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Abstract

Sentence formation is a highly structured, history-dependent, and sample-space reducing

(SSR) process. While the first word in a sentence can be chosen from the entire vocabulary,

typically, the freedom of choosing subsequent words gets more and more constrained by

grammar and context, as the sentence progresses. This sample-space reducing property

offers a natural explanation of Zipf’s law in word frequencies, however, it fails to capture the

structure of the word-to-word transition probability matrices of English text. Here we adopt

the view that grammatical constraints (such as subject–predicate–object) locally re-order

the word order in sentences that are sampled by the word generation process. We demon-

strate that superimposing grammatical structure–as a local word re-ordering (permutation)

process–on a sample-space reducing word generation process is sufficient to explain both,

word frequencies and word-to-word transition probabilities. We compare the performance of

the grammatically ordered SSR model in reproducing several test statistics of real texts with

other text generation models, such as the Bernoulli model, the Simon model, and the ran-

dom typewriting model.

Introduction

After almost a century of work, understanding statistical regularities in language is still work

in progress. Maybe the most striking statistical feature is that rank ordered distributions of

word frequencies follow an approximate power law,

f ðrÞ � r� a ; ð1Þ

where r is the rank assigned to every word in a given text; the most frequent word has rank

one, the second most frequent has rank two, etc. For most word-based texts, one finds α* 1,

independent of language, genre, and time of writing. This “universal” feature is called Zipf’s

law [1]. Fig 1 shows the rank distribution of words in the first text “Five little peppers and how
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they grew” (green), the first novel in a book series by M. Sidney published between 1881 and

1916.

There are several ways to understand Zipf’s law through entirely different mechanisms.

Zipf’s first qualitative explanation of the phenomenon was based on communication “efforts”

of sender and receiver [1], an idea that was later expressed in an information-theoretic frame-

work [2–5]. The first quantitative linguistic model by H. Simon features the idea of preferential

attachment, i.e., words are added to the text with a probability that is proportional to their pre-

vious appearance in the text. New words are added at a low, constant rate [6]. Zipf’s law follows

immediately from those two assumptions. Preferential attachment models were later refined

[7], relating Zipf’s law to Heap’s law [8]. The conceptually simplest way to understand Zipf’s

law are random typewriting models, where words and texts are created by randomly typing on

a typewriter [9–11]. Yet another route to Zipf’s law was introduced on the basis of sample-

space reducing (SSR) processes [12], which successively reduce their sample-space (range of

potential outcomes) as they unfold [13]. SSR processes generically produce power laws, and

Zipf’s law in particular [14]. The sample-space reducing process based intuition of how sen-

tences form is that, as we express what we want to say into a stream of words, contextual,

grammatical, and maybe other types of requirements ad constraints to our word choices as the

narrative unfolds. While contextual constraints typically act globally, on all scales or levels of

the narrative, grammatical rules, conventions, or habits constrain word order locally at the

level of phrases, sentences and perhaps paragraphs. At the global level the intention underlying

a narrative induces a contextual ordering of the set of available words towards core elements of

the narrative. This ordering can be captured by a SSR type of word selection process that,

Fig 1. Rank ordered frequency distribution of the most frequent 1000 words in the novel “Five little peppers and

how they grew”, by M. Sidney (green). The result from the SSR model (gray) and its rank ordered frequency

distribution (red) show an exact Zipf’s law, and are both invariant under grammatical re-shuffling. The SSR sequence

has been produced for approximately W = 5000 words, and N = 50, 000 samples (gray).

https://doi.org/10.1371/journal.pone.0240018.g001
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conditional on the intended content and context of the narrative, guides and directs word

choices at the local level of sentences as well. For instance: one can pick any word to start a sen-

tence. Once the first word is chosen, grammar and context constrain the possibilities for

choosing the second word. The choice of the second word further constrains the possibilities

for the third word, and so on, as the sentence or paragraph, in terms of word choices, con-

verges towards its intended content. The sample-space of possible words generally reduces as

sentences form. In this view of sentence formation, grammar, but mainly context, constrain

the choice of words later in the sentence; we therefore perceive text generation as a SSR pro-

cess, and Zipf’s law must follow. The existence of grammatical and contextual constraints

allow us–at the receiving part of a communication–to complete sentences in advance, and to

anticipate words that will appear later. This (at least partially) ordered hierarchical structure

guides sentence formation and allows a receiver to robustly decode messages [15]. For

instance, if the context is “Electrodynamics” we expect the narrative to return to a few notions,

the protagonists of the narrative, which in this case would include notions such as “charges”,

“electrons” or the “electro-magnetic field”. One can view those central notions being embed-

ded in contexts of various specificity the narrative spans, inducing a more or less hierarchical

order on the set of notions we require in order to speak about the topic. The SSR structure of

word selection therefore becomes plausible by realizing that any story line needs to connect

the “protagonists” with their respective context. If we think of the hierarchically structured

context as a network of words, then the process of directly or indirectly linking any chosen

word to a given protagonist is comparable to a targeted diffusion process on the word network,

where protagonists (and other central words) are the targets in this diffusion process. Targeted

diffusion is an example of SSR processes, and generically leads to power laws in visiting fre-

quencies [16].

