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Abstract 

Nonlinear microscopy has evolved over the last few decades to become a powerful tool for imaging and 
spectroscopic applications in biological sciences. In this study, i2PIE, a novel spectral phase control technique 
was implemented in order to compress broad bandwidth supercontinuum light pulses generated in an All 
Normal Dispersion (ANDi) Photonic Crystal Fiber (PCF). The technique, based on time-domain ptychography, 
is here demonstrated in a nonlinear microscopy application for the first time. The first real-world application of 
this technique for second harmonic generation and two photon excitation fluorescence microscopies in 
biological samples is presented. We further show that in our implementation, i2PIE leads to improved contrast 
and signal-to-noise ratios in the generated images, compared to conventional compression techniques used in 
nonlinear microscopy. 

1. Introduction

Nonlinear (NL) microscopy has expanded tremendously over the last few decades and has advanced non-
invasive deep tissue imaging with very high spatial resolution [1], [2]. It relies on the intrinsic response of a 
medium upon interaction with high intensity light sources. Depending on the strength of the incident electric 
field and the susceptibility of the material medium, different NL effects can be measured. Common NL 
techniques applied to microscopy include two photon excitation fluorescence (TPEF) [3], second harmonic 
generation (SHG) [4], third harmonic generation (THG) [5] and coherent anti-Stokes Raman scattering (CARS) 
[6]. In addition to the deep tissue imaging permissible by virtue of the near infrared (NIR) wavelengths used [7] 
and the high spatial resolution, the different techniques offer added advantages such as reduced photodamage 
and photobleaching [8], 3-dimensional localized imaging, better signal-to-noise ratio (SNR) and decreased out-
of-focus background [9]–[11]. 

In NL optical microscopy, the challenge is to optimize the illumination signal such that it is below the damage 
threshold of the sample while maximizing the resulting number of emitted photons from the sample [12]. 
Further, since the non-linear response of the sample is highly intensity dependent a stable pulse source is 
required [13]. This is especially so when employing point-to-point raster scanning schemes. Of course, when 
raster scanning a further requirement is high pulse repetition rates in order to raster scan the sample in a 
reasonable time frame. The integration of mode locked ultrafast (fs) NIR laser sources in microscopy has 
significantly advanced multiphoton microscopy as they provide pulses with high peak intensities that can drive 
the NL responses without ionizing the sample, while keeping the average power modest [13]. These laser 
sources produce highly stable trains of identical pulses, which can be arbitrarily shaped with a pulse-shaping 
device [14]. The high repetition rate also enables faster raster scan time and thus lower dwell times required on 
each spot during a measurement leading to less energy deposition. The challenge of optimizing the NL signal is 
two-folded. Firstly, increasing the average laser power, may lead to an increased NL signal response, but this 
could result in sample damage [8], [15], [16].  Therefore, in order to avoid photodamage we must limit the 
average laser power. However, this reduces the NL signal. Fortunately, the NL signal for SHG and TPEF scales 
quadratically with the incident pulse intensity, which can be varied by altering the pulse duration. Given the 



inverse relationship between pulse intensity and pulse duration, it is therefore possible to increase the NL signal 
response for a fixed average laser power through decreasing the pulse duration (pulse compression).  

In order to keep the average power low, but increase the intensity, one can use a pulse broadening and 
compression scheme in order to decrease the pulse duration. One such scheme is to use specially designed 
optical fibers for highly stable spectral broadening. The resulting phase stable pulse trains can then be 
temporally compressed with a compensating spectral phase mask to close to the Fourier transform limit resulting 
in greatly decreased pulse lengths [17]–[19]. Commercial oscillators are available to provide stable seed pulses 
at high repetition rates after which great care must be taken in the design of the spectral broadening and 
compression thereafter.  

