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Abstract

Snow on the ground is an important climate variable which is normally mea-

sured either as snow depth or height of new snow. Like any other meteorologi-

cal variable, manually measured snow is prone to local influences, changes in

the environment or procedure of the measurements. In order to investigate the

robustness of snow measurement series towards such non-climatic changes, a

unique set of parallel manual snow measurements over 25 years from 23 sta-

tion pairs between 490 and 1800 m a.s.l. was compiled. A sensitivity analysis

based on typical snow climate indicators (e.g., mean snow depth, sum of new

snow) from these parallel time series was carried out to find the most robust

snow climate indicators for climatological analyses. Results show that there

are only small differences in the sensitivity of the various snow climate indica-

tors with regards to local changes. However, the indicators number of days

with snow on the ground as well as the maximum snow depth are least

affected by local influences and changes at station level. Median values of all

station pairs reveal relative differences of about 7% for the number of days with

snow cover and 11–16% for all other indicators. However, in extreme cases, the

deviations within a single station pair can reach 25–40%.
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1 | INTRODUCTION

Snow has multiple implications for a wide range of areas
like ecology, economy and society: ranging from plants,
animals, habitats and cycles of life (Jonas et al., 2008; Wipf
et al., 2009; Resano-Mayor et al., 2019) to winter tourism,
hydro power, fresh water availability, floods, avalanches
and climate feedbacks (Marty, 2008; Scherrer et al., 2012;
Marcolini et al., 2017b; Schmucki et al., 2017). Modern cli-
matological studies of past snow trends in the Alps have a

relatively short history in science with first studies starting
in the 1990s (Beniston et al., 1994; Spreitzhofer, 1999).
Since then, various studies have focused on a variety of
aspects (such as trends, variations, or forecasts and model-
ling) in all the above-mentioned fields, although there are
still questions regarding the quality and the representative-
ness of the actual measurements and corresponding clima-
tological time series.

The longer a time series, the more likely it has experi-
enced breaks due to changes of observer, location,
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instrument or procedure. Such breaks can affect the qual-
ity of the data as mentioned by Aguilar et al. (2003) and
Della-Marta and Wanner (2006). This is a fundamental
issue in climate sciences which has been well-studied for
temperature and precipitation, (e.g., Begert et al., 2005;
Scherrer et al., 2013; Acquaotta et al., 2019; Guenzi
et al., 2020) but very rarely addressed for snow (Marcolini
et al., 2017a). It is widely accepted that “snow” measured
in either height of new snow (HN) or snow depth
(HS) can be spatially quite heterogeneous and the mea-
surements are prone to local influences (e.g., Neumann
et al., 2006; López-Moreno et al., 2015). Snow is not only
a function of temperature and precipitation but also
dependent on elevation, exposure to wind, solar irradia-
tion, and to a large extent on its instability on a micro-
structural level (e.g., settlement, metamorphism). To
address such issues, sensitivity analyses of parallel time
series are paramount and have been conducted for tem-
perature and precipitation (Acquaotta et al., 2016; Gubler
et al., 2017; Hunziker et al., 2017). For snow only few
studies exist (e.g., Accquaotta et al., 2015; Baronetti
et al., 2019) analysing parallel snow series. However, data
from two different measurement techniques were used
(manual and automatic), large distances (up to 20 km)
were allowed within their station pairs and no impact on
indicator series was investigated.

The present study benefits from the fact that in
Switzerland snow is monitored by two independent insti-
tutions (WSL Institute for Snow and Avalanche Research
Davos SLF and Federal Office of Meteorology and Clima-
tology MeteoSwiss) and that the measurement principle
has not changed since the beginning. This circumstance
allows the exploitation of a carefully constructed unique
set of long-term, daily, manual data of independent, par-
allel snow measurements. The aim is first to investigate
the sensitivity of indicators, derived from snow depth and
new snow with regards to local changes (in either loca-
tion or observer). Throughout this paper, the influence of
such changes (environment, instructions, observer) is not
accounted for because of lack of trustful metadata. Never-
theless, this is exactly the point of this study – to find the
least sensitive indicators regardless of any changes that
might have occurred during the analysed time period.
This last point has practical implications, as normally
neither observer metadata nor environmental changes of
a station itself are completely documented.

