of long-range spurious 
correlations; for this a more sophisticated 
approach is required. 

Covariance localisation
Covariance localisation (Houtekamer and 
Mitchell, 1998; Hamill et al., 2001) is a proc-
ess of ‘cutting off’ long-range spurious cor-
relations in the error covariance matrices, 
thus helping to improve the estimate of 
the forecast error covariance. It is ordinar-
ily achieved by first defining a correlation 
matrix, C, as shown in Figure 4(a), and then 
taking a Schur product (Schur, 1911) of this 
correlation matrix and the forecast error 
covariance. A Schur product involves an ele-

mentwise product of matrices and is written 
as C • P. An example of a Schur product for 
a 2 × 2 matrix is as follows:
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Representations of covariance matrices 
are shown in Figure 4. Each pixel in the grid 
represents a covariance such that, for exam-
ple, pixel (10, 40) is a measure of covariance 
between the 10th and 40th state variables. 
The pixels are coloured according to the size 
of the covariance. The correlation matrix, C, 
is chosen such that the structure is a band 
of non-zero elements around the leading 
diagonal, with ones on the diagonal, fall-
ing to zero at a specified distance from 
the diagonal. Figure 4(b) shows a sample 
forecast error covariance with undesirable 
spurious correlations; these can be seen in 
those elements that are far from the lead-
ing diagonal and have large correlations. 
Figure 4(c) shows the forecast error covari-
ance after it has been localized; correlations 
that existed at a large distance from the lead-
ing diagonal in Figure 4(b) have been ‘cut-
off’ or removed while the correlations which 
are physically local, close to the diagonal, 
have been maintained. This localised matrix 
is more suitable for use in the assimilation 
process to describe the forecast uncertain-
ty as the spurious correlations have been 
removed.

The distance at which correlations in 
the error covariance matrices are cut-off 
(reduced to zero) is known as the filter-
ing length scale. It is essential that while 
unphysical, remote, spurious correlations 
are removed by the correlation function, 
correctly specified physical correlations are 
not excessively damped but maintained. 
If the filter length scale is too long, so as 
to allow all the dynamical correlations, 
then many of the spurious correlations 
may not be removed. If the filter length 
scale is too short, then important physical 
dynamical correlations may be lost as well 
as the spurious ones. It is important that 
this length scale is correctly chosen for a 
given system, though at present defining 
the length scale is a heuristic (experience-
based) process.

One additional benefit of applying Schur 
product localisation is that the effective size 
of the ensemble is increased (Oke et al., 
2007). This has a feedback effect negating 
some of the problems associated with under-
sampling. Another benefit of this localisation 
is that after applying the Schur product, the 
covariance matrix becomes sparse, i.e. it has 
many zeros. This can lead to important com-
putational savings (Lorenc, 2003).

There are drawbacks to this technique. 
Important information on physical dynami-
cal relationships is held within the error 
covariance matrices; the modification of 
these matrices by the Schur product is 

the ensemble is, the greater the degree 
of  undersampling that is present and the 
greater the chance of underestimated fore-
cast error covariances (Ehrendorfer, 2007). 
The underestimation of the forecast error 
covariances can lead to subsequent prob-
lems such as filter divergence (Hamill et al., 
2001), and the development of spurious 
long-range correlations (Ehrendorfer, 2007).

Filter divergence
As a filter progressively underestimates the 
forecast error covariances, it erroneously 
becomes more confident in the accuracy 
of the forecast state estimate, giving less 
weighting to the observations in the assimi-
lation. Subsequently, the observational data 
are progressively ignored. This is known as 
filter divergence. It can be thought of as all 
of the ensemble members converging on 
an incorrectly specified analysis state. This 
can be seen in Figure 3. At the start of the 
assimilation, time = 0s, the ensemble spread 
is large but by the end of the assimilation 
window, 100s, the size of the ensemble 
spread has decreased significantly.

Spurious correlations
Observations made at one location can have 
an impact on state variables that are physi-
cally remote from the observation location, 
through the filter equations (Anderson, 
2001). In the physical world it is expected that 
correlations with any given observation point 
will decrease with distance. Therefore, corre-
lations between state components that are 
not physically related and that are spatially 
remote may be regarded as spurious and will 
degrade the quality of the analysis estimate. 
These correlations can be caused by under-
sampling; as the degree of undersampling 
decreases so the problem of spurious corre-
lations also decreases (Lorenc, 2003).
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Figure 3. Each line is the forecast estimate of one ensemble member. The convergence of the ensem-
ble, or filter divergence, due to underestimation of covariance is shown.
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known to disrupt these balances (Oke et al., 
2007). This is highly undesirable as it would 
mean that related variables would not be 
constrained to each other during the fore-
cast, leading to an invalid forecast.

