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i ) of the cor-
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the short-distance expansion of this correlator in the limit where all three Q2
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and in the Euclidean domain in QCD. This is done via a systematic operator product

expansion (OPE) in a background field which we construct. The leading order term in

the expansion is the massless quark loop. We also compute the non-perturbative part of

the next-to-leading contribution, which is suppressed by quark masses, and the chiral limit

part of the next-to-next-to leading contributions to the OPE. We build a renormalisation

program for the OPE. The numerical role of the higher-order contributions is estimated

and found to be small.
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1 Introduction

The Standard Model (SM) is the theoretical framework developed to describe particle

physics at its most fundamental level, and is able to predict the anomalous magnetic

moments of the leptons with a high number of significant digits. At the current level of

precision, all the building blocks of the SM leave sizable numerical imprints for the muon

anomalous magnetic moment, or, aµ = (g − 2)µ/2. Summing all the contributions, one

finds [1]

aSM
µ = 116 591 810(43)× 10−11 , (1.1)

showing a 3.7σ tension with the very precise experimental value [2, 3],

aexp
µ = 116 592 091(63)× 10−11 . (1.2)

The experimental value is expected to be significantly improved [4, 5]. In case the discrep-

ancy grows this could be a sign of new physics beyond the SM.

The current uncertainties in the theoretical prediction are dominated by contributions

from the hadronic sector. Since the relevant energy scale, i.e. the muon mass, is far below

the region of applicability of perturbative QCD, the assessment of these contributions

resorts to the use of non-perturbative tools. Further improvements are needed in order to

find a SM value at the level of precision competing with that of the future experimental

one. Decreasing the errors on the hadronic contributions would therefore shed some light

on whether or not the current tension is a hint of new physics. An overview and assessment

of the current theoretical situation is the white-paper [1].

In this paper, we focus on the hadronic light-by-light (HLbL) scattering contribution,

represented by the diagram in figure 1. The calculation of the (g − 2)µ requires the inte-

gration of the HLbL tensor over q1, q2 and q3, with the fourth photon in the static limit,

i.e. q4 → 0. Working with three Euclidean squared loop momenta q2
i = −Q2

i , this means

one has to consider different kinematic regions of Q2
i . We consider the short-distance regime

with photon virtualities Q2
1 ∼ Q2

2 ∼ Q2
3 � Λ2

QCD, and derive so-called short-distance con-

straints by means of an operator product expansion (OPE). The second important regime is

with mixed virtualities, namely Q2
3,Λ

2
QCD � Q2

1 ∼ Q2
2, and has been considered in ref. [6].

There has been a lot of recent work in the latter regime refs. [7–14].

The first full calculations of the HLbL were made using models in refs. [15–17]. More

recently a dispersion theory based approach as in refs. [18, 19] has allowed for better con-

trol of the low-energy region. In the latter approach one considers individual intermediate

states, for which short-distance constraints such as those derived herein can be used, ex-

amples are refs. [7, 8, 13, 14, 16, 20]. One should of course be careful in comparing at the

correct kinematics.

The naive OPE in the vacuum for the HLbL tensor, which is valid for Q2
1 ∼ Q2

2 ∼
Q3

3 ∼ Q2
4 � Λ2

QCD, has the perturbative quark loop as its first term. The quark loop has

always been used as an estimate for the whole contribution, using constituent quarks and

in various models see e.g. refs. [21–26] and for the contributions from heavy quarks [27].

However, the naive OPE breaks down for the (g − 2)µ kinematics with q4 → 0 [28]. The
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OPE of the HLbL tensor in this kinematics must be performed by taking into account

that the static photon needs to be formulated as a soft degree of freedom. It was shown

in ref. [28] (see also ref. [6]) how this could be done by factoring out the soft photon

as a background field. The background field can originate either from the hard degrees

of freedom (e.g. the massless quark loop) or the soft ones (e.g. the so-called di-quark

magnetic susceptibility contribution). The resulting OPE, originally formulated for baryon

magnetic moment sum rules in refs. [29] and [30], and whose application to other hadronic

(g−2)µ contributions was introduced in ref. [31], has the massless quark loop as the leading

term and the di-quark magnetic susceptibility of the vacuum as the leading quark-mass

suppressed contribution. In this work we extend the results of ref. [28] by computing the

leading non-perturbative corrections not suppressed by masses. We also provide some more

details about the calculations of ref. [28]. Our result should be useful to help reducing the

error coming from the intermediate and short-distance regime [1].

In section 2 we briefly recapitulate the definitions of the four-point function of four

electromagnetic currents, its decomposition in scalar functions and how it can be used

for the muon g − 2 HLbL contribution. This follows the conventions of refs. [18, 19]. It

also gives the relation between the needed derivative of the four-point function and the

three-point function in a constant field background that is used in the remainder of this

paper.

In section 3 we give a complete description of the OPE in a constant background field

and compare it to the usual vacuum OPE [32] and the one used in flavour-breaking tran-

sitions. We in addition comment on the physical meaning of the obtained matrix elements

and build a renormalisation program. The renormalisation program is needed to systemat-

ically separate short-distance and long-distance effects while cancelling divergences. Both

infrared and ultraviolet divergences are addressed. We also estimate the values of the ma-

trix elements. The content of this section can in the future be used to obtain predictions

for other Green functions in different kinematic regions.

Details on the calculation of the different non-perturbative pieces are provided in sec-

tion 4, in particular we explain the different tools used, existing and newly developed, to

obtain our analytic results and how the different infrared divergences systematically cancel.

Finally, making use of the results of that section and the estimates of the matrix elements,

in section 5 we calculate the numerical contribution of the different pieces for the (g− 2)µ.

Final remarks and conclusions are made in section 6. Several intermediate derivations are

relegated to the appendices as well as the full formulae.

2 The HLbL tensor

As can be seen in figure 1, the HLbL process involves a four-point correlation function of

electromagnetic quark currents, i.e.

Πµ1µ2µ3µ4(q1, q2, q3) ≡ −i
∫

d4q4

(2π)4

(
4∏
i=1

∫
d4xi e

−iqixi

)
〈0|T

 4∏
j=1

Jµj (xj)

 |0〉 . (2.1)

– 2 –
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Figure 1. HLbL contribution to the (g − 2)µ.

The currents are given by Jµ(x) = q̄ Qqγ
µq with the quark fields q = (u, d, s) and charge

matrix Qq = diag(eq) = diag(2/3,−1/3,−1/3). The tensor in (2.1) is the same as Πµνλσ in

ref. [28], but with the internal notation slightly changed in the definition in order to make

manifest some of its symmetry properties. This will be systematically exploited in the

following sections. Moreover, the integral over q4 is introduced to remove the δ-function of

conservation of momentum,1 i.e.
4∑
i=1

qi = 0 . (2.2)

This defines q4 as the negative of that in ref. [28], which again is a choice to maximise the

number of explicit symmetries.

The conservation of the electromagnetic current implies that the HLbL tensor satisfies

the following Ward identities,

qi, µi Πµ1µ2µ3µ4(q1, q2, q3) = 0, ∀i ∈ [1, 4] , (2.3)

where q4 must be rewritten in terms of the other three momenta through (2.2). Note that

the last Ward identity implies that all the information on the HLbL tensor is contained in

its derivative [33],

Πµ1µ2µ3µ4(q1, q2, q3) = −q4, ν4

∂Πµ1µ2µ3ν4

∂q4, µ4

(q1, q2, q3) . (2.4)

In the (g − 2)µ kinematics, the loop integral over the loop momenta q1, q2 and q3

can be rewritten as an integral over the Euclidean momenta Q2
i ≡ −q2

i > 0. The fourth

photon, i.e. with momentum q4, is taken in the static limit. This corresponds to taking the

q4 = −q1 − q2 − q3 −→ 0 limit after doing the derivative in (2.4). Notice how in this limit

lim
q4→0

∂Πµ1µ2µ3ν4

∂q4, µ4

(q1, q2, q3) = − lim
q4→0

∂Πµ1µ2µ3µ4

∂q4, ν4

(q1, q2, q3) , (2.5)

i.e. it is anti-symmetric in the indices µ4ν4. This can be proven by multiplying both sides

of (2.4) by q4, µ4 , then taking the derivative with respect to q4,α and setting α = ν4. The

1The integral could be performed instead in any other of the four momenta, leaving the HLbL tensor as

a function of the other three.

– 3 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
3

resulting linear and anti-symmetric structure of the HLbL tensor is directly related to the

fact that Fµν ≡ ∂µAν − ∂νAµ is the lowest dimension gauge invariant photon operator.

Let us take advantage of the work of refs. [18, 19] to find general relations between

the tensor ∂Πµ1µ2µ3ν4
∂q4, µ4

and its explicit contribution to the (g− 2)µ. Making use of the Ward

identities above, one can rewrite in full generality the HLbL tensor as a linear combination

of 54 scalar functions Πi(q1, q2, q3) according to [18, 19]

Πµ1µ2µ3µ4(q1, q2, q3) =
54∑
i=1

Tµ1µ2µ3µ4i Πi(q1, q2, q3) . (2.6)

Expressions for the Tµ1µ2µ3µ4i in terms of the Lorentz basis built with q1, q2, q3 and the

metric gµν can be found in refs. [18, 19]. In particular, the Tµ1µ2µ3µ4i satisfy the same

Ward identities as the HLbL tensor. As a consequence, in the static limit q4 → 0

lim
q4→0

∂Πµ1µ2µ3ν4

∂qµ44

=

54∑
i=1

∂Tµ1µ2µ3ν4i

∂qµ44

Πi(q1, q2, q3) . (2.7)

In the static limit q4 → 0, the remaining tensor can thus be written as a function of 19

linear combinations Π̂i of the original Πi(q1, q2, q3). Only 6 Π̂i functions contribute to the

(g − 2)µ and one finds

aHLbL
µ =

2α3

3π2

∫ ∞
0

dQ1

∫ ∞
0

dQ2

∫ 1

−1
dτ
√

1− τ2Q3
1Q

3
2

×
12∑
i=1

Ti(Q1, Q2, τ) Πi(Q1, Q2, τ) , (2.8)

where the integration variable τ is defined via Q2
3 = Q2

1 + Q2
2 + 2τQ1Q2. The functions

Ti(Q1, Q2, τ) can be found in refs. [18, 19] and

Π1 = Π̂1 , Π2 = C23

[
Π̂1

]
, Π3 = Π̂4 , Π4 = C23

[
Π̂4

]
,

Π5 = Π̂7 , Π6 = C12

[
C13

[
Π̂7

]]
, Π7 = C23

[
Π̂7

]
,

Π8 = C13

[
Π̂17

]
, Π9 = Π̂17 , Π10 = Π̂39 ,

Π11 = −C23

[
Π̂54

]
, Π12 = Π̂54 . (2.9)

The exact definition of the Π̂i functions is given in refs. [18, 19]. The Cij in (2.9) represent

interchanging qi and qj . In order to find general Lorentz projectors from the derivative of

the tensor in the static limit, i.e.

lim
q4→0

∂Πµ1µ2µ3ν4

∂qµ44

, (2.10)

to the Π̂i functions, we start by taking 19 independent projectors in the {q1, q2, q3, g} basis.

Any other projector can be related to that set through the Ward identities given above.

– 4 –
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Applying them to (2.7) returns a system of 19 equations dependent on the 19 Π̂i. A solution

to that system of equations for the relevant Π̂i is given in appendix A. In practice, this

means that for any contribution to the HLbL tensor in any basis, one can compute the

associated (g − 2)µ contribution by taking the derivative with respect to q4, then taking

the static limit q4 → 0, applying the 6 Lorentz projectors given in appendix A to find the

associated Π̂i and finally using them in the integral of (2.8).

As explained above, the integral of (2.8) requires the knowledge of the HLbL tensor

with three Euclidean momenta Qi at different kinematic regions and the fourth in the static

limit q4 → 0. In this work, which extends the results of ref. [28], we focus on the kinematic

region where the three loop momenta are large. As was shown in ref. [28], if one defines

Πµ1µ2µ3(q1, q2) ≡ −1

e

∫
d4q3

(2π)4

(
3∏
i=1

∫
d4xi e

−iqixi

)
〈0|T

 3∏
j=1

Jµj (xj)

 |γ(q4)〉 , (2.11)

then in the static limit for the studied kinematic region, one can factor out the soft photon

contributions according to

Πµ1µ2µ3(q1, q2) = Πµ1µ2µ3µ4ν4
F (q1, q2)〈0|eqFν4µ4 |γ(q4)〉 . (2.12)

As mentioned in the introduction, the soft background field Fµν can originate from the

hard degrees of freedom or the soft ones. One then finally has [28]

lim
q4→0

∂Πµ1µ2µ3µ4

∂qν44

= −iΠ
µ1µ2µ3[µ4ν4]
F (q1, q2) . (2.13)

For this OPE the massless quark loop is the leading term and the di-quark magnetic

susceptibility of the vacuum is the leading, quark-mass suppressed, non-perturbative con-

tribution. In this work we compute the leading non-perturbative (not mass-suppressed)

corrections.

3 The operator product expansion: a theoretical description

In this section we describe the OPE and the associated renormalisation program. From

this we systematically separate the long-distance effects from the short-distance ones. The

general framework and operators involved are presented in section 3.1 whereas the mixing

of these operators is elaborated on in section 3.2. Finally, the OPE developed as well as

operators and corresponding matrix elements involved are discussed.

3.1 General framework

Perturbative calculations are known to provide a huge predictive power in the framework of

Quantum Field Theory. However, when the calculation of a given observable involves the

interplay of two (or more) very different scales, large logarithms between them slow down,

if not spoil, the convergence of the series. These large logarithms can be avoided in many

cases through the OPE [34, 35], which integrates out the heavy degrees of freedom leaving

the low-energy (long-distance) dependence encoded in effective operators, in such a way

– 5 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
3

that the contributions from higher-dimension operators become suppressed by extra powers

of the high-energy scale [36–38]. There are cases in which this logarithmic re-summation

is not enough, since one (or several) relevant couplings of the theory diverge when its

running is performed. This is the case for QCD, where a low-energy description in terms

of approximately free quarks and gluons does not hold and the matrix elements between

initial and final states cannot be computed within perturbative QCD. The contributions

from the operators whose quantum numbers are compatible with the transition must be

fitted to data, computed with effective field theories or other non-perturbative methods,

such as lattice QCD, dispersion relations or model estimates.

In the OPE of two-point correlation functions [32], all the local operators with the

same quantum numbers as the QCD vacuum, such as the identity or q̄q, can give a contri-

bution to the Green functions.2 In the OPE used in flavour-breaking transitions (e.g. see

ref. [36]) all the local operators with quantum numbers compatible with the studied tran-

sition among hadrons can give a contribution. In the OPE we are working with [29, 30],

applied to (2.11), any local operator with the same quantum numbers as Fµν can absorb

the remaining soft static photon and, as a consequence, give a contribution [28, 31]. Higher-

dimensional operators are suppressed by extra powers of
(

ΛQCD

Qi

)d
, providing a hierarchy

of contributions with a systematic counting. Up to dimension 6 and order αs a basis of

those operators is3

S1, µν ≡ e eqFµν , (3.1)

S2, µν ≡ q̄σµνq , (3.2)

S3, µν ≡ i q̄Gµνq , (3.3)

S4, µν ≡ i q̄Ḡµνγ5q , (3.4)

S5, µν ≡ q̄q e eqFµν , (3.5)

S6, µν ≡
αs
π
Gαβa Gaαβ e eqFµν , (3.6)

S7, µν ≡ q̄(GµλDν +DνGµλ)γλq − (µ↔ ν) , (3.7)

S{8}, µν ≡ αs (q̄ Γ q q̄Γq)µν . (3.8)

We use here the notation of ref. [39]. In particular, Gµν = igSλ
aGaµν , Ḡµν ≡ i

2ε
µνλρGλρ,

covariant derivatives act on all objects to their right and tr
(
γ5γ

µγνγαγβ
)

= −4iεµναβ . For

S1...7,µν the quark field q refers to a given flavour and there are in principle different

operators for different flavours q. Notice, however, that taking into account that the

(massless) QCD vacuum preserves SU(3)V, the contributions of the operators to the studied

transition depend, in the chiral limit (mu = md = ms = 0), on a common constant

2The words n-point function, correlation function and Green function are all used but have the same

meaning.
3Notice how the order in αs depends on the short-distance structure of the studied Green function. For

example in baryon sum rules, the four-quark operators S{8} do not enter αs-suppressed. In our calculation,

at order g3s one may have a contribution from a three-gluon operator [29], but it enters suppressed by gs,

loops and flavour (in the SU(3)V limit its contribution vanishes, since it transforms as a singlet and the

photon field transforms as an octet).

