
Experimental Parasitology 219 (2020) 108013

Available online 1 October 2020
0014-4894/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Short communication: Efficacy of albendazole in Echinococcus 
multilocularis-infected mice depends on the functional immunity of the host 

Junhua Wang a,b, Nelson Marreros a, Reto Rufener a, Andrew Hemphill a, Bruno Gottstein a,b, 
Britta Lundström-Stadelmann a,* 

a Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Berne, Längassstrasse 122, 3012, Berne, Switzerland 
b Institute for Infectious Diseases, Faculty of Medicine, University of Berne, Friedbühlstrasse 51, 3010, Berne, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Alveolar echinococcosis 
Benzimidazole 
Treatment 
Immunity 
Immunomodulation 

A B S T R A C T   

Alveolar echinococcosis (AE) is a deadly parasitic disease that requires lifelong treatment with albendazole. 
Development of host immunity is pivotal with regard to the clinical outcome of AE, but its influence on con-
ventional albendazole treatment is unknown. Using T-cell deficient athymic nude mice, we demonstrated that 
functional immunity is required for albendazole to be efficacious against murine AE. These results call for 
attention given the increasing number of immunocompromised patients with AE.   

1. Introduction 

Alveolar Echinococcosis (AE) is a life-threatening disease caused by 
the metacestode stage of the fox tapeworm Echinococcus multilocularis. In 
Europe and Canada, AE is recognized as an emerging disease (Gottstein 
et al., 2015a) and was ranked as the most important food-borne parasitic 
disease in Europe (Bouwknegt et al., 2018). The only curative treatment 
is surgical resection of the whole parasite tissue, if possible. Alterna-
tively, lifelong treatment with the benzimidazole-carbamates meben-
dazole or albendazole (ABZ) has to be followed (Kern et al., 2017). 

AE is characterized by a chronic disease course with a weak in-
flammatory response. Metacestodes form slowly growing micro-cysts (or 
vesicles) that modulate and escape the host immune response in a 
tumor-like fashion (Gottstein et al., 2015b). The immune status of the 
host plays a crucial role in determining the outcome of AE, both in the 
murine model (Boubaker et al., 2015; Emery et al., 1998; Godot et al., 
2003; Liance et al., 1998; Pfister et al., 1989; Wang et al., 2018, 2017, 
2015), as well as in human AE patients (Harraga et al., 1999; Jenne 
et al., 1998; Schmid et al., 1995). Briefly, during E. multilocularis in-
fections in humans, a Th2-oriented immunity is basically associated 
with increased susceptibility to disease leading to chronic AE, while Th1 
cell activation has been linked to protectivity, which may even yield 
aborted (“died-out”) forms of infection (Vuitton, 2003; Vuitton et al., 
2006). Experimental murine AE is characterized, as studied in spleen or 
lymph node cells, by an initial Th1 response at early infection stage and 

gradually switches to a mixed Th1/Th2 profile, characterized by the 
concomitant presence of IL-12α, IFN-γ and IL-4 (Wang et al., 2014). 
CD4+CD25+ T regulatory cells (Tregs) play a critical role in human AE 
by blunting immune responses to specific antigens, or by suppressing the 
secretion of proinflammatory cytokines, especially through interleukin 
(IL)-10 and transforming growth factor beta1 (TGF-β1) (Tuxun et al., 
2012). Moreover, increased CD4+CD25+ Tregs were also observed in 
peritoneal cells of mice intraperitoneally (i.p.) infected with 
E. multilocularis, and depletion of Foxp3+ Tregs led to an improved 
control of E. multilocularis infection (Wang et al., 2018). 

However, the relationship between the immune response and benz-
imidazole treatment is still poorly understood. Human patients’ records 
suggest that the periparasitic immune response gradually increases 
throughout ABZ-treatment (Ricken et al., 2017), but confirmatory 
placebo-controlled studies are lacking. Patients with cystic echinococ-
cosis (CE), the disease inflicted by E. granulosus (Zhang et al., 2012), 
displayed a shifted immune response towards a Th1 profile after benz-
imidazole treatment. Moreover, patients with CE and low CD4 counts 
showed poor response to ABZ treatment, and continuous ABZ therapy 
was ineffective in HIV-infected patients with CE and low CD4 counts 
(Dumitru et al., 2015). Thus, the immune system might not only play a 
general role in the outcome of AE infections, but may also be involved in 
the degree of efficacy of ABZ treatment. 

With increasing incidences of AE and the rising use of immuno-
modulatory therapies against other co-morbidities (Chauchet et al., 

* Corresponding author. Länggassstrasse 122, Vetsuisse Faculty, Berne, Switzerland. 
E-mail address: britta.lundstroem@vetsuisse.unibe.ch (B. Lundström-Stadelmann).  

Contents lists available at ScienceDirect 

Experimental Parasitology 

journal homepage: www.elsevier.com/locate/yexpr 

https://doi.org/10.1016/j.exppara.2020.108013 
Received 8 July 2020; Received in revised form 8 September 2020; Accepted 29 September 2020   

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
4
6
9
6
7
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
7
.
1
2
.
2
0
2
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/343224748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:britta.lundstroem@vetsuisse.unibe.ch
www.sciencedirect.com/science/journal/00144894
https://www.elsevier.com/locate/yexpr
https://doi.org/10.1016/j.exppara.2020.108013
https://doi.org/10.1016/j.exppara.2020.108013
https://doi.org/10.1016/j.exppara.2020.108013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.exppara.2020.108013&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Experimental Parasitology 219 (2020) 108013

2

2014; Lachenmayer et al., 2019), a better understanding of the role of 
the immune response during AE treatment is urgently needed. We thus 
addressed the question whether a functional immune system is required 
for ABZ to be efficacious against AE in a murine model. 

