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1 Introduction

Two major drawbacks of the standard model is the lack of neutrino mass and dark matter.

Indeed, the discovery of neutrino oscillations implies that neutrinos have mass [1–3] and

the need to supplement the Standard Model (SM). Likewise, many models adding particle

dark matter to the standard model can be envisaged. An interesting idea is that dark

matter is the mediator of neutrino mass generation, the corresponding models have been

dubbed scotogenic [4–13]. An even tougher challenge in particle physics is understanding

flavor, i.e. the pattern of fermion mixings as well as their mass hierarchies. The latter

suggests extending the standard model by the imposition of a family symmetry in order

to provide them a non-trivial structure. However, there are just too many possibilities to

choose from [14, 15].

Rather than imposing a flavour symmetry in an ad hoc fashion, it could arise from

extra dimensions [16]. Here we assume the spacetime to be 6-dimensional, where the

extra dimensions are orbifolded as T2/Z2 from which, after compactification, emerges an

A4 flavour symmetry [17–19]. We assume a similar setup as in [20, 21]. However, there

are crucial differences from the previous work, where the neutrinos were Majorana-type,

with masses arising from the type-I seesaw mechanism. The model studied in this paper

does not allow Majorana masses for neutrinos, since they are 6-dimensional chiral fermions,

therefore they are fixed to be Dirac type when reduced to 4-dimensions. Due to an auxiliary

triality or Z3 symmetry, the small neutrino masses are generated only at one-loop level.

All the mediators running in the loop are “dark”, i.e. charged under a Z2 symmetry which

makes the lightest of them stable and hence a Dark Matter candidate. Therefore this is a

realization of the Dirac scotogenic mass generation mechanism [5, 8, 9, 12, 13]. The presence

of the family symmetry leads naturally to a “golden” quark-lepton mass relation [22–27].
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This letter is organized as follows. In section 2 we briefly describe how we obtain the

A4 family symmetry from extra dimensions, in section 3 we discuss the basic framework

and quantum numbers. Fermion masses are discussed in section 4, including both the

charged fermions as well as the scotogenic neutrino masses in section 4.2.

2 A4 family symmetry from extra dimensions

We assume the spacetime manifold as M = M4 × (T2/Z2), where the torus T2 is defined

by the relations

z = z + 1,

z = z + ω,

z = −z,
(2.1)

where we rescale the original radii of the torus as 2πR1 ⇒ 1 and 2πR2 ⇒ 1 and adopt the

complex coordinate notation z = x5 + ix6. The twist of the torus is the cube root of unity

ω = eiθ = e2iπ/3. There are four fixed points under these orbifold transformations, that

define four invariant 4-dimensional branes

z̄ =

{
0,

1

2
,
ω

2
,

1 + ω

2

}
. (2.2)

After orbifold compactification, a remnant symmetry of the set of branes is inherited from

the Poincaré invariance of the extra dimensional part of the manifold [28–30]. The trans-

formations that permute the four branes leaving the whole brane-set z̄ invariant are

S1 : z → z + 1/2, S2 : z + ω/2, R : z → ω2z, (2.3)

which are just translations and rotations of the extra dimensional coordinates. Among

this set of transformations there are only two independent ones, since S2 = R2 · S1 · R.

These symmetry transformations relate to the A4 generators through the identification

S = S1, T = R, satisfying

S2 = T 3 = (ST )3 = 1, (2.4)

which is the presentation for the A4 group. Therefore, the brane set is invariant under A4

transformations, which are a subset of the Extra Dimensional part of the Poincarè group.

The fields located on the branes will transform naturally under the remnant A4 group.

Following refs. [20, 21] we identify this remnant symmetry as a family symmetry. The

orbifold compactification also fixes the possible representations for the fields localized on

the branes. One can write the S, T as matrices acting on (z̄1, z̄2, z̄3, z̄4)
T =

(
0, 1/2, ω/2, (1+

ω)/2
)T

as

S =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , T =


1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

 , (2.5)
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so that the 4 branes transform as a reducible representation 4 of A4. One can decompose

the 4 into irreducible representations 4 → 3 + 1. This can be made explicit with a basis

change of the S, T transformations, through a unitary transformation V , namely

S → V †SV =

(
S3 0

0 1

)
, T → V †TV =

(
T3 0

0 1

)
, (2.6)

where S3, T3 are the usual 3×3 matrix representation of A4. In this way the 4 dimensional

representation inherited from the branes can be explicitly decomposed as 4 → 3 + 1.