– 6 –
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multiplied by the corresponding quark electric charge. Note that with the conventions of

ref. [39], Gµν is order gs.
4 The four-quark operators are only indicated generically in (3.8).

A decomposition valid in the chiral limit into twelve operators is given in appendix B. In

fact, only two combinations of four-quark operators contribute as discussed in section 4.

The adopted notation is analogous to the one in ref. [36].

In order to perform the OPE of the tensor in (2.11), one applies Wick’s theorem with

any number of needed (suppressed) extra (QCD or QED) vertices coming from the Dyson

series. The uncontracted operators must then be Taylor expanded (e.g. see ref. [39]), so

that the resulting expression is of the form5

Πµ1µ2µ3(q1, q2) =
1

e
~CT,µ1µ2µ3µ4ν4(q1, q2)〈~Sµ4ν4〉 = ~CT,µ1µ2µ3µ4ν4(q1, q2) ~XS 〈eqFµ4ν4〉 ,

(3.9)

where ~XS contains the magnetic susceptibilities of the operators,6 〈Si,µν〉 = eeqX
i
S〈Fµν〉.

Even when this was a first step to achieve the separation between short-distance and

long-distance effects, such a separation is not yet complete. Let us illustrate this with

the simplest contributions: the quark loop and the (di-quark) magnetic susceptibility,

represented in figure 2. In figure 2b one has short-distance contributions that arise from

expanding the Dyson series and introducing vertices in the soft lines, represented by a blob.

Since there is no momentum flowing, the resulting series,
∑
cnα

n
s (0), is manifestly diver-

gent. This kind of effects must be subtracted, since they belong to the non-perturbative

domain. A slightly different problem arises with figure 2a. The quark loop runs over all

possible momenta. If the low-momenta contributions do not vanish, they must somehow

be subtracted and reabsorbed into the long distance matrix elements. This is the case

for the O(m2
q) mass corrections, whose (not regulated) Wilson coefficient, Cm2

q
, leads to

divergent series
∑

n cn α
n
s (Q2) logn

(
Q2/m2

q

)
, i.e. the coefficients are not well defined in the

chiral limit. The m2
q dependence in the coefficients originates from the low-energy domain

and must be included in the operator expectation values as well.

The way of achieving these subtractions is by dressing and renormalising the ~Sµν

operators (normal-ordered operators in the notation of ref. [40], tree-level operators in the

notation of ref. [36]). Following a notation close to the one in ref. [36], the dressed operators
~Qµν0 in terms of the tree-level ones ~Sµν are obtained by reinserting them into the Dyson

series, leading to a result of the form

~Qµν0 = M̂(ε)~Sµν , (3.10)

where the ε = −d−4
2 dependence appears in dimensional regularization as a consequence

of ultraviolet divergences in the loop diagrams. The infrared divergences that can appear

are regularised using the quark mass. The resulting redefinition of the matrix elements7

4In fact, the gluon tensor is named Fµν in that reference. We rename it as Gµν to avoid ambiguity with

the electromagnetic field strength Fµν . Similar renamings should be obvious.
5Further technical details on the computation of the different pieces are given in section 4.
6We will define the susceptibilities more precisely later.
7We need here the condensates induced by the external field. We refer to those as matrix elements to

distinguish them from the usual (vacuum) condensates.
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(a)

q q
q

q 0

p

1

2

3

4
→

(b)

q q
q

1

2

3

= + + + · · ·

Figure 2. Example of contributions of HLbL in the studied kinematic region. (a) The quark

loop. (b) The di-quark magnetic susceptibility. A complete separation between short-distance and

long-distance effects should subtract possible divergent low-momenta contributions from the quark

loop and possible divergent perturbative series arising from soft lines.

involves two steps, calculating the relevant contributions leading to an expression at one-

loop order of the form

M̂(ε) = I +
m−2aε̂
q

ε̂
M̂ε̂ + M̂rem , (3.11)

where M̂ε̂ and M̂rem are perturbations either in e, in gs or in powers of
mq

ΛQCD
and 1

ε̂ =
1
ε −γE +log(4π). a depends on the dimension of the operators when d 6= 4. The ultraviolet

divergences are unphysical, and are removed via renormalisation. A convenient and simple

renormalisation scheme is by performing the operator renormalisation in the MS scheme,

which basically removes the 1
ε̂ factors and takes out from the bare operators the non-

canonical part of their dimension, proportional to 2aε:

~Qµν0 = ẐMS(µ, ε) ~Qµν
MS

(µ) , (3.12)

ẐMS(µ, ε) = I +
M̂ε̂ µ

2aε

ε̂
, (3.13)

~Qµν
MS

(µ) = ÛMS(µ) ~Sµν =

(
I− a log

(
m2
q

µ2

)
M̂ε̂ + M̂rem

)
~Sµν . (3.14)

Putting this back into (3.9) one finds

Πµ1µ2µ3(q1, q2) =
1

e
~CT,µ1µ2µ3µ4ν4(q1, q2)Û−1

MS
(µ)〈 ~QMS,µ4ν4

(µ)〉

≡ 1

e
~CT,µ1µ2µ3µ4ν4
MS

(q1, q2)〈 ~QMS,µ4ν4
(µ)〉 . (3.15)

This equation defines the regularized and renormalised Wilson coefficients. The renor-

malised Wilson coefficients,

~Cµ1µ2µ3µ4ν4
MS

(q1, q2, µ) = Û−1
MS

T
(µ) ~Cµ1µ2µ3µ4ν4(q1, q2) , (3.16)
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become free from long-distance effects and infrared divergences, completing the desired

separation. For the matrix elements we define the magnetic susceptibilities ~X = (X1, . . .).
8

〈 ~QMS,µν(µ)〉 = e ~X〈eqFµν〉 (3.17)

The contributions we calculate explicitly in section 4 are: the leading contribution

stems from Qµν1 at d = 2 and corresponds to the massless quark loop. This operator

receives mass corrections suppressed by powers of
m2
q

Λ2 . The first correction from a different

operator comes from the d = 3 di-quark operator, Qµν2 , which happens to enter suppressed

by one power of the quark mass becoming effectively d = 4. This contribution using the

mixing as defined in (3.11)–(3.14) removes the m2
q log(m2

q) part of the quark loop and

together with that forms the d = 4 contribution. The d = 5 contributions from Qµν3−5 are

also suppressed by one power of the quark mass. Qµν6−8 give the first contributions that

are not suppressed by the quark masses. The mixing here again removes contributions

proportional to log(m2
q) and other infrared divergences. We therefore calculate with respect

to the massless quark loop the corrections of orders gs
Λ4
QCD

Q4 ,
m2
q

Q2 , g2
s

Λ4
QCD

Q4 , mq
ΛQCD

Q2 ,mq
Λ3
QCD

Q4 ,

m3
q

ΛQCD

Q4 . The computation of the last three is needed, since they give contributions to the

g2
s

Λ4
QCD

Q4 through operator mixing as defined above and calculated in section 3.2. This is

analogous to the mixing between bi-linear quark condensate and gluon condensate in the

usual vacuum OPE [41–43].

3.2 The operator mixing

In this section we calculate the mixing matrix ÛMS . However, there are some parts that

can be ignored. These we discuss first. The original Wilson coefficients contain in principle

infrared divergent parts that arise from attaching extra vertices to the soft zero-momentum

lines. These long-distance contributions, explicitly independent of momenta, systematically

cancel with analogous terms in the dressing procedure, which in addition are independent

of the studied physical process, so we simply ignore them in both sides of the calculation.

An example of this is sketched in figure 3. The top graphs show the contribution from S2,µν

to the correlator we calculate and the bottom line contributions to the mixing matrix. The

contribution from the top right is via the diagram in the bottom right absorbed into the

definition of the operator Q2,µν .

As a consequence, only mixing terms with loops need to be considered for the calcula-

tion of ÛMS . This limits the type of terms that can show up. Then, at this stage, we have

two possibilities. 1) If no more (QCD or QED) vertices are added, the original operator

can only mix with lower dimensional ones, since loops imply connecting the fields of both

operators with propagators. The only remaining scale to compensate dimensions is mq and

as a consequence M̂(ε) becomes a mn
q perturbation, with n positive. The calculation for

Û21
MS

is of this type. 2) Alternatively, one can have mixing terms with operators with equal

or higher dimensions that show up by adding fields through introducing extra vertices.

8The four-quark operators have a slightly different definition of the susceptibilities to get the charge

behaviour correctly, see section 3.3.4. X2 is often referred to as the (di-quark) magnetic susceptibility.

– 9 –



J
H
E
P
1
0
(
2
0
2
0
)
2
0
3

Π(q) ∼

C2(q)S2

+

C2(q)BS3

Q2 ∼ 2

S2

+ 2

BS3

⇒ Π(q) ∼ C2(q)Q2

Figure 3. An example of a cancellation for contributions arising from attaching extra vertices

to soft, at zero momentum, lines. The circle with “2” inside refers to the S2 operator defined

in (3.2), B indicates the extra factor compared to the left diagrams. All Lorentz indices have been

suppressed for clarity.

However, these new vertices come with an extra cost (gs or e), and then they can also be

regarded as perturbations, an example of this type is Û76
MS

. Finally, when studying the

mixing of lower dimensional operators with higher dimensional ones, one finds terms that

go as m−nq . A well-known case of this in the usual vacuum OPE is the gluon condensate

mixing with the quark condensate

〈q̄q〉 = − 1

12mq

〈αS
π
GaµνG

aµν
〉

+ · · · . (3.18)

However this kind of mixing is simply absorbing in the renormalised operator unphysical

(infrared) divergences contained in the perturbative Wilson coefficients. The quark mass

is used as an infrared regulator as well as for calculating genuine quark mass corrections.9

The first step is thus the dressing of the tree level operators and the computation of

the associated matrix M̂(ε). All the diagrams involved are shown in figure 4. The first

diagram for each operator always corresponds to identity term in (3.11). The procedure

should be done, as is also the case for the usual vacuum OPE, only including operators up

to the dimension considered.

The only way Qµν1 mixes with other operators is by introducing extra electromagnetic

vertices. Since Qµν1 is already O(e), the resulting corrections are O(e2), and thus do not

need to be considered. The first non-trivial case is that of the operator Qµν2 . The non-zero

element of M̂(ε) and thus ÛMS are calculated in the next subsubsections. As in section 4

the calculations in this section benefit very much from using the radial gauge.

3.2.1 Qµν2

The mixing with Qµν1 = eeqF
µν requires an extra electromagnetic vertex and closing the

quark lines. This corresponds to the second Q2-diagram in figure 4. Let us sketch it in

9The procedure is equivalent to what is used in the usual vacuum OPE [40–44].
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Q0
1,µν ∼

1

S1,µν

Q0
2,µν ∼ 2

S2,µν

+

2

M̂21(ǫ)S1,µν

+

2

M̂26(ǫ)S6,µν

Q0
3,µν ∼

3

S3,µν

+ 3

M̂36(ǫ)S6,µν

Q0
4,µν ∼

4

S4,µν

+ 4

M̂46(ǫ)S6,µν

Q0
5,µν ∼

5

S5,µν

+ 5

M̂56(ǫ)S6,µν

Q0
6,µν ∼

6

S6,µν

Q0
7,µν ∼

7

S7,µν

+ 7

M̂76(ǫ)S6,µν

Q0
8,µν ∼ 8

S8,µν

Figure 4. Topologies involved in the computation of the matrix M̂(ε). All the possible permuta-

tions of the bosonic lines attached to the fermion loops must be considered. The numbered circles

refer to the operators defined in (3.1)–(3.8). The “outside” black dots form the operators that

mix in.

some detail to illustrate the procedure:

Q0
2,µν = q̄σµνq0 = q̄σµνq e

iS = q̄σµνq

(
1 + ie

∫
ddx eq q̄(x)γν1Aν1(x)q(x) + . . .

)
= q̄σµνq

(
1 + ie eq

iFµ1ν1
2

lim
p1→0

∂µ1p1

∫
ddx e−ip1xq̄(x)γν1q(x) + · · ·

)
= S2, µν + S1, µν

Ncmq

4π2

(
−1

ε̂
+ log(m2

q)

)
+ · · · ,

(3.19)

where we have used that we are working in the radial gauge, Aµ(x) = 1
2x

νFνµ [39, 41].10

Taking into account (3.11) and (3.14), one finds

Û21
MS

(µ) =
Ncmq

4π2
log

(
m2
q

µ2

)
. (3.20)

Through the MS renormalisation we have introduced a subtraction point, µ, which is

the scale of separation between long-distance and short-distance effects. In particular this

mixing term, when plugged into (3.16), removes the (infrared divergent) long-distance parts

from the loops associated to the perturbative O(m2
q) corrections by effectively replacing

logQ2
i /m

2
q → logQ2

i /µ
2.11 Notice how, in contrast with the usual vacuum OPE, where

these divergences can only start at O(m4
q) (and be regulated by the quark condensate),

10The results are of course gauge-independent.
11In ref. [28] this replacement was not done for the m2

q quark loop numerics.
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the divergences in this OPE with respect to the quark loop start at O(m2
q). They become

regulated by Qµν2 .

At the order we are working with, Qµν2 also mixes with Qµν6 through the third Q2-

diagram in figure 4, leading to

Û26
MS

(µ) = − 1

72m3
q

. (3.21)

The Wilson coefficient proportional to
Sµν2
m2
q

combined with this matrix element cancels the

power divergence of the (unregulated) Wilson coefficient associated to Sµν6 , while the mass

correction to the Wilson coefficient associated to Sµν1 gives a finite contribution that needs

to be included. Once again, this interplay is analogous to the corresponding one in the

vacuum OPE [40–43].

3.2.2 Qµν3−6

Since Qµν3 and Qµν4 are already O(gs) and two lines need to be closed to form a loop to give

a non-zero contribution, they only mix with the gluon matrix element at the order we are

working with (see figure 4), giving a finite contribution to its associated regulated Wilson

coefficient. One finds,

U36
MS

(µ) =
1

36mq
, (3.22)

U46
MS

(µ) =
1

24mq
. (3.23)

Since Qµν5 is already order e, it can only mix with Qµν1 and Qµν6 at the order we are

working with. Dimensional analysis shows that the mixing with Qµν1 only modifies the very

tiny and safely neglected O(m4
q) contribution. The mixing with Qµν6 is the same as the

mixing of the quark condensate with the gluon condensate, as in (3.18), since at the order

in e we are working with the photon does not see strong interactions [32, 40–43],

U56
MS

(µ) = − 1

12mq
. (3.24)

3.2.3 Qµν7

The last operator to treat is Qµν7 which through the topologies shown in figure 4 only mixes

with Qµν6 . One has

U76
MS

(µ) = − 1

12

(
1− 2 log

m2
q

µ2

)
. (3.25)
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3.2.4 Full matrix ÛMS(µ)

Putting all the elements together one finds for Nc = 3

ÛMS(µ) =



1 0 0 0 0 0 0 0
3mq
4π2 log

m2
q

µ2
1 0 0 0 − 1

72m3
q

0 0

0 0 1 0 0 1
36mq

0 0

0 0 0 1 0 1
24mq

0 0

0 0 0 0 1 − 1
12mq

0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1
6

(
log

m2
q

µ2
− 1

2

)
1 0

0 0 0 0 0 0 0 1


. (3.26)

3.3 Values of the matrix elements

Apart from providing model-independent information on the kinematic dependence of the

non-perturbative corrections for the short-distance HLbL, in principle this OPE can be

used to study different Green functions with all its (Euclidean) momenta large except for

one soft photon. This might also allow to obtain more information on the expectation

values (or the susceptibilities). However in absence of the latter we need to determine the

values in a different way. We can find values for all of them with a number of assumptions

that should at least give the correct order of magnitude.