Note that the range of constraints governing realistic word selection process in narratives is

not necessarily limited to the scale of sentences but may extend over whole paragraphs or sec-

tions, a complexity that simple generative statistical models of text will hardly capture. What

such simple models provide us with is a way to test the extent to which very basic percepts of

language formation, such as the intuition we sketched above, or the original intuition of Zipf,

allow us to understand similarly basic statistical features of text, for instance Zipf’s law.

To understand Zipf’s law of word frequencies, however, is not the end of the story. There

are also the frequencies of word i to follow word j to consider. The word frequency distribution

is the marginal distribution of the joint word distribution with conditional word transition

probabilities, p(i|j), the probability to produce word i, given that the previous word was j; see

Fig 2. We will refer to p(i|j) also as the word transition matrix A. Fig 2A shows the transition

matrix for “Five Little Peppers”. Pure SSR processes show a triangular structure in the transi-

tion probabilities, see Fig 2B, which obviously does not match the empirically observed transi-

tion matrices of real texts. Empirical transition probabilities look similar to transition matrices

that correspond to word sequences that have been sampled independently from Zipf distribu-

tion, i.e. the (typically) observed marginal empirical word distribution function (Bernoulli

model), Fig 2C. Empirical transition probabilities look as if they were random (in this sense),

even though the generation of real texts is obviously a highly structured generative processes.

In this paper we assume that the formation of word sequences is a combination of two pro-

cesses: The word selection process, selects the words that are needed to encode a narrative or to

convey a coherent message or meaning. The other process is grammar, which, at the sentence

level, brings the selected words into a specific order. We assume that the word selection pro-

cess is of SSR type, the context created by the generated words restricts the usage of other

words as the sentence progresses. Grammatical ordering can be thought of as a post-process-

ing of the word stream generated by the word selection process. It establishes a local word
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order, which differs from the order the words were generated, but is in line with grammatical

expectations, such as the subject–predicate–object (SPO) order that is typically used in (very

simple) English sentences, such as “Peter watches clouds”. In other words, grammar locally

scrambles (permutes) the order of the word selection stream, while keeping the underlying

word frequency distribution invariant.

We will show here that if the word selection process is a pure SSR process, and if generic

grammatical rules locally re-shuffle the word order of the word selection stream, the resulting

word transition probabilities have statistical properties that closely resemble the empirically

observed ones. We will see that grammar strongly masks the triangular structure introduced

Fig 2. Structure of word transitions. (a) Word transition matrix Aij (first index is x-axis, second is y-axis) of the text

“Five little peppers and how they grew”. A is plotted in such a way that a point in a plot indicates that word i followed

word j at least once in the text. Words are ordered along the axis according to their frequency of appearance. (b)

Transition matrix of a pure SSR process. States are ordered according to their natural index i = 1, � � �, W. The

triangular structure is visible. (c) The Bernoulli model for the same novel shows the matrix for words sampled

independently from the marginal word frequency distribution of the novel. (d-f) Transition matrices for goSSR

processes for Ng = 2 and 5 grammatical categories. In (d) and (e) we compare the situation with different probabilities

for neutral elements pn = 0 and pn = 0.2. As Ng increases, the goSSR transition matrices begin to resemble those of

actual text. All transition probabilities are computed for a lexicon containing roughly 4, 800 words. Samples consist of

approximately 88, 000 word transitions and 5, 200 sentences.

https://doi.org/10.1371/journal.pone.0240018.g002

PLOS ONE The role of grammar in word transition-probabilities

PLOS ONE | https://doi.org/10.1371/journal.pone.0240018 October 8, 2020 4 / 16

https://doi.org/10.1371/journal.pone.0240018.g002
https://doi.org/10.1371/journal.pone.0240018


by the considered word selection process. This implies that empirical word transition probabil-

ities provide us with only very limited information about the underlying word selection pro-

cess that generates an information-carrying narrative. In particular, with a simple SSR model

of word generation we demonstrate how imposing grammatical rules of variable strength

changes the transition probabilities from structured (triangular, Fig 2B) to seemingly unstruc-

tured, Fig 2C. Note that the grammatical ordering process would locally transform word

streams from any adequate (Zipf law producing) word selection process in a similar way by

destroying information about of the word selection process that one otherwise could simply

infer from the word transition matrix.

