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Abstract
 Sporadic occurrences of neurodegenerative disorders including neuroaxonal dystrophy (NAD) have been previously reported 
in sheep. However, so far no causative genetic variant has been found for ovine NAD. The aim of this study was to charac-
terize the phenotype and the genetic aetiology of an early-onset neurodegenerative disorder observed in several lambs of 
purebred Swaledale sheep, a native English breed. Affected lambs showed progressive ataxia and stiff gait and subsequent 
histopathological analysis revealed the widespread presence of axonal spheroid indicating neuronal degeneration. Thus, the 
observed clinical phenotype could be explained by a novel form of NAD. After SNP genotyping and subsequent linkage map-
ping within a paternal half-sib pedigree with a total of five NAD-affected lambs, we identified two loss-of-function variants 
by whole-genome sequencing in the ovine PLA2G6 gene situated in a NAD-linked genome region on chromosome 3. All 
cases were carriers of a compound heterozygous splice site variant in intron 2 and a nonsense variant in exon 8. Herein we 
present evidence for the occurrence of a familial novel form of recessively inherited NAD in sheep due to allelic heteroge-
neity at PLA2G6. This study reports two pathogenic variants in PLA2G6 causing a novel form of NAD in Swaledale sheep 
which enables selection against this fatal disorder.

Keywords Ovis aries · Neurogenetic disorder · Rare disease · Compound heterozygosity · Precision medicine

Introduction

Neuroaxonal dystrophy (NAD) comprises a clinically and 
genetically heterogeneous group of neurodegenerative dis-
eases of central nervous system (Hayflick et al. 2018). It 
is characterized by progressive signs of neurological dys-
function including ataxia, hypermetria, proprioceptive defi-
cits, head incoordination and tremors. The characteristic 

Communicated by Stefan Hohmann.

Anna Letko, Ben Strugnell, Cord Drögemüller and Sandra Scholes 
have contributed equally to this work.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0043 8-020-01742 -1) contains 
supplementary material, which is available to authorized users.

 * Cord Drögemüller 
 cord.droegemueller@vetsuisse.unibe.ch

 Anna Letko 
 anna.letko@vetsuisse.unibe.ch

 Ben Strugnell 
 ben@farmpostmortems.co.uk

 Irene M. Häfliger 
 irene.haefliger@vetsuisse.unibe.ch

 Julia M. Paris 
 julia.paris@vetsuisse.unibe.ch

 Katie Waine 
 katie.waine@nottingham.ac.uk

 Sandra Scholes 
 sandra.scholes@sruc.ac.uk

1 Institute of Genetics, Vetsuisse Faculty, University of Bern, 
3001 Bern, Switzerland

2 Farm Post Mortems Ltd, Hamsterley House, Hamsterley, 
Bishop Auckland, Durham DL13 3QF, UK

3 University of Nottingham, College Road, Sutton Bonington, 
Loughborough LE12 5RD, UK

4 SRUC Consulting Veterinary Services, Pentlands Science 
Park, Bush Estate Loan, Penicuik, Midlothian EH26 0PZ, 
UK

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
4
7
8
8
5
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
7
.
1
2
.
2
0
2
0

http://orcid.org/0000-0002-6521-1285
http://orcid.org/0000-0002-5648-963X
http://orcid.org/0000-0002-0672-6844
http://orcid.org/0000-0001-9773-522X
http://orcid.org/0000-0003-3422-5956
http://crossmark.crossref.org/dialog/?doi=10.1007/s00438-020-01742-1&domain=pdf
https://doi.org/10.1007/s00438-020-01742-1


 Molecular Genetics and Genomics

1 3

neuropathological changes involve formation of axonal 
swellings (spheroids) in specific regions, usually relay 
nuclei, of the brainstem and spinal cord (Sisó et al. 2006). 
In humans, this condition is usually described as neurode-
generation with brain iron accumulation (NBIA) or infan-
tile neuroaxonal dystrophy (INAD; OMIM  PS234200) 
and is most frequently monogenic recessively inherited. 
The genetic basis is described for ~ 85% of patients diag-
nosed with NBIA and involves eight genes (Hayflick et al. 
2018). Human NBIA2A (INAD1) and NBIA2B are asso-
ciated with autosomal recessive variants in the PLA2G6 
gene (OMIM 256600). Phospholipase A2 group VI gene 
(PLA2G6) encodes 85/88 kDa calcium-independent phos-
pholipase A2, an enzyme that catalyzes the hydrolysis of 
phospholipids to produce free fatty acids, and has a critical 
role in cell membrane homeostasis (Baburina and Jackowski 
1999).