3.3.1 Qµν5 and Qµν6

The matrix elements associated to Qµν5 and Qµν6 are directly related to the quark and the

gluon condensates, respectively. The former one is well-known, since it is the order param-

eter of the spontaneous chiral symmetry breaking of QCD, both from chiral perturbation

theory and the lattice. Updated lattice values can be found in ref. [45]. The gluon conden-

sate is not so well-known, since separating its effect from those of the perturbative series

is non-trivial. However its order of magnitude is known, namely X6 ∼ 0.02 GeV4 [32].

3.3.2 Qµν2 , Qµν3 and Qµν4

The matrix elements 〈0|Qµνi |γ(q4)〉 = Xi〈0|e eqFµν |γ(q4)〉 are directly related to the values

of QCD two-point functions at zero momentum, ΠV Qi(q
2). In order to see that, let us take

a generic dressed operator Qµνi,0. Its contribution to a matrix element with a final static

photon can only arise through an extra electromagnetic vertex. Then, in the static limit,

〈0|Qµνi,0|γ(q4)〉 = 〈0|Qµνi,0(QCD)ie

∫
d4x eq Aβ(x)Jβ(x)|γ(q4)〉 = −〈0|e eq Fµν |γ(q4)〉ΠQCD

JQi
(0),

(3.27)

where

ΠQCD,αµν
JQi

(q) =

∫
d4x e−iqx T (Jα(x)Qµνi,0(QCD)(0)) = (qµgαν − qνgαµ)ΠQCD

JQi
(q2) . (3.28)

These two-point functions can be computed at large Euclidean momenta through the OPE

in the vacuum [32].
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One could compute these matrix elements in chiral perturbation theory. In fact, pro-

moting the global SU(3)V symmetries to local ones lead to trivial transformations for the

operators Qµν2 , Qµν3 , Qµν4 and Qµν8 . The resulting effective low-energy Lagrangians are given

in ref. [46].12 At the lowest order the XMS
i (µ) are directly proportional to the low-energy

constants Λi,MS
1 (µ). However, this gives no extra information by itself in the SU(3)V limit,

since the Λi,MS
1 (µ) are not known.

For X2, X3 and X4 we obtain an educated guess by making use of (3.27) and extrap-

olating the argument for X2 from refs. [47–50]. First of all, in the large-Nc limit the QCD

spectrum is made of an infinite number of free, stable meson states [51–53]. The two-point

functions in that limit are then saturated by the exchange of resonances. Owing to the

quantum numbers of the studied two-point functions, the corresponding resonances must

be vector mesons [54]. The low-energy part of the Nc = 3 QCD spectrum is actually close

to the sum of narrow width resonances predicted by the large-Nc limit, while at higher

energies a transition towards the flat perturbative QCD spectrum is observed. Taking all

this into account, and that in the chiral limit the V T two-point function vanishes in the

perturbative regime, it is reasonable to assume that the physical spectrum is saturated by

the contribution of the lowest vector meson, i.e. the ρ meson. Using the formalism devel-

oped in ref. [55] and adding a tensor source [46, 50], one can write the two-point functions

of (3.28) on the form

ΠJQi(q
2) =

CT i
q2 −M2

ρ

. (3.29)

Here, the CTi are constants. It then follows that

Xi =
CTi
M2
ρ

. (3.30)

In order to estimate the CTi , we can match the ansatz of (3.29) with the short-distance OPE

of (3.28). This is sometimes referred to as a vector-meson-dominance (VMD) estimate.

We find

ΠJQ2(q2) =
2〈q̄q〉
q2

, (3.31)

ΠJQ3(q2) = −〈q̄G
µν
a

λa

2 σµνq〉
6q2

≡ −m2
0

〈q̄q〉
6q2

, (3.32)

ΠJQ4(q2) = −〈q̄G
µν
a

λa

2 σµνq〉
6q2

≡ −m2
0

〈q̄q〉
6q2

. (3.33)

This leads to

X2 =
2

M2
ρ

〈q̄q〉, (3.34)

X3 = − m2
0

6M2
ρ

〈q̄q〉 , (3.35)

X4 = − m2
0

6M2
ρ

〈q̄q〉 . (3.36)

12Since the symmetry transformation of Qµν3 , Qµν4 and Qµν8 are identical, their Lagrangians are function-

ally equivalent and only the low-energy couplings are different.
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The obtained value for X2 is, in fact, in very good agreement with a precise lattice deter-

mination [56, 57].13 No precise modern evaluation of m2
0 can be found in the literature.

However, once again, some numerical estimates are available [58]. The estimates of X3 and

X4 are new to the best of our knowledge.

Notice how, once again, the mass correction to (3.31) leads to an infrared divergent

term which is regularised by the mixing of the tensor current with Fµν of (3.20),

〈0|Qµν2,0|γ(q)〉 = ieeqεαΠαµν,0
QCD (q)

= ieeq (qµεν − qνεµ)
mqNc

2π2

[
1 +

1

2ε̂
− 1

2
log

(−q2

m2
q

)
− 1

2
logm2

q

]
= ẐMS(µ) 〈0|Qµν2,R(µ)|γ(q)〉

= i e eqεαΠαµν

R,MS
(q, µ)− Ncµ

2εmq

4π2ε̂
eeq(−i(qµεν − qνεµ)) , (3.37)

with

ΠR,MS(q2, µ) =
mqNc

2π2

(
1− 1

2
log
−q2

µ2

)
. (3.38)

3.3.3 Qµν7

Our largest uncertainty comes from Q7, where we simply perform a dimensional guess

inspired in its mixing with the gluon matrix element. One has

|X7| ∼
1

6

〈αs
π
GG
〉
. (3.39)

Notice how the derivative term of this operator makes non-trivial its low-energy effective

realization when trying to promote invariance under the global symmetry to a local one.

3.3.4 Qµν8,1 and Qµν8,2

For the four-quark operators there are only two combinations that contribute. These are

Sµν8,1 = −g
2
s

2
εµνλσ

∑
A,B

q̄Aγλ
λa
2
qAe

3
qB
q̄Bγσγ5

λa
2
qB , (3.40)

Sµν8,2 = −g
2
s

2
εµνλσ

∑
A,B

e2
qA
q̄A
λa
2
γλqAeqB q̄B

λa
2
γσγ

5qB . (3.41)

These do not mix with other operators at the order we work so the Qµν8,i are the same. Note

that the two operators only differ in the way the quark charges appear.

For both operators we define a generalised magnetic susceptibility〈
Qµν8,i

〉
= eX8,iF

µν . (3.42)

In the massless limit we can also use〈
Qµν8,1

〉
= eX8,1F

µν
∑
B

e4
q , (3.43)

which is a definition more similar to (3.17). This is not possible for Qµν8,2.

13The sign differs from the one quoted there, presumably because of a number of non-trivial convention

differences. They give the VMD estimate also with the opposite sign.
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The operators Qµν8,1 and Qµν8,2 can be decomposed in a basis of 12 four-quark operators

containing different flavour and Dirac matrices (see appendix B for details on the reduc-

tion). However, in the large-Nc limit not all of these survive. In particular, one finds that

only two are non-vanishing due to the factorisation of two colour singlet currents in this

limit. These are

〈0|q̄σµνλ8q q̄q± q̄σµνq q̄λ8q|γ(q)〉Nc→∞ = 3 〈0|q̄σµνλ8q|γ(q)〉〈q̄q〉 = 3
∑
i

λ8,iiX2〈q̄q〉eq,iFµν .

(3.44)

In the first equality we have performed the sum over flavour indices for the quark conden-

sate. In the second step we have projected out the flavour matrix λ8 which is traced with

the quark charge matrix. Here one sees why only these two matrix elements can survive.

First of all, the quark charge matrix is a linear combination of λ3 and λ8, so the relation

Tr(λaλb) = 2 δab implies that only matrix elements with λ3 or λ8 are non-zero. In addition,

the only non-vanishing two-quark condensates are 〈q̄q〉 and the di-quark matrix element

q̄σµνq. To leading order in Nc, one therefore finds

X
Nc→∞
8,1 = X

Nc→∞
8,2 = −2

παs
9
X2〈q̄q〉 . (3.45)

Alternatively one can directly evaluate the large-Nc limit of the two matrix elements needed

by using λaαβλaγδ = 2δαδδγβ . Then use Fierzing and the charge matrix equivalent of (3.44).

The result agrees with (3.45). This way one sees also directly that qA = qB in the non-

zero part of the matrix elements at large Nc. The entire contribution to HLbL is then

proportional to
∑

A e
4
qA

.

4 Calculation of the HLbL contributions

In this section we consider the analytic calculations of the various contributions in the

OPE discussed above. They are the fully connected quark loop, diagram topologies with

one quark line non-contracted (related to two-quark operator matrix elements), diagram

topologies with two quark lines non-contracted (giving rise to four-quark operator matrix

elements) as well as the gluon matrix contribution. One check we have performed on all

contributions is that

q1µ1Πµ1µ2µ3 = q2µ2Πµ1µ2µ3 = q3µ3Πµ1µ2µ3 = 0 , (4.1)

where Πµ1µ2µ3 is defined in (2.11).

This work relied heavily on FORM [59, 60]. The Feynman integral reduction for the

quark loop and the gluon matrix element contributions was done with Reduze 2 [61] and

Kira [62]. In the supplementary material we provide the analytic results as FORM output

in the file results.txt.

4.1 The quark loop

The quark loop contribution arises from allowing for a soft emission from one hard vertex,

which is equivalent to modifying a quark propagator by an external background field [29,
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41], as shown explicitly in ref. [28]. Starting from (2.11), the needed background field,

Fν4µ4 , is simply obtained by Taylor expanding the photon field appearing in the Dyson

series. In the static limit in the radial gauge one has

Aµ4(x4) =
1

2
xν4Fν4µ4 = lim

q4→0

i

2
∂ν4 e−iq4xFν4µ4 . (4.2)

Define the quark propagator for a quark of mass mq as

S(p) =
/p+mq

p2 −m2
q + iε

. (4.3)

One may then write Πµ1µ2µ3µ4ν4
F in a very compact way. After having contracted all the

quark fields in the definition of the tensor in question one finds

Πµ1µ2µ3µ4ν4
F (q1, q2) =

∫
d4p

(2π)d

−
Nce

4
q

2
lim
q4→0

∂

∂qν44

 ∑
σ(1,2,4)

Tr
(
γµ3S(p+q1+q2+q4)γµ4S(p+q1+q2)γµ1S(p+q2)γµ2S(p)

) ,
(4.4)

where σ(i, j, k) denotes a member of the permutation group acting on the set {i, j, k} =

{(q`, µ`)}`∈{i,j,k}. In other words, σ(i, j, k) simply states that we sum over all permutations

of momentum and Lorentz index pairs. Using iteratively the relation

∂

∂qν44

S(p+ q4) = −S(p+ q4)γν4S(p+ q4) , (4.5)

allows for a systematic computation of the quark loop. Applying the projectors given in

appendix A and reducing the (ultraviolet finite) integrals, the result is left in terms of scalar

tadpole, self-energy and triangle integrals. Expanding these in the masses,14 one finds

Π̂i,S(Q2
1, Q

2
2, Q

2
3) = Π̂0

i,S(Q2
1, Q

2
2, Q

2
3) +m2

q Π̂
m2
q

i,S (Q2
1, Q

2
2, Q

2
3,m

2
q) +O(m4

q) , (4.6)

where

Π̂0
m,S =

Nc e
4
q

π2

∑
i,j,k,n

[
c

(m,n)
i,j,k +f

(m,n)
i,j,k F+g

(m,n)
i,j,k log

(
Q2

2

Q2
3

)
+h

(m,n)
i,j,k log

(
Q2

1

Q2
2

)]
λ−nQ2i

1 Q
2j
2 Q2k

3 ,

(4.7)

Π̂
m2
q

m,S =
Nc e

4
q

π2

∑
i,j,k,n

λ−nQ2i
1 Q

2j
2 Q2k

3

×
[
d

(m,n)
i,j,k +p

(m,n)
i,j,k F+q

(m,n)
i,j,k log

(
Q2

2

Q2
3

)
+r

(m,n)
i,j,k log

(
Q2

1

Q2
2

)
+s

(m,n)
i,j,k log

(
Q2

3

m2
q

)]
.

(4.8)

14Taking into account that the mass dependence goes as ∼ A+Bm2
q log(m2

q) +Cm2
q +O(m4

q), one needs

to be careful in order to obtain the correct coefficients as the naive Taylor expansion does not hold.
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(a) (b)

Figure 5. Diagrams with one cut quark line without gauge boson (a), and with gauge boson (b).

The crossed vertices represent a gauge boson insertion on a propagator.

Here, λ = λ(q2
1, q

2
2, q

2
3) is the Källén function defined through

λ(q2
1, q

2
2, q

2
3) = q4

1 + q4
2 + q4

3 − 2q2
1q

2
2 − 2q2

1q
2
3 − 2q2

2q
2
3 , (4.9)

and F = F (Q2
1, Q

2
2, Q

2
3) the massless triangle integral

F (Q2
1, Q

2
2, Q

2
3) ≡ (4π)2i

∫
d4k

(2π)4

1

k2(k − q1)2(k − q1 − q2)2
. (4.10)

The different coefficients (c, d, f, g, h, p, q, r, s) can be found in appendix C. Explicit analytic

formulas for F (Q2
1, Q

2
2, Q

2
3) in terms of Clausen, Glaisher and L functions can be found in

ref. [63]. Spurious singularities in the λ → 0 limit cancel against the zeros of the triangle

function F for the different Π̂i.

As explained above, one finds logarithmic infrared divergences for Π̂
m2
q

i,S (Q2
1, Q

2
2, Q

2
3).

Rearranging the logarithms, they can be expressed on the form log
Q2

3
m2
q
. Once the operator

renormalisation is performed through (3.16), all the infrared divergences exactly cancel.

This yields the finite result

Π̂MS
i (Q2

1, Q
2
2, Q

2
3, µ

2) = Π̂0
i,S(Q2

1, Q
2
2, Q

2
3) +m2

q Π̂
m2
q

i,MS
(Q2

1, Q
2
2, Q

2
3, µ

2) +O(m4
q) . (4.11)

As a consequence, while the massless quark loop corresponds to the leading term in the

short-distance regime, the naive mass correction does not. Infrared divergent logarithms

must be substracted first.

4.2 Contributions from diagrams with one cut quark line

Several kinds of contributions need to be taken into account up to the computed order from

topologies in which, starting from (2.11), one quark line is left uncontracted: see figure 5.

There are several expansions involved. First, the uncontracted quark fields must be Taylor

expanded. Working in the radial gauge both for the gluon and for the photon, the Taylor

expansion [39, 41] of the quark bilinears can be written as:

q̄a(xi)qb(xj) =
∑
m,n

(−1)n

n!m!
xi,µ1 · · ·xi,µn xj,ν1 · · ·xj,νm q̄a(0)Dµ1 · · ·DµnDν1 · · ·Dνmqb(0) .

(4.12)
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Since our computation goes up to dimension D = 6, we need to expand up to three

derivatives. A lower number of derivatives in that expansion can give contributions (apart

from the di-quark magnetic susceptibility, which, as shown in ref. [28], gives a contribution

already at D = 4 when combined with masses) when combined with mass terms from the

hard propagators or from soft gluons or photons coming from hard propagators. A first

simplification consists in realizing that one can put the gluons and photons together with

covariant derivative terms. Extending the results of refs. [39, 41], one finds

q̄(xi)
(
Bε(u) + ieqA

ε(u)
)
q(xj) =

∞∑
p=1

1

(p− 1)!(p+ 1)
uω1 · · ·uωp q̄(xi)

[
Dω1 ,

[
Dω2 , . . . , [Dωp , Dε]

]]
q(xj) .

(4.13)

In fact, it can be shown that for a given flavour the sum of all the contributions that enter

into our computation can be reduced to a compact form. Define ΓA to be an element in

the set of Clifford matrices according to

ΓA ∈
{
I, γ5, γµ, γµγ5, σ

µν ≡ i

2
[γµ, γν ]

}
. (4.14)

The compact expression for Πµ1µ2µ3 is then

Πµ1µ2µ3(q1, q2) =

− e3
q lim
q3→−q1−q2

∑
A,p,n,σ(1,2,3)

(−1)n〈0|q̄Dν1 . . . DνncAΓAq|γ(q4)〉

× Tr
{
γµ3ΓAγµ1iS(−q1)γν1iS(−q1) . . . γνpiS(−q1)γµ2iS(q3)γνp+1iS(q3) . . . γνniS(q3)

}
,

(4.15)

where σ(1, 2, 3) again denotes a pairwise permutation over qi and µi. The coefficients cA
are defined as

cA =

[
Tr
(

ΓAΓA
)]−1

, (4.16)

such that one in a standard fashion can decompose in a spinor basis according to

q̄iqj =
∑
A

cAΓAji q̄ ΓAq . (4.17)

Here, all dependence on the other quantum numbers such as colour or flavour has been

suppressed.