The results of this analysis are used to assess which
snow indicators are most robust for climate studies, that
is, least sensitive to local changes. This has practical
implications for any further homogenisation approaches
as well as for climate services where recommendations
about trend analyses of usually un-homogenised snow
time series can be improved. This will be accomplished
by introducing and analysing derived snow climate

indicators, like mean snow depth, number of days with
snowfall, etc. and assessing the stability by making use of
the parallel long-term measurements.

This paper is organised as follows: Section 2 intro-
duces the data set and outlines the statistical methods
used for the analyses. Results are presented in Section 3,
followed by a discussion in Section 4. Conclusions are
drawn in Section 5.

2 | DATA AND METHODS

Switzerland consists of three major parts: Swiss Plateau in
the north, Jura mountains in the west, and Prealps and
Alps in the south. Topography and climate are conse-
quently complex and diverse. Typical mean maximum
annual snow depths range from 15 cm for the Swiss
Plateau to 300 cm in the Alps, and 70–100 cm for inner
Alpine valleys and pre-Alpine regions. Starting at an alti-
tude of 1,200–1,500 m above sea level, precipitation during
winter predominantly falls as snow, such that the area is
often covered by a solid layer of snow for weeks, and even
months at higher altitudes. Snowfall is relatively rare in
the low-lying areas of western Switzerland (greater Geneva
area) and northern Switzerland (greater Basel area) as well
as in the lowland in the southern tip of Switzerland.

Daily operational, manual snow measurements usu-
ally entail at least two variables: height of new snow as a
24 h sum (HN) and snow depth (HS). HN has to be mea-
sured, as the difference in HS (retrieved, say in a 60 min
interval) is usually not the amount of new snow accumu-
lated in said interval due to settlement of the snow pack.
In Switzerland, snow is measured since the late 19th cen-
tury. Manual measurements, which are solely used in
this study, are still conducted today, using basically the
same instruments as in the beginning. Both MeteoSwiss
and SLF maintain a network of manual snow observa-
tions, be it for slightly different objectives. For
MeteoSwiss, as the Federal Office of Meteorology and
Climatology, snow is one of many variables they are
interested in and basically just one form of precipitation,
in contrast to the SLF where snow and snowfall are
important due to its main brief of avalanche forecasting.
The station distribution of the two networks reflects that
focus, as the MeteoSwiss-stations are located throughout
Switzerland, whereas SLF-stations are distributed solely
over the mountainous and alpine areas.

2.1 | Measurement procedures

Daily measurements are conducted each morning by
reading off the value from a stake with centimetre scale
(HS) and by taking three measurements with a ruler on
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the snow measurement board (HN) both at 06:00 UTC
(Haberkorn, 2019). Instructions vary slightly when it
comes to reporting as SLF stations normally only mea-
sure between November and April (unless there is
already or still snow present) in contrast to MeteoSwiss
stations which measure all year round. Unlike
MeteoSwiss, where HN smaller than 0.5 cm is recorded
as zero, SLF allows to put in traces (fixed default value of
0.3 cm) for HN smaller than 0.5 cm. These traces have
been subsequently set to zero in the data analysis in order
to be consistent with MeteoSwiss procedures. Values are
stored in two databases and have already been processed
independently in terms of initial quality control and gap
filling. But both data sets have been analysed again with
a systematic manual quality control looking for gaps
and implausibilities (see Section 2.2) prior to being used
for the analyses in this study. However, according to
MeteoSwiss and SLF experts, there is no publication
available documenting the various QC methods.

2.2 | Parallel data set

Because of the various operational focuses, there are loca-
tions where both institutions operate (or have operated)
an observer site within the same village at some period in
time. To build the parallel station set, the candidates have
to meet the following criteria: Roughly within the same
village (±3 km), similar elevation (± 100 m), data from
November to April, independent data (as we cannot
exclude instances in which data were copied), and paral-
lel measurement series for at least 20 consecutive years.
Stations can, but do not have to be part of the same
network.

For simplification, we define the hydrological year as
follows:

hyear1980 : =1:10:1979 to 30:9:1980 ð1Þ

and subsequently winter or snow season as the period
from November to April.

Unfortunately, it is not just a question of comparing
the coordinates from the two networks to build the sta-
tion pairs. Stations can have two names and different
coordinates but still be identical, due to the fact that the
coordinates represent the meteorological station, rather
than the actual location of the snow measurements, as
they, for practical reasons often cannot be conducted too
close to the measurement field of the automatic instru-
ments. Additionally, in the past it was not deemed impor-
tant to know the exact location of the snow
measurements. Starting off with a rough list of possible
station pairs, compiled on available metadata such as

current elevation and location, each case had to be
analysed in detail in order to make sure the pair was
independent. A possible pair of two existing stations has
then to be checked for independent data and overlap.