In veterinary medicine, sporadic cases of NAD have been 
previously described in sheep (OMIA 000715-9940), as 
well as cattle (Hanshaw et al. 2015), dogs (OMIA 000715-
9615), cats (OMIA 000715-9685), rabbits (OMIA 000715-
9986), and horses (OMIA 000715-9796). Although, there 
is a variation in the age of affected lambs in the previous 
reports of ovine NAD cases, the clinicopathological features 
are comparable in all the different sheep breeds including 
Merino (Harper and Morton 1991; Kessell et al. 2012), Suf-
folk (Cordy et al. 1967), Romney (Nuttall 1988), Perendale 
(Nuttall 1988), and Coopworth (Nuttall 1988), as well as 
multiple crossbred Merino-Border Leicester × Polled Dor-
set lambs (Finnie et al. 2014; Hawes et al. 2017). However, 
the underlying genetic variants to date have been character-
ized only in dogs, representing four breed-specific autoso-
mal recessive variants in MFN2 (Fyfe et al. 2011), TECPR2 
(Hahn et al. 2015), PLA2G6 (Tsuboi et al. 2017), and VPS11 
(Lucot et al. 2018) genes.

The aim of this study was to characterize the pheno-
type and the genetic aetiology of an early-onset neurode-
generative disorder observed in several lambs of purebred 
Swaledale sheep, a native English breed. Herein we pre-
sent evidence for the occurrence of a familial novel form of 
recessively inherited NAD due to two compound heterozy-
gous loss-of-function variants in ovine PLA2G6, which ena-
bles selection against this fatal disorder.

Methods

Animals

This study did not require official or institutional ethical 
approval as it was not experimental. A total of 71 purebred 
Swaledale sheep from one flock were used in this study, 
including 52 ewes, 1 ram, 5 NAD-affected lambs, and 13 

apparently normal offspring. All lambs were sired by the 
same ram and also shared the same maternal grandsire. 
Blood samples were taken from all available animals. Addi-
tionally, tissue samples (brain and spinal cord) were col-
lected postmortem from 2 representative cases for further 
analyses. Genomic DNA was isolated from blood using the 
Maxwell RSC whole blood DNA kit (Promega).

Neuropathology

Samples of brain and spinal cord from affected lambs were 
fixed in 10% neutral-buffered formalin for histopathologi-
cal analysis. Representative samples of brain including cer-
ebral cortex (frontal, parietal, temporal and occipital lobes), 
striatum, hippocampus, rostral and caudal thalamus, rostral 
and caudal midbrain, cerebellum (vermis and hemisphere), 
rostral and caudal medulla and spinal cord including cervi-
cal segments 3 and 7, thoracic segment 7 and lumbosacral 
intumescence were routinely processed to 5 µm haematox-
ylin-and-eosin (HE)-stained sections for histopathological 
examination. Selected affected regions were immunolabelled 
for amyloid precursor protein (APP) as described previously 
(Garcia et al. 2015).

SNP array genotyping and analyses

Genomic DNA of 14 sheep (5 ewes, 1 ram, 5 NAD-affected, 
and 3 unaffected lambs) was genotyped on the Illumina 
OvineSNP50 BeadChip array. All genome positions refer to 
the ovine reference genome assembly Oar_rambouillet_v1.0. 
PLINK v1.9 software (Chang et al. 2015) was used for qual-
ity control of the genotyping data, parentage confirmation, 
as well as autozygosity mapping. All samples had good qual-
ity as indicated by > 90% call rate per individual. The final 
dataset included 44 066 SNP markers after pruning based on 
missing genotype calls per marker (> 10%). Non-parametric 
linkage analysis was carried out using the Merlin software 
(Abecasis et al. 2002) to test for co-segregation of any chro-
mosomal regions and the NAD phenotype.