The proof of (4.15) up to the order that we need, i.e. up to p = 3, can be found in

appendix D. Note that already for p ≤ 3 the proof involves a very large cancellation of

contributions, and the compact form allows for a much simplified calculation of the diagram

topologies with one cut quark line.

The reduction of the matrix elements 〈0|q̄Dν1 . . . DνnΓAq|γ(q4)〉 into the matrix el-

ements of section 3 is rather involved. One needs to recursively exploit spinor algebra
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relations, symmetry transformations under Lorentz, parity and charge conjugation as well

as the equations of motion of the quarks and the gluons. The resulting non-zero matrix

elements are of eight types. With zero derivatives we have

1

eeq
〈q̄σα1α2q〉 = X2

S〈Fα1α2〉 . (4.18)

With one derivative one has

1

eeq
〈q̄Dν1γα1γ5q〉 = − imq

4
X2
Sε
ν1α1αβ〈Fαβ〉 , (4.19)

and with two they are

1

eeq
〈q̄Dν1Dν2q〉 = − i

2
〈F ν1ν2〉

(
X5
S −X3

S

)
, (4.20)

1

eeq
〈q̄Dν1Dν2γ5q〉 = −1

4
X4
Sε
ν1ν2αβ〈Fαβ〉 , (4.21)

1

eeq
〈q̄Dν1Dν2σα1α2q〉 = A1g

ν1ν2〈Fα1α2〉+A2

(
gν1α1〈F ν2α2〉+ gν2α1〈F ν1α2〉 (4.22)

− gν1α2〈F ν2α1〉 − gν2α2〈F ν1α1〉
)
.

Here, we have defined the linear combinations

A1 =
−
(
m2
qX

2
S +X4

S

)
+

X5
S−X

3
S

2

3
, (4.23)

A2 =

(
m2
qX

2
S +X4

S

)
+X5

S −X3
S

12
. (4.24)

For three derivatives there are two contributions. These are

1

eeq
〈q̄Dν1Dν2Dν3γν4q〉 =A3

(
gν1ν2〈F ν3ν4〉 − gν2ν3〈F ν1ν4〉

)
+A4

(
gν1ν4〈F ν2ν3〉+ gν3ν4〈F ν1ν2〉

)
+A5 g

ν2ν4〈F ν1ν3〉 , (4.25)

1

eeq
〈q̄Dν1Dν2Dν3γν4γ5q〉 =A6 g

ν1ν3〈F̄ ν2ν4〉

+A7

(
gν1ν2〈F̄ ν3ν4〉+ gν2ν3〈F̄ ν1ν4〉

)
+A8

(
gν1ν4〈F̄ ν2ν3〉 − gν3ν4〈F̄ ν1ν2〉

)
. (4.26)
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Here, F̄µν ≡ i
2ε
µναβFαβ and the Ai are given by

A3 =
1

24

(
− 5X8,1

S + 2X7
S − 5mqX

4
S + 2mqX

3
S

)
, (4.27)

A4 =
1

24

(
−X8,1

S +X7
S − 3mqX

5
S −mqX

4
S + 4mqX

3
S

)
, (4.28)

A5 =
1

24

(
− 2X8,1

S −X7
S − 3mqX

5
S − 2mqX

4
S + 2mqX

3
S

)
, (4.29)

A6 =
1

24

(
− 6X8,1

S +X7
S −mqX

5
S − 2mqX

4
S + 2mqX

3
S + 2m3

qX
2
S

)
, (4.30)

A7 =
1

24

(
−X8,1

S +X7
S −mqX

5
S +mqX

4
S + 2mqX

3
S + 2m3

qX
2
S

)
, (4.31)

A8 =
1

24

(
X8,1
S + 3mqX

4
S

)
. (4.32)

The operator

Sµνq8,1 ≡ −
g2
s

2
εµνλσ

∑
A

q̄Aγλ
λa
2
qAq̄γσγ5

λa
2
q (4.33)

enters from using the gluon equation of motion. Its susceptibility is defined as

〈Sµνq8,1〉 = eqX
8,1
S 〈Fµν〉 . (4.34)

Using the above decompositions in (4.15) and rewriting the Sµνi into the Qµνi and

replacing the Xi
S with the corresponding Xi, one finds

Π̂m = e4
q

∑
i,j,k,n,p

cm,n,pi,j,k mn
q Xp Q

−2i
1 Q−2j

2 Q−2k
3 . (4.35)

The numerical coefficients cm,n,pi,j,k can be found in appendix C.

4.3 Contributions from four-quark operators

The four-quark operator contributions arise from cutting two quark lines.15 The resulting

diagrams become split in two parts and, as a consequence, introduce flavour mixing. An

extra gluon propagator needs to be included from the Dyson series expansion to connect

the quark lines. The resulting contribution, up to permutations of σ(1, 2, 3), is shown in

figure 6 where the gluon can be connected in three different positions in the quark line

above and in two different positions in the one below. These diagram contributions can be

compactly written as

Πµ1µ2µ3(q1, q2) =− 1

16

∑
A,B

〈
e2
qA
q̄A
λa
2

Γω1P qA eqB q̄B
λa
2

Γω2QqB

〉

× lim
q3→−q1−q2

∑
σ(1,2,3)

1

q2
3

Tr

[
ΓQω2

(
γµ3S(−q3)γε+γεS(q3)γµ3

)]

×Tr

[
−ΓP,ω1

(
γµ1S(−q1)γµ2S(q3)γε+γεS(−q3)γµ1S(q2)γµ2 +γµ1S(−q1)γεS(q2)γµ2

)]
,

(4.36)

15Afterwards one needs to add the one coming from the one cut line and the gluon equation of motion.
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Figure 6. Contributions from four-quark operators obtained cutting two quark lines. All possible

ways to connect the gluon to the quark lines must be considered.

Figure 7. An example of a topology of the gluon matrix element contributions.

where ΓωP ∈ {γω, γωγ5} and ΓωP ∈ {γω,−γωγ5}. In fact charge conjugation requires that

A and B must be different to get a non-zero matrix element and one of the remaining two

possible contributions vanishes when taking the traces. Recalling the definition of X8,2

in (3.42) we find

Π̂1 = Π̂4 = 8X8,2
Q2

1 +Q2
2

Q4
1Q

4
2Q

2
3

, (4.37)

Π̂54 = 8X8,2
Q4

2 −Q4
1

Q6
1Q

6
2Q

2
3

, (4.38)

Π̂7 = Π̂17 = Π̂39 = 0 . (4.39)

A reduction of all possible four-quark matrix elements into a basis of 12 independent ones

is given in appendix B for the chiral limit, i.e. mu = md = ms = 0.

4.4 The gluon matrix element

The gluon matrix element contribution arises from all the possible combinations in which,

starting from (2.11), one extra QED and two extra QCD vertices are added (see figure 7).

The gauge boson fields Fµν , Gaµν and Gbµν are then Taylor expanded according to (4.2).

Since all the quark fields are connected, the colour chain always leads to the same colour

trace, namely

Tr

(
λa

2

λb

2

)
=
δab

2
. (4.40)

Once the colour and the space-time terms from the Taylor expansions have been factored

out, the remaining six-point function is fully symmetric under the exchange of indices.
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Taking advantage of this symmetry, one can rewrite the whole contribution as a sum of

permutations according to

Πµ1µ2µ3
GG (q1, q2) = e4

qFν4µ4
4π2〈αsGµνa Gaµν〉

32d(d− 1)
(gν5ν6gµ5µ6 − gµ5ν6gν5µ6)

(
6∏
i=4

lim
qi→0

∂

∂qνii

)

×
∫

d4p

(2π)d

∑
σ(1,2,4,5,6)

Tr

(
γµ3S(p+ q1 + q2 + q4 + q5 + q6)γµ1S(p+ q2 + q4 + q5 + q6)

× γµ2S(p+ q4 + q5 + q6)γµ4S(p+ q5 + q6)γµ5S(p+ q6)γµ6S(p)

)
.

(4.41)

Here, σ(1, 2, 4, 5, 6) is the set of pairwise permutations of µi and qi for i = 1, 2, 3, 5, 6.

Also, the equation has been written in terms of d = 4 − 2ε for renormalisation purposes.

Using (4.4) iteratively in the above equation, then taking the momentum limits, calculating

the Dirac trace and projecting the results into the Π̂i, one finds the results in terms of

ultraviolet finite integrals. We do this by reducing the loop integrals to combinations of

triangle, self-energy and tadpole integrals with the help of the package KIRA, all the time

carefully performing both the expansions in ε and in the quark masses. Without including

operator mixing the result takes the form

Π̂GGm,S =X6,S e
4
q

∑
i,j,k

[
c

(m)
i,j,k+f

(m)
i,j,km

−2
q +g

(m)
i,j,k log

(
Q2

1

Q2
2

)
+h

(m)
i,j,k log

(
Q2

3

m2
q

)]
Q−2i

1 Q−2j
2 Q−2k

3 ,

(4.42)

where c, f, g and h are numerical coefficients given in appendix C.

When operator mixing is taken into account, the found divergences, which scale as 1
m2
q

and log Q2

m2
q
, exactly cancel respectively with the X1 and X7 contributions. The dependence

on the triangle integral also cancels, leading to a fully analytic gluon matrix element con-

tribution. One should note that the final expressions for this contribution are very simple,

even compared to the quark loop, and there are substantial cancellations along the way

that lead to this simple form.

5 Numerical results

In this section we present numerical results for the full aHLbL
µ integral in (2.8). Using the

relations in (2.9) between the set of functions Π̄i and the Π̂i given in the appendices as well

as section 4.3, we evaluate aHLbL
µ for the matrix element as well as loop contributions. We

use the matrix elements as estimated in section 3.3. For this purpose, we use the Cuba

library [64], in particular the Vegas integrator building on Monte Carlo sampling the three-

dimensional integral. The results have been checked as well with an adaptive deterministic

integrator implemented by us. Care has to be taken in the numerics since λ can vanish or

get very small and appears with rather high negative powers in some expressions. Those

areas in the integration have to be treated by expanding the loop functions around the

λ = 0 points analytically, some of these limits are given explicitly in appendix C.2.
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We investigate the various contributions first at two benchmark values of the lower

momentum cut-off, i.e. Q1,2,3 > Qmin ∈ {1, 2}GeV. Then we proceed to investigate how

the different pieces scale with Qmin and compare the respective sizes. For notational con-

venience, we refer to the contributions with respect to the corresponding Xi.

At the sought precision level it is sufficient to assess the order of magnitude of these

corrections. Therefore, in want of precise input we resort to simplified input as discussed

in the previous section. For this purpose, we use

mu = md = 5 MeV , ms = 100 MeV , µ = Qmin , αs = 0.33 . (5.1)

Given the smallness of the matrix element and quark mass correction contributions we did

not take into account the running with µ of the various inputs but kept them fixed. The

benchmark points for Qmin ∈ {1, 2}GeV are presented in table 1. Since the contributions

from the matrix element X2 come in both suppressed at order mq and at order m3
q , we here

present the respective contributions, labelled X2,m and X2,m3 , of these. The table shows

that power correction are suppressed by at least two orders of magnitude with respect to

the quark loop. This is also visible in figures 8–10 where we consider the scaling with

Qmin. The Ti (Q1, Q2, τ) in (2.8), when expanded for large Qi, are of order m2
µ, except for

T1 which is m4
µ. The variation with Qmin from dimensions is thus 1/Q2

min for the massless

quark loop, 1/Q4
min for the d = 4 contributions and 1/Q6

min for the d = 6 contributions.

The scaling is found to agree with naive dimensional counting.

The power corrections not suppressed by quark masses, i.e. X6, X7, X8,1 and X8,2, are

found to be numerically suppressed. This is partially explained by their extra suppression

in powers of ΛQCD. Their numerical impact is similar to the one of the di-quark magnetic

susceptibility, X2, and clearly more important than the perturbative mass contributions.

We find that even at 1 GeV, all these power corrections are suppressed by at least two

orders of magnitude with respect to the massless quark loop. Even though this result

motivates studying whether the smallness of the corrections pinpoint a trend also for the

purely perturbative ones, no strong conclusions should be derived from it.

6 Conclusions and prospects

The leading asymptotic behaviour of the HLbL for the (g − 2)µ kinematics has been con-

firmed to be given by the massless quark loop contribution. Although this had been com-

monly assumed previously, this is by no means obvious due to the static limit associated

to the (g−2)µ definition with the external photon leg at zero momentum. The main result

of this work and of ref. [28] is to show how a proper short-distance expansion can be done

in the limit of Q2
1 ∼ Q2

2 ∼ Q2
3 � Λ2

QCD.

In order to show that the quark loop is the first order of a well-defined expansion, the

soft photon has been formulated as a long-distance, or, background, degree of freedom,

following previous works of refs. [29, 30]. We stress that using the vacuum OPE valid for

HLbL when all the four Euclidean momenta are large, one would for the (g−2)µ kinematics

have obtained a divergent expansion [28].
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Contribution Inputs (GeV units) Qmin = 1 GeV Qmin = 2 GeV

X1,0 1.73 · 10−10 4.35 · 10−11

X1,m2 −5.7 · 10−14 −3.6 · 10−15

X2,m X2 = −4 · 10−2 −1.2 · 10−12 −7.3 · 10−14

X2,m3 X2 = −4 · 10−2 6.4 · 10−15 1.0 · 10−16

X3 X3 = 3.51 · 10−3 −3.0 · 10−14 −4.7 · 10−16

X4 X4 = 3.51 · 10−3 3.3 · 10−14 5.3 · 10−16

X5 X5 = −1.56 · 10−2 −1.8 · 10−13 −2.8 · 10−15

X6 X6 = 2 · 10−2 1.3 · 10−13 2.0 · 10−15

X7 X7 = 3.33 · 10−3 9.2 · 10−13 1.5 · 10−14

X8,1 X8,1 = −1.44 · 10−4 3.0 · 10−13 4.7 · 10−15

X8,2 X8,2 = −1.44 · 10−4 −1.3 · 10−13 −2.0 · 10−15

Table 1. Numerical results for aHLbL
µ for the indicated inputs.

10-18

10-16

10-14

10-12

10-10

 1  1.5  2  2.5  3  3.5  4

a
µ

Qmin (GeV)

X1,0
X1,m2

X2,m
X2,m3

Figure 8. Numerical contributions from the X1 and X2 pieces in absolute value using the inputs

from table 1. As expected, the quark loop fully dominates.

A comprehensive description of the resulting OPE has been provided, including a

detailed explanation on how to achieve a complete and systematic separation of short and

long distance effects while cancelling internal divergences. The physical meaning of some

of the resulting matrix elements is also given, and we have used those to present estimates

of all of them. The obtained results could in the future be used to analyse other Green

functions and their phenomenological applications.
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Figure 9. Numerical contributions from the X3−5 pieces in absolute value using the inputs from

table 1. The massless quark loop is shown for comparison.
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Figure 10. Numerical contributions from the X6−8 pieces in absolute value using the inputs from

table 1. Even when they are not suppressed by the quark mass size, they are found to be small

compared with the massless quark loop contribution.
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The resulting OPE is applied to the HLbL in the (g−2)µ kinematics for Q1, Q2, Q3 �
ΛQCD. As a consequence of setting one of the momenta to zero, the long distance effects

become functionally more important. The quark loop is still found to be the dominant

contribution, but the first non-perturbative correction becomes suppressed by just one

power of ΛQCD (plus one power of mq), in contrast with the Λ3
QCD (q̄q) suppression in the

OPE applicable when all the Euclidean momenta are large.

However, no operators allowed by the symmetries are found to enter without quark

mass suppression below Λ4
QCD with respect to the quark loop contribution. These Λ4

QCD

contributions are computed and their role for the (g− 2)µ is estimated. They are found to

be very small. Whether or not this may be indicating that the quark loop gives a precise

description of the HLbL at relatively low momenta (i.e. Qi ∼ 1 GeV) will only be known

once the two-loop perturbative corrections have been computed. This calculation is already

under way and will be presented in a future publication.
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A A set of Lorentz projectors for the Π̂i

In this appendix we present a set of projectors useful for projecting to the set of Π̂i. Note

that due to gauge invariance this set is not unique. We have derived and used a second set

of projectors. Obtaining the same results with both projectors is one of the checks we did.