Therefore, the fields on the branes must transform under the flavour group A4 as the

irreducible representations 3 or 1, depending on the location of each component of the

field [18, 31]. A brane field Fi(x, z) transforming as a 3 of the remnant symmetry A4

would be written as a sum of 4-d fields located on different branes

Fi(x, z) =
∑

j=1,2,3

δ2(z − z̄j)V †ijFi(x), (2.7)

for i = 1, 2, 3 (no sum implied on i) which are the components of the triplet. Therefore

different components of the triplet are located at different branes, and they transform into

each other by the A4 transformations just as the branes do. The singlet f(x, z)

f(x, z) =
∑

j=1,2,3,4

δ2(z − z̄j)V †4jf(x) =
∑

j=1,2,3,4

1

2
δ2(z − z̄j)f(x), (2.8)

is equally located on the four branes.

Notice that, a priori, one can start with either a triplet or a singlet, if one locates their

components as in eqs. (2.7), (2.8), respectively. Concerning fields in the bulk, for consis-

tency all 6-dimensional fields should also transform under some irreducible representation

of the A4 remnant symmetry. This way one can also localize them consistently with A4

irreducible representations [32].

3 Basic framework

The field content of our model and its transformation properties is specified in table 1.

The model contains the usual standard model fermions L, dc, ec, Q, uc, extended by three

right handed neutrinos νc. All the scalar fields are localized on the branes and conse-

quently transform as flavour triplets. The model includes two electroweak scalar doublets

Hu, Hd, together with an SU(3)c ⊗ SU(2)L ⊗U(1)Y singlet scalar σ that obtains a vacuum

expectation value (VEV) above the electroweak scale, breaking the A4 flavour symmetry.

We assume the existence of an independent shaping symmetry Z3 × Z2. The scalars are

charged under the Z3 symmetry, so that Hd only couples to down-type fermions (charged

leptons and down quarks), Hu couples only to up-quarks and η only couples to neutrinos,

i.e. the Z3 symmetry fixes the Higgs couplings to be selective, as in type II 2HDM. A

very important feature for us is that the Z3 symmetry forbids a renormalizable coupling

that would give tree-level Dirac masses to neutrinos. On the other hand, the unbroken

– 3 –
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Field SU(3) SU(2) U(1) A4 Z3 Z2 Localization

L 1 2 −1/2 3 ω2 1 Brane

dc 3̄ 1 1/3 3 ω 1 Brane

ec 1 1 1 3 ω 1 Brane

Q 3 2 1/6 3 ω2 1 Brane

uc 3̄ 1 −2/3 3 ω2 1 Brane

νci 1 1 0 1 1 1 Bulk

T c 3̄ 1 −2/3 1 ω 1 Brane

T 3 1 2/3 1 ω2 1 Brane

Hu 1 2 1/2 3 ω2 1 Brane

Hd 1 2 −1/2 3 1 1 Brane

σ 1 1 0 3 ω 1 Brane

S 1 1 0 3 ω −1 Brane

η 1 2 −1/2 3 1 −1 Brane

χ 1 1 0 3 ω2 −1 Brane

Table 1. Field content of the model.

Z2 symmetry stabilizes the lightest “dark” field. In order to generate scotogenic neutrino

masses, two sets of inert scalars η and χ are included, together with the electroweak singlet

fermions S.

Notice that, except for the νc, all fields are assumed to live in the branes. Therefore,

the L, dc, ec, Q, uc, S fields are 4-d Weyl left-fermions and Hu, Hd, η, χ are 4-d scalars. In the

4d branes, we have the SM fermions plus a vector-like quark, therefore gauge anomalies are

canceled just as in the standard model. The only 6d fermion is the right handed neutrino

which is a gauge singlet, therefore it does not contribute to any anomaly. These fields on

the branes behave as standard 4-d fields, and we restrict them to have only renormalizable

couplings in the low energy theory.

In contrast, the νc are located in the bulk and are assumed to be 6-d Weyl fermions,

each of which decomposes into a left-right 4-d Weyl fermion pair. The trivial boundary

conditions on the orbifold do not allow a zero mode for the right-handed part. Therefore,

after compactification, each of them decomposes into a massless 4-d Weyl left fermion, plus

the corresponding Kaluza-Klein (KK) tower. If we were to assume this model to be valid up

to the Planck scale, it should also be free of gravitational anomalies. The fermion fields on

the brane are the standard model fermions plus vector-like quarks, therefore gravitational

anomaly cancellation happens just as in the standard model. The only bulk fields are the

three 6-d chiral fermions νci which have three 4-d chiral fermions as zero modes. These

would generate a gravitational anomaly. To cancel it one can easily add three 6-d chiral

fermions ν̄ci with opposite chirality from νci . Furthermore, we assume it to be nontrivially

charged under both discrete symmetries Z3 and Z2, so as not to couple directly to the SM

fields, hence preserving the phenomenology discussed below.