We first discuss SSR processes and their frequency distributions and then introduce a mod-

ification, where the local word order of SSR sequences is permuted to conform with a gram-

matical word order, such as for instance the simple SPO scheme already mentioned above. To

implement a “grammatically ordered” SSR (goSSR) process we assign grammatical labels c 2
{1, � � �, Ng} to all words contained in the lexicon of used words. In the model with Ng = 3 we

could think of S� 1, P� 2, and O� 3 simply as the three labels of the toy grammar we intro-

duce below. The labels determine the local order in which words appear in a sentence. We

compute statistical properties of natural language in an English text corpus [17] and compare

them with those obtained from goSSR processes. We find that typically three to five grammati-

cal labels suffice to produce realistic results. We finally compare the Bernoulli-, Simon-, the

random typewriting-, and the goSSR-models for six texts in English language, with respect to

two statistical measures that also serve as test-statistics for hypotheses testing. As a null-

hypothesis we assume that sequences have been generated by a Bernoulli process. This pro-

vides us with a first quantitative understanding of how informative these models are with

respect to actual text generation.

Some final introductory remarks. Note that notions of explanatory adequacy of models

such as the proposed model, the Simon model, or random typewriting model, are based on

considering statistical features we select for comparison and are quantitatively used in terms of

test statistics. Such a comparison can only tell us how models perform with respect to those

selected features. Similarity and adequacy are obviously context sensitive notions that depend

on the set of considered features. Obviously we could produce a plethora of test-statistics

where all the simple generative models of text we consider in this paper fail to resemble the

respective texts they mimic. They are models after all. It is therefore important to stress that

the aim of this paper is to demonstrate that the two observable features, Zipf’s law and ran-

dom-looking word transition probabilities, can be explained at the same time by considering a

word selection process that generates Zipf’s law and a grammatical ordering process that

locally, at the sentence level, re-shuffles the word order of the selected word stream. The SSR

process as word selection process is plausible but what is crucial is that the word selection pro-

cess already produces Zipf’s law for rank ordered word frequency distributions. That is, the

local grammatical word ordering process becomes responsible for the observable shape of

empirical word-transition frequencies and could also be superimposed on other generative

models producing Zipf’s law, for instance the Simon model. A detailed analysis of word selec-

tion process would therefore require a computationally very expensive analysis of a large body

of texts where possible dependencies of results on text length, average sentence length and

other measurable features of written texts need to be carefully controlled and studied. How-

ever, the message of this paper is much simpler. Two highly structured processes, when acting

upon one another can, at a basic statistical level, resemble a Bernoulli (iid) sampling process.

That is, grammar can, at the level of word transition probabilities, make any adequate word

selection process, even if this process is highly structured such as SSR processes, resemble inde-

pendent sampling from Zipf’s distribution.
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We will therefore merely exemplify the adequacy and robustness of this intuition using six

texts that have been selected to cover a range of texts lengths and types (including for instance

a translation of Grimm’s tales, from their German original into English). A systematic study of

generative statistical models superimposed with grammatical reordering processes, on the

basis of a large text corpus, goes far beyond the scope of this paper and would possibly over-

state the concreteness of the hypothesis we discuss here.

Grammatically ordered SSR model

We first discuss the sample-space reducing process for sentence formation and then augment it

with a toy grammar. SSR processes are characterized by W linearly ordered states. For example

think of a staircase. The lowest stair is state 1, the next step is state 2, and so on; at the top of

the staircase we have state W. Imagine a ball bouncing downward this staircase with random

jump sizes. We begin at state W. The ball can jump to any of the W − 1 lower states; say it

jumps to state x1 (subscript indicates the first jump). Obviously, 1� x1�W − 1. Again, the

next state, x2, can only be a lower state, 1� x2 < x1. After a sequence of n − 1 visits to states x1,

. . ., xn−1, the ball reaches the bottom of the staircase, xn = 1. At this state the process needs to

be restarted, which means lifting the ball to any randomly chosen state, 1< xn+1�W. If the

process gets restarted multiple times, the visiting distribution of the process to states i appears

to be exactly Zipf’s law,

pi ¼
1

Z
1

i
; ð2Þ

where Z is a normalization constant [13].

In real texts the SSR word selection sequences may in principle not be strictly bound to the

scale of sentences and could extend to larger lingual units such as paragraphs. One could think

of modelling this by sampling a number of sentences that together form a single SSR sequence,

for instance. However, since this would not qualitatively change the effect we want to demon-

strate here–that grammar can locally scramble selected word sequences to conform with gram-

matical rules and in doing so may make the grammatically ordered word sequence look as if it

were sampled by a Bernoulli process–we refrain from considering this possibility and for rea-

sons of model simplicity assume that each sentence starts a new SSR word selection sequence.