The spectral broadening must have a minimal effect on pulse to pulse variation and pulse compression has to be 
done to an extremely high standard. A great deal of work has been done investigating the supercontinuum 
generation properties of photonic crystal fiber (PCF) starting in the anomalous regime [20] where there are 
known issues with noise performance [21]. With the advent of the All Normal Dispersion (ANDi)-PCF, highly 
stable supercontinuum generation can be achieved since the noise sensitive effects to which anomalous 
dispersion fibers are prone to, are suppressed in these fibers [22]. Recently it was shown that polarization 
maintaining ANDi-PCF can generate highly stable, low-noise SC pulses [23] with minimal pulse to pulse 
fluctuations. These broadband light sources have several advantages over traditional light sources [24] and have 
been used as an alternate light source in many imaging applications [25]–[28].  

Pulse characterization in the focus of an objective at the sample is required for NL microscopy. Multiphoton 
Intrapulse Interference Phase scan (MIIPS) [29]–[31], is predominately used for this application in recent years 
[2], [32], [33]. MIIPS is an in-situ phase-only measurement technique that can be applied in pulse compression 
but is limited in its effectiveness for the measurement and compensation of higher order dispersions [34] ,[35]. 
Further the standard application of MIIPS requires multiple subsequent measurements each resulting in an 
incremental phase correction which is time consuming [31]. 

Recently, Spangenberg et al proposed and developed a new ultrafast pulse characterization technique based on 
the application of the implicit ptychographic iterative engine (iPIE) in the time-domain ptychography [36], [37]. 
This new technique involves extending the time-domain ptychography to generalized spectral phase-only 
transfer functions and is known as i2PIE since it measures the square of a signal resulting from the application of 
families of known transfer functions [38]. The i2PIE technique is simple to implement and takes a spectrogram 
as input. The spectrogram consists of measured spectra recorded by sequentially applying the aforementioned 
known phase-only transfer functions to an unknown object signal (the input pulse to be characterized) and 
recording the subsequent second harmonic spectrum. The recorded spectrogram is then passed to the iterative 
engine to reconstruct the spectral phase of the input pulse. Additionally, it also converges fast and reliably and 
can accurately determine higher order phase. 

In this study, the first real-world application of i2PIE in microscopy is demonstrated. A broadband SC generated 
in an ANDi-PCF [39] was compressed using a pulse shaper and implementing the new i2PIE technique. These 
compressed pulses were then used in TPEF and SHG imaging. In determining the effectiveness of i2PIE as an 
in-line phase measurement and pulse compression technique for nonlinear microscopy, we compared it to pulses 
compressed with the standard MIIPS. We demonstrate the improved efficiency of i2PIE over MIIPS in our 
implementation. 

2. Experimental setup 

The schematic setup for the developed laser imaging system is shown in Fig.1 below. A tunable femtosecond 
titanium-sapphire laser (Spectra-Physics Tsunami) with a 13 nm bandwidth centered at 800 nm with 12.5 nJ 
energy pulses (80 MHz rep. rate) was used to pump an experimental polarization maintaining ANDi-PCF (NL-
1050-PM-NEG, NKT Photonics) to create a broadband supercontinuum (SC) with a spectral bandwidth of 120 
nm. Fig 2 shows the typical SC spectrum used in this work spanning from 720 nm to 840 nm. The ANDi-PCF 
output was pre-compressed using chirped mirrors (48 reflections -175 fs2 GDD per reflection, DCMP175, 
Thorlabs). This was done to remove most of the second order dispersions resulting from the SC generation in 
the PCF. Furthermore, the pre-compression reduces the total amount of phase to be corrected by the 4f shaper, 
so that the phase difference between adjacent pixels on the SLM is less, thereby increasing the smoothness  of 
the applied phase function and hence the fidelity of the compression. The pre-compressed SC pulse was then 
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reference signal for the lock-in amplifier. Data acquisition was carried out using a custom-built LabView 
program.  