X’. This is the background error perturba-
tion matrix and it holds only information on 
each ensemble member’s deviation from the 
ensemble mean as the columns of X’. The 
perturbation matrix, X’, is a form of square 
root of the full P matrix. Many formulations 
of ensemble filters use this matrix instead 
of the full covariance matrix as it is compu-
tationally efficient (Bishop et al., 2001). The 
Ensemble Transform Kalman Filter (ETKF) is 
an example of one type of square root filter 
introduced by Bishop et al. (2001). This is a 
beneficial algorithm for operational imple-
mentation as it is able to rapidly calculate 
the forecast error covariance and is compu-
tationally very efficient. Another benefit of 
the ETKF is its ability to identify an optimal 
site for an observation to improve a given 
forecast region; this is covered in detail in 
Bishop et al. (2001). The ETKF is a popular 
choice in ensemble forecasting and has 
become operational in some centres. 

The use of the perturbation matrix instead 
of the full covariance matrix makes covari-
ance localisation difficult. Recall that the 
Schur product localisation is achieved by 
taking a Schur product of the correlation 
matrix with the full covariance matrix, C • P, 
and not the perturbation matrix. This can be 
written in terms of square root matrices as: 

(ρ ρ T) • (X’ X’T); note ρ is the square root 
of the correlation matrix. 

To achieve covariance localisation in a 
square root filter, an approximation to the 
Schur product localisation can be written 
mathematically as:

(ρ ρT) • (X’ X’T) ~ (ρ • X’ )( ρ • X’)T.

It is known that this is merely an approxi-
mation and not equality; however, it was 
implemented and tested within an ETKF 
algorithm to ascertain if this was a reason-
able approximation. 

To test this approximation, the covariance 
matrices representing the left- and right-
hand sides were plotted and compared. Fig-
ure 5(a) is identical to Figure 4(c) as (ρρT) • 
(X’ X’T) = C • P. Figure 5(b) shows the test of 
the approximation. If the approximation is a 
reasonable one then the Figures 5(a) and 5(b) 
should be similar; however, they are clearly 
very different. The approximation to localisa-
tion in Figure 5(b) has not achieved localisa-
tion as many elements far from the leading 
diagonal have not been removed. In addition, 
the magnitudes of the covariances have been 
reduced. Therefore it would be inappropriate 
to use this approximation to achieve covari-
ance localisation in a square root filter. A more 
sophisticated approach, such as that in Bish-
op and Hodyss (2009), is required.

Summary

NWP models cannot rely solely on either obser-
vational data or model forecasts to fully and 
accurately describe the atmospheric  system. 

Square root filters

A square root filter is one that does not use 
the background error covariance matrix 
explicitly, rather it uses a different matrix, 
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(b) Sample forecast error covariance, P
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(c) Localised forecast error covariance, C    P
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Figure 4. Schematic representation of covariance localization with 100 state elements.  Figure 4a 
shows an example of a correlation matrix, C, which is a commonly used mathematical function.  
The forecast error covariance, P, shown in Figure 4b, was produced using a simple advection model 
(Petrie, 2008), with periodic boundary conditions which can be seen in the top right and bottom left 
corners.  Figure 4c is the Schur product composition, C• P , of the correlation covariance matrix and 
the forecast error covariance matrix.
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The process of data assimilation uses math-
ematical formulae to combine observational 
data with a model estimate, in accordance 
with their error distributions, to produce a 
more accurate analysis estimate; it is a key 
field of research in meteorology. Ensemble 
methods are becoming more popular as 
greater computing power becomes more 
affordable. Using ensembles that are too 
small, or undersampling, can cause additional 
problems such as underestimation of covari-
ance, filter divergence and the development 
of long-range spurious correlations. Meth-
ods such as covariance inflation and covari-
ance localisation have been developed in an 
attempt to overcome these problems; how-
ever, the implementation of some of these 
solutions is still an area of active research. 
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Figure 5. Covariance matrices produced from the model implemented in Petrie, 2008, using an ETKF  
to test the approximation of Schur product localization in a square root filter. (ρ ρ T) • (X’ X’T)
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