Sometimes a station pair only appears to be indepen-
dent, but contains in fact exactly the same data. This
could happen for the following reasons: In order to fill in
missing values for one station, sometimes the data from
the corresponding “partner” station was simply copied
during one or multiple short periods of time. Or one
observer reports to both networks separately. Moreover,
the search for station pairs proved to be cumbersome as
approximately one third of the MeteoSwiss stations was
not digitally available and had gaps that needed careful
treatment first.

Station metadata such as coordinates and observer
names could sometimes help solving the conundrum.
Unfortunately, these data are not always available and
trustworthy, especially for past changes. Even if available,
observer names such as “Swiss Border Force” are still
vague (e.g., station Santa Maria 1970s). Additionally,
each institution has its own data base and therefore dif-
ferent or no quality codes that inhibits a simple query to
check whether some data were copied in the first place.

To address these issues, a simple quality control
mechanism is introduced. Stations are treated as inde-
pendent if more than 60% of the data are not equal (with-
out counting zeros) for any given winter (empirical value,
gained by visual analysis). The above criteria yield a pre-
liminary set of more than 55 possible station pairs. By
selecting only station pairs where its members have more
than 80% of data available for each annual winter season
the number of possible station pairs is further reduced.
Considering the length of the overlap and the benefit of
looking at the same period, a dataset of 23 station pairs
(see supplementary material Table S1) results for the
25-year period between 1980 to 2004 (see map in
Figure 1).

Data is subjected to quality control focusing on
implausibilities (like for example, snow depth decrease of
50 cm within one day) and consistencies between HN
and HS. All cases of possible implausibilities and incon-
sistencies were manually checked. It is important to men-
tion that the number of such cases were rare, which is
not surprising as most of the time series have already
been checked by the data owners. Missing values were
interpolated by manually fitting the evolution derived
from the best correlated neighbouring station using
median ratios (again, the occurrences were rare, as the
80% cut-off meant that only high-quality stations [almost
complete series] were selected in the first place). After
the interpolation process all analysed time series were
complete. However, not all inconsistencies can be
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addressed as MeteoSwiss stations assign HN to the previ-
ous, rather than the actual day. This issue is historically
partly addressed in the observer form, in the digitisation
and/or in quality control process by simply moving the
HN time series by one day. For these reasons this shift is
unfortunately not always constant for all stations, time
periods and sometimes not even an entire winter season.
All possible combinations of no shift, two-day shift or
shifts in the wrong direction can occur. Sometimes, even
HS series have been affected. However, these cases could
be easily detected and have been corrected accordingly.
Fortunately, the HN shift does not affect the calculations,
as the indicators are defined as annual values. For two
stations the HN series had to be omitted, because HN
was most of the time just calculated from the difference
between today's and yesterday's snow depth (see red sta-
tions in map in Figure 1), resulting in 23 station pairs for
HS- and 21 for HN-indicators. Hereafter, only the term
“23 station pairs” is used for improved readability.
Finally, all station pair time series were visually checked
for possible remaining issues.

2.3 | Snow climate indicators

To be able to compare the station pairs and carry out the
sensitivity analysis, snow climate indicators are intro-
duced and defined as annual values from the daily HS
and HN measurements similar to WMO's Global Climate
Indicators; only with focus on snow and calculated for
each station pair and hydrological year. Only years that
have valid values for both stations are used to determine
the snow climate indicators, which are:

Number of days with HS of at least 1 cm (dHS1) is
widely used to establish whether the ground is snow-cov-
ered, an important factor for ecologists and climate scien-
tists alike. To account for the fact that dHS1 might be
sensitive to the observation time and method, dHS5 with
a 5 cm threshold is introduced, as HS > =5 cm can still
be regularly observed at all stations in the data set (see
Section 4.3). The same applies to number of days with
HN of at least 1 or 5 cm (dHN1 and dHN5) which are
mainly of interest for tourism, road maintenance and cli-
matology. The maximum sum of three consecutive

FIGURE 1 Map of Switzerland, showing the distribution of the station pairs used in this study. The red dots (THS and CAV) highlight

station pairs that were excluded for the HN and trend analyses due to inadequate HN series [Colour figure can be viewed at

wileyonlinelibrary.com]
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snowfall days (HN3max) is of particular interest for ava-
lanche forecasts, maximum snow depth (HSmax) has
implications for national snow load codes and civil engi-
neering, average snow depth (HSavg) is of interest for cli-
mate sciences, whereas the sum of new snow (HNsum) is
more suited for hydrological or climatological analyses
(refer to Figure 2 and Table 1).