– 4 –
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4 Fermion masses

4.1 Quarks and charged leptons

The fermions in the bulk are 6-d Weyl fermions whose dimensionality is [u, ν] = 5/2. They

can have an explicit mass term which does not affect the zero modes at low energies. Their

couplings to the brane fields come from the 6-d lagrangian

L6 = δ2(z − z̄)
ỹν2i
Λ
Sχνci , (4.1)

which is suppressed by an effective scale Λ. The effective 4-d couplings at low energies

absorb this scale as y = ỹ/RΛ, where R denotes the radii of the torus and defines the

compactification scale.

The quarks and charged leptons behave in a very similar way as in the model described

in [20, 21]. We assume that all dimensionless couplings are real, and that the Higgs fields

Hu,d and the σ get a VEV that break CP spontaneously. We parametrize them as

〈Hu〉 = vu

 εu1e
iφu1

εu2e
iφu2

1

 , 〈Hd〉 =
vu

tanβ
eiφ

d


εd1e

iφd1

εd2e
iφd2

1

 , 〈σ〉 = vure
iφσ

 εσ1e
iφσ1

εσ2e
iφσ2

1

 , (4.2)

where r = 〈|σ|〉 /vu defines the scale of the A4 breaking and can be very large. After

compactification the Yukawa couplings for the up quarks are assumed to be

Lq = yu1 (QHuu
c)1 + yu2 (QHuu

c)2 + yTQH†dT
c + ỹTσ†ucT +MTTT

c + h.c., (4.3)

where the ()1,2 denote the two possible 3 × 3 → 31,2 contractions. Notice the presence

of one pair of exotic vector-like quarks. The reason for adding them is that the up quark

mass matrix coming from the first two terms does not, by itself, have enough freedom to

generate a realistic CKM matrix. The role of the extra vector-like up-type quarks is to

generate a viable mixing. The added free parameters (yT , ỹT ,MT ) are enough to account

for the full structure of the CKM matrix, as shown in ref. [24]. In fact, the presence of

vector-like fermions has also been recently suggested in ref. [33]. The explicit form of the

up-type quark mass matrices is given in the Left-Right convention as

Mu = vu


0 yu1 ε

u
1e
iφu1 yu2 ε

u
2e
iφu2 yT cotβεd1e

iφd1

yu2 ε
u
1e
iφu1 0 yu1 yT cotβεd2e

iφd2

yu1 ε
u
2e
iφu2 yu2 0 yT cotβ

ỹT rεσ1e
−iφσ1 ỹT rεσ2e

−iφσ2 ỹT r MT e
i(φσ−φd)/vu

 , (4.4)

where the phase ei(φ
σ−φd) can be reabsorbed and the ratio MT /vu is assumed to be very

large MT /vu � 1.

The Yukawa couplings for the charged leptons and down-type quarks, after compacti-

fication become

Ll = yd1(QdcHd)1 + yd2(QdcHd)2 + ye1(LecHd)1 + ye2(LecHd)2 + h.c. (4.5)

– 5 –
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These terms generate the mass matrices

Md = vu cotβ

 0 yd1ε
d
1e
i(φd1−φd2) yd2ε

d
2

yd2ε
d
1e
i(φd1−φd2) 0 yd1
yd1ε

d
2 yd2 0

 ,

Me = vu cotβ

 0 ye1ε
d
1e
−i(φd1−φd2) ye2ε

d
2

ye2ε
d
1e
−i(φd1−φd2) 0 ye1
ye1ε

d
2 ye2 0

 .

(4.6)

Since the above interactions leading to down-type-quark and lepton masses involve the same

Higgs doublet, all of which are A4 triplets, the golden relation between charged lepton and

down quark masses [22–27] emerges as a prediction from the family symmetry

mτ√
mµme

≈ mb√
msmd

, (4.7)

This is a prediction for the pattern of fermion masses, relating down-quark and charged

lepton masses, despite the lack of an underlying unification gauge group [22–27]. This

relation is stable under renormalization group evolution [34], as it involves only ratios of

fermion masses. It has been explicitly shown to provide an excellent description of the

current experimental data at the MZ scale [20, 21].

The first two terms of each of eqs. (4.3), (4.5), involving only the standard quark

families, can fit the quark sector within 10% accuracy. The addition of the vector-

like quarks brings in free parameters that help fit the quark flavour observables. All

in all, the quark and charged lepton sector has 16 arbitrary real dimensionless pa-

rameters (yu,d,e1,2 , yT , ỹT , εu,d,σ1,2 , tanβ, r) plus extra phases describing the alignment of the

Higgs bosons.