Below we only present one of the sets of projectors.
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B Four-quark reduction

In this section we reduce the number of four-quark matrix elements from the basis

q̄iAᾱqjBβ̄ q̄kCγ̄qlDδ̄, where the barred Greek indices denote colour, the capital ones flavour

and the latin ones spinor, into one with only twelve non-zero elements.

First of all, due to confinement only colour singlet operators can give contributions.

From this one has
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)]
.

(B.1)

Next, taking into account that the QCD vacuum preserves SU(3)V in the flavour sector up

to small quark mass corrections, the contributing four-quark operators must break SU(3)V

in the same direction as the octet charge operator. There are therefore four independent

flavour structures which contribute and can be taken to be

O1 =QABδCD q̄iAqjB q̄kCqlD , (B.2)

O2 =QCDδAB q̄iAqjB q̄kCqlD , (B.3)

O3 =QADδBC q̄iAqjB q̄kCqlD , (B.4)

O4 =QBCδAD q̄iAqjB q̄kCqlD . (B.5)

The charge operator can be expressed with Gell-Mann matrices through

Q=
λ3

2
+

λ8

2
√

3
, (B.6)

and the third and fourth operators O3 and O4 can be rewritten using a Fierzlike identity:

O3,4 =
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(B.7)

Orthogonal operators Õi satisfying

Õn =PnABCD q̄iAqjB q̄kCqlD ,

with PnABCDP
m
BADC = δmn ,

(B.8)

can be obtained from linear combinations of the operators Oi (i= 1, . . . ,4) as

Õ1 =
1

2
(O1+O2) , (B.9)
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(O1−O2) , (B.10)
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This leads to

q̄iAqjB q̄kCqlD =
∑
n

PnBADCÕn. (B.13)

Finally, the fact that the vacuum expectation values of the operators must be proportional

to Q implies

〈q̄iqj q̄kλ3ql〉=
√

3〈q̄iqj q̄kλ8ql〉 , (B.14)

〈q̄iλ3qj q̄kql〉=
√

3〈q̄iλ8qj q̄kql〉 , (B.15)

〈q̄iλ1qj q̄kλ
2ql〉−〈q̄iλ2qj q̄kλ

1ql〉= 〈q̄iλ5qj q̄kλ
4ql〉−〈q̄iλ4qj q̄kλ

5ql〉 , (B.16)

〈q̄iλ1qj q̄kλ
1ql〉=−〈q̄iλ8qj q̄kλ

8ql〉= 〈q̄iλnqj q̄kλnql〉 , forn= 2, . . . ,5 ,

(B.17)

〈q̄iλ1qj q̄kλ
1ql〉=−

1

2
〈q̄iλnqj q̄kλnql〉 , for n= 6,7 , (B.18)

〈q̄iλ1qj q̄kλ
1ql〉=

1

2
√

3

(
〈q̄iλ3qj q̄kλ

8ql〉+〈q̄iλ8qj q̄kλ
3ql〉
)
, (B.19)

and the final flavour decomposition reads

q̄iAqjB q̄kCqlD =

1

2
(q̄iλ1qj q̄kλ2ql−q̄iλ2qj q̄kλ1ql)

(
λ1
BA

2

λ2
DC

2
−λ

2
BA

2

λ1
DC

2
+
λ4
BA

2

λ5
DC

2
−λ

5
BA

2

λ4
DC

2

)
+q̄iλ1qj q̄kλ1ql

(
5∑
i=1

λiBA
2

λiDC
2
−2

7∑
i=6

λiBA
2

λiDC
2
−λ

8
BA

2

λ8
DC

2
+
√

3

(
λ3
BA

2

λ8
DC

2
+
λ8
BA

2

λ3
DC

2

))

+
1

2
(q̄iλ8qj q̄kql+q̄iqj q̄kλ8ql)

(
λ8
BA+

√
3λ3

BA

2

δDC
3

+
δBA

3

λ8
DC+

√
3λ3

DC

2

)

+
1

2
(q̄iλ8qj q̄kql−q̄iqj q̄kλ8ql)

(
λ8
BA+

√
3λ3

BA

2

δDC
3
− δBA

3

λ8
DC+

√
3λ3

DC

2

)
. (B.20)

Only the spinor reduction remains. As usual, one can decompose each operator above

according to

Ôi′j′k′l′ =
∑
A,B

cAcBÔijklΓ
ijAΓklB ΓAi′j′Γ

B
k′l′ , (B.21)

where ΓA is an element in the spinor basis of (4.14) and cA the corresponding normalisa-

tion defined in (4.16). However, many restrictions apply. Proportionality with Fµν leaves a
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small number of independent Lorentz structures possible. Moreover, since Ôijkl are by con-

struction either symmetric or anti-symmetric under the exchange (ij)↔ (kl), the reduced

matrix element ÔijklΓ
ijBΓklA is trivially related to ÔijklΓ

ijAΓklB. Taking advantage of this

and requiring that the reduced matrix elements should be odd under charge conjugation

one finds

1

2
(q̄iλ1qj q̄kλ2ql−q̄iλ2qj q̄kλ1ql) =

1

64

(
γµjiγ

ν
lk−γνjiγµlk

)[
q̄λ1γµqq̄λ2γνq−q̄λ2γµqq̄λ1γνq

]
+

1

64

(
(γµγ5)ji(γ

νγ5)lk−(γνγ5)ji(γ
µγ5)lk

)[
q̄λ1γµγ5qq̄λ2γνγ5q−q̄λ2γµγ5qq̄λ1γνγ5q

]
+

1

64
gλα

(
σµλji σ

αν
lk −σνλji σαµlk

)
× 1

2
gρβ
[
q̄σµρλ1q q̄σβνλ2q−q̄σµρλ2q q̄σβνλ1q

]
(B.22)

q̄iλ1qj q̄kλ1ql =
1

32

(
σµνji δlk+δjiσ

µν
lk

)[
q̄λ1qq̄λ1σµνq

]
+

1

64
εµνµ1ν1εµ1ν1µ2ν2

(
(γµγ5)ji(γν)lk−(γµ)ji(γνγ5)lk

)[
q̄λ1γ

µ2γ5qq̄λ1γ
ν2q
]

+
1

32

(
σµνji γ5 lk+γ5jiσ

µν
lk

)[
q̄λ1σµνq q̄λ1γ5q

]
, (B.23)

q̄iλ8qj q̄kql±q̄iqj q̄kλ8ql =
1

32

(
σµνji δlk±δjiσ

µν
lk

)[
q̄σµνλ8q q̄q±q̄σµνq q̄λ8q

]
+

1

64
εµνµ1ν1εµ1ν1µ2ν2

(
(γµγ5)ji(γν)lk∓(γµ)ji(γνγ5)lk

)
×
[
q̄λ8γ

µ2γ5q q̄γ
ν2q±q̄γµ2γ5q q̄λ8γ

ν2q
]

+
1

32

(
σµνji γ5 lk±γ5jiσ

µν
lk

)[
q̄σµνλ8q q̄γ5q±q̄σµνq q̄λ8γ5q

]
. (B.24)

This reduces the original set of 1679616 matrix elements to a basis of 12 non-zero ones.

C Explicit expressions for the Π̂i

In this appendix, we seperately list the form factors Π̂i for the contributions from the quark

loop, one cut quark line topologies and the gluon matrix element. Note that those for the

two-cut quark line topologies were given in section 4.3.

C.1 The quark loop

Recall (4.11)

Π̂MS
m = Π̂0

m,S+m2
q Π̂

m2
q

m,MS
+O(m4

q) . (C.1)

The two terms above are given by

Π̂0
m,S =

Nc e
4
q

π2

∑
i,j,k,n

[
c
(m,n)
i,j,k +f

(m,n)
i,j,k F+g

(m,n)
i,j,k log

(
Q2

2

Q2
3

)
+h

(m,n)
i,j,k log

(
Q2

1

Q2
2

)]
λ−nQ2i

1 Q
2j
2 Q2k

3 ,

(C.2)

Π̂
m2

q

m,MS
=
Nc e

4
q

π2

∑
i,j,k,n

λ−nQ2i
1 Q

2j
2 Q2k

3

·
[
d
(m,n)
i,j,k +p

(m,n)
i,j,k F+q

(m,n)
i,j,k log

(
Q2

2

Q2
3

)
+r

(m,n)
i,j,k log

(
Q2

1

Q2
2

)
+s

(m,n)
i,j,k log

(
Q2

3

µ2

)]
,

(C.3)
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where the non-zero coefficients are

c
(1,1)
0,0,0 = 2 , (C.4)

f
(1,2)
0,1,2 = 2 , f

(1,2)
0,2,1 =−4 , f

(1,2)
0,3,0 = 2 , f

(1,2)
1,0,2 = 2 , f

(1,2)
1,1,1 = 4 , f

(1,2)
1,2,0 =−2 , f

(1,2)
2,0,1 =−4,

f
(1,2)
2,1,0 =−2 , f

(1,2)
3,0,0 = 2,

(C.5)

g
(1,2)
0,0,2 = 2 , g

(1,2)
0,1,1 = 2 , g

(1,2)
0,2,0 =−4 , g

(1,2)
1,0,1 = 2 , g

(1,2)
1,1,0 = 8 , g

(1,2)
2,0,0 =−4, (C.6)

h
(1,2)
0,0,2 = 1 , h

(1,2)
0,1,1 =−1 , h

(1,2)
0,2,0 =−1 , h

(1,2)
0,3,−1 = 1 , h

(1,2)
1,0,1 = 3 , h

(1,2)
1,1,0 = 4 , h

(1,2)
1,2,−1 =−3,

h
(1,2)
2,0,0 =−3 , h

(1,2)
2,1,−1 = 3 , h

(1,2)
3,0,−1 =−1,

(C.7)

c
(4,3)
−1,0,5 = 2 , c

(4,3)
−1,1,4 =−6 , c

(4,3)
−1,2,3 = 4 , c

(4,3)
−1,3,2 = 4 , c

(4,3)
−1,4,1 =−6 , c

(4,3)
−1,5,0 = 2 , c

(4,3)
0,−1,5 = 2,

c
(4,3)
0,0,4 = 36 , c

(4,3)
0,1,3 =−20 , c

(4,3)
0,2,2 =−64 , c

(4,3)
0,3,1 = 34 , c

(4,3)
0,4,0 = 12 , c

(4,3)
1,−1,4 =−6 , c

(4,3)
1,0,3 =−20,

c
(4,3)
1,1,2 = 168 , c

(4,3)
1,2,1 =−28 , c

(4,3)
1,3,0 =−66 , c

(4,3)
2,−1,3 = 4 , c

(4,3)
2,0,2 =−64 , c

(4,3)
2,1,1 =−28 , c

(4,3)
2,2,0 = 104,

c
(4,3)
3,−1,2 = 4 , c

(4,3)
3,0,1 = 34 , c

(4,3)
3,1,0 =−66 , c

(4,3)
4,−1,1 =−6 , c

(4,3)
4,0,0 = 12 , c

(4,3)
5,−1,0 = 2,

(C.8)

f
(4,4)
0,0,7 = 12 , f

(4,4)
0,1,6 =−6 , f

(4,4)
0,2,5 =−60 , f

(4,4)
0,3,4 = 66 , f

(4,4)
0,4,3 = 36 , f

(4,4)
0,5,2 =−66 , f

(4,4)
0,6,1 = 12,

f
(4,4)
0,7,0 = 6 , f

(4,4)
1,0,6 =−6 , f

(4,4)
1,1,5 = 216 , f

(4,4)
1,2,4 =−138 , f

(4,4)
1,3,3 =−360 , f

(4,4)
1,4,2 = 270 , f

(4,4)
1,5,1 = 48,

f
(4,4)
1,6,0 =−30 , f

(4,4)
2,0,5 =−60 , f

(4,4)
2,1,4 =−138 , f

(4,4)
2,2,3 = 744 , f

(4,4)
2,3,2 =−204 , f

(4,4)
2,4,1 =−300,

f
(4,4)
2,5,0 = 54 , f

(4,4)
3,0,4 = 66 , f

(4,4)
3,1,3 =−360 , f

(4,4)
3,2,2 =−204 , f

(4,4)
3,3,1 = 480 , f

(4,4)
3,4,0 =−30 , f

(4,4)
4,0,3 = 36,

f
(4,4)
4,1,2 = 270 , f

(4,4)
4,2,1 =−300 , f

(4,4)
4,3,0 =−30 , f

(4,4)
5,0,2 =−66 , f

(4,4)
5,1,1 = 48 , f

(4,4)
5,2,0 = 54 , f

(4,4)
6,0,1 = 12,

f
(4,4)
6,1,0 =−30 , f

(4,4)
7,0,0 = 6,

(C.9)

g
(4,4)
−1,0,7 = 1 , g

(4,4)
−1,1,6 =−3 , g

(4,4)
−1,2,5 = 1 , g

(4,4)
−1,3,4 = 5 , g

(4,4)
−1,4,3 =−5 , g

(4,4)
−1,5,2 =−1 , g

(4,4)
−1,6,1 = 3,

g
(4,4)
−1,7,0 =−1 , g

(4,4)
0,−1,7 = 1 , g

(4,4)
0,0,6 = 50 , g

(4,4)
0,1,5 =−13 , g

(4,4)
0,2,4 =−184 , g

(4,4)
0,3,3 = 119 , g

(4,4)
0,4,2 = 106,

g
(4,4)
0,5,1 =−75 , g

(4,4)
0,6,0 =−4 , g

(4,4)
1,−1,6 =−3 , g

(4,4)
1,0,5 =−13 , g

(4,4)
1,1,4 = 486 , g

(4,4)
1,2,3 =−162 , g

(4,4)
1,3,2 =−559,

g
(4,4)
1,4,1 = 207 , g

(4,4)
1,5,0 = 44 , g

(4,4)
2,−1,5 = 1 , g

(4,4)
2,0,4 =−184 , g

(4,4)
2,1,3 =−162 , g

(4,4)
2,2,2 = 908 , g

(4,4)
2,3,1 =−135,

g
(4,4)
2,4,0 =−124 , g

(4,4)
3,−1,4 = 5 , g

(4,4)
3,0,3 = 119 , g

(4,4)
3,1,2 =−559 , g

(4,4)
3,2,1 =−135 , g

(4,4)
3,3,0 = 170 , g

(4,4)
4,−1,3 =−5,

g
(4,4)
4,0,2 = 106 , g

(4,4)
4,1,1 = 207 , g

(4,4)
4,2,0 =−124 , g

(4,4)
5,−1,2 =−1 , g

(4,4)
5,0,1 =−75 , g

(4,4)
5,1,0 = 44 , g

(4,4)
6,−1,1 = 3,

g
(4,4)
6,0,0 =−4 , g

(4,4)
7,−1,0 =−1,

(C.10)

h
(4,4)
0,−1,7 = 1 , h

(4,4)
0,0,6 = 25 , h

(4,4)
0,1,5 =−63 , h

(4,4)
0,2,4 = 1 , h

(4,4)
0,3,3 = 91 , h

(4,4)
0,4,2 =−45 , h

(4,4)
0,5,1 =−29,

h
(4,4)
0,6,0 = 19 , h

(4,4)
1,−1,6 =−3 , h

(4,4)
1,0,5 = 50 , h

(4,4)
1,1,4 = 243 , h

(4,4)
1,2,3 =−500 , h

(4,4)
1,3,2 = 19 , h

(4,4)
1,4,1 = 258,

h
(4,4)
1,5,0 =−67 , h

(4,4)
2,−1,5 = 1 , h

(4,4)
2,0,4 =−185 , h

(4,4)
2,1,3 = 338 , h

(4,4)
2,2,2 = 454 , h

(4,4)
2,3,1 =−563 , h

(4,4)
2,4,0 = 51,

h
(4,4)
3,−1,4 = 5 , h

(4,4)
3,0,3 = 28 , h

(4,4)
3,1,2 =−578 , h

(4,4)
3,2,1 = 428 , h

(4,4)
3,3,0 = 85 , h

(4,4)
4,−1,3 =−5 , h

(4,4)
4,0,2 = 151,

h
(4,4)
4,1,1 =−51 , h

(4,4)
4,2,0 =−175 , h

(4,4)
5,−1,2 =−1 , h

(4,4)
5,0,1 =−46 , h

(4,4)
5,1,0 = 111 , h

(4,4)
6,−1,1 = 3 , h

(4,4)
6,0,0 =−23,

h
(4,4)
7,−1,0 =−1.