2.4 | Statistical methods

2.4.1 | Correlations and absolute
differences

Correlations (COR) between station pairs for all climate
indicators are calculated using Spearman's rank coeffi-
cient as this method is less susceptible to outliers than
Pearson's rho. Deviations within a station pair are
expressed as relative percentage differences (RPD)
between SLF (slf in the equations) and MeteoSwiss (mch)
stations, because none of the two networks can be called
a proper reference series.

RPD : =
mch−slf

mean mch,slfð Þ ð2Þ

RPD yield one annual value per station pair and indi-
cator. Boxplots are used to compare the distribution of
the RPD for all station pairs, separated for each snow cli-
mate indicator by using the mean RPD over all 25 years
for each station pair.

To give a sense for the absolute scale of deviations,
root mean squared errors (RMSE) are also calculated;
always mch minus slf, analogue to RPD.

RMSE : =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean mch−slfð Þ2� �q

ð3Þ

2.4.2 | Median absolute deviations

In order to quantify the variability of the correlations and
relative percentage deviations across all station pairs,
median absolute deviations (MAD) are favoured over
coefficients of variation due to their robustness with
regards to outliers.

MAD : =median Xi−median Xð Þj jð Þ;withX� COR,RPD, ::f g
ð4Þ

2.4.3 | Relative changes

In order to assess the comparability of the long-term tem-
poral evolution among station pairs changes are calculated
using the Theil-Sen linear slope (Theil, 1950; Sen, 1968)
and the non-parametric Mann-Kendal test (Mann, 1945;
Kendall, 1975). Relative changes (RC) are defined as:

FIGURE 2 Winter 1997 at

station Adelboden: The bold red line

shows HS and the black bars indicate

days with HN. All visible bars below

the 5 cm threshold (black horizontal

line) are counted as dHN1, all that

exceed the 5 cm threshold as dHN5

(analogue for dHS1 and dHS5). The

red horizontal line depicts HSavg.

HSmax, HNmax, HN3max, and

HNsum (shown as cumulative sum)

are also indicated [Colour figure can

be viewed at wileyonlinelibrary.com]

TABLE 1 Summary of the snow climate indicators

Indicator Description Unit

HSavg Mean HS cm

HSmax Max HS cm

HNmax Max HN cm

HNsum Sum HN cm

HN3max Max sum over three days cm

dHS1 Number of days with HS > 0 cm days

dHS5 Number of days with HS > =5 cm days

dHN1 Number of days with HN > 0 cm days

dHN5 Number of days with HN > =5 cm days

BUCHMANN ET AL. 5
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RC : =
fitted value at the end− fitted value at the beginning

median of the fitted values

ð5Þ

To investigate the differences within a station pair,
the differences in the (above) relative changes (DRC)
were calculated as:

DRC≔RC mchð Þ−RC slfð Þ ð6Þ

3 | RESULTS

3.1 | COR, RPD, and RMSE

The median correlation values for each of the nine indi-
cators range from 0.81 for HNmax to 0.95 for HSavg
(Figure 3). However, median values are higher than 0.85
for all snow climate indicators except HNmax. HNmax
also reveals by far the highest variation among all station
pairs. In contrast, HSavg and HSmax, show by far the

smallest variability. The outliers in Figure 3 consist of
three different station pairs with no apparent connection.

Relative inter-pair deviations (Figure 4), expressed as
median RPD for all station pairs range between 5% and
15%. The lowest values are clearly shown by dHS1 and
dHS5, which together with HSmax also reveal small vari-
ation among the station pairs. On the other side, the larg-
est variation result from dHN1 and dHN5. The outliers
not shown in Figure 4 correspond to the lowest station
pair in the data set. The visible outliers (HSmax, dHS1,
and dHS5) relate to two snow-poor station pairs (PAV
and ROB, see Table S1 for details).