Whole‑genome sequencing and variant calling

Whole-genome sequencing data of two parent–offspring 
trios (the sire, two dams, two NAD-affected lambs) were 
obtained after the preparation of a PCR-free fragment library 
at an average 21.5 × coverage. Fastq-files were mapped to 
the ovine reference genome assembly Oar_rambouillet_v1.0. 
Variant calling of single nucleotide and small indel vari-
ants was performed using NCBI annotation release 103 to 
predict their functional effects as described before (Paris 
et al. 2019). Private protein-changing variants present in the 
two NAD-affected animals were identified by comparison 
with 60 publically available control genomes, designated 
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as local control cohort, which were produced during other 
ongoing projects of our group (Online Resource 3). In addi-
tion, the Sheep genomes project variant database of further 
453 samples (Naval-Sanchez et al. 2018) available from the 
European Nucleotide Archive (ENA), herein designated as a 
global control cohort, was searched for the presence of iden-
tified variants. The Integrative Genome Viewer (Thorvalds-
dóttir et al. 2013) was used for confirmation of the identified 
sequence variants and for visual inspection to exclude any 
structural variants in the critical region.

RNA isolation and RT‑PCR

RNA was extracted from samples of the spinal cord, sciatic 
nerve, and cerebellum of three NAD-affected lambs using 
the RNeasy Fibrous Tissue Mini Kit (Qiagen). The tissue 
was first finely crushed by mechanically using TissueLyser 
(Qiagen), and RNA was extracted by centrifugation follow-
ing the instructions of the manufacturer. Total mRNA was 
reverse-transcribed into cDNA using the SuperScript IV 
Reverse Transcriptase kit (Thermo Fisher Scientific) with 
oligo d(T) primers. RT-PCR was carried out using primers 
spanning the different exons’ boundaries (Additional File 5) 
of the PLA2G6 gene, and the sequences of the RT-PCR 
products were obtained by Sanger sequencing as described 
below. ACTB was included as a reference gene control 
(Additional File 5).

PCR and targeted genotyping

Sanger sequencing was used to confirm the WGS results and 
to perform targeted genotyping for the identified PLA2G6 
variants as well as to sequence the obtained RT-PCR prod-
ucts. Primers were designed using the Primer-BLAST tool 
(Ye et al. 2012). After amplification with AmpliTaqGold-
360Mastermix (Thermo Fisher Scientific), the purified PCR 
products were directly sequenced on an ABI3730 capillary 
sequencer (Thermo Fisher Scientific). The sequence data 
were analyzed using Sequencher 5.1 software (GeneCodes). 
All primer sequences are available in Additional File 5.

Results

Phenotype

In May 2017, five 6-week-old purebred Swaledale lambs 
presented with ataxia and a stiff gait, which over a period 
of days progressed to tremor, lateral recumbency, paddling 
and nystagmus (Additional File 1). The parents of all avail-
able affected animals were healthy. The lambs were part of a 
300-ewe Swaledale flock of which every year 60 Swaledale 
shearlings (18 month old females) were all bred to one 

Swaledale ram, and all older sheep were bred to a Blue-
faced Leicester ram to produce North Country Mules for sale 
as breeding sheep. The Swaledale ram was changed every 
2 years so that he did not mate his own daughters. Thus, 
all Swaledale shearlings were also sired by the same ram 
(the previous one, which was the maternal grandsire of the 
affected lambs). Clinical signs were confined to the purebred 
Swaledale lambs, in which group an estimated 15 NAD-
affected lambs were seen from a total of 110 lambs. Some 
lambs suspected to have been affected were found dead hav-
ing fallen into a ditch. Lambs of both genders were affected. 
No clinical signs were seen at any time in crossbred lambs. 
After mating (in November 2016), all sheep were managed 
as one group until lambing, which occurred outside in April 
2017. Border disease virus was not detected by PCR in any 
of the affected lambs.