(C.11)
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c
(7,3)
−1,0,4 = 6 , c

(7,3)
−1,1,3 =−12 , c

(7,3)
−1,3,1 = 12 , c

(7,3)
−1,4,0 =−6 , c

(7,3)
0,−1,4 = 4 , c

(7,3)
0,0,3 = 64 , c

(7,3)
0,1,2 = 68,

c
(7,3)
0,2,1 =−112 , c

(7,3)
0,3,0 =−24 , c

(7,3)
1,−1,3 =−16 , c

(7,3)
1,0,2 =−116 , c

(7,3)
1,1,1 = 100 , c

(7,3)
1,2,0 = 104 , c

(7,3)
2,−1,2 = 24,

c
(7,3)
2,0,1 = 16 , c

(7,3)
2,1,0 =−108 , c

(7,3)
3,−1,1 =−16 , c

(7,3)
3,0,0 = 30 , c

(7,3)
4,−1,0 = 4,

(C.12)

f
(7,4)
0,0,6 = 24 , f

(7,4)
0,1,5 = 36 , f

(7,4)
0,2,4 =−156 , f

(7,4)
0,3,3 = 24 , f

(7,4)
0,4,2 = 144 , f

(7,4)
0,5,1 =−60 , f

(7,4)
0,6,0 =−12,

f
(7,4)
1,0,5 =−36 , f

(7,4)
1,1,4 = 288 , f

(7,4)
1,2,3 = 312 , f

(7,4)
1,3,2 =−576 , f

(7,4)
1,4,1 =−36 , f

(7,4)
1,5,0 = 48 , f

(7,4)
2,0,4 =−84,

f
(7,4)
2,1,3 =−600 , f

(7,4)
2,2,2 = 432 , f

(7,4)
2,3,1 = 456 , f

(7,4)
2,4,0 =−60 , f

(7,4)
3,0,3 = 216 , f

(7,4)
3,1,2 = 144,

f
(7,4)
3,2,1 =−552 , f

(7,4)
4,0,2 =−144 , f

(7,4)
4,1,1 = 180 , f

(7,4)
4,2,0 = 60 , f

(7,4)
5,0,1 = 12 , f

(7,4)
5,1,0 =−48 , f

(7,4)
6,0,0 = 12,

(C.13)

g
(7,4)
−1,0,6 = 2 , g

(7,4)
−1,2,4 =−18 , g

(7,4)
−1,3,3 = 32 , g

(7,4)
−1,4,2 =−18 , g

(7,4)
−1,6,0 = 2 , g

(7,4)
0,−1,6 = 2 , g

(7,4)
0,0,5 = 104,

g
(7,4)
0,1,4 = 126 , g

(7,4)
0,2,3 =−368 , g

(7,4)
0,3,2 =−58 , g

(7,4)
0,4,1 = 184 , g

(7,4)
0,5,0 = 10 , g

(7,4)
1,−1,5 =−8 , g

(7,4)
1,0,4 =−158,

g
(7,4)
1,1,3 = 544 , g

(7,4)
1,2,2 = 652 , g

(7,4)
1,3,1 =−440 , g

(7,4)
1,4,0 =−78 , g

(7,4)
2,−1,4 = 10 , g

(7,4)
2,0,3 =−160,

g
(7,4)
2,1,2 =−924 , g

(7,4)
2,2,1 = 208 , g

(7,4)
2,3,0 = 170 , g

(7,4)
3,0,2 = 358 , g

(7,4)
3,1,1 = 176 , g

(7,4)
3,2,0 =−170

g
(7,4)
4,−1,2 =−10 , g

(7,4)
4,0,1 =−136 , g

(7,4)
4,1,0 = 78 , g

(7,4)
5,−1,1 = 8 , g

(7,4)
5,0,0 =−10 , g

(7,4)
6,−1,0 =−2,

(C.14)

h
(7,4)
0,−1,6 = 2 , h

(7,4)
0,0,5 = 56 , h

(7,4)
0,1,4 =−46 , h

(7,4)
0,2,3 =−176 , h

(7,4)
0,3,2 = 214 , h

(7,4)
0,4,1 =−8 , h

(7,4)
0,5,0 =−42,

h
(7,4)
1,−1,5 =−8 , h

(7,4)
1,0,4 = 16 , h

(7,4)
1,1,3 = 536 , h

(7,4)
1,2,2 =−256 , h

(7,4)
1,3,1 =−400 , h

(7,4)
1,4,0 = 112 , h

(7,4)
2,−1,4 = 10,

h
(7,4)
2,0,3 =−336 , h

(7,4)
2,1,2 =−300 , h

(7,4)
2,2,1 = 800 , h

(7,4)
2,3,0 =−30 , h

(7,4)
3,0,2 = 352 , h

(7,4)
3,1,1 =−360,

h
(7,4)
3,2,0 =−160 , h

(7,4)
4,−1,2 =−10 , h

(7,4)
4,0,1 =−40 , h

(7,4)
4,1,0 = 170 , h

(7,4)
5,−1,1 = 8 , h

(7,4)
5,0,0 =−48,

h
(7,4)
6,−1,0 =−2,

(C.15)

c
(17,2)
0,0,1 = 16 , c

(17,2)
0,1,0 =−12 , c

(17,2)
0,2,−1 =−4 , c

(17,2)
1,0,0 =−12 , c

(17,2)
1,1,−1 = 8 , c

(17,2)
2,0,−1 =−4, (C.16)

f
(17,3)
0,0,4 = 4 , f

(17,3)
0,1,3 =−4 , f

(17,3)
0,2,2 =−12 , f

(17,3)
0,3,1 = 20 , f

(17,3)
0,4,0 =−8 , f

(17,3)
1,0,3 =−4 , f

(17,3)
1,1,2 = 64,

f
(17,3)
1,2,1 =−44 , f

(17,3)
1,3,0 =−16 , f

(17,3)
2,0,2 =−12 , f

(17,3)
2,1,1 =−44 , f

(17,3)
2,2,0 = 48 , f

(17,3)
3,0,1 = 20,

f
(17,3)
3,1,0 =−16 , f

(17,3)
4,0,0 =−8,

(C.17)

g
(17,3)
0,0,3 = 20 , g

(17,3)
0,1,2 =−16 , g

(17,3)
0,2,1 =−28 , g

(17,3)
0,3,0 = 24 , g

(17,3)
1,0,2 =−16 , g

(17,3)
1,1,1 = 104,

g
(17,3)
1,2,0 =−24 , g

(17,3)
2,0,1 =−28 , g

(17,3)
2,1,0 =−24 , g

(17,3)
3,0,0 = 24,

(C.18)

h
(17,3)
0,0,3 = 10 , h

(17,3)
0,1,2 =−28 , h

(17,3)
0,2,1 = 24 , h

(17,3)
0,3,0 =−4 , h

(17,3)
0,4,−1 =−2 , h

(17,3)
1,0,2 = 12 , h

(17,3)
1,1,1 = 52,

h
(17,3)
1,2,0 =−68 , h

(17,3)
1,3,−1 = 4 , h

(17,3)
2,0,1 =−52 , h

(17,3)
2,1,0 = 44 , h

(17,3)
3,0,0 = 28 , h

(17,3)
3,1,−1 =−4 , h

(17,3)
4,0,−1 = 2,

(C.19)

c
(39,3)
−1,0,4 =−4 , c

(39,3)
−1,1,3 = 16 , c

(39,3)
−1,2,2 =−24 , c

(39,3)
−1,3,1 = 16 , c

(39,3)
−1,4,0 =−4 , c

(39,3)
0,−1,4 =−4 , c

(39,3)
0,0,3 =−44,

c
(39,3)
0,1,2 = 48 , c

(39,3)
0,2,1 = 48 , c

(39,3)
0,3,0 =−44 , c

(39,3)
0,4,−1 =−4 , c

(39,3)
1,−1,3 = 16 , c

(39,3)
1,0,2 = 48 , c

(39,3)
1,1,1 =−176,

c
(39,3)
1,2,0 = 48 , c

(39,3)
1,3,−1 = 16 , c

(39,3)
2,−1,2 =−24 , c

(39,3)
2,0,1 = 48 , c

(39,3)
2,1,0 = 48 , c

(39,3)
2,2,−1 =−24 , c

(39,3)
3,−1,1 = 16,

c
(39,3)
3,0,0 =−44 , c

(39,3)
3,1,−1 = 16 , c

(39,3)
4,−1,0 =−4 , c

(39,3)
4,0,−1 =−4,

(C.20)
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f
(39,4)
0,0,6 =−20 , f

(39,4)
0,1,5 = 24 , f

(39,4)
0,2,4 = 84 , f

(39,4)
0,3,3 =−176 , f

(39,4)
0,4,2 = 84 , f

(39,4)
0,5,1 = 24,

f
(39,4)
0,6,0 =−20 , f

(39,4)
1,0,5 = 24 , f

(39,4)
1,1,4 =−288 , f

(39,4)
1,2,3 = 264 , f

(39,4)
1,3,2 = 264 , f

(39,4)
1,4,1 =−288,

f
(39,4)
1,5,0 = 24 , f

(39,4)
2,0,4 = 84 , f

(39,4)
2,1,3 = 264 , f

(39,4)
2,2,2 =−792 , f

(39,4)
2,3,1 = 264 , f

(39,4)
2,4,0 = 84,

f
(39,4)
3,0,3 =−176 , f

(39,4)
3,1,2 = 264 , f

(39,4)
3,2,1 = 264 , f

(39,4)
3,3,0 =−176 , f

(39,4)
4,0,2 = 84 , f

(39,4)
4,1,1 =−288,

f
(39,4)
4,2,0 = 84 , f

(39,4)
5,0,1 = 24 , f

(39,4)
5,1,0 = 24 , f

(39,4)
6,0,0 =−20,

(C.21)

g
(39,4)
−1,0,6 =−2 , g

(39,4)
−1,1,5 = 8 , g

(39,4)
−1,2,4 =−10 , g

(39,4)
−1,4,2 = 10 , g

(39,4)
−1,5,1 =−8 , g

(39,4)
−1,6,0 = 2 , g

(39,4)
0,−1,6 =−2,

g
(39,4)
0,0,5 =−76 , g

(39,4)
0,1,4 = 74,g

(39,4)
0,2,3 = 216 , g

(39,4)
0,3,2 =−302 , g

(39,4)
0,4,1 = 52 , g

(39,4)
0,5,0 = 38,

g
(39,4)
1,−1,5 = 8 , g

(39,4)
1,0,4 = 74 , g

(39,4)
1,1,3 =−592 , g

(39,4)
1,2,2 = 340 , g

(39,4)
1,3,1 = 296 , g

(39,4)
1,4,0 =−126,

g
(39,4)
2,−1,4 =−10 , g

(39,4)
2,0,3 = 216,

g
(39,4)
2,1,2 = 340 , g

(39,4)
2,2,1 =−680 , g

(39,4)
2,3,0 = 86 , g

(39,4)
3,0,2 =−302 , g

(39,4)
3,1,1 = 296 , g

(39,4)
3,2,0 = 86,

g
(39,4)
4,−1,2 = 10 , g

(39,4)
4,0,1 = 52 , g

(39,4)
4,1,0 =−126 , g

(39,4)
5,−1,1 =−8 , g

(39,4)
5,0,0 = 38 , g

(39,4)
6,−1,0 = 2,

(C.22)

h
(39,4)
0,−1,6 =−2 , h

(39,4)
0,0,5 =−38 , h

(39,4)
0,1,4 = 126 , h

(39,4)
0,2,3 =−86 , h

(39,4)
0,3,2 =−86 , h

(39,4)
0,4,1 = 126,

h
(39,4)
0,5,0 =−38 , h

(39,4)
0,6,−1 =−2 , h

(39,4)
1,−1,5 = 8 , h

(39,4)
1,0,4 =−52 , h

(39,4)
1,1,3 =−296 , h

(39,4)
1,2,2 = 680,

h
(39,4)
1,3,1 =−296 , h

(39,4)
1,4,0 =−52 , h

(39,4)
1,5,−1 = 8 , h

(39,4)
2,−1,4 =−10 , h

(39,4)
2,0,3 = 302 , h

(39,4)
2,1,2 =−340,

h
(39,4)
2,2,1 =−340 , h

(39,4)
2,3,0 = 302 , h

(39,4)
2,4,−1 =−10 , h

(39,4)
3,0,2 =−216 , h

(39,4)
3,1,1 = 592 , h

(39,4)
3,2,0 =−216,

h
(39,4)
4,−1,2 = 10 , h

(39,4)
4,0,1 =−74 , h

(39,4)
4,1,0 =−74 , h

(39,4)
4,2,−1 = 10 , h

(39,4)
5,−1,1 =−8 , h

(39,4)
5,0,0 = 76,

h
(39,4)
5,1,−1 =−8 , h

(39,4)
6,−1,0 = 2 , h

(39,4)
6,0,−1 = 2,

(C.23)

c
(54,2)
−1,0,2 =−2 , c

(54,2)
−1,1,1 = 4 , c

(54,2)
−1,2,0 =−2 , c

(54,2)
0,−1,2 = 2 , c

(54,2)
0,1,0 =−14 , c

(54,2)
1,−1,1 =−4 , c

(54,2)
1,0,0 = 14,

c
(54,2)
2,−1,0 = 2,

(C.24)

f
(54,3)
0,1,3 =−18 , f

(54,3)
0,2,2 = 30 , f

(54,3)
0,3,1 =−6 , f

(54,3)
0,4,0 =−6 , f

(54,3)
1,0,3 = 18 , f

(54,3)
1,2,1 =−54 , f

(54,3)
1,3,0 = 12,

f
(54,3)
2,0,2 =−30 , f

(54,3)
2,1,1 = 54 , f

(54,3)
3,0,1 = 6 , f

(54,3)
3,1,0 =−12 , f

(54,3)
4,0,0 = 6,

(C.25)

g
(54,3)
−1,0,4 =−1 , g

(54,3)
−1,1,3 = 2 , g

(54,3)
−1,3,1 =−2 , g

(54,3)
−1,4,0 = 1 , g

(54,3)
0,−1,4 = 1 , g

(54,3)
0,1,2 =−48 , g

(54,3)
0,2,1 = 40,

g
(54,3)
0,3,0 = 7 , g

(54,3)
1,−1,3 =−2 , g

(54,3)
1,0,2 = 48 , g

(54,3)
1,2,0 =−26 , g

(54,3)
2,0,1 =−40 , g

(54,3)
2,1,0 = 26 , g

(54,3)
3,−1,1 = 2,

g
(54,3)
3,0,0 =−7 , g

(54,3)
4,−1,0 =−1,

(C.26)

h
(54,3)
0,−1,4 = 1 , h

(54,3)
0,0,3 =−10 , h

(54,3)
0,2,1 = 26 , h

(54,3)
0,3,0 =−17 , h

(54,3)
1,−1,3 =−2 , h

(54,3)
1,0,2 = 48 , h

(54,3)
1,1,1 =−78,

h
(54,3)
1,2,0 = 8 , h

(54,3)
2,0,1 =−14 , h

(54,3)
2,1,0 = 34 , h

(54,3)
3,−1,1 = 2 , h

(54,3)
3,0,0 =−24 , h

(54,3)
4,−1,0 =−1,

(C.27)

and

p
(1,1)
0,0,0 =−4 , (C.28)

q
(1,3)
−1,−1,1 =−2 , q

(1,3)
−1,0,0 = 2 , q

(1,3)
0,−1,0 = 2, (C.29)
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r
(1,1)
−1,−1,1 =−1 , r