That is, sentence formation, can be seen as an SSR process [12]. Words are not randomly

drawn from the sample-space of all possible words (lexicon) but are used in context and gram-

matical order. The fact that words in a sentence restrict the usage of consecutive words, gener-

ates a SSR process. Imagine the first word group in a sentence is randomly drawn from the

entire lexicon with W words (states), say “The”, an article that expects a noun, say “wolf”. As

soon as this is decided, the first word group can either continue and elaborate “The wolf” fur-

ther, e.g. by stating something like “The wolf with the reddish fur”. Note that outside any speci-

fied context we can of course think of a plethora of ways to elaborate “The wolf”. In a narrative

about a particular wolf-pack the particular context constrains this arbitrariness and the same

wolf would have to be referred to in similar ways again and again. After the first word group

ends the second group begins and typically needs to be or include a verb (grammatical restric-

tion), which in turn has to create a meaningful context (context dependent restriction) with

the first group “The wolf”. The selection of a verb such as “is typewriting”, for instance, will be

very unlikely in non-fiction texts. Conversely, if the word selection process should for instance

start with the group “is typewriting” then it is very unlikely to chose “The wolf” as a subject. As

sentences progress, typically more and more constraints occur and together restrict the subse-

quent words that can be realistically selected. Once the final word of a sentence is selected, i.e.
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once the SSR selection process halts or is stopped, a new SSR sequence, i.e. the next word selec-
tion stream, starts. Sample-space reduction in text formation is necessary to robustly convey

meaningful information, a fact that is for example exploited by text-completion apps. While

rank ordered word frequency distribution functions can be explained by the hypothesis that

sentence and text formation follows SSR processes, word transition probabilities can not.

Transition probabilities for pure SSR processes are triangular, see Fig 2B, and do not resemble

those of actual text, Fig 2A.

We assume that the word selection process for a given narrative can be approximated by a

SSR process that models the context-dependent constraints only. Grammar enters as a process

that enforces locally “correct” word order. Effectively, it locally re-assembles the word

sequences generated by the SSR word selection process, and destroys local correlations of

word occurrences as generated by the SSR sequence. We now augment SSR models with a

“grammar” that determines the local ordering of words.

To implement a toy-grammar, assume that there exist Ng grammatical labels that are associ-

ated to words. Every word, i = 1, � � �, W in the lexicon, carries one of the Ng distinct labels, L
(i)2{1, 2, � � �, Ng}. For example, if Ng = 3, the three labels could represent S� 1, P� 2, and O�
3. For simplicity we assume that each label appears with approximately the same frequency in

the lexicon. In addition there exists a grammatical label L(i) = 0 that we call the “neutral” label.

Neutral elements are combined with the next non-neutral word (with label L> 0) that follows

in the text. This word complex is then treated as a single word with label L. The probability of

finding neutral words in the text is denoted by pn. We can now formulate the “grammar rules”:

• (i) Words must follow a strict repeating pattern of grammatical labels, 1! 2! 3! � � � !

Ng! 1! 2! � � �. For example, if Ng = 3 (S� 1, P� 2, and O� 3) we will produce sen-

tences with a sequence of labels: � � � ! S! P! O! S! P! O! � � �.

• (ii) Missing labels are skipped. If Ng = 4 and if label 3 is not present in a particular sentence,

but labels 1, 2 and 4 are, we order words according to existing labels: 1! 2! 4.

• (iii) Neutral elements (label 0) do not change their relative position to the next non-neutral

element following in the sentence. Neutral elements together with their adjacent non-neutral

element form a complex that in grammatical reordering is treated as a single word. This

means that the local SSR sequence order of grammatically neutral fragments is untouched by

the grammatical ordering process.

For example, a SSR sequence of words (states) 260, 120, 76, 45, 13, 12, 7, 1 is generated in a

Ng = 3 grammar with the corresponding grammatical label sequence: 3, 1, 0, 0, 2, 3, 0, 1. The

grammar-ordered label sequence is 1, 0, 0, 2, 3, 0, 1, 3, and the grammar-ordered state

sequence becomes 120, 76, 45, 13, 260, 7, 1, 12.

The goSSR model of a given text is the following. Determine the number W of distinct

words in a text. Produce a random map L that associates a label 0� L(i)� Ng with each word

i = 1, 2, . . ., W. The neutral label L(i) = 0 gets sampled with probability pn, all other labels with

probability (1 − pn)/Ng. For each sentence in the text determine its length (in words) and gen-

erate a random SSR sequence of the same length. Then re-order this SSR sequence according

to the grammar rules to get a grammatically ordered sentence. We call this sampled new text,

the goSSR model of some original text. It contains as many words and sentences as the original

text. Each sentence is a goSSR sequence.

For comparison, we consider three other models of text generation that yield power law dis-

tributed rank frequencies. The simplest is produced by independently sampling words from

the word frequency distribution of the original text, which we refer to as the Bernoulli model of
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the original text. The others are the Simon model, and the random typewriting model of text,

see Methods.

Results

We consider six English texts from the Gutenberg text corpora, [17]:

1. The Two Captains (abbreviated as 2cpns or Two Captains), by F. de La Motte-Fouque, with

a length of roughly 18,000 words, 600 sentences, and a vocabulary of roughly 3,000 words.

2. Five little peppers and how they grew (5lpep or Five little peppers), the first in a series of

books by M. Sidney, with a length of approximately 88,000 words, 5,200 sentences, and

4,800 distinct words,

3. Collected tales by the Brothers Grimm (grimm or Grimm), a collection of tales, with 180,000

words, 4,500 sentences, and about 4,800 words.