In contrast to RPD, RMSE reveals the absolute devia-
tion values (Figure 5). HNsum shows the largest RMSE
with 24 cm and by far the largest variability. Median
values for the other indicators range from 1.6 cm for
HSmax to 3.5 cm for HN3max and from 2.2 days for
dHN5 to 4.5 days for dHS5.

Because higher stations usually experience more
snowfall, larger snow depths, and more snow days, possi-
ble elevation dependences were analysed for COR and
RPD but no clear signal is found (see Figures S1–S4 and
Table S2).

FIGURE 3 Spearman

correlation for all station pairs

grouped by snow climate indicators

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 4 Comparison of

mean RPD (in %) for each station

pair and indicator. dHS1 and dHS5

both show median RPD smaller than

10% [Colour figure can be viewed at

wileyonlinelibrary.com]
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3.2 | Relative changes

Figure 6 shows strength and direction of temporal RC for
each station pair. Nearly all stations show negative RC
for all indicators for the period under investigation. The
sign of the changes agrees well within the station pairs;
the only differences occur when one station has a value
close to zero (see Figure 6 for details). The DRC (depicted
in Figure 7) reveals median values for all station pairs
below 10%. Furthermore, for a majority of stations and
indicators, most values are below 20%, except for HNmax
and dHN1. dHS1 and dHS5 show clearly the smallest
values for the majority of stations, but several outliers
which are associated with two snow-poor station pairs.

3.3 | MAD

Table 2 reveals the variability between the station pairs
for COR, RPD, and DRC expressed as MAD in percentage
values for all snow climate indicators. Larger values indi-
cate a larger variability of the underlying metric and thus
more variation across all station pairs (visible in Figures 3,
3, 4, and 7). MAD(COR) scores best for HSavg and
HSmax with 4%. HNsum, dHS1, dHS5, dHN1, and dHN5
form the next group with values of 7%, followed by
HNmax with 13%, illustrating the large spread in
Figure 3. MAD(RPD) shows a more gradually distribu-
tion with values ranging from 4% to 11%. Again, HSmax,
as well as dHS1 and dHS5 are associated with low values,

FIGURE 5 RMSE for the

various snow climate indicators. Note

that HNsum values are an order of

magnitude larger than the rest and so

is its RMSE [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 6 Relative changes (RC) for each station and indicator in %. Station pairs are ordered according to their mean HSavg from

low (PAV) to high (ANT). Station names are defined in Table S1 [Colour figure can be viewed at wileyonlinelibrary.com]
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whereas here HNsum and dHN5 bring up the rear.
MAD(DRC) values are generally higher than MAD(COR)
and MAD(RPD) and like MAD(COR) separable into
three groups: dHS1, dHS5 building the top with 9%,
HSmax, HNsum, HN3max, and dHN5 in the middle with
12%–16% and dHN1, HSavg, and HNmax at the bottom
with 19–21%.

4 | DISCUSSION

4.1 | Elevation dependences

The absence of any evident elevation dependences for
COR, RPD, and DRC, determined with a simple linear
regression (Figures S2-S4) and shown as coefficient of
determination in Table S2, allows comparison and rank-
ing of the snow climate indicators in order to find the
most stable ones. However, due to the small sample size
and unevenly distributed stations over the elevation

range of our data set, a thorough analysis is not feasible.
Having the largest RPD associated with the lowest station
pair with the smallest absolute values is of no surprise
and explained by the calculation of RPD itself.

The mere existence of elevation dependences for the
mean indicator values (see Figure S1) does not come
unexpectedly as one would expect more snow at higher
elevations due to lower temperatures. However, the con-
trast with respect to elevation among the various snow
climate indicators is interesting. HN-indicators are first
and foremost precipitation dependent. Above a certain
altitude as mentioned by Morán-Tejeda et al. (2013), the
temperature is generally low enough for the occurrence
of snow. HS-indicators on the other hand also require
precipitation, but are much more dependent on
temperature.

4.2 | COR, RPD, and RMSE

The COR values are similar to the ones retrieved by
Acquaotta et al. (2015) for the comparison of two inde-
pendent precipitation networks and generally quite high
(median COR > 0.8). The overall weaker correlations for
HNmax can be explained by the fact that HNmax is one
single event per year and not necessarily recorded at the
same date within a station pair. The small-scale nature of
precipitation itself, the short lifespan of weak snowfall
events, as well as local influences (shade, sun, exact mea-
surement time) can also have a bearing.