Neuropathology

Neuropathological analysis detected widespread spheroid 
formation predominantly involving brainstem grey matter, 
including accessory cuneate, olives, rostral colliculus, lateral 
geniculate body, caudal colliculus, medial geniculate body, 
and oculomotor nuclei (Fig. 1a). Spheroid formation was 
also present in the cerebellar nuclei, cortex with proximal 
Purkinje axonal spheroid (torpedo) formation and variable 
smaller spheroid formation in the internal granule cell layer 
and Purkinje neuronal dendrites, accompanied by occasional 
Purkinje neuronal degeneration and loss with focal gliosis in 
the Bergmann layer. Spheroid formation was also detectable 
to a much lower extent in the white matter associated with 
grey matter lesions. In the spinal cord, spheroid formation 
was most prominent in the intermediate grey matter at seg-
ment T7. Immunohistochemistry for amyloid precursor pro-
tein, a known marker of axonal injury (Garcia et al. 2015), 
highlighted the presence of widespread nerve fiber swelling 
including perineuronal sites (Fig. 1b). Thus, the observed 
clinicopathological phenotype could be explained by a novel 
form of neuroaxonal dystrophy (NAD).

SNP data analyses

Array genotypes of 50 k single-nucleotide polymorphism 
(SNP) markers were available for 14 Swaledale sheep 
including 5 NAD-affected and 3 unaffected lambs, 5 dams 
and their assumed sire. The sampled ram was confirmed as 
a sire of all eight lambs. Maternity status was investigated 
for the five selected ewes to determine the potential dams 
of the NAD-affected lambs. This enabled the construction 
of a pedigree (Fig. 2a) and a selection of five animals form-
ing two complete parent–offspring trios for whole-genome 
sequencing (WGS). Furthermore, SNP genotyping data 
confirmed the reported common origin of the ewes sired 
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by a single ram, which was used in the flock in the previous 
years. Based on the pedigree analysis, we assumed recessive 
inheritance and carried out autozygosity mapping. However, 
this analysis revealed no intervals of extended homozygous 
regions with alleles shared by all five NAD-affected animals. 
In a further attempt to map the disease-associated locus, 
a non-parametric linkage analysis was performed, which 
resulted in 41 NAD-linked genome regions showing positive 
LOD scores (Online Resource 2) in the studied Swaledale 
pedigree.

Whole‑genome sequence analysis

We obtained whole-genome sequences of two NAD-affected 
lambs, their two dams, and the sire. We hypothesized that 
a rare breed-specific deleterious variant is responsible for 
the described NAD phenotype. Therefore, filtering for pro-
tein-changing variants present only in these five Swaledale 
sheep compared to a local control cohort of 60 available 
genomes from 16 unrelated breeds (Online Resource 3) 
was performed. Thereby six variants inherited in a sim-
ple recessive way or as compound heterozygous remained 
(Online Resource 4). Additional filtering against a global 
control cohort of 453 genomes of 54 other sheep breeds 
(Naval-Sanchez et al. 2018) resulted in only four variants 
left (Online Resource 4). Among these four, only one variant 
on chromosome 15 (g.50640254C > T) was homozygous in 
both affected offspring and heterozygous in all sequenced 
parents fitting to simple recessive inheritance. As this vari-
ant is neither located in a NAD-linked genome region nor 
a shared homozygosity segment was identified before, we 