4. Moby Dick; or the whale (moby or Moby Dick), by Herman Melville, with about 250,000

words, 10,000 sentences, and 17,000 distinct words,

5. The age of invention, a chronicle of mechanical conquest (aoinvnt or The age of invention)

by Holland Thompson, with about 60,000 words, 2,500 sentences, and 6,800 distinct words,

6. The adventures of Paddy the beaver (paddy or Paddy), by Thornton W. Burgess, with about

18,000 words, 1,100 sentences, and 1,500 distinct words.

Two texts, “The Two Captains” and “Collected tales by the Brothers Grimm” are translations

from their originals in German language into English.

For all six texts we sample the corresponding goSSR-, Bernoulli-, Simon-, and the random

typewriting-model with the same sentence length distributions as the corresponding original

text. Since the vocabulary of most of the texts is too large for computing the full word transi-

tion matrix for goSSR-, Simon-, and random typewriting-models, we restrict ourselves to

word transitions between the 500 most frequent words in the texts. For notation, we use Kij for

the number of times we observe the word i to follow word j in a sentence of a text. Aij = Kij/kj
estimates the conditional probability for i to follow j, where kj is the number of times word j
appears in the text.

We then compute two statistical measures that allow us to quantify properties of the transi-

tion matrices. The skew is a measure of the asymmetry of A, and the cos-measure is a proxy for

the largest eigenvalue of A. We compute the transition matrices Atext, Abernoulli, AgoSSR, Asimon,

and Arandom, and present the corresponding measures in Fig 3. The top line (first and third line

of images) in Fig 3 shows the skew for all six texts, Moby Dick, Age of invention, Paddy, Two

Captains, Five little peppers, and Grimm. The bottom line (second and fourth line) shows the

cos-measure. The values corresponding to the original texts are shown as red lines. The values

for the Bernoulli models (black) are averages over 5 realizations of the model. For the original

text and the Bernoulli model the x-axis of the plot has no meaning since neither the original

text nor the Bernoulli model depend on model parameters. For the random typewriting model

(magenta) we fix the number of letters on the typewriter to V = 30, see Methods. For the

goSSR and the Simon model the x-axis has a different meaning. For the goSSR model (blue)

the x-axis is the number of grammatical labels Ng = 1, � � �, 12, for the Simon model (green) it

corresponds to the number of words, W0 used for the initialization of the Simon model, see

Methods. For all models we sample 5 realizations and present the mean and standard devia-

tions. For the Bernoulli model the error bars are only slightly larger than the line-width. The

goSSR model has been computed with a neutral element probability of pn = 0.1 for the texts
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Fig 3. Similarity measures. For six texts in English language, two measures, the skew and a cos-measure, are used to compare the word transition matrices of the

goSSR model (blue) with those of real texts (red), and their associated Bernoulli model (black). The values for the Simon model (green) with varying W0 (from 1 to

10), and the random typewriting model (magenta) for V = 30 letters, are shown.

https://doi.org/10.1371/journal.pone.0240018.g003
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2cpns, 5lpep, and grimm. For moby, aoinvnt, and paddy results were obtained for pn = 0. The

value for the pure SSR models (no grammar) is given by Ng = 1.

For the six texts we observe in Fig 3 that for the two measures the goSSR model outperforms

both, the Simon-, and the random-typewriting models. For increasing Ng the goSSR model

approaches both, the skew and the cos-measure of the real text. For levels of Ng* 3 − 5 con-

vergence is typically reached. For the two translated texts, Two Captains, and Grimm, conver-

gence takes slightly longer (Ng* 6 − 9).

For the skew, both, the random typewriting and Simon model can not explain the real text

value. For the cos-measure the random typewriting model clearly fails. The Simon model

approaches the real text value for large values of W0. The cos-measure for the goSSR model is

similar to the Bernoulli case, more so than the original text. There is almost no dependence on

Ng, practically all values for Ng> 1 are similar. Since typically the skew of written text is close

or identical to that of the Bernoulli model (see, 5lpep and grimm), one may be inclined to

interpret the skew measure as something like the “grammatical depth” of a text. However,

keep in mind that the Bernoulli model can per se not explain the Zipf law in word frequencies;

that is a massive exogenous input.