When looking at RPD, the counting variables cover
both ends of the spectrum: dHS1 and dHS5 display the
smallest values, whereas dHN1 and dHN5 show high
values and the largest variability. This can be explained
by the overall greater absolute number of days with snow
cover compared to days with snowfall. Small precipita-
tion events coupled with varying time of observation and
exposure of the actual measurement site have a greater
impact on dHN1 which is visible in the larger spread of

FIGURE 7 Differences in

relative changes (DRC) for all snow

climate indicators in % [Colour figure

can be viewed at

wileyonlinelibrary.com]

TABLE 2 Comparison of the median absolute deviations for

COR, RPD, and DRC for all snow climate indicators

Indicator
MAD
COR [%]

MAD
RPD [%]

MAD
DRC [%]

HSavg 3 7 19

HSmax 3 4 12

HNmax 13 7 21

HNsum 7 8 12

HN3max 7 4 15

dHS1 7 4 9

dHS5 7 4 9

dHN1 7 8 18

dHN5 7 11 16

Note: Larger values indicate larger spreads (%) of the underlying
metric. The two smallest values in each column are marked bold.
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dHN1 compared to dHN5. Overall, the variability in
dHN1 and dHN5 can be attributed to small-scale varia-
tions in precipitation. The indicators HSavg, HNmax,
HNsum, and HN3max show very similar values and dis-
tribution patterns, only HSmax has slightly smaller
values than the others so a clear distinction is difficult.
Other than HNmax, HSmax is not solely dependent on
one heavy precipitation event, but also on the already
existing snow pack. This is true for HSavg as well, how-
ever, HSavg might incorporate seasonal differences
within a station pair due to varying exposure to sun light
towards the end of the snow season, whereas HSmax
does not. In terms of RMSE, the HN-derived indicators
score slightly better than the HS-ones except HNsum. It
is no surprise to see such high values for the RMSE of
HNsum as HNsum itself is an order of magnitude greater
than the rest of the indicators. However, the
HN-indicators are generally smaller and therefore the
small RMSE can be misleading as it is sensitive to the
scale of the actual values. In general, HN-indicators con-
sist of fewer and most of the time smaller values than
HS-indicators. In conjunction with a measurable resolu-
tion of 1 cm (ruler, average of three measurements,
round up to nearest cm) measurement uncertainties
attributed to small values (mainly HN) may have larger
absolute effects.

4.3 | Days with snow cover and days
with snowfall

As an indicator for snow-covered ground dHS1 is widely
used. Would a threshold of 5 cm be more stable when
considering possible breaks in the long-term measure-
ments? The reason for 5 cm rather than 10, 20, or 50 cm
is that even at 400 m a.s.l. values of HS and HN greater
than 5 cm are frequently observed, whereas a threshold
of 20 or 50 cm would only cover very few events which
would dramatically reduce the sample size and inhibit
any analysis.

The indicator dHS1 is most likely skewed and cer-
tainly capped at the total number of days between
November and April for snow rich stations and years
(very few occasions in our data set). However, this only
applies to stations at high elevations where there is either
enough snow all season or the temperatures are cold
enough to prevent the snow from melting. dHS5 does not
necessarily solve this problem because the threshold of
5 cm is still regularly exceeded at higher elevation sta-
tions. However, this 5 cm margin addresses another issue
in connection with small values of snowfall or snow
depth; the sensitivity of the exact measurement time.
Given the right conditions, a snowfall of 1 cm can easily

melt or fall in 30 minutes and if the snowfall event takes
place around the time of measurement it can be missed
or recorded, solely dependent on the time the observer
went out and conducted the measurements. Looking at
the results, dHS1 and dHS5 are practically indistinct.
Based on these results, there is no preference to either
dHS1 or dHS5.

The same is true for dHN1 and dHN5; they both seem
interchangeable when looking at COR, RPD, and RMSE.
The only differences occur when looking at RC, where
dHN5 (as well as dHS5) show stronger values than dHN1
(or dHS1) and RPD, where dHN1 shows a larger variabil-
ity than dHN5, which is down to the temporal and spatial
sensitivity of small precipitation events.