(1,1)
−1,0,0 = 3 , r

(1,1)
−1,1,−1 =−3 , r

(1,1)
−1,2,−2 = 1 , r

(1,1)
0,−1,0 =−1 , r

(1,1)
0,1,−2 =−3 , r

(1,1)
1,−1,−1 = 3,

r
(1,1)
1,0,−2 = 3 , r

(1,1)
2,−1,−2 =−1,

(C.30)

s
(1,0)
−1,−1,−1 =−1 , s

(1,0)
−1,0,−2 = 1 , s

(1,0)
0,−1,−2 = 1, (C.31)

d
(4,2)
−2,−1,4 = 1 , d

(4,2)
−2,0,3 =−3 , d

(4,2)
−2,1,2 = 2 , d

(4,2)
−2,2,1 = 2 , d

(4,2)
−2,3,0 =−3 , d

(4,2)
−2,4,−1 = 1 , d

(4,2)
−1,−2,4 = 1,

d
(4,2)
−1,−1,3 =−10 , d

(4,2)
−1,0,2 = 6 , d

(4,2)
−1,1,1 = 8 , d

(4,2)
−1,2,0 = 1 , d

(4,2)
−1,3,−1 =−6 , d

(4,2)
0,−2,3 =−3 , d

(4,2)
0,−1,2 = 6,

d
(4,2)
0,0,1 =−36 , d

(4,2)
0,1,0 = 2 , d

(4,2)
0,2,−1 = 15 , d

(4,2)
1,−2,2 = 2 , d

(4,2)
1,−1,1 = 8 , d

(4,2)
1,0,0 = 2 , d

(4,2)
1,1,−1 =−20,

d
(4,2)
2,−2,1 = 2 , d

(4,2)
2,−1,0 = 1 , d

(4,2)
2,0,−1 = 15 , d

(4,2)
3,−2,0 =−3 , d

(4,2)
3,−1,−1 =−6 , d

(4,2)
4,−2,−1 = 1,

(C.32)

p
(4,3)
0,0,4 =−40 , p

(4,3)
0,1,3 = 40 , p

(4,3)
0,2,2 = 24 , p

(4,3)
0,3,1 =−8 , p

(4,3)
0,4,0 =−16 , p

(4,3)
1,0,3 = 40 , p

(4,3)
1,1,2 =−208,

p
(4,3)
1,2,1 = 8 , p

(4,3)
1,3,0 = 64 , p

(4,3)
2,0,2 = 24 , p

(4,3)
2,1,1 = 8 , p

(4,3)
2,2,0 =−96 , p

(4,3)
3,0,1 =−8 , p

(4,3)
3,1,0 = 64,

p
(4,3)
4,0,0 =−16,

(C.33)

q
(4,3)
−1,−1,5 =−4 , q

(4,3)
−1,0,4 = 16 , q

(4,3)
−1,1,3 =−32 , q

(4,3)
−1,2,2 = 40 , q

(4,3)
−1,3,1 =−28 , q

(4,3)
−1,4,0 = 8 , q

(4,3)
0,−1,4 = 16,

q
(4,3)
0,0,3 =−160 , q

(4,3)
0,1,2 = 40 , q

(4,3)
0,2,1 = 128 , q

(4,3)
0,3,0 =−24 , q

(4,3)
1,−1,3 =−32 , q

(4,3)
1,0,2 = 40 , q

(4,3)
1,1,1 =−200,

q
(4,3)
1,2,0 = 16 , q

(4,3)
2,−1,2 = 40 , q

(4,3)
2,0,1 = 128 , q

(4,3)
2,1,0 = 16 , q

(4,3)
3,−1,1 =−28 , q

(4,3)
3,0,0 =−24 , q

(4,3)
4,−1,0 = 8,

(C.34)

r
(4,3)
−1,−1,5 =−2 , r

(4,3)
−1,0,4 = 12 , r

(4,3)
−1,1,3 =−30 , r

(4,3)
−1,2,2 = 40 , r

(4,3)
−1,3,1 =−30 , r

(4,3)
−1,4,0 = 12,

r
(4,3)
−1,5,−1 =−2 , r

(4,3)
0,−1,4 = 4 , r

(4,3)
0,0,3 =−80 , r

(4,3)
0,1,2 = 112 , r

(4,3)
0,2,1 = 8 , r

(4,3)
0,3,0 =−52 , r

(4,3)
0,4,−1 = 8,

r
(4,3)
1,−1,3 =−2 , r

(4,3)
1,0,2 =−72 , r

(4,3)
1,1,1 =−100 , r

(4,3)
1,2,0 = 88 , r

(4,3)
1,3,−1 =−10 , r

(4,3)
2,0,1 = 120 , r

(4,3)
2,1,0 =−72,

r
(4,3)
3,−1,1 = 2 , r

(4,3)
3,0,0 = 28 , r

(4,3)
3,1,−1 = 10 , r

(4,3)
4,−1,0 =−4 , r

(4,3)
4,0,−1 =−8 , r

(4,3)
5,−1,−1 = 2,

(C.35)

s
(4,0)
−1,−1,−1 =−2, (C.36)

d
(7,2)
−2,−1,3 = 2 , d

(7,2)
−2,0,2 =−4 , d

(7,2)
−2,2,0 = 4 , d

(7,2)
−2,3,−1 =−2 , d

(7,2)
−1,−2,3 = 2 , d

(7,2)
−1,−1,2 =−20,

d
(7,2)
−1,0,1 =−12 , d

(7,2)
−1,1,0 = 20 , d

(7,2)
−1,2,−1 = 10 , d

(7,2)
0,−2,2 =−8 , d

(7,2)
0,−1,1 = 24 , d

(7,2)
0,0,0 =−20,

d
(7,2)
0,1,−1 =−20 , d

(7,2)
1,−2,1 = 12 , d

(7,2)
1,−1,0 = 4 , d

(7,2)
1,0,−1 = 20 , d

(7,2)
2,−2,0 =−8 , d

(7,2)
2,−1,−1 =−10,

d
(7,2)
3,−2,−1 = 2,

(C.37)

p
(7,3)
0,0,3 =−72 , p

(7,3)
0,1,2 =−72 , p

(7,3)
0,2,1 = 120 , p

(7,3)
0,3,0 = 24 , p

(7,3)
1,0,2 = 120 , p

(7,3)
1,1,1 =−96 , p

(7,3)
1,2,0 =−72,

p
(7,3)
2,0,1 =−24 , p

(7,3)
2,1,0 = 72 , p

(7,3)
3,0,0 =−24,

(C.38)

q
(7,3)
−2,0,4 = 4 , q

(7,3)
−2,1,3 =−16 , q

(7,3)
−2,2,2 = 24 , q

(7,3)
−2,3,1 =−16 , q

(7,3)
−2,4,0 = 4 , q

(7,3)
−1,0,3 =−40 , q

(7,3)
−1,1,2 = 48,

q
(7,3)
−1,2,1 = 24 , q

(7,3)
−1,3,0 =−32 , q

(7,3)
0,−1,3 =−8 , q

(7,3)
0,0,2 =−144 , q

(7,3)
0,1,1 =−168 , q

(7,3)
0,2,0 = 64 , q

(7,3)
1,−1,2 = 24,

q
(7,3)
1,0,1 = 184 , q

(7,3)
1,1,0 =−40 , q

(7,3)
2,−1,1 =−24 , q

(7,3)
2,0,0 =−4 , q

(7,3)
3,−1,0 = 8,

(C.39)

r
(7,3)
0,−1,3 =−8 , r

(7,3)
0,0,2 =−144 , r

(7,3)
0,1,1 = 72 , r

(7,3)
0,2,0 = 80 , r

(7,3)
1,−1,2 = 24 , r

(7,3)
1,0,1 = 80 , r

(7,3)
1,1,0 =−152,

r
(7,3)
2,−1,1 =−24 , r

(7,3)
2,0,0 = 64 , r

(7,3)
3,−1,0 = 8,

(C.40)
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d
(17,1)
−1,−1,0 =−4 , d

(17,1)
−1,0,−1 = 4 , d

(17,1)
0,−1,−1 = 4, (C.41)

p
(17,2)
0,0,1 =−24 , p

(17,2)
0,1,0 = 24 , p

(17,2)
1,0,0 = 24, (C.42)

q
(17,2)
−1,−1,2 =−4 , q

(17,2)
−1,0,1 = 8 , q

(17,2)
−1,1,0 =−4 , q

(17,2)
0,−1,1 = 8 , q

(17,2)
0,0,0 =−40 , q

(17,2)
1,−1,0 =−4, (C.43)

r
(17,2)
−1,−1,2 =−2 , r

(17,2)
−1,0,1 = 8 , r

(17,2)
−1,1,0 =−12 , r

(17,2)
−1,2,−1 = 8 , r

(17,2)
−1,3,−2 =−2 , r

(17,2)
0,0,0 =−20,

r
(17,2)
0,1,−1 = 16 , r

(17,2)
0,2,−2 = 4 , r

(17,2)
1,−1,0 = 8 , r

(17,2)
1,0,−1 =−16 , r

(17,2)
2,−1,−1 =−8 , r

(17,2)
2,0,−2 =−4 , r

(17,2)
3,−1,−2 = 2,

(C.44)

s
(17,0)
−1,−1,−2 =−2, (C.45)

d
(39,2)
−2,−1,3 =−2 , d

(39,2)
−2,0,2 = 8 , d

(39,2)
−2,1,1 =−12 , d

(39,2)
−2,2,0 = 8 , d

(39,2)
−2,3,−1 =−2 , d

(39,2)
−1,−2,3 =−2,

d
(39,2)
−1,−1,2 = 18 , d

(39,2)
−1,0,1 =−16 , d

(39,2)
−1,1,0 =−16 , d

(39,2)
−1,2,−1 = 18 , d

(39,2)
−1,3,−2 =−2 , d

(39,2)
0,−2,2 = 8,

d
(39,2)
0,−1,1 =−16 , d

(39,2)
0,0,0 = 32 , d

(39,2)
0,1,−1 =−16 , d

(39,2)
0,2,−2 = 8 , d

(39,2)
1,−2,1 =−12 , d

(39,2)
1,−1,0 =−16,

d
(39,2)
1,0,−1 =−16 , d

(39,2)
1,1,−2 =−12 , d

(39,2)
2,−2,0 = 8 , d

(39,2)
2,−1,−1 = 18 , d

(39,2)
2,0,−2 = 8 , d

(39,2)
3,−2,−1 =−2,

d
(39,2)
3,−1,−2 =−2,

(C.46)

p
(39,3)
0,0,3 = 48 , p

(39,3)
0,1,2 =−48 , p

(39,3)
0,2,1 =−48 , p

(39,3)
0,3,0 = 48 , p

(39,3)
1,0,2 =−48 , p

(39,3)
1,1,1 = 192,

p
(39,3)
1,2,0 =−48 , p

(39,3)
2,0,1 =−48 , p

(39,3)
2,1,0 =−48 , p

(39,3)
3,0,0 = 48,

(C.47)

q
(39,3)
−1,0,3 = 8 , q

(39,3)
−1,1,2 =−24 , q

(39,3)
−1,2,1 = 24 , q

(39,3)
−1,3,0 =−8 , q

(39,3)
0,−1,3 = 8 , q

(39,3)
0,0,2 = 128 , q

(39,3)
0,1,1 =−72,

q
(39,3)
0,2,0 =−64 , q

(39,3)
1,−1,2 =−24 , q

(39,3)
1,0,1 =−72 , q

(39,3)
1,1,0 = 144 , q

(39,3)
2,−1,1 = 24 , q

(39,3)
2,0,0 =−64,

q
(39,3)
3,−1,0 =−8,

(C.48)

r
(39,3)
0,−1,3 = 8 , r

(39,3)
0,0,2 = 64 , r

(39,3)
0,1,1 =−144 , r

(39,3)
0,2,0 = 64 , r

(39,3)
0,3,−1 = 8 , r

(39,3)
1,−1,2 =−24 , r

(39,3)
1,0,1 = 72,

r
(39,3)
1,1,0 = 72 , r

(39,3)
1,2,−1 =−24 , r

(39,3)
2,−1,1 = 24 , r

(39,3)
2,0,0 =−128 , r

(39,3)
2,1,−1 = 24 , r

(39,3)
3,−1,0 =−8,

r
(39,3)
3,0,−1 =−8,

(C.49)

d
(54,1)
−1,0,−1 = 4 , d

(54,1)
0,−1,−1 =−4, (C.50)

p
(54,2)
0,1,0 = 24 , p

(54,2)
1,0,0 =−24, (C.51)

q
(54,2)
−2,−1,3 =−2 , q

(54,2)
−2,0,2 = 6 , q

(54,2)
−2,1,1 =−6 , q

(54,2)
−2,2,0 = 2 , q

(54,2)
−1,−2,3 = 2 , q

(54,2)
−1,0,1 = 14 , q

(54,2)
−1,1,0 =−16,

q
(54,2)
0,−2,2 =−6 , q

(54,2)
0,−1,1 =−14 , q

(54,2)
1,−2,1 = 6 , q

(54,2)
1,−1,0 = 16 , q

(54,2)
2,−2,0 =−2,

(C.52)

r
(54,2)
−2,−1,3 =−1 , r

(54,2)
−2,0,2 = 4 , r

(54,2)
−2,1,1 =−6 , r

(54,2)
−2,2,0 = 4 , r

(54,2)
−2,3,−1 =−1 , r

(54,2)
−1,−2,3 = 1 , r

(54,2)
−1,0,1 = 2,

r
(54,2)
−1,1,0 =−8 , r

(54,2)
−1,2,−1 = 5 , r

(54,2)
0,−2,2 =−2 , r

(54,2)
0,−1,1 =−12 , r

(54,2)
0,0,0 = 26 , r

(54,2)
0,1,−1 =−4 , r

(54,2)
1,−1,0 = 8,

r
(54,2)
1,0,−1 =−4 , r

(54,2)
2,−2,0 = 2 , r

(54,2)
2,−1,−1 = 5 , r

(54,2)
3,−2,−1 =−1,

(C.53)

s
(54,0)
−2,−1,−1 =−1 , s

(54,0)
−1,−2,−1 = 1 . (C.54)

C.2 Some massless quark loop limits

Here we give the explicit limits for the massless quark loop in the regimes where two

momenta become much larger than the other, this is a subset of the regions where λ

becomes small. In order to find them, we change the variables to one of the large momenta,
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the small one and the angle between them. We then expand in the small over the large

momentum. All negative powers of λ cancel and the leading contribution in the ratio of

small over large momentum is always independent of the angle and is given below. The

choice of third variable is not unique, however the results to the order given are always the

same.