In Table 1 we show the corresponding p-values. To compute those, consider the texts gen-

erated by the different models as data. We would like to test whether we can reject the null

hypothesis that this data has been generated by the Bernoulli model at a confidence level of

0.05. To this end we sample the Bernoulli model of the particular text for 5, 000 times, compute

the respective measure for each realization of the model, rank the values, and compute the

respective p-values for the 5 realizations of each model. If a value is smaller than the smallest of

the 5000 samples drawn for the test statistics, then we interpret the associated p-value as a

number less than 1/5000 = 0.0002. We present the average of the 5 p-values for the six texts. In

Fig 3 we may observe that for both measures the original texts and their Bernoulli models are

numerically similar, which confirms what one may expects from rough visual inspection of

transition matrices of original text and corresponding Bernoulli models, compare Fig 2A and

2B. However, the p-values demonstrate that for a confidence level of 5% one would still have

to reject the hypothesis that the original text is generated by its Bernoulli model for all six

examples on the basis of the cos-measure and all but three case (5lpep, grimm, paddy) on the

basis of the skew measure. The cases where we cannot reject the null hypothesis are for the Ber-

noulli model itself, which for all two test statistics is accepted with p* 0.5, and in most cases

for the goSSR model for grammars with Ng> 4, see Table 1. For instance, the skew-measure of

“Two Captains”, for Ng� 4, p-values exceed the confidence level. That is, the transition proba-

bilities of the goSSR process cannot be distinguished from the Bernoulli model with respect to

the skew if the grammar becomes sufficiently complex. For two texts however, Mobby and

Paddy, the cosine measure consistently rejects the null-hypothesis for the goSSR model and all

values of the grammatical complexity Ng. Both measures indicate that original text in fact has

transition matrices that typically resemble those of the corresponding Bernoulli model to a

high degree, in terms of the value of measures, as we can see in Fig 3, but not to a degree that

one could not be distinguished from the other on the basis of the considered similarity mea-

sures. For reasonable choices of Ng and pn, the goSSR model not only resembles the Bernoulli

model closely but also accepts the null-hypothesis. The used measures indicate that the word

transition matrices of goSSR models are located somewhere between real text and Bernoulli

models in a statistical sense.

We considered additional measures to derive test-statistics that allow us to compare the

rank-increment distributions of the real texts and the models. These included the L1-norm, the

Kolmogorov-Smirnov distance, and the Kullback-Leibler divergence. They are not shown here

since they add little additional information. However, a note of caution for the naive
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interpretation of p-values is necessary. The skew and cos-measure are among the most simple

ones and are easy to interpret. There are many more, and it is conceivable that not all corre-

sponding test-statistics necessarily confirm that the goSSR model outperforms the other mod-

els. In fact, we found that one test-statistic, based on the Kolmogorov-Smirnov rank-

increment statistics, the Simon model sometimes performed slightly better than the corre-

sponding goSSR model. What is true for all test-statistics we considered is that goSSR models

show values of test-statistics that are typically located between real text and the Bernoulli

model. Using different test-statistics for comparing models of complex phenomena may lead

to distinct notions of similarity, which need not coincide. Different models may be adequate

for some features (test-statistics) of the modelled phenomenon, while they may be quite inade-

quate with respect to others.

Following this line of reasoning one could continue by also augmenting other processes

that generate Zipf’s law with an additional grammatical ordering process. In this way one

could go from a Simon model to a “goSimon” model, which now would be a two parameter

model, depending on the initial vocabulary W0 and the grammatical complexity Ng. Here,

however, we contend ourselves with the observation that a grammatical ordering process that

locally rearranges the word-order generated by a structured word selection process (here an

SSR process) can easily explain why word-transition frequencies closely resemble those of a

respective Bernoulli process, though–as we have learned here–typically not to the extent that

word transition frequencies of original texts could not be distinguish from those of the respec-

tive Bernoulli model on the basis of suitable similarity measures.

Table 1. p-values for test statistics skew and cos. The null hypothesis that the model texts have been generated by the Bernoulli model, at a 5% confidence level must be

rejected if p< 0.05. Values for the goSSR model are shown for various Ng, the Simon model for W0 = 10 and the random typewriting model for V = 30 words.

2cpns 5lpep grimm

skew cos skew cos skew cos

original 0.0002 0.0002 0.59 0.0002 0.82 0.0002

Bernoulli 0.55 0.46 0.57 0.53 0.51 0.48

Ng = 1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

Ng = 3 0.012 0.009 0.0002 0.0002 0.0002 0.02

Ng = 5 0.18 0.07 0.21 0.12 0.025 0.0002

Ng = 7 0.12 0.116 0.41 0.002 0.0002 0.0035

Ng = 10 0.27 0.14 0.019 0.12 0.079 0.0002

Simon 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

random 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

moby aoinvnt paddy

skew cos skew cos skew cos

original 0.0002 0.0002 0.0002 0.0002 0.38 0.0002

Bernoulli 0.49 0.55 0.48 0.51 0.55 0.46

Ng = 1 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

Ng = 3 0.15 0.0002 0.14 0.038 0.23 0.0002

Ng = 5 0.53 0.0002 0.02 0.0046 0.22 0.0002

Ng = 7 0.29 0.0002 0.24 0.033 0.25 0.0002

Ng = 10 0.07 0.0002 0.57 0.22 0.21 0.0002

Simon 0.0002 0.0002 0.0002 0.026 0.0002 0.0002

random 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

https://doi.org/10.1371/journal.pone.0240018.t001
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Discussion

The main objective of this paper was to demonstrate that a locally acting grammatical order-

ing process on top of a suitable word selection process, which we choose to be of SSR type,

can explain both, the shape of the marginal distribution function, i.e. Zipf’s law, and the ran-

dom-looking shape of the empirical word transition distribution (the word transition

matrix), as shown in Fig 2. Our results show that indeed, understanding the statistics of

streams of English texts as a result of a grammatical ordering process (local reshuffling of

words), superimposed on a SSR word selection process, is consistent with the evidence.