3. Phase measurement for pulse compression 

We employed the novel i2PIE as a phase measurement technique for pulse compression and compared the 
effectiveness of this technique with the standard MIIPS compression algorithm in our implementation. Fig 3a 
shows the spectral phases measured with both techniques within the SC region of fig 2 (between -0.2 and 0.2 
rad/fs, corresponding to 720 nm – 840 nm). It is observed that the two spectral phases have the same trend 
although the i2PIE technique shows finer structure. A compensating negative value of the measured spectral 
phases was programmed onto the SLM to compress the pulse and generate near transform limited pulses. The 
pulse durations of the compressed pulses were recovered with a pulse shaper-assisted non-interferometric 
collinear autocorrelation where the carrier phase between the two replicas remains fixed and only the two 
envelopes are shifted and thus the measured autocorrelation traces show no oscillations[42]. Even with the time 
ambiguity issues of the autocorrelation function, it provided a clear indication of the pulse duration for the 
various compression methods. Figure 3b displays the autocorrelation function results for the SC pulse, where 
‘Only chirped mirror (CM) compression’ represents SC compression with the GDD compensated for by the 
chirped mirrors. ‘CM + MIIPS compression’ and ‘CM + i2PIE compression’ represents the autocorrelation of 
the respective techniques subsequent to CM compression. Note that the autocorrelation function displays 
subsidiary maxima on either sides of the main peak. These peaks are presumably due to multiple reflections in 
the optical system. The extracted pulse durations for the main peaks are listed in table 1.  

                             

            (a)                                                           (b) 

                 

             (c)                                                        (d) 

Fig 3. Spectral phases measured with MIIPS (blue) and i2PIE (red) algorithms (a). Autocorrelation measurements to determine the pulse 
durations are plotted in (b). The SHG generated in BBO by same energy pulses for different pulse durations are shown in (c) with the 
integrated intensities for the entire spectral bandwidth shown in (d). 

Table 1. Measured pulse durations based on compression technique.  
Technique Duration (fs) 
Chirped mirror (CM) 25.3 ± 1.0 
CM + MIIPS 21.1 ± 0.8 
CM + i2PIE 17.9 ± 0.7 
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while figures 6 (b-d) shows TPEF images for the same order of SC pulses. There is an obvious increase in signal 
in the use of SC pulses over the fundamental pulse. There is also a significant improvement in the detail 
recorded  

               

                                   

Fig 5: SHG from the epidermis of porcine skin imaged under the four configurations: (a) fundamental laser pulse (signal enhanced by a 
factor of 2), SC with only chirped mirror (CM) compression (b), SC with CM and MIIPS compression (c) and SC with CM and i2PIE 
compression (d). All images taken under same conditions with pulse energy of 25 pJ. Scale bar: 10 μm. 
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Fig 6. TPEF images from Hoechst stained GT1-7 cells imaged under the four configurations: fundamental laser (signal enhanced by a factor 
of 2) (a), SC with only chirped mirror (CM) compression (b), SC with CM and MIIPS compression (c) and SC with CM and i2PIE 
compression (d). All images taken under same conditions with pulse energy of 25 pJ. Scale bar: 10 μm. 

for decreasing pulse lengths (from table 1). From figures 5 and 6 (a-d), it is observed that for the same excitation 
pulse energy, there is a significant increase in the SHG and TPEF responses generated using the broadband 
supercontinuum light sources. These imaging results highlight the advantage of SC-based sources over the use 
of the fundamental pulse. Furthermore, within the SC-based techniques, these results show that the enhancement 
in the signal responses and improvements in the amount of details recorded vary inversely with the pulse lengths 
recorded in table 1.  

In assessing the image qualities, contrast and signal-to-noise (SNR) calculations were performed. Contrast 
calculations were performed using the Weber contrast [49]  while SNR = maximum mean intensity / σnoise where 
σnoise represents the standard deviation of the noise which is the readings obtained without the sample. Note that 
the diffraction limited beam waist at the focus was kept to ca 1 µm. Given this, the calculated contrasts and SNR 
are presented in table 2. 

Table 2. Contrast and signal-to-noise ratio measurements for SHG in dermis of porcine skin and TPEF in GT1-7 cell lines.  
 