2. Methods, results and discussion 

We chose a model of athymic nude mice, which are immunodeficient 
due to lack of mature T cells, and their heterozygous wild type (WT) 
counterparts as controls. Crl:NU(NCr)-Foxn1nu mice (n = 24) and WT 
(n = 24) (Charles River Laboratories, Sulzheim, Germany) were housed 
in a standard temperature- and humidity-controlled environment. The 
study was performed in accordance with the recommendations of the 
Swiss Guidelines for the Care and Use of Laboratory Animals (TschV, SR 
455) and approved by the Commission for Animal Experimentation of 
the Canton of Bern (approval no. BE112/17). 

At the age of 8 weeks, all mice underwent (secondary) intraperito-
neal infection with E. multilocularis metacestodes (isolate Svalbard 
(Knapp et al., 2012) from in vitro cultures) as previously described 
(Rufener et al., 2018). Four weeks after infection, 8 athymic mice, and 8 
WT mice (all untreated; baseline group) were euthanized by CO2 inha-
lation, and their parasite tissue was resected and weighed, as previously 
described (Gorgas et al., 2017). Athymic mice hereby exhibited a 
slightly, but not significantly (p = 0.150), lower parasite mass than WT 
mice (Fig. 1). We consider this fluctuation to range among normal bio-
logical differences also observed among naturally infected wild life ro-
dents (Gottstein et al., 1996). 

The residual mice were randomly allocated into four treatment 
groups with 8 animals each: (I) WT control, mock-treated with corn oil; 
(II) WT ABZ, treated with ABZ suspended in corn oil (200 mg/kg); (III) 
athymic control, mock-treated with corn oil; (IV) athymic ABZ, treated 
with ABZ as group II. All animals were treated by gavage (100 μl), from 4 
weeks post infection on for a total of 7 weeks. The treatment was given 
on 5 consecutive days per week, after which the animals were allowed to 
recover. This protocol has previously been shown to be sufficient to halt 
further parasite growth by treatment with albendazole, and it contrib-
utes to the 3R principle (Gorgas et al., 2017; Rufener et al., 2018). At the 
end of the experiment, all mice were euthanized, and their parasite mass 
was determined. The effect of treatment and mouse type on parasite 

weight was assessed by generalized linear model with gamma error and 
log link function. Statistical analysis was performed with the R software 
(R Core Team, 2019) and packages ggplot2 (Wickham, 2009) and 
multcomp (Hothorn et al., 2008). 

The mock-treated WT mice displayed larger parasite mass than their 
baseline (p = 2.79 E− 06) as well as their ABZ treated counterparts 
(Fig. 1, p = 0.006). WT mice treated with ABZ exhibited a slightly higher 
parasite burden compared to the baseline group, but the difference was 
not significant (p = 0.335, Fig. 1). Thus, parasite growth took place in 
mock-treated WT mice, but not significantly in ABZ-treated ones. In 
accordance, a parasitostatic effect of ABZ treatment was shown previ-
ously in a murine model of AE (Gorgas et al., 2017). When re-injected 
into BALB/c mice, the resected parasite tissue from both WT groups 
(groups I and II) grew into proliferative metacestodes confirming their 
viability. 

Athymic nude mice treated with ABZ and mock-treated ones showed 
a significantly larger parasite mass than the baseline group. There was 
no significant difference (p = 0.788) in the parasite burden in ABZ- 
treated athymic mice when compared to mock-treated athymic mice 
(Fig. 1).This demonstrates that ABZ treatment did not reduce the para-
site growth in athymic nude mice, in contrast to WT mice. Same as 
observed in WT mice, parasite tissues from both athymic mouse groups 
(groups III and IV) were viable. The resected metacestode tissue of all 
treatment groups was also examined by scanning electron microscopy, 
as described before (Küster et al., 2011). No differences between the 
samples were observed, and in all of them the development of proto-
scoleces was observed (Supplementary Figure). 

Mock-treated WT and nude mice harbored similar amounts of 
parasite (p = 0.999). The parasite burden in ABZ-treated WT mice was 
lower than in nude mice. Albeit this difference was statistically not 
significant (p = 0.092), the trend further confirms that ABZ is less effi-
cacious in nude than in WT mice. 

T-cell immunity helps controlling AE (Vuitton et al., 2006). 
Conversely, immunosuppression favors the re-growth of larval remnants 
and the formation and growth of E. multilocularis metastases (Vuitton 
et al., 2006). We show here that immunosuppression of athymic mice 
impairs the activity of ABZ treatment against AE. A functional adaptive 
immunity is therefore necessary for ABZ to be efficacious against murine 
AE. 

Fig. 1. Effect of albendazole treatment on meta-
cestode cyst weights in immunosuppressed athymic 
nude and WT mice experimentally infected with 
E. multilocularis. “Baseline” shows the parasite 
weights in mice before treatment initiation, “Alben-
dazole” and “Mock” show the parasite burdens in the 
groups that were treated with albendazole or mock- 
treated, respectively. Dots show individual measure-
ments over summarizing box plots. Brackets show p- 
values after correction for multiple comparisons.   
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It remains unclear which immune mechanisms are responsible for 
the efficacy of ABZ against AE. Further studies, including specific cell 
adoptive transfer of different immune cell populations into athymic 
mice, are underway and might improve the current treatment options in 
the future. 
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