4.4 | Relative changes

RC only focus on a specific time window (1980–2004),
which was chosen to maximise data availability. They
serve mainly as additional information for inter-station-
pair agreement and robustness. However, they generally
agree with findings in Marty (2008) and Scherrer
et al. (2013) of a decline in snow days in the Alps for the
period after 1980. Within a station pair, the RC for vari-
ous snow climate indicators are well in alignment with
regards to the direction and strength, except for a few
very weak RC that fluctuate around zero. Station pairs
associated with large differences in RC for any indicator,
visible as outliers in Figure 7, do not share any specific
characteristics. For example, HSavg, which has the least
similar RC per station pair, as reflected in the larger
spread in Figure 7 and subsequently the largest MAD
(Table 2). Low HSavg values normally imply less snow,
which can particularly amplify the differences between
stations at lower elevations where conditions can quickly
change between freezing and melting, leading to short-
lived snow appearances.

The stronger RC for dHS5 and dHN5 (compared to
dHS1 and dHN1) highlight that a decrease in amount
does not necessarily mean a decrease in frequency.

The overall smaller RC for HNmax can be explained
by the large natural variability of the intensity of heavy
precipitation events.

4.5 | Differences between Indicators

The memory effect of HS has an influence on persistence.
Every HS at a specific day is to a certain amount depen-
dent on the value of the day before and therefore more
conservative, inertial, and stable in itself; whereas HN is
a time series of (mostly) independent events. In contrast
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to HSmax which is usually only dependent on accumula-
tion, HSavg covers the entire season. Furthermore,
HN-indicators such as HNmax, HN3max, dHN1 and
dHN5 rather represent short and independent events that
predominantly rely on precipitation which can vary on
very small spatial scales; whereas HS-indicators are
dependent on a combination of temperature and precipi-
tation events therefore making them more inertial and
apparently slightly more stable. However, HNsum and
HN3max, which depend on a series of events as well
showcase the most robust behaviour among the HN-indi-
cators. Measurement uncertainties might have an impact
as well, especially for small values (HN likely more
affected than HS) as instruments and instructions do not
permit for lower resolutions than 1 cm.

5 | CONCLUSIONS

When looking for the most robust indicators with regards
to local changes, the following criteria have to be met:
high COR, low RPD, small DRC, and low MAD for a
majority of station pairs.

As the correlations for all indicators and a majority of
station pairs is high (median COR > 0.8), only RPD, DRC
and MAD are used to determine the most robust snow
climate indicators. Low RPD are found in HSmax, dHS1,
dHS5, and HNsum (closely followed by HN3max). Tak-
ing DRC into consideration has little effect as the values
are similar for the snow climate indicators in question.
The variability of the various RPD and DRC is quantifi-
able with the robust measure MAD (see Section 3.3 and
Table 2). Smaller values indicate smaller variability and
therefore imply a more robust indicator. Generally, DRC
show larger MAD (Figure 3, 4, and 7 and Table 2). The
most stable snow climate indicators with regards to local
changes considering RPD, DRC, and MAD are: HSmax,
dHS1, dHS5, and HNsum closely followed by HN3max.
Surprisingly, HSavg, is according to our analyses, not
among the most robust snow climate indicators and per-
haps not the indicator to got to for future homogenisation
efforts for snow, as it was used in Marcolini et al. (2017a).

Our analysis shows that median RMSE are about
5 cm for all height/depth related indicators and about
5 days for all time related indicators, except HNsum.
Median relative percentage differences are about 7% for
the number of days with snow cover and 11–16% for all
other indicators. It is worth bearing in mind that in
extreme cases the deviations within a station pair can
reach 25–40%.

The differences between dHS1 and dHS5 respectively
dHN1 and dHN5 are negligible except for the fact that
both dHS5 and dHN5 show stronger changes than dHS1

and dHN1 and dHN1 has a larger variability than dHN5.
A higher threshold of 5 cm (compared to 1 cm) does pro-
vide more stability on days with snowfall, but not on days
with snow on the ground.

Nearly all stations show negative RC for all snow
climate indicators during the period 1980 to 2004,
suggesting that the climate signal during that period is
stronger than the local inhomogeneities. But more impor-
tantly, the signs of strong RC agree at all station pairs for
all the snow climate indicators.

All outliers in Figures 3–5 (correlation, relative differ-
ences and RMSE) can be attributed to the same five sta-
tion pairs. However, the outliers in Figure 7 (difference
in relative changes) show a more diverse pattern and con-
sist of 10 different station pairs (including three from
Figures 3–5).
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