considered this as a less likely candidate, in addition to the 
fact that the affected LOC101121706 is an uncharacterized 
gene. Another missense variant in the HERC1 gene, known 
to be associated with macrocephaly, dysmorphic facies, and 
psychomotor retardation in humans (OMIM 605109), was 
found heterozygous in both cases and their sire, whereas the 
second missense variant in the HERC1 gene appeared also in 
the global control cohort. We finally excluded these two var-
iants based on the absence of detected genetic linkage to the 
genome region on chromosome 7 (Online Resource 2). The 
two other remaining private variants were both located on 
chromosome 3 (g.230766713T > C and g.230750869G > A) 
and were predicted as loss-of-function variants of the 
PLA2G6 gene (Fig. 2). Variants in PLA2G6 are known to 
be associated with autosomal recessive early-onset forms of 
neurodegeneration, such as infantile neuroaxonal dystrophy 
1 or Parkinson disease 14 (OMIM 603604). Both PLA2G6 
variants were heterozygous in the two sequenced NAD-
affected offspring, while the two dams were heterozygous 
for only the variant in PLA2G6 intron 2 (c.336-2A > G) and 
the sire was heterozygous for the variant in PLA2G6 exon 
8 (c.1312C > T; Fig. 2a). Additionally, these two PLA2G6 
variants map to one of the identified NAD-linked regions 
on chromosome 3.

PLA2G6 genotyping

To investigate how the two identified PLA2G6 variants seg-
regate in the family of the NAD-affected sheep, we geno-
typed all 71 available Swaledale sheep. The sire of the five 
cases was heterozygous for the exon 8 variant, and all the 

Fig. 1  Neuropathology of neuroaxonal dystrophy in a 6-week-old 
Swaledale lamb. a Numerous, often contiguous, swollen nerve fib-
ers (spheroids, arrowheads), some of which are vacuolated indicate 
a finding typical of neuroaxonal dystrophy in the accessory cuneate 
nucleus (HE staining). b Immunohistochemical labelling for amyloid 

precursor protein (APP), the expression of which is upregulated in 
injured axons, demonstrates numerous swollen nerve fibres (arrow-
heads), some surrounding nerve cell bodies (asterisk), in the cerebel-
lar roof nuclei (APP immunohistochemistry)
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dams of the five NAD-affected lambs were heterozygous 
for the intron 2 variant (Fig. 2a). Interestingly, only the five 
affected animals carried both variants in a heterozygous 
state, which was consistent with a compound heterozygous 
inheritance (Fig. 2a). From the 13 clinically normal lambs, 
three were homozygous wild type for both PLA2G6 variants, 
seven were heterozygous for the exon 8 variant and three 
were heterozygous for the intron 2 variant. In total, out of 
52 genotyped ewes, 25 were homozygous wild type for both 
variants, and 27 were heterozygous for the intron 2 variant 
(Fig. 2a). Although, we had no sample of the reported com-
mon maternal grandsire, we concluded that either he was 
a carrier or a germline mosaic for the PLA2G6 variant in 
intron 2.

Functional confirmation of detected PLA2G6 
variants

To assess the putative impact of the PLA2G6 variant in intron 
2 and the variant in exon 8, we experimentally analyzed both 
annotated PLA2G6 transcripts using mRNA extracted from 
the nervous tissues of three NAD-affected lambs with the 
compound heterozygous genotypes. The presence of both 
PLA2G6 variants in cDNA of three affected sheep was verified 
by Sanger sequencing after successful RT-PCR amplification. 
For the splice site variant at the end of intron 2 (c.210-2A > G) 
using primers located in the exon 2 and exon 4/5 boundary 
(Fig. 2c; Online Resource 5), a cDNA fragment of the expected 
size was obtained in all three studied tissues (spinal cord, sci-
atic nerve, and cerebellum). This single-nucleotide variant 
affects the canonical dinucleotide sequence for the U2-type 
GT-AG acceptor splice site at the end of intron 2 (Fig. 2b) and, 
therefore, was in silico predicted to disrupt splicing. Sanger 
sequencing of the RT-PCR amplicon confirmed the loss of 
the evolutionary strongly conserved splice site leading to a 
10 bp deletion at the 5′-end of exon 3 by activation of a cryptic 
splice site (Fig. 2b). As a consequence of the mutant transcript, 
if translated, the PLA2G6 protein is predicted to be signifi-
cantly truncated containing only 72 amino acids lacking more 
than 90% of the normal protein (p.Leu71TrpfsTer3; Fig. 2b). 
For the variant in PLA2G6 exon 8 (c.1186C > T), primers 
located at the exons 6/7 and exons 12/13 boundaries were 
used and resulted in amplification of two cDNA fragments of 
the expected sizes in all three studied tissues (Fig. 2c; Online 
Resource 5). Sanger sequencing revealed that the obtained RT-
PCR products correspond to the two annotated PLA2G6 tran-
scripts (XM_027968104.1 and XM_012175630.3; Fig. 2c, d). 
The identified exon 8 variant is predicted as a missense vari-
ant for the longer transcript (XM_012175630.3) leading to 
an exchange of leucine to phenylalanine in the longer protein 
isoform (XP_012031020.2: p.Leu396Phe; Fig. 2d). How-
ever, in the shorter transcript (XM_027968104.1), this vari-
ant is predicted as nonsense creating a premature stop codon 