C.2.1 Q1∼Q3�Q2

π2Π̂1

e4
qNc

=− 1

9Q4
1

[
3log

(
Q2

1

Q2
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)
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]
, (C.55)

π2Π̂4

e4
qNc

=− 1

3Q2
2Q

2
1

, (C.56)

π2Π̂7

e4
qNc

=− 1

3Q2
2Q

4
1

, (C.57)

π2Π̂17

e4
qNc

=
1

18Q6
1

[
6log

(
Q2

1

Q2
2

)
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]
, (C.58)

π2Π̂39

e4
qNc

=
1

3Q2
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4
1

, (C.59)
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4
1

. (C.60)

C.2.2 Q1∼Q2�Q3
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=− 1
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, (C.61)
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, (C.62)
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=− 1
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, (C.63)
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=
1
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4
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, (C.64)
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=
1
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4
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, (C.65)

π2Π̂54

e4
qNc

=O(Q−7
2 ) . (C.66)

C.2.3 Q2∼Q3�Q1

π2Π̂1

e4
qNc

=− 1

9Q4
3

[
3log

(
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3

Q2
1

)
+5

]
, (C.67)
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π2Π̂17

e4
qNc

=
1

18Q6
3

[
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, (C.70)

π2Π̂39

e4
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3Q2
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4
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, (C.71)

π2Π̂54

e4
qNc

=
1

6Q2
1Q

4
3

. (C.72)

C.3 Contributions from diagrams with one-cut quark lines

The explicit expressions of the Π̂i for the one-cut quark line diagrams can be written as

Π̂m = e4
q

∑
i,j,k,n,p

cm,n,pi,j,k mn
q Xp Q

−2i
1 Q−2j

2 Q−2k
3 , (C.73)

where the non-zero coefficients are

c1,0,8−1,2,3 = 4 , c1,0,80,1,3 =−4 , c1,0,80,2,2 =−8

3
, c1,0,81,0,3 =−4 , c1,0,81,2,1 =−16

3
, c1,0,82,−1,3 = 4 , c1,0,82,0,2 =−8

3
,

c1,0,82,1,1 =−16

3
,

(C.74)

c1,0,7−1,2,3 =−4

3
, c1,0,70,1,3 =

4

3
, c1,0,71,0,3 =

4

3
, c1,0,72,−1,3 =−4

3
, (C.75)

c1,1,5−1,2,3 =
4

3
, c1,1,50,1,3 =−4 , c1,1,51,0,3 =−4 , c1,1,51,2,1 =−8 , c1,1,52,−1,3 =

4

3
, c1,1,52,1,1 =−8 , c1,1,52,2,0 =−4

3
, (C.76)

c1,1,4−1,2,3 =−4

3
, c1,1,40,1,3 =−4

3
, c1,1,41,0,3 =−4

3
, c1,1,41,2,1 =−8 , c1,1,42,−1,3 =−4

3
, c1,1,42,1,1 =−8 , c1,1,42,2,0 =

20

3
,

(C.77)

c1,1,3−1,2,3 =−8

3
, c1,1,30,1,3 =

16

3
, c1,1,31,0,3 =

16

3
, c1,1,31,2,1 = 8 , c1,1,32,−1,3 =−8

3
, c1,1,32,1,1 = 8 , c1,1,32,2,0 =

4

3
, (C.78)

c1,1,20,1,2 =−4 , c1,1,21,0,2 =−4 , c1,1,21,1,1 = 4 (C.79)

c1,3,2−1,2,3 =−8

3
, c1,3,20,1,3 = 8 , c1,3,20,2,2 = 8 , c1,3,21,0,3 = 8 , c1,3,21,2,1 =−8 , c1,3,22,−1,3 =−8

3
, c1,3,22,0,2 = 8,

c1,3,22,1,1 =−8 , c1,3,22,2,0 =
8

3
,

(C.80)

c4,0,8−1,3,2 =−4

3
, c4,0,80,2,2 =−8

3
, c4,0,80,3,1 =−4

3
, c4,0,81,1,2 =−32

3
, c4,0,81,2,1 =−16

3
, c4,0,81,3,0 =−8

3
, c4,0,82,0,2 =−8

3
,

c4,0,82,1,1 =−16

3
, c4,0,82,2,0 =−8

3
, c4,0,82,3,−1 =−8

3
, c4,0,83,−1,2 =−4

3
, c4,0,83,0,1 =−4

3
, c4,0,83,1,0 =−8

3
, c4,0,83,2,−1 =−8

3
,

(C.81)

c4,0,70,2,2 =
4

3
, c4,0,72,0,2 =

4

3
, (C.82)
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c4,1,5−1,3,2 =−4 , c4,1,50,2,2 =
4

3
, c4,1,50,3,1 =−4 , c4,1,51,1,2 =−16 , c4,1,51,2,1 =−8 , c4,1,51,3,0 =−4 , c4,1,52,0,2 =

4

3
,

c4,1,52,1,1 =−8 , c4,1,52,3,−1 =−4 , c4,1,53,−1,2 =−4 , c4,1,53,0,1 =−4 , c4,1,53,1,0 =−4 , c4,1,53,2,−1 =−4,
(C.83)

c4,1,41,1,2 =−16 , c4,1,41,2,1 =−8 , c4,1,41,3,0 =−4 , c4,1,42,1,1 =−8 , c4,1,42,2,0 = 8 , c4,1,42,3,−1 =−4 , c4,1,43,1,0 =−4,

c4,1,43,2,−1 =−4,
(C.84)

c4,1,3−1,3,2 = 4 , c4,1,30,3,1 = 4 , c4,1,31,1,2 = 16 , c4,1,31,2,1 = 8 , c4,1,31,3,0 = 4 , c4,1,32,1,1 = 8 , c4,1,32,3,−1 = 4,

c4,1,33,−1,2 = 4 , c4,1,33,0,1 = 4 , c4,1,33,1,0 = 4 , c4,1,33,2,−1 = 4,
(C.85)

c4,1,21,1,1 = 8, (C.86)

c4,3,20,2,2 =
16

3
, c4,3,21,1,2 =−16 , c4,3,21,2,1 =−8 , c4,3,22,0,2 =

16

3
, c4,3,22,1,1 =−8 , c4,3,22,2,0 = 8, (C.87)

c7,0,80,3,2 =−8

3
, c7,0,82,3,0 =−16

3
, c7,0,83,0,2 =

8

3
, c7,0,83,2,0 =−8

3
, (C.88)

c7,1,50,3,2 =−8 , c7,1,52,3,0 =−8 , c7,1,53,0,2 = 8 , c7,1,53,2,0 =−8, (C.89)

c7,1,42,3,0 =−8, (C.90)

c7,1,30,3,2 = 8 , c7,1,32,3,0 = 8 , c7,1,33,0,2 =−8 , c7,1,33,2,0 = 8, (C.91)

c17,0,80,2,3 =−28

3
, c17,0,80,3,2 =

4

3
, c17,0,81,1,3 =−32

3
, c17,0,81,2,2 =−16
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, c17,0,82,1,2 =−16
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,
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,

(C.92)

c17,0,70,2,3 =
8

3
, c17,0,72,0,3 =

8

3
, (C.93)

c17,1,50,2,3 =−8

3
, c17,1,51,1,3 =−16 , c17,1,51,2,2 =−8 , c17,1,52,0,3 =−8

3
, c17,1,52,1,2 =−8 , c17,1,52,2,1 = 8, (C.94)

c17,1,40,2,3 =−4

3
, c17,1,40,3,2 = 4 , c17,1,41,1,3 =−16 , c17,1,41,2,2 =−8 , c17,1,42,0,3 =−4

3
, c17,1,42,1,2 =−8,

c17,1,42,2,1 = 8 , c17,1,42,3,0 =−4 , c17,1,43,0,2 = 4 , c17,1,43,2,0 =−4,
(C.95)

c17,1,30,2,3 =
16

3
, c17,1,31,1,3 = 16 , c17,1,31,2,2 = 8 , c17,1,32,0,3 =

16

3
, c17,1,32,1,2 = 8 , c17,1,32,2,1 =−8, (C.96)

c17,1,21,1,2 = 8, (C.97)

c17,3,20,2,3 =
16

3
, c17,3,21,1,3 =−16 , c17,3,21,2,2 =−8 , c17,3,22,0,3 =

16

3
, c17,3,22,1,2 =−8 , c17,3,22,2,1 = 8, (C.98)

c39,0,80,2,3 = 4 , c39,0,80,3,2 = 4 , c39,0,82,0,3 = 4 , c39,0,82,3,0 = 4 , c39,0,83,0,2 = 4 , c39,0,83,2,0 = 4, (C.99)

c39,1,50,2,3 = 8 , c39,1,50,3,2 = 8 , c39,1,52,0,3 = 8 , c39,1,52,3,0 = 8 , c39,1,53,0,2 = 8 , c39,1,53,2,0 = 8, (C.100)
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c39,1,40,2,3 = 8 , c39,1,40,3,2 = 8 , c39,1,42,0,3 = 8 , c39,1,42,3,0 = 8 , c39,1,43,0,2 = 8 , c39,1,43,2,0 = 8, (C.101)
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c54,0,80,2,3 =−4

3
, c54,0,80,3,2 =

4

3
, c54,0,81,2,2 =

16

3
, c54,0,81,3,1 =

16

3
, c54,0,82,0,3 =

4

3
, c54,0,82,1,2 =−16

3
,

c54,0,82,3,0 =
4

3
, c54,0,83,0,2 =−4

3
, c54,0,83,1,1 =−16

3
, c54,0,83,2,0 =−4

3
,

(C.103)

c54,1,50,3,2 =
4

3
, c54,1,51,2,2 = 8 , c54,1,51,3,1 = 8 , c54,1,52,1,2 =−8 , c54,1,52,3,0 =

4

3
, c54,1,53,0,2 =−4

3
,

c54,1,53,1,1 =−8 , c54,1,53,2,0 =−4

3
,

(C.104)
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(C.108)

C.4 Gluon matrix element contributions

Before taking into account the contributions coming from the mixing with other operators,

the contributions have the form

Π̂GGm,S =X6
S e

4
q

∑
i,j,k
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i,j,k+f
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+h

(m)
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3

m2
q

)]
Q−2i

1 Q−2j
2 Q−2k

3 ,

(C.109)

where
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18
, f

(54)
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18
, (C.125)

After including the mixing via (3.16), the divergences exactly cancel and the renor-

malised form factors can be expressed as

Π̂R
GGm =X6,R e

4
q

∑
i,j,k

[
c
′(m)
i,j,k +g

(m)
i,j,k log

(
Q2

1

Q2
2

)
+h

(m)
i,j,k log

(
Q2

3

µ2

)]
Q−2i

1 Q−2j
2 Q−2k

3 , (C.126)
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where the associated coefficients g
(m)
i,j,k and h

(m)
i,j,k are the same as above and

c
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27
, c

′(1)
0,1,3 =

20

27
, c

′(1)
0,2,2 =

5

9
, c

′(1)
1,0,3 =

20

27
, c

′(1)
1,1,2 =

2

3
, c

′(1)
1,2,1 =

1

9
,

c
′(1)
2,−1,3 =−20

27
, c

′(1)
2,0,2 =

5

9
, c

′(1)
2,1,1 =

1

9
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D Derivation of (4.15) up to n=3

Up to the order that we need, we have only contributions either without explicit gauge

bosons or with one of them, which can be put together owing to (4.13). Let us start

by writing down the expansion coming from the contributions without gauge bosons (see

figure 5a). Starting from (2.11) and using the decomposition (4.17), one trivially finds (up

to permutations of the set P = {1,2,3}):

Πµ1µ2µ3
NB =−e3

q

∑
A

∫
d4q3

(2π)4

(
3∏
i=1

∫
d4xi e

−iqixi

)
〈0|q̄(x1)cAΓAq(x3)|γ(q4)〉

×Tr

[
γµ3ΓAγµ1iS(x1−x2)γµ2iS(x2−x3)

]
.

(D.1)

Taking Fourier transforms for the propagators, expanding the quark fields according

to (4.12), rewriting the outcoming space time variables xi,µ as limpiA→0 i
∂

∂pµiA
e−ipiAxi , inte-
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grating and taking derivatives iteratively using (4.4), one finds:

Πµ1µ2µ3
NB =

−e3
q

∑
A

∑
m,n

(−1)n+m〈0|q̄{Dν1 , · · · ,Dνn}{Dν′1 , · · · ,Dν′m}cAΓAq|γ(q4)〉

×Tr

[
γµ3ΓAγµ1iS(−q1)γν1iS(−q1) · · ·γνniS(−q1)γµ2iS(q3)γν

′
1iS(q3) · · ·γν′miS(q3)

]
,

(D.2)

where {} indicates symmetrization (normalized by the number of terms) and q3 =−q1−q2.

For the topologies with one gauge boson, the only change with respect to (D.2) is an

extra vertex in the quark chain, which can be allocated in two different positions plus the

boson field itself (see figure 5b):

Πµ1µ2µ3
B =

−e3
q

∑
A

∫
d4q3

(2π)4

∫
d4z

(
3∏
i=1

∫
d4xi e

−iqixi

)
〈0|q̄(x1)cAΓA(Bε(z)+ieqAε(z))q(x3)|γ(q4)〉

×
(

Tr

[
γµ3ΓAγµ1iS(x1−z)γεiS(z−x2)γµ2iS(x2−x3)

]

+ Tr

[
γµ3ΓAγµ1iS(x1−x2)γµ2iS(x2−z)γεiS(z−x3)

])
.

(D.3)

Using (4.13), the matrix element in (D.3) can be rewritten

q̄(x1)
(
Bε(u)+ieqAε(u)

)
q(x3) =

∑
m,n

(−x1)ν1 · · ·(−x1)νn

n!

x
ν′1
3 · · ·x

ν′m
3

m!

×
∑
p=1

p∑
q=0

(−1)p−q+1puω1 · · ·uωp
(p+1)q!(p−q)!

×q̄Dν1 · · ·DνnDω1 · · ·DωqDεDωq+1 · · ·DωpDν′1 · · ·Dν′mq,

(D.4)

from which, following the same procedure as above, the contributions from one gauge boson
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can be re-expressed as

Πµ1µ2µ3
B =−e3

q lim
p1A→0

lim
p2A→0

lim
p3A→0

∑
A

∑
m,n

(i∂p1A)ν1 · · ·(i∂p1A)νn

n!

(i∂p3A)ν
′
1 · · ·(i∂p3A)ν

′
m

m!

×
∑
p=1

p∑
q=0

(i∂p2A)ω1 · · ·(i∂p2A)ωpp(−1)p−q+1

(p+1)q!(p−q)!

×
(

Tr[γµ3ΓAγµ1iS(pA1 −q1)γεiS(pA1 −pA2 −q1)γµ2iS(q3+pA3 )]

+Tr[γµ3ΓAγµ1iS(pA1 −q1)γµ2iS(pA2 +pA3 +q3)γεiS(q3+pA3 )]

)
×〈0|q̄Dν1 · · ·DνnDω1 · · ·DωqDεDωq+1 · · ·DωpDν′1 · · ·Dν′mcAΓAq|γ(q4)〉 .

(D.5)

The next simplification consists in realizing that after taking the derivatives and the limits,

all the traces start with γµ3ΓAγµ1 and all the propagator on the left of γµ2 are of the form

S(−q1) and all the propagators on the right are S(q3), which has a simple diagrammatic

interpretation. On the other hand, we can always relabel the dummy Lorentz indices in

such a way that the remaining quark current takes as indices q̄Dν1 · · ·Dνnq. Taking all this

into account, any possible term in the sum can be uniquely codified as a pre-factor times

a set of numbers separated by a “wall” term, v. For example, we define

3(31v2)≡3e3
qTr[γµ3ΓAγµ1iS(−q1)γν3iS(−q1)γν1iS(−q1)γµ2iS(q3)γν2iS(q3)]

×〈0|q̄Dν1 · · ·Dν3cAΓAq|γ(q4)〉 ,
(D.6)

where we have dropped the index A on the l.h.s. since the Lorentz structure of the various

traces does not depend on it. In this symbolic notation, one finds respectively, for n= 0

(D= 3) and n= 1 (D= 4), using (D.2),

Πµ1µ2µ3
D=3 =−(v) , (D.7)

Πµ1µ2µ3
D=4 = (1v)+(v1) . (D.8)

From the same equation, the n= 2 (D= 5) piece coming from the topology without gauge

bosons (NB) is

Πµ1µ2µ3
D=5,NB =−(1v2)− 1

2
[(v12)+(21v)+(v21)+(12v)] , (D.9)

while the bosonic piece B leads, using (D.5), to

Πµ1µ2µ3
D=5,B =

1

2
[(21v)−(12v)+(v21)−(v12)] . (D.10)

Summing, one finds

Πµ1µ2µ3
D=5 =−[(1v2)+(v12)+(12v)] . (D.11)
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Finally, for n= 3, using (D.2), one finds

Πµ1µ2µ3
D=6,NB =

1

6
[(123v)+(132v)+(213v)+(231v)+(312v)+(321v)

+(v123)+(v132)+(v213)+(v231)+(v312)+(v321)]

+
1

2
[(12v3)+(21v3)]+

1

2
[(1v23)+(1v32)] .

(D.12)

From (D.5), the contributions of the same order that come from p= 2 are

Πµ1µ2µ3
D=6,B1 =

1

3
[(123v)+(132v)+(213v)+(231v)+(312v)+(321v)

+(v123)+(v132)+(v213)+(v231)+(v312)+(v321)]

−(213v)−(231v)−(v312)−(v132) ,

(D.13)

from p=n= 1

Πµ1µ2µ3
D=6B2 =

1

2
[(123v)+(213v)+(231v)+(1v32)−(132v)−(312v)−(321v)−(1v23)] , (D.14)

and from p=m= 1

Πµ1µ2µ3
D=6,B3 =−1

2
[(v213)+(v321)+(v231)−(v123)−(v321)−(v132)−(12v3)+(21v3)] .

(D.15)

Summing all of them

Πµ1µ2µ3
D=6 = Πµ1µ2µ3

D=6,NB+B1+B2+B3 = [(123v)+(12v3)+(1v23)+(v123)] . (D.16)

This simplification occurs for every Dirac structure ΓA and therefore also for their sum.

This completes the needed derivation. We conjecture that the duality holds at all dimen-

sions16 and that its trivial generalization holds for any number of external legs, greatly

simplifying calculations for this kind of topology.
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