In ref. [24] it has been shown explicitly that the above structure of quark mass matrices

provides an excellent fit to all the quark flavour observables.

4.2 Scotogenic neutrino masses

Besides the standard model fermions and the enlarged scalar states described above, the

particle content is minimally extended by a dark sector consisting of a fermion S and two

scalars1 η, χ. In the low energy theory, the Yukawa couplings for neutrinos and fermion

electroweak singlets are

Lν = yν11,2(Lη
†S)1,2 + yν21 (Sχ)1ν

c
1 + yν22 (Sχ)1ν

c
2 + yν23 (Sχ)1ν

c
3 + yν3σSS + h.c. (4.8)

Among the terms in the scalar potential, after compactification we can find the following

trilinear couplings:

Lt/µ = yt11,2(Huηχ
†)1,2 + yt2σ3 + yt31,2(σHuHd)1,2 + yt4χ2σ† + h.c. (4.9)

These terms are crucial to ensure the mixing of the neutral components of η and χ and to

break any possible degeneracy of the scalar mass eigenstates mediating the neutrino mass

generation mechanism.

1In fact the scalar η plays the role of the Hν scalar present in [20, 21], but now belongs to the “odd”

dark matter sector.
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〈Hu〉

〈σ〉

L S S νc

η χ

Figure 1. Neutrino Dirac masses from “scotogenic” loop diagram.

Note that, by choosing the “right-handed” neutrinos to be 6-d fermions, even if they

are Majorana, their 4-dimensional zero modes are Dirac-type. Moreover, thanks to the

auxiliary symmetries in our model, neutrinos are massless at the tree level. Indeed, the

couplings in eq. (4.8), together with the first trilinear scalar coupling in eq. (4.9), gen-

erate Dirac neutrino masses at one loop from the diagram in figure 1 in a “scotogenic”

fashion [4–13].

After spontaneous symmetry breaking, the electrically neutral components of the A4

triplets η, denoted η0 and the electroweak singlets χ mix into a total of six complex neutral

scalars. Assuming trivial CP ,2 the mass matrix in the basis (χγ , η
0
δ ), with γ, δ = 1, 2, 3 is

real and symmetric and can be diagonalized by an orthogonal transformation that can be

written in blocks as (
φAα

φBα

)
=

(
UAχαγ UAηαδ

UBχαγ UBηαδ

)(
χγ

η0δ

)
, (4.10)

with α = 1, 2, 3. By orthogonality, the 3 × 3 blocks in the above matrix are subject to

the relations

(UAχ)TUAχ + (UBχ)TUBχ = 1,

(UAη)TUAη + (UBη)TUBη = 1,

(UAχ)TUAη + (UBχ)TUBη = 0.

(4.11)

Neutrinos acquire a small Dirac mass generated through the scotogenic loop. To first

approximation one gets

mν
ij =

1

16π2

∑
kαγδ

(yν11,2)
δ
ikMk(y

ν2
1,2,3)

γ
kj

×
[
(UAχ)TγαU

Aη
αδ

m2
Aα

m2
Aα −M2

k

ln
m2
Aα

M2
k

+ (UBχ)TγαU
Bη
αδ

m2
Bα

m2
Bα −M2

k

ln
m2
Bα

M2
k

]
, (4.12)

2Here we understand trivial CP as the generalized CP transformations of the fields that render all

couplings real. See [20, 21] for details.
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where Mk with k = 1, 2, 3 are the eigenvalues of the mass matrix for the Fermion Singlets S,

mA (mB) are the physical masses of the φA (φB) complex neutral scalars, and the effective

Yukawa couplings yν11,2 and yν21,2,3 are given by

(yν11,2)
1 =

 0 yν11 0

yν12 0 0

0 0 0

 , (yν11,2)
2 =

 0 0 yν12
0 0 0

yν11 0 0

 , (yν11,2)
3 =

0 0 0

0 0 yν11
0 yν12 0

 ,

(4.13)

(yν21,2,3)
1 =

y
ν2
1 yν22 yν23
0 0 0

0 0 0

 , (yν21,2,3)
2 =

 0 0 0

yν21 yν22 yν23
0 0 0

 , (yν21,2,3)
3 =

 0 0 0

0 0 0

yν21 yν22 yν23

 .