 Contrast  SNR 

Technique 

Porcine 

SHG 
GT1-7 
TPEF  

Porcine 

SHG 
GT1-7 
TPEF 

Fundamental 6.2± 0.7 8.2 ± 2.4  3.0 ± 0.2 4.2 ± 1.0 

Chirped mirror 
(CM) 

17.3± 0.9 35.9 ± 3.7 
 

6.0 ± 0.3 11.5 ± 1.5 

CM + MIIPS 63.3 ± 17.0 44.2 ± 3.2  16.2 ± 4.4 17.3 ± 1.1 

CM + I2PIE 135.1 ± 16.1 83.7 ± 9.3  32.3 ± 3.7 30.0 ± 3.2 

 

The contrast recorded in fig 5d, taken with the pulses compressed with i2PIE, is ≈ 2.1 times larger than that 
recorded for fig 5c which was taken with MIIPS compressed pulses. Similarly, there was a factor of 2.0 increase 
in SNR between the two images. For TPEF images taken (figure 6), the contrast (SNR) for the i2PIE relative to 
MIIPS shows a factor of ≈ 1.9 (1.7) increase in signal responses. The signal enhancement factors for the 
different pulses are tabulated in table 3.  

Table 3. Contrast and signal-to-noise ratio (in parenthesis) enhancement factors for Porcine SHG and GT1-7 TPEF.  
 

Technique Sample CM-only MIIPS i2PIE 

Fundamental 
porcine SHG  2.8 (2.0) 10.2 (5.4) 21.8 (10.8) 

GT1-7 TPEF 4.4 (2.7) 5.4 (4.1) 10.2 (7.1) 

CM-only 
porcine SHG  

1.0 
3.7 (2.7) 7.8 (5.4) 

GT1-7 TPEF 1.2 (1.5) 2.3 (2.6) 

CM + MIIPS 
porcine SHG  

 

1.0 
2.1 (2.0) 

GT1-7 TPEF 1.9 (1.7) 

CM + i2PIE   1.0 

 

Further comparing the images along with the calculated contrast and SNR for the MIIPS compressed pulse and 
the pulses with only GDD compensation i.e. only CM compressed pulses shows an increase in the MIIPS 
response over only GDD compensated pulses. These results are consistent with the works of Xi et al [2] and Liu 
et al [32] who explored these two modalities in TPEF and SHG respectively.  

The higher signal strengths recorded for the i2PIE over MIIPS for the same pulse energy is attributed to the 
i2PIE providing a more accurate measure of the spectral phase of the SC pulse. This shows it is more sensitive to 
the complex spectral profile of the SC pulse thus making it more effective in compensating for higher order 
dispersions leading to better pulse compression and hence the generation of shorter temporal pulses, closer to 
the transform limited case. These shorter pulse durations also generate higher peak intensities and with 
nonlinear signal responses depending nonlinearly on the intensity of the applied field, the higher peak intensities 



generate higher signal responses. Due to the higher nonlinear signal responses from i2PIE, lower average power 
(pulse energy) can be used. This leads to a decreased risk of photodamage in tissue, allowing for longer 
exposure/investigation time. The results obtained in SHG crystals suggest that pulses compressed with i2PIE 
exhibit improved phase matching resulting in a better conversion efficiency across the whole spectrum. This 
also results in higher generated signals.  

6. Conclusion 

The first ever application of i2PIE as a pulse characterization technique in SHG and TPEF microscopy has been 
demonstrated and shows excellent results. As a phase measurement technique that can be applied in pulse 
compression, i2PIE has been shown to provide accurate measurement of the spectral phase of the SC pulse thus 
leading to a better compression compared to the standard MIIPS, in our implementation.  The resultant 
compressed pulses provided improved contrast and signal-to-noise ratios at the same input pulse energy. 
Compression using i2PIE results in higher peak intensities which generate stronger nonlinear signal response. 
This means when compared to other techniques, i2PIE can easily be used with lower energy pulses whilst still 
providing similar signal strengths. This should lead to a reduction in photodamage in biological samples. 
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