While a pure SSR process offers a natural explanation for the observed (approximate) Zipf’s

laws in written texts, based on the necessity of contextual coherence, it fails to produce realis-

tic word transition probabilities. Pure SSR transition probabilities are triangular and very dif-

ferent from empirical transition probabilities. The natural assumption that grammar is a

process that locally rearranges word order, allows us to show that very simple grammatical

rules are sufficient to explain the empirical structure of word transition matrices, in a statisti-

cal sense. Grammatical ordering that locally reshuffles selected word stream, in order to com-

ply with grammatical structures, sufficiently destroys the triangular word transition structure

of the SSR word selection process. goSRR models are therefore adequate, in the sense that

they explain both the empirical word frequency distribution functions and basic statistical

properties of the word transition probabilities of texts. One may note however, that augment-

ing other word selection processes generating Zipf’s law (e.g. the Simon model) with a gram-

matical ordering process (e.g. to form a goSimon model) would also transform the respective

word-transition matrices of those models to resemble those of a Bernoulli process more

closely.

Of course, we can not say that actual English language is a SSR process augmented with a

grammatical reordering process. We have seen that the goSSR model, at the level of statistics

of the transition probabilities, performs similarly well as the Bernoulli model, which we know

is a truly bad model. The Bernoulli model can not even explain the Zipf law in word frequen-

cies. It can only explain features of the transition matrices, given that the Zipf law in word fre-

quencies is provided as exogenous input. This paper demonstrated the possibility to consider

word selection processes that generate Zipf’s law and, by augmenting it with a grammatical

ordering process that locally rearranges the word selection order, make it resemble a Bernoulli

process in terms of its word-transition statistics.

Note that this particular superposition of processes exemplifies a more general phenome-

non. If highly structured processes interact with each other, the resulting (very complex) pro-

cess may look much more random than the underlying processes themselves. This emphasizes

the often neglected fact, that statistical data alone is often insufficient for inferring the genera-

tive structure of the process that produces the data. Only if a specific parametric process class

can be identified as being adequate for describing a given phenomenon, then data can be used

to estimate which process within that class is likely to have generated the data. In other words,

in the context of entangled, possibly multi-causal generative processes, even “big data”

becomes worthless, without what is sometimes called a thick description of the phenomenon,

which, in mathematical terms, is the requirement of having identified the process class that

produces the observed phenomenon reasonably well. A minimal way to “thicken” a descrip-

tion consists of considering a spectrum of measures and models that provide clues to the

underlying structure of a process instead of reducing a complex phenomenon to a singular

model or notions of similarity.
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Methods

Implementing grammatical word order

We first identify the full-stop, exclamation mark, and question mark in an original text as sen-

tence ends, and obtain the sentence lengths in the text body. We produce a SSR sequence, x =

(x1, � � �, xN), of N words, using a vocabulary of W words. The sequence is produced sentence

by sentence, meaning that for every sentence in a text we generate a SSR sequence of the same

length m as the sentence s = (s1, � � �, sm) = (xr, � � �, xr+m−1), a sub-sequence of the text x, that

starts at some position r in the text. If the SSR process reaches word i = 1 in mid-sentence, the

SSR process is continued by restarting the SSR process. Each xt takes integer values between 1

and W. For simplicity, assume here that there are no neutral words (grammatical label

value 0). To every of the W distinct words i = 1, � � �, W, we randomly assign one of Ng

grammatical labels L(i). We now work through x sentence by sentence; the sentence length

structure of the model is defined by the sentence lengths in the original text that we model.

Let s = (s1, � � �, sm) be such a sentence. Then we form sub-sequences of s consisting only of

words with a particular grammatical label, L(st) = ℓ, where 1� t�m, and ℓ = 1, � � �, Ng.

Let tn(ℓ) be the index of the n’th word in the sentence s that carries the grammatical label ℓ,
then s‘ ¼ ðst1ð‘Þ; st2ð‘Þ; . . . ; stn‘ ð‘ÞÞ, where nℓ is the number of words with label ℓ in sentence s.

The sequences sℓ are typically not of the same length. To make all sequences equally long we

define stnð‘Þ to be an “empty word”, whenever n> nℓ. In this way we can think of the

sequences, stnð‘Þ, to be all of the same length n̂ ¼ maxfn‘j1 � ‘ � Ngg and parse them in lex-

icographical order with respect to (t, ℓ), where (t0, ℓ0)> (t, ℓ), if t0 > t, or t0 = t and ℓ0 > ℓ.
The resulting sequence is the grammatically ordered sentence. Note that the grammatically

ordered SSR sequence and the SSR sequence x have identical word frequency distributions. If

the SSR model explains Zipf’s law, then so does the goSSR model. However, unlike SSR mod-

els, goSSR models now exhibit word transition probabilities that for a low enough fraction of

neutral words (sufficiently small pn), and a complex grammar (sufficiently large Ng) start to

resemble those of real texts.