(XP_027823905.1: p.Gln396*; Fig. 2d) that results in ~ 50% 
truncation of the resulting protein (Fig. 2e). Finally, both vari-
ants are assumed to severely affect the structure of PLA2G6 
by truncating the functionally important domains (Fig. 2e).

Discussion

As a result of characterization of the clinicopathological 
phenotype and evaluating the relatedness of the observed 
cases of lambs suspicious for an inherited neurodegenera-
tive disorder, we were able to unravel the most likely genetic 
cause of a novel form of recessive NAD in Swaledale sheep. 
The two identified loss-of-function variants in intron 2 and 
exon 8 of PLA2G6 are inherited in a compound heterozygous 
way. The intron 2 variant affects a highly conserved accep-
tor splice site leading to a premature stop codon. Similar 
splicing defect in the bovine MFN2 gene is known to cause 
a recessively inherited form of degenerative axonopathy in 
cattle (Drögemüller et al. 2011). PLA2G6 function is impor-
tant in regulation of physiological processes, such as calcium 
homeostasis, inflammation, and cell death (Ramanadham 
et al. 2015). More than half of the amino acid sequence 
builds protein interaction domains and motifs: the N-ter-
minal domain, the ankyrin repeat domain, and the catalytic 
domain (Fig. 2e) (Ramanadham et al. 2015). The long iso-
form includes an additional 54-residue proline-rich sequence 
at position 396, where it substitutes glutamine in the short 
isoform. The long isoform is membrane-bound, while the 
short isoform is found in the cytoplasm (Malley et al. 2018). 
The herein presented evidence suggests that the affected 
lambs, which carry a copy of each mutant shorter tran-
script version of ovine PLA2G6, are not able to express this 
isoform of the encoded protein. We hypothesize that both 
identified loss-of-function variants in PLA2G6 transcripts 
are likely to be degraded by nonsense-mediated decay. 
Malik et al. (2008) described Pla2g6-null mice showing 
age-dependent neurologic impairment by 13 months of age. 
The neuropathological analysis of Swaledale sheep revealed 
axonal spheroids in the brain similar to those observed in 
mice (Malik et al. 2008) and human INAD (Gregory et al. 
2008). Taken together, the two described pathogenic variants 
(PLA2G6: c.210-2A > G and c.1186C > T) are considered 
disease-causing for this novel form of ovine NAD.

Conclusion

Based on the known function of PLA2G6 and its role in 
human and dog neurodegenerative disease, the rarity of the 
two identified variants in sheep and the perfect co-segre-
gation of the variant alleles with the disease phenotype in 
the studied pedigree, we conclude that inherited NAD in 
Swaledale sheep is caused by compound heterozygosity 
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for the two identified loss-of-function variants in PLA2G6. 
Thereby, this study provides another example for the occur-
rence of allelic heterogeneity causing Mendelian disorders in 
a livestock species. Our study is the first report of the precise 
underlying pathogenesis of ovine NAD and demonstrates 
the success of the WGS-based precision medicine approach 
using the parent–offspring trios in detecting pathogenic vari-
ants associated with rare neurodegenerative disease.
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