(4.14)

Assuming trivial CP symmetry from the start with real dimensionless couplings, and a

general complex VEV alignment for Hu, Hd, σ which break CP spontaneously together with

the flavour symmetry, the model can describe realistic fermion masses. Note that the usual

“left” neutrinos do not couple directly to the “right-handed” neutrinos to form a Dirac

mass. Instead, this mass is induced radiatively, through figure 1. Although the structure

of the neutrino Yukawa couplings to the dark sector does have texture zeros implied by

the family symmetry, these zeros are lost when composing the scotogenic loop. As a result

the neutrino mass matrix is the most general one, thus eliminating the predictivity of the

model in the neutrino sector.

Besides, our model harbors a dark matter candidate, namely the lightest of the fields

running in the scotogenic loop. These are charged under the Z2 symmetry, that remains

unbroken after spontaneous symmetry breaking. As a result, the lightest of the complex

neutral scalars φA, φB or the Majorana electroweak singlet fermions S is stable and a

potential dark matter particle. A discussion on the viability of this kind of dark matter

candidate can be found in [13].

5 Summary and outlook

We have proposed a scotogenic flavour theory in which the A4 family symmetry arises

naturally from a six-dimensional spacetime after orbifold compactification. For spacetime

dimensionality reasons, neutrinos must be Dirac fermions after compactification, since

“right-handed” components live in the bulk. This implies the absence of neutrinoless

double beta decay, and makes Majorana phases unphysical [35, 36].

Thanks to the imposition of auxiliary “dark-parity” and triality symmetries the theory

incorporates stable dark matter in a scotogenic way. Neutrinos are massless at tree level,

with mass calculable from the scotogenic loop in figure 1. While the theory is not predictive

enough to shed light on the structure of the quark CKM mixing matrix or the lepton

mixing matrix, it does predict in a rather natural way the “golden” quark-lepton unification

formula, eq. (4.7), despite the lack of a unification group [22–27]. This structural relation

of our model constitutes its only genuine flavor prediction.
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The present model therefore provides a scotogenic dark matter completion of the orb-

ifold scenario proposed in refs. [20, 21], retaining its most remarkable prediction, namely

the “golden” quark-lepton mass relation.
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A 6-d fermions

The Clifford algebra needs an 8× 8 matrix representation that satisfy

{ΓM ,ΓN} = 2ηµνI8, (A.1)

where one can use the 6-d chiral representation (in terms of the Pauli matrices

Γ0 =


0 I2 0 0

I2 0 0 0

0 0 0 I2
0 0 I2 0

 , Γi =


0 σi 0 0

−σi 0 0 0

0 0 0 σi

0 0 −σi 0

 ,

Γ5 =


0 0 iI2 0

0 0 0 −iI2
iI2 0 0 0

0 −iI2 0 0

 , Γ6 =


0 0 I2 0

0 0 0 −I2
−I2 0 0 0

0 I2 0 0

 .

(A.2)

Furthermore the chiral matrices are useful

Γ4C = iΓ0Γ1Γ2Γ3 =


I2 0 0 0

0 −I2 0 0

0 0 I2 0

0 0 0 −I2

 ,

Γ6C = iΓ5Γ6 =


I2 0 0 0

0 I2 0 0

0 0 −I2 0

0 0 0 −I2

 ,

(A.3)

which define the 6-d and 4-d chirality correspondingly.

In 6-d the Dirac fermion has 8 components. We can write them in terms of 4-d Weyl

fermions

Ψ =


Ψ+
R

Ψ+
L

Ψ−R
Ψ−L

 . (A.4)

– 9 –
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Where each Ψ± (eigenstates of Γ6C) is composed of a left and right 4-d Weyl fermion

(eigenstates of Γ4C).

The boundary conditions applied on 6-d fermions are

PPΨ(x, z) = PΓ6CΨ(x,−z)→ PΨ+
R(x,−z)

→ PΨ+
L (x,−z)

→ −PΨ−R(x,−z)

→ −PΨ−L (x,−z).

(A.5)

The 6-d fermion irreducible representations are 6-d Weyl fermions, eigenstates of

Γ7 = −Γ0Γ1Γ2Γ3Γ4Γ5Γ6 = Γ4CΓ6C =


I2 0 0 0

0 −I2 0 0

0 0 −I2 0

0 0 0 I2

 , (A.6)

so that the irreducible irrepresentations are

Ψ6R =


Ψ+
R

0

0

Ψ−L

 or Ψ6L


0

Ψ+
L

Ψ−R
0

 . (A.7)

The 6-d fermions contain both left and right parts. This way, just as in the 5-d case,

even if one writes a 6-d Majorana mass term, it decomposes into a 4-d Dirac mass term.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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