For example, with Ng = 3 classes, 1� S, 2� P, and 3� O, for each sentence we get three

sub-sequences, sS, sP, and sO. sS ¼ ðst1ðSÞ; st2ðSÞ; . . . ; stnS ðSÞÞ is the sub-sequence of all words in s

carrying label S. It contains all nS words of the sentence that carry the label S. We write sS(τ) =

s(tτ(S)) for τ = 1, � � �, nS. Similarly, xP and xO are the sub-sequences for labels P and O, respec-

tively. After following the procedure described above, we obtain the sequence

ðsSð1Þ; sPð1Þ; sOð1Þ; sSð2Þ; sPð2Þ; sOð2Þ; � � �Þ : ð3Þ

Finally, by deleting the “empty words” we obtain a sentence that consists of the same words

and has the same length as the SSR generated sentence s. This sentence is the grammatically

ordered sentence.

If neutral words are present we proceed by combining neutral words with the next non-

neutral word in a the sentence. For instance, if we find a sentence fragment of the form � � �, i, j,
k, r, � � � with grammatical labels � � �, 3, 0, 0, 2, � � � then we consider j, k, r as a single word jkr
with grammatical label L(r) = 2. After forming those word blocks we proceed as before with the

word block inheriting the grammatical label of the non-neutral element it encapsulates.

Word transitions of texts and models

How similar are word transition properties of the goSSR model to those of actual texts? For

computational reasons we restrict the size of relative word transition frequency matrices A to

the Wmax = 500 most frequent words in a text. Since matrices for actual text, Atext, can not be
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directly compared to those of a model, such as AgoSRR, we consider two appropriate statistical

measures.

The first is a proxy for the largest eigenvalue of A, the cosine of the angle between the vector

v = (1, 1, � � �, 1) and the vector Av,

cos ðAÞ ¼
ðvjAvÞ
jvjjAvj

: ð4Þ

It measures how quickly the transition probabilities transform an equi-distributed set of

words into the stationary empirical word frequency distribution.

The second is a measure for the asymmetry, the skew of A,

skewðAÞ �
XWmax

i¼1

XWmax� 1

j¼i

ðAij � AjiÞ : ð5Þ

Bernoulli model

To keep the same sentence structure as in the original text, the Bernoulli model is obtained by

first locating the positions of sentence-ends in the text. Then remove the sentence-ends and

randomly re-shuffle the words of the entire text. Finally, we reinsert sentence ends at the previ-

ous positions in the text. We reshuffle the words of the text while keeping the length of the sen-

tences fixed.

Preferential Simon model

To generate a Simon model to fit a text with a vocabulary of W words, and length N we pro-

pose the following version of the Simon model. We initialize the process with a vocabulary of

W0 words with initial weights ki(t = 0) = k0, for i = 1, � � �, W0, and ki(t = 0) = 0, for all other i.
We use k0 = 1. The probability p+(t) for sampling a new word at time step t is computed from

the size of the used vocabulary up to t, Wt−1, and the remaining number of time steps, T + 1 −
t,

pþðtÞ ¼
W � Wt� 1

T þ 1 � t
:

The probability of sampling word i at time t is given by

piðtÞ ¼ ð1 � pþðtÞÞ
kiðtÞ

PW
j¼1

kjðtÞ
:

Every time a word i is sampled at time t, we increase ki(t + 1) = ki(t) + 1. In this way the pro-

cess follows a Simon type of update rule, while adapting its parameters to match length and

vocabulary of a given text.

Random typewriting model

Assume we have a keyboard (alphabet) with V letters and a space key. The probability to hit

the space key is pw(t). We initialize the model with an empty lexicon. For each time step t = 1,

� � �, N, we sample a random sequence of letters (words), where each letter is produced with

probability (1 − pw(t))/V. If a space is hit, sampling letters stops, and it is checked, if the ran-

dom word already exists in the lexicon. If not, the word is added to the lexicon, and its word-

PLOS ONE The role of grammar in word transition-probabilities

PLOS ONE | https://doi.org/10.1371/journal.pone.0240018 October 8, 2020 14 / 16

https://doi.org/10.1371/journal.pone.0240018


count, kword, is set to one; otherwise, the word count is increased by one. Knowing the number

of words sampled up to time t, W(t), and the number of time steps T + 1 − t to go, one can

adjust pw to control the total number of words sampled by random typewriting. Heuristic con-

siderations suggest for example to choose pw(t) = 1/(1 + q(t)), with q(t) = log((W −W(t) + 1)

(V − 1) + 1)/log(V) − 1. For the random typewriting process text length and vocabulary size

are harder to be matched with real texts.
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